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Hermitian forms on link modules

M. FARBER*

Simple knots of odd dimensions =5 comprise the class of knots admitting the
most transparent algebraic classification. A knot %~ ' < §%+! ¥ being a homo-
topy sphere, is simple if ¥ bounds in S?*! a (¢ — 1)-connected manifold. Such
knots appear in algebraic geometry, where they describe isolated singularities of
complex hypersurfaces [M1]. Simple knots were first studied by Kervaire [K];
different classification schemes for them have been constructed by J. Levine [L1], H.
Trotter [T] and C. Kearton [K1]. Any simple knot determines naturally a covering
X - X, X =8%-'— %, with the infinite cyclic group acting on X as the group of
covering transformations. One associates with the knot the left 4 = Z[t, t —']-mod-
ule Hq(X’ ), the Alexander module. This module supports a non-degenerate Hermi-
tian form (the Blanchfield form)

H/(X) x H(X) - Q()/4,

where Q)(¢) is the field of rational functions of ¢ with coefficients in Q. The theorem
of [T] and [K1] states that the Alexander module together with the Blanchfield form
determine the knot uniquely. Thus, various geometric properties of simple knots
can be read off from the Alexander module and the Blanchfield form.

A simple link is a natural generalization of a simple knot. A link X%~ ! §%+!
where X%~ !'=%,0---UZ, is the ordered disjoint union of u submanifolds of
S%7+1 each homeomorphic to $27~ ', is called simple if each X, bounds in §%+! a
(9 — 1)-connected manifold V; such that V; is disjoint from V; for i # j. (For a more
invariant, but equivalent, definition see §6.) Any simple link determines naturally a
covering X - X, X = §%+' — X, with the free group F, on u generators acting on
X as the group of covering transformations. One associates with the link the left

* The research was supported by grant No. 88-00114 from the United States—Israel Binational
Science Foundation (BSF), Jerusalem, Israel



190 M. FARBER

A = Z[F,]-module Hq()? ), a non-commutative generalization of the Alexander
module. This module supports a non-degenerate Hermitian form

[,]1: H(X) x H(X)-> T4,

where I' = Z[[x,, ..., x,]] is the ring of formal power series in non-commuting
variables x,, ..., x, and A4 is embedded in I" via the Magnus embedding. The main
result of the present paper is that the module Hq(X’ ) together with the form [, ]
yield a complete system of invariants of simple (2¢g — 1)-dimensional links, ¢ > 3.

The method we apply to prove this result consists of two main ingredients: (1)
the stable homotopy reduction of the problem which has been performed in [F2];
(2) a detailed algebraic analysis of the structure of link modules and of all possible
Hermitian forms on them, which is done in the present paper.

Our plan is as follows. We first examine link modules assuming that the field Q
of rational numbers is taken as the coefficient ring. We prove that in this case any
link module contains a unique minimal lattice and this lattice determines the whole
module. We show that any Hermitian form determines and is determined by a unique
scalar form on the minimal lattice. In the case of knots (z = 1) the minimal lattice
coincides with the whole module and the scalar form reduces to the Milnor form [M].

In the integral case the minimal lattice does not exist any more, but the scalar
form is defined on a principal submodule (cf. §4), which does not form a lattice in
general. We analyze the structure of self-dual lattices lying in the principal submod-
ule, in similar fashion to [T]. In the last section we prove that each minimal Seifert
manifold V' determines a self-dual lattice which as an isometric structure is
isomorphic to the isometric structure of the embedding V < §27+ !,

A classification of simple links in terms of Seifert matrices has been obtained by
Liang [Li] (up to umbient isotopy) and by Kobelskii [K2] (up to PL isotopy). A
cobordism classification of simple links has been obtained by Cappell and Shaneson
[CS] in terms of their general theory of homological surgery. A cobordism classifi-
cation in terms of Seifert matrices has been established by Mio [Mi] and Ko [Ko].
The relationship between I'-group classification of [CS] and the Seifert matrix
approach was clarified by Ko in [Kol]. Another cobordism classification was
suggested by Duval [D]. Duval constructed a version of the Blanchfield form on the
homology module of the free covering and proved that the Witt group of such
forms is isomorphic to the group of link cobordisms.

Duval’s version of the Blanchfield form takes values in Ay /A, where A; is P.
Cohn’s localization of A with respect to a class of matrices. The version of the
Blanchfield form [,] we use here was constructed in [F2]; we found it more
convenient for our purposes. One might guess that these two forms are in fact
equivalent.
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§1. Lattices in link modules

Fix an integer 4 >0 and a subring k = Q. Let F, denote the free group on u
generators ¢,,...,¢, and let A = k[F,] be the group ring.

1.1. A left A-module M has the Sato property if Tor; (k, M) =0 for all g, where k

is regarded as a right A-module with trivial action via the augmentation map. As
was shown by Sato [S], this condition is equivalent to the following: the map

MF=Mx- --xM->M,

X
p times

given by (m,,...,m,)—Z¢_(t;, —1)m;, m;e M is a bijection. In other words,
each m € M has unique representation in the form

u

m= Y (t— m,.

i=1
Let us define “derivations” 0, : M - M,i=1,...,u, by
ai (m) = mi’
where m; € M is the element appearing in the above decomposition. Thus,

m = i (t;, — 1) 0,(m), me M.

i=1
If A €A, then
0;(Am) = 0;,(A)m + &(2) 0,(m),

where .0;(4) € A is the Fox derivative with respect to ¢, [CF], and &(4) € k is the
augmentation.
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We can think of M as also having a left module structure over the ring
D =k[o,,...,0,] of polynomials of non-commuting variables 0,,...,0d,. Any
A-homomorphism f: M, - M, between modules with the Sato property is also a
D-homomorphism. The converse is also true. Thus

Hom, (M,, M,) = Hom, (M, M,).

1.2. The most important example of a module with the Sato property is the
following.

Let I' = k[[x,, ..., x,]] be the ring of formal power series of non-commuting
variables x,, . .., x,. The ring 4 may be embedded in I" via the Magnus embedding
tt—1+x,t7 = 1—x;+x2—x>+---. Then I'/A is a left A-module with the
Sato property. The derivation 8, : I'/A — I' /A acts as cancellation of x; from the left
on monomials containing x; on the leftmost position, and sends to zero all other
monomials.

In fact, the above-mentioned rule defines an additive map 0, : I' = I" with the

property

y=e) + 3 x0,0),

i=1

where &(y) € k is the augmentation. 9, maps A into itself and the restriction J;|,
coincides with the Fox derivative 0/0t; [CF].

These remarks allow us to introduce a left D-module structure on I' and A,
which will be used later.

1.3. A module of type L is a left finitely generated A-module with the Sato property.
I'/A is not a module of type L.
Modules of type L appear as homoloy of free coverings of boundary links [S],

cf. also §6.
We shall introduce now some more operations in modules M with the Sato

property. If m € M then the equation

u

m=73 (t;—1)0,m)

i=1

is equivalent to

m = }M: (7' —1) 0,(m),

i=1
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where 0,: M - M, i=1,..., uis defined by 0,(m) = —t, ,(m). Define
n,(m) = —0,(m) — 3,(m) = (t; — 1) 8;(m),
which will be called the i-th component of m. Then
m=mn,(m)+--+mn,(m), meM,
T o M = T,

moom; =0 fori#],

0;=0;°m,

0,=0,0m,.

Let us also introduce an operator z : M - M by

0, = —zm,,
0, = —zm;,
where

Thus, the whole structure is given by a decomposition of unity {r;,}, _ 75, which
gives a splitting of M into a direct sum (over k)

MzX1® : '@X#,
and an endomorphism

z: M- M.
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14. Let M be a A-module of type L. A lattice in M is a k-submodule 4 =« M
which:

(a) is invariant under 9,,0,, i =1,..., u;
(b) generates M over A;
(c) is finitely generated over k.

-

Condition (a) is equivalent to each of the following conditions (a’), (a”), (a”):

(a’) A is invariant under zand =, i=1,..., u;
(a") A is invariant under 0, and n;,, i=1,..., u;
(a”) A is invariant under 6, and #,, i=1,..., 4.

1.5. LEMMA. (1) Each A-module M of type L contains a lattice; (2) If A, and A,
are two lattices in M then A, + A, and A, A, are also lattices.

Proof of (1). Let m,,...,m, € M generate M over A. Then
om;= Y Akm,, ke
k=1

For sufficiently large N all the A} are contained in the k-submodule Sy of 4,
generated by all monomials

LA b
with
le| +Jea| +- -+ e | <N, i, i e {l, ., uk

Sy is closed under the Fox derivatives. Let 4" be the set of all sums of the form

Y Am,, A, €Sy.

i=1

Then A’ is invariant under 0,, generates M over A, and is finitely generated over k.
Let a,, ..., a, generate A" over k. Consider the k-submodule 4 of M generated
by {ma;}, where i=1,...,pu,j=1,...,q. Then 4 is a lattice in M.

Proof of (2). Let A,, A, = M be two lattices. It is clear that 4, + A4, is a lattice
and that 4, N 4, is invariant under 9, and 0, and is finitely generated over k. Hence
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we only have to prove that 4, N A, generates M over A. This will follow from the
following observation.

1.6. LEMMA. Let M be a module of type L, A =« M be a lattice, and B = M be a
subset. Then

AN(t, —1)B < A(4 A B); (1)
An(t7' —1)B < A(ANB), (2)

where the right-hand-side denotes the submodule generated by AN B over A,
l<i<p

Proof of Lemma 1.6.If aeAn(t;—1)B then a=( —1)b, be B and
b=0,ae AnB, ie. ae A(A nB). The second inclusion may be proved similarly.

Proof of Lemma 1.5 (continued). Let A,, A, be two lattices in M. From Lemma
1.6 we obtain by induction:

At = 1) — DAy = AA, N (4 — 1)A4,) © (4,0 4,),
and similarly
An@; =1) -t — DA, = A(4,n 4,),

for any i), 4,,...,i,e{l,...,u} and g, = +1,i=1,...,s. Since the union of all
sets of the form

(7 =1 -t — D4,

is equal to M, it follows that

AycA(4,n4,)
and so
A(A,nA,)=M.

1.7. Let A c B be two lattices. We will say that B is an elementary extension of A
of the first kind (respectively, of the second kind) if m;B = m,4 for all but one index
ie{l,...,u} and zB = A4 (resp. ZB < A).
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If 4 is a lattice and B=x;4 + A, C=Xx,4A + A, then B> A is an elementary
extension of the first kind and C o A4 is an elementary extension of the second kind.
Here

X,-=t,-—l, fizt;'l_l.

1.8. PROPOSITION. Let M be a module of type L and A = M be a lattice. Then
there exists a sequence of lattices.

A=Ayc A cAyc--

such that
U A;=M
i=0

and A; is an elementary extension of A, _, forall i=1,2,....
Proof. Let us define A, inductively. If i = j(mod 2u) with 0 <j < u put

A; =xin~1 +A4;,_,.

If i =j(mod 2u) with u + 1 <j < 2u, define

A,- jj~;«lAi~—l+Ai~l'

This gives the desired sequence 4, c A, = - -

1.9. COROLLARY. If A and B are two lattices in M then there is a finite sequence
of lattices A = Cy, C,, ..., Cy = B such that for eachi=1,2,..., N either C, is an
elementary extension of C,_, or else C;_, is an elementary extension of C,.

Proof. First assume that B > 4. Let A,=A4 < A, = - - be a sequence of lattices
as in Proposition 1.8. Take C; = BN A;. Then C, = B for sufficiently large i, i = N,
say, and C,, ..., Cy is the desired sequence.

In the general case, we can construct a similar sequence of lattices joining 4 and
A + B; in the same way we have a sequence of lattices joining B and A4 + B.
Connecting the two sequences, we get the sequence of lattices joining 4 and B
having the desired properties.
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1.10. Assume that k =Z and M is a module of type L. We will say that M is
periodic if there is an integer N € Z, N # 0 with NM = 0. As follows, from Lemma
1.5.(1), this is equivalent to M = Tors, M.

Any lattice of a periodic module of type L is finite and conversely, any module
of type L admitting a finite lattice is periodic.

1.11. THEOREM. Let M be a module of type L. Assume that either k = Q or k = Z
and M is periodic. Then M contains a minimal lattice A < M, which is the intersection
of all lattices in M. A lattice A < M is the minimal lattice if and only if for any
k=1,...,u

n.2zA =n,A and mnZA=m,A

(where z =1 — z).

Proof. The existence of a minimal lattice follows from Lemma 1.5(2). If 4 is the
minimal lattice and 7, zA # m, A for some k, define B, B c A4, by

n,B=n,A fori#k, i=1,...,4

nkB = nkZA.

It is easy to check that B is a lattice with B = 4, B # A which gives a contradiction.
Similarly, if n,zZA4 # n, A we can define B as

T[,-B - ﬂiA, i # k,

7IkB = nka

and obtain a contradiction.

Assume now that 4 is a lattice with n.z4 =n A, mzA =mn. A for all
k=1,...,u If A contains another lattice B < A, B# A then it follows from
Proposition 1.8 that there exists a lattice C = M such that Bc C < 4, C # 4 and
A is an elementary extension of C. This means that

n,C=mA
foralli=1,...,u,i#k and

zA<C, or zZAcC.
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In the first case we have n, C # n, 4 and
n.zA < n, C f m, A
which is a contradiction. The second case can be treated similarly.
1.12. Our main interest is ine the case k = Z. A module of type L over Z does not
have to have a minimal lattice in general. But the Proof of Theorem 1.11 shows that

the following is true:

1.13. COROLLARY. Let k =« Q be an arbitrary subring. If A is a lattice in a
module M of type L and

n.zA =m A, n.zZA =m, A
for any k =1,..., u then A coincides with the intersection of all lattices in M.

1.14. REMARKS. 1. Consider minimal lattices in the case u = 1 (knots). If k =Q
then any module M of type L coincides with its minimal lattice. It follows from the
fact that M is finitely generated over Q (cf. [M]) and from Theorem 1.11: the
conditions of the Theorem

zM =M, M =M
are satisfied because in the case 4 = 1 one has

=(1-n"", z=(1-t"H"!
and both maps

l—t, 1—t7""M>M
are isomorphisms.

2. The same is true if u =1, k =Z and M is periodic: in this case M also
coincides with its minimal lattice. The proof is rather similar; instead of the result of
Milnor [M] one may use a Lemma of Kervaire [K], ch. II, saying that under the
above assumptions M is finite.

3. If u>1 and k = Q then the minimal lattice A = M coincides with the whole
module if and only if M = 0.
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Proof. A = M implies M is finitely generated over @ and now the Sato property

MxMx---xMa~M

Y
u times

gives
u(dimg M) =dimg M.
Thus,

dimg M =0, M =0.

§2. The dual module
2.1. Since I'/A is a A — A-bimodule, the group Hom, (M; I'/A) has a natural right
A-module structure. We can transform it into a left A-module structure by using

the standard involution of A, f,+—¢;!. In other words, we shall consider
Hom, (M, I'/A) as a left A-module with

(t.f)m) = f(m)t;!
for
feHom, (M; TI/A), meM, i=1,...,u

2.2. PROPOSITION. If M is a module of type L then Hom , (M, I' |A) is also of
type L.

For the proof we need a Lemma:

2.3. LEMMA. Each y € I' can be uniquely represented in the form

u
Y =¢&(y) + Z ViXis V. €T,

i=1
where ¢(y) = y(0) is the augmentation and X; denotes the following power series

X=—x;+x?—x}+---€l.
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If y belongs to A then y,e A, i=1,...,pu.

Proof. There is a continuous involution— : I' - I" with x; > X, i=1,..., u.
It follows that the decomposition

u
y=¢()+ Y 7%, verl,

i=1

holds if and only if y; = J;(j), cf. 1.2.
The involution— maps A into itself and 9;(A) = A as well (0, coincides with the
Fox derivative on A). Thus y, € 4 if y € A.

2.4. Let us define 6, : I' > T by 6,(y =0,(7), y e I'. Then we have

y=em) + 3 60T,

i=1
and
0;(172) = :(y1)e(y2) + 710:(y2),
0;(x;) = —1—x;
5,-(xj) =0 ifis#j

for y,y,, €l i=1,...,u
From Lemma 2.3 it follows that J, correctly defines a map 6,: I'/A - I'/A. For
leA,yerl

9;(4y) = 49, (y)(mod A);
that is, 9, determines a left A-homomorphism I'/A - '/A.

2.5. Proof of 2.2. Let fe Hom, (M;I'/A) be a A-homomorphism. The above
remarks imply that f; = d, o f belongs to Hom, (M; I'/A) and clearly

=3 -1y,

i=1

The uniqueness of this decomposition follows from 2.3, and this proves the Sato
property for Hom, (M; I'/A). To complete the proof we have to show that
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Hom, (M; I'/A) is finitely generated over A. This will follow from the next two
lemmas (cf. 2.8).

2.6. LEMMA. Let A M be a lattice in a module M of type L, and B be a
A-module with the Sato property. Then any D-homomorphism A — B can be uniquely
extended to a A-homomorphism M — B. Thus, Hom, (M, B) = Hom, (4; B). In
particular, two modules of type L are isomorphic if and only if they admit lattices
which are isomorphic as D-modules.

Proof. Any A-homomorphism f: M — B is also a D-homomorphism (cf. 1.1)
and so its restriction to 4 is a D-homomorphism 4 — B. If f|, = 0 then f = 0 (since
A generates M over A). Thus the map

Hom, (M; B) - Hom, (4; B)
is injective. To prove that it is onto, consider the sequence of lattices
A=AOCA1CA2C"', UAI'=M,

constructed in Proposition 1.8. We want to show that any D-homomorphism
8 :A;—> B can be extended to a D-homomorphism g;,,: 4;,,— B; this would
complete the proof of the Lemma.

Assume that 4;,, © A4, is an elementary extension of the first kind. Define

8i+1:4i, 1 —B

by

u
gi+1(a) = Z X8 (0ra), acd;,,.

k=1
Because 0,(4;,,) = A;, this formula defines g,,, correctly. If ae€ A4;, then

8i+1(a) =Zf_ ) x,8:(0xa) =i -\ x, 0,8 (a) = g;(a); thus g, , is an extension of g;.
To show that g;, , is a D-homomorphism, note that

gi+1(0,a) = g;(0,a)

(since 0,a € A;) and

g:(0a) = 61[ i Xi&i (aka)] = 0,8 +1(a).

k=1
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One may use similar arguments when A, , © 4, is an elementary extension of the
second kind.

2.7. LEMMA. Let A be a lattice in a module M of type L. Then the image of
Y : Hom, (4; ') > Hom, (4, I'/A)

generates Hom,, (A, I'/A) over A.
REMARK. I is assumed to be supplied with the D-module structure intro-
duced in 1.2.

Proof. Let f: A—>I/A be a D-homomorphism. It is clear that f admits a
k-lifting g : A>T

r
g/“l

AN
rja

A

Fori=1,...,u consider the map g,: 4 —» 4, g;(a) = 0,g(a) — g(d,a), a € A. Let us
write

gi(a)= ) n-fua),

ner

where f* : A >k is a k-homomorphism and f* is nonzero only for a finite number
of pairs (i,n), i=1,...,u, neF, Let fi : A—T be the D-homomorphism

fi@ =Y x*f(0%),

where o runs over all multi-indices a=(,,...,i), i€{l,...,u} and
X% =x; X; 3 X;,0%=0; 0; ,...,0;.Define g§:4-T by

2% 1

8@ =Y fi@xm,
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where i runs over 1,2,...,u and neF,, the sum is in fact finite. § is a
k-homomorphism. Let us show that h=¢ —g: 4 - I is a D-homomorphism:

0,6(a) — 80,0) = Y. x4 (@ 0axm + Y. fi@) - n— Y xf4(0% dax,m

im0 im,o

=Y. fr(@)m =g;(a) = 0;g(a) — g(9;0).

The map ¢ : A — I is not a D-homomorphism in general. But its reduction modulo
A, that is 7: 4 > T'/A, f(a) = §(a) mod A, is a D-homomorphism. From the for-
mula defining £ it is clear that f belongs to A(im (y)), the A-submodule, generated
by im (). On the other hand, f=7f— A, where A: 4 - TI'/A is the reduction of &
modulo A. The above remark shows that 4 € im () and thus

f € A(im (),
which proves the lemma.

2.8. Proof of 2.2 (continued). We have to show that Hom, (M, I'/A) is finitely
generated over A. By Lemma 2.6 we can identify Hom, (M, I'/A) with
Hom,, (4; I'/A), where A is a lattice in M, and by virtue of Lemma 2.7 it is enough
to show that Hom, (4; I') is finitely generated over k. We will do this by showing
that

Hom, (4; ') ~ A* = Hom, (4, k)

as modules over k. Let F:A—-I be a D-homomorphism. For ac€ A,
F(a) =X x*,(a), where o runs over all tuples (i,...,i) with
iy,...,i;e{l,...,u} and x* denotes the monomial

X; X .

i riy ' i
with the convention x¢ = 1.
For each multi-index «, f, : A =k is a k-linear map. Since F is a D-homomor-

phism, d,F(a) = F(d;a) and so

1:0,0) = fi,(a).
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This formula shows that all k-homomorphisms f, can be expressed in terms of
Jo :A—k:

Ja(@) =f¢(ais Tt aiz ai,a)
for
o0 =,...,I).

Conversely, given a k-homomorphism f,: 4 -k we can define f, by the
previous formula and then construct F: 4 -» ' as a D-homomorphism

F(a) =Y. x*(a).

Thus, the map F - f, is a k-isomorphism
Hom), (4, ) = Hom, (4;k) = A*.
This proves Proposition 2.2.

2.9. THEOREM. Assume that k = Q. Let M be a module of type L and let A =« M
be its minimal lattice. Consider the following homomorphism

@ :A* =Homg (4; Q) > Hom, (4;I'/A) =Hom, (M; I'/A),

o(f)a) = 3 3 x*(n,0%a)x, (mod A),

i=1 a

where f € A*, a € A, and a runs over all multi-indices. Then ¢ is a monomorphism and
its image coincides with the minimal lattice of the dual module Hom , (M; I"/A).

For the proof we need two lemmas.

2.10. LEMMA. Let k = Q and let X be a D-module which is finitely generated over
k. Then Hom,, (X; A) =0 if and only if
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and for any k =1,..., u

H

Y, 0,(X) +(1+3)X)=X.

ink

Proof. Let A, be a D-module with 4, =k and all ¢, : A,— A, equal to zero. For
each ie{l,...,u} denote by 4, a D-module with 4, =k, d,=0 for j#i and
0;,=—1.

The modules 4,, i=0,1, ..., u are isomorphic to D-submodules of A (A4, is
isomorphic to the submodule generated by 1€ A4 and 4, for ie{l,...,u} is
isomorphic to the submodule generated by ¢;!). Thus Hom,, (X; A) =0 implies
Hom, (X;A4;) =0 forall ie{0,1,...,u}.

The condition Hom,, (X; 4,) = 0 means that each k-linear map f: X — k with
f(0,x) =0 for all xeX and je{l,...,u}, is zero. This is equivalent to
L, 0,(X) =X

The condition Hom,, (X, A;,) =0fori =1, ..., u implies that each k-linear map
f: X >k satisfying f(0,x) =0 forallx e Xandje {l,..., u},j #iand f(0;x) = —x
(which is equivalent to f((1 4+ J,)x) = 0) is the zero map, f = 0. This is equivalent to

Y X +im[(1+9,): X>X]=X.

=Y

Thus, Hom,, (X; A) =0 implies the above-mentioned conditions.

Suppose now that the above conditions are satisfied, that is Hom, (X; 4;,) =0
fori=0,1,...,u Consider the filtration 0=L_,cLycLic---of A =U2,L,,
where Ly =Q < A and

Li=L,_,+xL;_, fori=j(mod2u), i<j<u

L=L,_,+x_,L;_, for i=j(mod2u), pu+1<j<2u
Then each L, is a D-submodule of A and L;/L,_, is isomorphic to a finite direct
sum of several copies of some of A,,...,A4,. If f: X —> A is a D-homomorphism

then f(X) = L, for some N and Hom (X; 4;) =0 implies f(X) < Ly_,. Thus by
induction we get f(X) = L_, =0.

2.11. COROLLARY. Let k = Q and A be the minimal lattice in a module M of type
L. Then any D-homomorphism f: A — A vanishes on zA < A and takes values in
Q < A. More precisely,

Hom,, (4; A) = Homg, (4/z4; Q) = (4/zA)*.
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Proof. Denote by A’ a D-module with underlying set 4’ = 4 having the same
k-module structure and with operators 0, : 4" — A’, defined by

0;(a) = —m;za, aeAdA’, i=1,...,u.
(Recall, that 0,a = —zm,a in A). The map
z:A > A, avw zd,

is a D-homomorphism. Note that the module A’ satisfies the properties of Lemma
2.10. Thus, if f: 4 - A is a D-homomorphism, then f(zA4) = 0. It follows that for
aeAandi=1,...,u

0:.f(a) =f(0;a) = f(—zma) =0

and so f(a) =conste Q < A.
Conversely, given a Q-homomorphism f: 4 - Q which is zero on zA4, one can
consider the composite

incl
A— Q— 4

as representing a D-homomorphism A4 — A.

2.12. Proof of Theorem 2.9. Let us first show that ¢ is a monomorphism. If fe 4*
belongs to ker (¢) then

0@ = 3 T 5 0%

belongs to A for any a € A. Thus the map ¢,(f) : A = I' defined by

¢:(f)Na) =) x*f(n;0%a), ae€Ad

is a D-homomorphism (obviously) taking values in A < I'. From 2.11 it follows
that f(m,zA) =0, that is f(n;,A) =0 (since m;zA =m;A). This is true for all
i=1,...,uand so f=0.

Our next step will be to show that im (¢) is invariant under Z and n,, ..., 7,.
To do this we will introduce operations

Z, My, ..., M,  A* > 4%



Hermitian forms on link modules 207
by

(@ )a) =f(za)
(n:f Na) = f(m;q)

for
feA*, aeAd, i=1,...,u,

and will show that ¢ commutes with Z and #n,,...,n
Compute

ue

o&)@) = 3 ¥ xem %), = — ¥ ¥ x1(0, 0%, = Go( /)@

i=1 « i=1 a

and also

ow)@) = 3 T x¥f(nm, 0%a)x, = ¥ x*f(n, 0%a)x, = (m,0(/))(a)

i=1 a o

To prove that im (¢) is a lattice we have left to show that im (¢) generates
Hom, (4; I'/A) over A. By Lemma 2.7 it is enough to show that im (¢) contains
im (), where ¢ is the homomorphism of Lemma 2.7. Let F: A - I /A belong to
im (). Then by the arguments of the Proof of Theorem 2.2 (cf. 2.8) there exists a
Q-homomorphism g : 4 - @ such that

F(a) =) x*g(0*a) (mod A)

for all a € 4. Tt follows that

F=o(f),
where fe A*, f(a) = —g(za) for a € A.

In order to show that im (¢) is the minimal lattice we can check the conditions
of Theorem 1.11 for 4*. Since

(me2f a) = f(Zna)
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for fe A*, a € A, the identity
nzA*=m, A*

is equivalent to the following statement: for each Q-homomorphism g :7n, 4 - Q
there exists a @-homomorphism 4 : 4 —» Q such that the diagram

Tka—'z:""‘)A
g\ I/h
Q

commutes. The last statement is equivalent to the fact that z|, , is a monomor-
phism, which is in fact true: if aen, 4 and Za=0then d,a=0foralli=1,...,pu
and a = X¥_, X, 0,(a) = 0. The identity

SA* — *
nzZA*=m, A

follows similarly.
This proves the Theorem.

§3. Hermitian forms

In this section we consider modules of type L supplied with Hermitian forms
with values in I'/A. Assuming that the ground ring &k is Q, we show that such a
form defines (and can be expressed in terms of) a unique scalar form defined on the
minimal lattice.

In the case of knots (u = 1) the minimal lattice coincides with the whole module

and the scalar form constructed here reduces to the Milnor form [M].

3.1. Let M,, M, be two modules of type L. Consider a Q-bilinear pairing
[3]:MIXM2—}F/A9 (a9b)H[aab]€F/A
with the properties:

(a) [Aa,b] = Aa, b] for Le A, aeM,, be M,;
(b) [a, Ab] = [a, b)7;
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(c) [,]1s nondegenerate in the following sense: for b e M, let ¢, : M, > T /A be
the A-homomorphism defined by ¢,(a) = [a, b]; then the map

M, —Hom, (M;I'/4), b ¢,

is an isomorphism. (Note, that (b) means that this map is a A-homomor-
phism).
In the case M, = M, we will consider an additional property:

(d) [a,b) =¢[b,a] for a,be M, ¢ = +1.

3.2. THEOREM. Let k = Q and M,, M, be two modules of type L supplied with a
pairing

[L]: My xM,>T/A
satisfying (a), (b), (c) of subsection 3.1. Then there exists a unique Q-bilinear map
< s > : Al X A2 g @

(the scalar form), defined on the minimal lattices A, < M,, A, = M, such that
(1) foraeA,,be A,

[a, b] = i Y x*(0%, m;bdx; (mod A)

i=1 a

where o runs over all multi-indices o = (i\, ..., i) with i;e{l,...,u} and
X*=X X, X, 0% =0, 0; 0y

(2) {ma,by=<a,n;b) forallae A,,beA,,i=1,...,u;

(3) <za,b) =<a, zb), where z =1 — z;

(4) (, ) is non-degenerate; i.e. the associated map A, > A¥ = Homg (4,; Q) is
an isomorphism.

Conversely, given a scalar form with the above properties, the formula in (1)

defines a pairing A, x A,—>T|A which can be uniquely extended to a pairing

M, x M, —I'|A satisfying (a), (b), (c) of 3.1.

Proof. To define a pairing [, ] : M, x M, > I'/A satisfying (a), (b), (c) of 3.1 is
equivalent to specifying a A-isomorphism

M,—Hom, (M,; I'/A),
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and by Lemma 2.9 and Theorem 2.9 this is equivalent to specifying a D-isomor-
phism

Az—)AT

which is the restriction of the above homomorphism to the minimal lattices and
represents the scalar form.

3.3. THEOREM. Let k=Q and [,]: M x M —>TI'/A be a pairing satisfying (a),
(b), (¢) of 3.1. The pairing [, ] satisfies (d) of 3.3 if and only if the scalar form {, )
is (—¢)-symmetric:

{a,b) = —elb, a)

for a,b € A.

Proof. Consider the pairing

{,}:AxA-T,

H
{a,b} = > Y x*0%, mb)x;,, a,beA.

i=1 «

Let 6, : I’ —» I" denote the map of 2.4. Then
6;{a, b} = =) x*0%, m;b)x, — ) x*(0%a, m;b)
= —Y x%0%, nbdx; —<a, m;b)

u
~ Y x%8; 0%, mbYx; — Y Y x*; 0%, mbdx,
a k

=1 a
k+#i

=) x*(0%, m;0;b)x; (from the first and the third term)

mn
+ Z Z x*{0%a, m, 0;b>x, (from the fourth term) — <{a, n;b)
k=1 a
k#i

={a, 0;b} — {a, m;b).
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From this one obtains by induction

6, ¢

1 Via

6, {a,b}={a,0; 0;,-- -0, b} —<a,m; 0;,- -0, b)
and
8(61'1 6i2 T 5is {aa b}) = —<a’ nil 612 e ai_¢b>9

where ¢ denotes the augmentation I' — Q. Thus

{a,b} = _(_ Z.)fi Xiy X {a, M, 0,0 0, b)
Usennsls

and

{a,_b} = — i Y x*(ma, 0°b)x;.

i=1 «

Reducing the last formula modulo A, we see that the scalar form
{,» 14 x A—Q corresponding to

[LLh:MxM-TI/A, [a, b], =[b, q]
is
<a9b>l = _"<baa>

and so our statement follows from Theorem 3.2.

§4. Quasi-minimal lattices

In this section we come to our main goal and start the study of the structure of
modules of type L assuming that the ground ring k is Z.

We have to change our notation slightly. The symbols A, I', D will denote the
rings introduced in 1.1, 1.2, 1.3, with k = Z. For example A = Z[F,] and so on. The
symbols QA, QI', QD will denote similar rings where £ = Q.

A module of type L is now a left A-module with the Sato property.
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4.1. Let M be a module of type L. Then QM = Q ®; M is a module of type L over
QA and by Theorem 1.11 there exists a unique minimal lattice QN < QM. Consider
the canonical map

n:M->QM
and define
N =n"'(QN).
We will call N the principal submodule of M. It has the following properties:

(a) if me M and nm € N for some ne€ Z,n #0, then m € N,
(b) N is invariant under 0,,n, - M ->M,i=1,...,u;
(c) N generates M over A.

A lattice 4 in M will be called quasi-minimal if it has the following property: the
groups

m,A|mzA, n,A|n.ZA,

are finite forallk =1, ..., u. From Theorem 1.11 it follows that any quasi-minimal
lattice 4 lies in N and the group N/A is Z-torsion. Conversely, any lattice 4 which
lies in N is quasi-minimal. The arguments at the beginning of the proof of Theorem
1.11 show that N always contains a quasi-minimal lattice.

If A and B are two quasi-minimal lattices with 4 < B then B/A is finite.

The following statements are designed to enable us to compute the principal
submodule and quasi-minimal lattices of the dual module Hom , (M; I'/A).

4.2. PROPOSITION. Let M be a module of type L with no Z-torsion and let N be
its principal submodule. Any Z-homomorphism f: N — Q defines a D-homomorphism

o(f): N-Qr;Q4a

(where

o(f)a) = 3 Y x*f(x;0%a)x, (mod QA),

i=1 a
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for a € N, see th. 2.9) which has a unique extension (by Lemma 2.6)
o(f): M- Qr/QA.

The homomorphism @( f) takes values in I'|A = QI |QA if and only if there exists a
quasi-minimal lattice A < N such that f(A) c Z.

Proof. Suppose that there exists a lattice A = N with f(4) = Z. Then ¢(f)|,
takes values in I'/A and by Lemma 2.6 ¢(f)|, has a unique extension M —I'/A;
thus ¢( f)Y (M) = I'/A.

Conversely, suppose that @( f) takes values in I'/A < QI'/QA. Let B< N be a
quasi-minimal lattice. For i =1,..., u and b € B define

@i (b) = x*f(m; 0°b).

xX

Then ¢; is a D-homomorphism B — I' + QA. Consider the composite map
W B—>T +QA—T +QA/T =QA/A.

If b € B, the condition b € ker (;) is equivalent to
f(n,0°b) e Z

for any multi-index o« (including a = &). It is clear that b € ker (;) implies
orb € ker (¥;) and m, b € ker (y,) for any k =1, ..., u. Thus the subgroup

A= (E\ ker (), AcB

i=1
1S invariant under J, and m,. Lemma 4.4 below applied to the map

g:B-QA/APQA/AD---DQA/A,

v
u times

where g(b) =y, (b) DY, (b) D - - DY, (b), b € B, shows that 4 generates M over A.
Thus 4 is a lattice with f(4) = Z.
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4.3. Let C be a D-module. We will say that C is a D-module of type 0 if 0,C =0
for all k=1,...,u. We will say that C is a D-module of type i (where
ie{l,2,...,u})if 6,C=0"fork #i,ke{l,...,u} and (14+0,)C=0.

4.4. LEMMA. Let M be a module of type L. Let X = M be a D-submodule which
is finitely generated over Z and generates M over A. Let Y be a D-module having a
D-filtration

O0=Yy,cY cY,c - vY, =Y,

with the property that for each j=1,2,... there exists a number
i=i(j)e{0,1,...,u} such that Y;|Y; , is a D-module of type i. Then the kernel
of any D-homomorphism

g:X-Y

generates M over A.

Proof. 1t is sufficient to prove the Lemma under the assumption that Y is a
D-module of type i, for ie {0,1,...,u}.
Let i =0. Then for any x e X all 6, x, k=1, 2,..., u, belong to ker (g), and

M

x= 3 (t—1)dex.

k=1
Thus, x belongs to A(ker (g)), the A-submodule of M, generated by ker (g).

Suppose that ie{l,...,u} and Y is a D-module of type i. For x € X, let
o, =0xfork#i,ke{l,...,u} and g, = x + 0,x. Then o, € ker (g) for all j and

u
x=t7"Y (& — Doy,
k=1

which proves that x € A(ker (g)).
Thus,

A(ker (g)) = M

in both cases.
From Proposition 4.2 and Theorem 2.9 we get:
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4.5. COROLLARY. Let M be a module of type L and let N = M be its principal
submodule. Then the homomorphism @ of Theorem 2.9 gives an identification of the
principal submodule of the dual module with the set D(N) of all Z-homomorphisms
f: N — Q having the property that f(A) < Z for some lattice A = N.

§5. Self-dual lattices

5.1. In this section we will consider a module M of type L (with the ground ring
k = Z) supplied with a Hermitian pairing

[,]: MxM-TI/A

satisfying (a), (b), (¢), (d) of 3.1.

Any such module M has no Z-torsion and we can consider it as embedded in
QM via the canonical map M — QM. From Theorem 3.2 we know that there exists
a unique scalar form

(,>:NxN-Q,

where N is the principal submodule of M, such that

[a, b] = i Y. x*(0%a, m;b)yx; (mod A)

i=1 a

for a,b € N.
The pairing [,]: M x M — I' /A defines a map

A:M —Hom, (M;T/A),

where A(a)(b) = [b, a], for a, b € M.

Since 4 is an isomorphism, it maps the principal submodule N of M isomorphi-
cally onto the principal submodule of Hom , (M; I'/A) which can be identified with
D(N) (cf. Corollary 4.5). This means that the scalar form {, ) has the following
property (additional to that of Theorems 3.2 and 3.3):

5.2. COROLLARY. Let {,)>: N x N—Q be the scalar form, corresponding to the
Hermitian form [,]. Then (1) for each a € N there exists a lattice A = N such that
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(b,a) e Z for all b € A; (2) for any Z-homomorphism f . N — Q having the property
that f(A) = Z where A is a quasi-minimal lattice, there exists unique a € N such that

fb) =<b, a5

for all b € N.

5.3. PROPOSITION: Let A = N be a subset. Define
At ={beN;{b,ayeZ,Vac 4}.

If A is a lattice then A is also a lattice.

Proof. The formulas

{zb,a) = b, za),
{m;b, a) =<b, ma)

show that 4+ is invariant under z and =n;, i = 1, ..., u and we have only to prove
that A+ generates M over A. Let e;, ..., e, be a basis of 4. By Corollary 5.2 for
each i =1, ..., n there exists a lattice B, « N with {(¢;, B;,>cZ,i=1,...,n. Then

the intersection

is contained in 4+ and by Lemma 1.5, B generated M over A.
This proves the statement.

5.4. It is clear that 4 = A++. The reverse inclusion is also true. For if b ¢ 4 then
there exists a functional f: N - Q with f(4) = Z and f(b) ¢ Z. By 5.2 there exists
c € N with f(x) =<{x,c¢) for all x e N. Thus c € A+ and {c, b) ¢ Z which means
b¢ A+, So

A+t =A.

5.5. A quasi-minimal lattice 4 = N will be called self-dual if A = A*. Two self-dual
lattices 4 and B will be called adjacent if zA < B or zB c A.
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5.6. THEOREM. Let M be a module of type L over the ring A = Z[F,]. Assume
that M is supplied with a non-degenerate Hermitian form

[,] MxM->T/A

satisfying (), (b), (¢), (d) of 3.1. Then
(1) there exists a self-dual lattice A < M,
(2) for any two self-dual lattices A, B = M there exists a finite sequence of
self-dual lattices

C,,Cy...,C,

such that

and lattices C; and C; . , are adjacent for eachi=1,...,5s — 1.

Proof of (1). Let X c N be an arbitrary quasi-minimal lattice. Then ¥ = X n X'+
is also a lattice (by Proposition 5.3 and Lemma 1.5) and Y+ > X + X+ o Y, that is
Y+ > Y. The group Y*/Y is finite and so we will prove statement (1) of Theorem
5.6 by showing that if Y+ # Y then there exists a lattice Z = N with Z+ = Z and the
order of Z+/Z is smaller than the order of Y*/Y. Assume that Y+ # Y. It follows
from Proposition 1.8 that there is an element a € Y+, a ¢ Y with a = n,a for some
ke{l,...,u}and za € Y or za € Y. In both cases let Z be the subgroup generated
by Y and a. It is clear that Z is a lattice. The identities

{a,a) =<za,a) +<a, za)
{a,b> ={za,a) + {a, za)

show that Z < Z+. Thus we have
YcZcZtcY?

and
ord (Z+/Z) <ord (Y*/Y).

Part (2) of Theorem 5.6 will follow from Lemma 5.10 below.
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5.7. LEMMA. Let X = N be a quasi-minimal lattice with X < X*, n,X = n, X+ for
i#k,ie{l,...,u} and

ankX'L c X.

Let A, = X* be the set of all elements y € X+ with zy € X. Then A, is a self-dual
lattice and any other self-dual lattice B with X « B< X* is adjacent to A, .
Similarly, define A_ ={y e X*;Zy € X}. Then A_ is a self-dual lattice adjacent to
any lattice B with X «c B < X*.

Proof. Tt is clear that 4, is a lattice. Let us show that 4, is self-dual. For
a,,a,e A, we have

{a,,a,) ={za,,a,) +<a,,za,) € Z.

Thus A, =« A . Suppose a € A% . For any y € X* the element Zy belongs to A,
and so

za,yy)={a,zy) e’

which implies that zae X and a e 4, .
The inclusions

zZA,cXcB

show that 4, and B are adjacent, where B is any self-dual lattice with X =« B < X*.
The second statement concerning A_ can be proved similarly.

5.8. LEMMA. Let X be a quasi-minimal lattice, X = N, with X < X*. Then for any
two self-dual lattices A > X and B > X, the order of A/X is equal to the order of B/X.
More precisely,

ord (4/X)? = ord (B/X)? = ord (X*/X).
Proof. The scalar form (, ) defines a non-degenerate form
I XX x X'/ X->Q/Z

and for any self-dual lattice 4 > X the subgroup 4/X < X*/X coincides with its
own annihilator with respect to /. Now

ord (4/X)?=ord (X1/X)

follows.



Hermitian forms on link modules 219

5.9. Let us define the distance between two self-dual lattices 4, B as
d(A, B) =ord (4/A n B) = ord (B/A n B).

We shall say that A4 and B are equivalent iff there exists a sequence of self-dual
lattices C,, ..., C, such that

and lattices C; and C,, , are adjacent for each i =1,...,s — 1. Statement (2) of
Theorem 5.6 (which are are going to prove) says that any two self-dual lattices are
equivalent.

5.10. LEMMA. Let A and B be two self-dual lattices A # B. Then there exists a
self-dual lattice A, which is equivalent to A and

d(4,, B) < d(4, B).

Proof. From Proposition 1.8 it follows that there is an element b € B with
b =mb for some ke{l,...,u}, b¢ AnB and

zbe AnB or zbe AnNnB.

Let us consider the first possibility; the arguments in the case Zb € A N B are quite
similar. Denote by X the subgroup of N generated by A4 and b. It is clear that X is
a lattice and

ANnBc Xt cA4cX,
X+ =nX for i+#k,

zZm X < X+

Denote by A, the set of all y € X with zy € X*. By Lemma 5.7, 4, is a self-dual
lattice equivalent to 4. Furthermore, 4, B contains 4 N B and b and thus

d(A,, B) = ord (B/4,n B) <ord (B/A B) = d(A4, B).

5.11. Lemma 5.10 obviously implies part (2) of Theorem 5.6.
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§6. The classification of simple links

In this section we apply the results of the previous algebraic study of modules
of type L to the geometric problem of describing simple links up to ambient isotopy.
We will find a connection between minimal Seifert manifolds of a link and self-dual
lattices in the homology module of the corresponding free covering.

6.1. An n-dimensional p-component link is an oriented smooth submanifold X" of
S"+2, where X" =ZX7uU---UZX" is the ordered disjoint union of u submanifolds of
S$"+2, each homeomorphic to S”. X is a boundary link if there is an oriented smooth
submanifold ¥"*' of §"*+2, V"*!'=p7*1y---0V7*! the disjoint union of the
submanifolds V7 *!, such that éV, = X,(i =1, ..., u). If each V,is connected, we say
that V is a Seifert manifold for X.

6.2. Let X" be a u-component link in S"*2 and let X =8""?— T(Z) be the
complement of a tabular neighbourhood 7(Z) of X in $"* 2. Fix a base point * € X
foreach i=1,..., u the meridian m; € n,(X, *) (an element represented by a small
loop around X, joined by a path to the base point) is defined up to conjugation.

A splitting [CS] is a homomorphism (which is defined up to conjugation)
S : 7 (X, ) > F, onto the free group with u generators ¢,,...,t, and has the
following property: the image of the conjugacy class of the i-th meridian m; coincides
with the conjugacy class [¢,] of ¢, € F,.

This notion does not depend on the choice of the base point.

If 2 is a boundary link then each Seifert manifold V defines an obvious splitting
S, : if a is a loop in X which is in general position with respect to V, then &, ([«])
isawordin ¢,..., ¢, obtained by writing down ¢{'(¢; = + 1) for each intersection
p of a and V (where i is the number with p € ¥V, ~na and g is the local intersection
number of o and V, at p) and then multiplying these words in order of their
appearance in a.

A theorem of Gutiérrez [G] states that any link admitting a splitting, is a
boundary link; cf also [Sm].

6.3. An # -link [CS] (of dimension » multiplicity u) is a pair (2, &), where X is a link
(of dimension » multiplicity u) and & is a splitting for 2. Two % -links (2, &,) and
(2,, &,) are equivalent if there exists a diffeomorphism A : $”*2— S§"* 2, taking X,
onto X,, preserving orientations of S"*2and 2, v = 1, 2, and mapping &, onto <.

6.4. An Z -link (2, &) is called r-simple (where r is an integer, r > 1) if (a) & is an
isomorphism 7, (X, *) = F,; (b) m;(X, *) =0 for all 1 <i <r. We will consider every
& -link as being 0-simple.
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Another theorem of Gutiérrez [G] states that any r-simple n-dimensional
F -link (2, ) admits a Seifert manifold V with each component r-connected and
S =%, provided n = 4.

6.5. Let (2, &) be an # -link. Fix a particular epimorphism &, : (X, *) = F, onto
F, (the free group in ¢,, ..., ¢t,) conjugate to .. Consider the covering

o

X—-X

corresponding to the kernel of &; it has the group F, acting on X as the group of
covering translations. The diffeomorphism type of X (considered as manifold
together with F,-action) does not depend on the choice of &, in &. Thus, the
homology

H.(X; 2), k=1,2,...,n
considered as left A = Z[F,]-modules, are invariants of (Z, &).

Sato has shown that these homology modules of the free covering are A-mod-
ules of type L (cf. [S]).

A multiplicative structure on H,(X; Z), which will now be described, comes
from Poincaré duality. Let C be a chain complex of X constructed by means of a
Morse function on X. The Poincaré duality isomorphism [M2]

H, , (X, 0X)-H(C; )

is a A-isomorphism. Here H'(C; A) is a right A-module and the bar means that we
convert it into a left A-module using the standard involution

t,—t7!, i=1,...,u
in A. It is clear that
Hn+2-l(f9 a‘f) =Hn+2—i(X~)

for 2<i<n+1. On the other hand, it is shown in [F2] that the universal
coefficient spectral sequence gives a natural epimorphism

H(C; A) »Hom, (H,_,(X); I'/A)

with kernel equal to the Z-torsion subgroup of H(C; A).
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Combining these facts we get pairings (Blanchfield forms)
[,1:H(X)xHX)>T/A, p+qg=n+1

with the following properties:
(1) [Aa, b] = Ala, b] for a € H,(X), b e H(X), A € 4;

(2) [a, 1b] = [a, b]Z;
(3) the associated map

H,(X) - Hom, (H,(X); I'/)
is a A-isomorphism, provided Hq()? ) has no Z-torsion.
6.6. Let (2, ¥) be an & -link of dimension n =2 — 1 which is (¢ — 1)-simple.

Then it follows from [F2], Th. 5.7 that Hq()? ) has no Z-torsion. Thus, in this case
we have a non-degenerate pairing

[,1:H X xH,X-rI/A.
The following theorem is the main result of the paper.
6.7. THEOREM. Let q 2 3. The A-module H,,(X’ ) together with the pairing
[,1:HXxH,X-T/A.
provide a complete system of invariants for (q — 1)-simple (2q — 1)-dimensional
F -links. In other words, two (q — 1)-simple (2q — 1)-dimensional F -links are equiv-
alent iff there exists an isomorphism between corresponding modules H,,X’ , preserving

the pairing [, ].

The proof of this theorem will be based on Th. 4.7 of [F2] and Th. 5.6 of the
present paper.

6.8. Recall some definitions from [F2].
An g-symmetric isometry structure of multiplicity u is a tuple

(A,<,>,Z,7t|,...,7t#),
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where A is a finitely generated free abelian group, (, >: 4 ® A - Z is an e-symmet-
ric bilinear form, and z, 7, ..., n, : 4 > A4 are endomorphisms of A satisfying

(1) ¢, ) is unimodular,
(i1) {za,b) =<a,zb) for a,b € A, where Z denotes | —z: 4 — A4;
(iii) <{ma, b =<a, m:b);
(awv) my+m 4+ +m, =1,
(V) m; o m; = dym;.

6.9. Examples of isometry structures are of both an algebraic and a geometric
nature.

Consider first a Z-torsion free module M of type L over the ring A = Z[F,]
supplied with a non-degenerate ( —¢)-hermitian form

[,]: M xM—T/A.

Then any self-dual lattice 4 in M is an isometric structure of multiplicity u;
the form {, > : 4 x A —» Z is the restriction of the scalar form corresponding to [, ]
(cf. §5) and z, =y, .. ., m, are restrictions of the corresponding self-maps of M, cf.

§1.

6.10. We will say that an isometric structure 4 admits an embedding in a module M
of type L supplied with a non-degenerate hermitian form

[,L]1: MxM->TI/A

if 4 is isomorphic as an isometry structure to a self-dual lattice in M.

If an isometry structure 4 admits embeddings in two A-modules (M, [, ];),
i =1,2 of type L, then there exists a A-isomorphism f: M, - M, preserving the
forms; this follows from Lemma 2.6 and from Theorem 3.2.

6.11. Isometry structures appear geometrically as homology modules of Seifert
surfaces of boundary links. Let V”*!=V,u---U ¥, = §**? be a Seifert manifold
with 0V = X" = §"*? be a boundary link of multiplicity x. Assume that n =2¢q — 1
and H,(V) has no Z-torsion. Let

(Y H,(V)xH(V)-Z
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be the intersection form on V and let =, : H (V) > H/(V), i=1,...,u, be the
projector corresponding to the direct summand H,(V,) « H, (V). In the next
paragraph we will define an operator z : H, (V) - H (V) in such a way that

H,WV), <, ) z,my,...,1,)

would be a (—1)%symmetric isometric structure of multiplicity u.

Let Y denote the result of cutting the sphere S”*2 along V. Denote by
i,,i_:V —Y maps given by small shifts in the directions of positive and negative
normals to V, respectively. Then the map i,, —i_,: H (V) - H,(Y) is an isomor-
phism (cf. [F1], §1.1) and we define z(v) € H (V) for v € H (V) by

(4 =i )(z@) = i,.(0).

In 1.2 of [F1] it has been shown that the endomorphism z : H (V) — H_ (V') satisfies
(i1) of 6.8; the other properties of 6.8 are evident. Thus any Seifert manifold defines
an isometry structure (H,(V), <, >,z n;, ..., n,) which will be denoted simply as
H,(V).

6.12. An isometric structure (4,<,»,z,m,...,n,) will be called minimal iff
zm;a =0 or Zn,a =0 imply n,a =0, for a € A.

Any isometric structure admitting an embedding (cf. 6.10) in a module of type
L is minimal.

(Proof: if an isometric structure A is realized as a self-dual lattice in a module
M of type L supplied with a form [, ], then for a € A the condition zr;a = 0 means
d;a =0 and thus m,a =(t, — 1) 0,a = 0).

We will see later in 7.1 that the converse is also true: any minimal isometry
structure can be embedded.

If V< §%+!is a Seifert manifold of a boundary link, then H, (V) is minimal
iff the homomorphisms i,,,i_,: H/(V)— H,(Y) map each H (V,;) monomorphi-
cally, where V' =V,u---UV,.

Gutiérrez [G] has shown that any (g — 1)-simple (2¢g — 1)-dimensional
boundary link admits a (g — 1)-connected Seifert manifold ¥ with minimal H (V).
We will say that a Seifert manifold V" with these properties is minimal.

6.13. THEOREM. Let (2, %), Z* '=2,u---vX, =S¥+ be a (29 — 1)-di-
mensional (q — 1)-simple & -link. Let V be a minimal Seifert manifold of X, realizing
the splitting & (cf. 6.2). Let X be the free covering of X = S*+'! — X, corresponding
to & (cf. 6.5) and let

[,]1:H,(X)x H(X)->T/A
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be the Blanchfield form. Then the isometry structure H, (V) admits an embedding in
(H,(X); [, ).

We first show that this Theorem implies Theorem 6.7, the main theorem of this
paper.

6.14. Proof of Theorem 6.7. Assume that (X, &;), i = 1,2 are two (g — 1)-simple
(2q — 1)-dimensional % -links, having isomorphic Blanchfield forms (H,,(X’ 051,
i=1,2. Denote M = H,(X,),[,]1=[,], and fix an isomorphism

f: H,,(X" ,) > M
with
la, ], = [ f(a), f(b)]

for a, b € H,(X,).
Let V;, i =1, 2, be a minimal Seifert manifold of (X, &,), i =1, 2.

Denote by 4 = M the image of an embedding of H (V) in Hq(z\’l) = M, which
exists by Theorem 6.13. Let B < M be the image under f of a self-dual lattice in
Hq()?z) isomorphic to H (V). Thus, 4 and B are embedded as self-dual lattices in
M.

By Theorem 5.6 there exists a sequence C,, C,, . . ., C, of self-dual lattices in M
such that C,=4, C,=B and C, C,,, are adjacent for all i=1,...,5s—1.
Considering C; and C,,, as isometry structures, (cf. 6.9) we see that they are
contiguous (cf. 4.6 of [F2)): if zC, = C,,, then zC,, , < C; and one may define
o:Ci-»Cyand y :C;, ., —»C; by ¢(a) =za, Yy(b) =zbforae C,, b e C,, ,, satis-
fying the definition of contiguity in subsection 4.6 in [F2]. By Theorems 2.6 and 4.2
of [F2] there exists a sequence of minimal (q — 1)-connected Seifert manifolds
W, Wy, -+ W, of (2,,%,) with:

(1) W=V
(i) the isometry structure H_ (W), determined by W,, is isomorphic to C,
i=1,...,s.

Thus, W, is a Seifert manifold of (X, &,) having the same isometry structure as
V1, the Seifert manifold of (Z,, #,). Now Theorem 4.7 of [F2] implies that
(Z,, %)) and (Z,, &,) are equivalent.

This completes the proof.

As another corollary of Theorem 6.13 we shall prove:
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6.15. COROLLARY. The Blanchfield pairing
[,]1:H (X)x H(X)->T/A

of a (2q — 1)-dimensional (q — 1)-simple link (X, %) is (—1)9* \-hermitian:
[a, 8] = (= 1)** '{b, ]

for a,b e H,(X).
Proof. 1t follows from Theorems 3.3 and 6.13.

6.16. The rest of the paper is devoted to the proof of Theorem 6.13.

Let (Z,%) be a (29 — 1)-dimensional & -link of u components and let
V=V u- UV, beits minimal Seifert manifold, realizing the splitting . Denote
by X the complement $%¢*! — 32 -1 and by p : ¥ > X the free covering corre-
sponding to .

Consider the (2¢ + 1)-dimensional manifold Y obtained by cutting S9! — X
along V. The boundary of Y is the disjoint union of manifolds

07 Yuor YuofYuo; Yu---udfYuod, Y,

where each component 0¢Y, (¢ = +) is homeomorphic to V;. There is also a natural
identification map ¢ : Y —» §%** ! — ¥29~ ! which is a homeomorphism on int ¥ and
maps 0;"Y and 0; Y homeomorphically on V,. The internal normal on 0;*Y
corresponds under ¥ to the positive normal on V..

It is clear that the map ¢ : Y - S%*! — X = X can be lifted into X and any
lifting  : ¥ - X is an embedding with

U gd(M) =X
geFF
One can find a lifting y : ¥ — X such that
;Y forg=t,,

P(Y)ng§(Y)={0}Y forg=1t,"
¢ for other ge F,, g #1.

We will identify Y with its image under .
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Figure 2. The picture of X in the neighbourhood of another lifting hY of Y
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6.17. Let us show that the inclusion i:Y —X induces a monomorphism
i, H,(Y) —»Hq(f’ ). Assuming the contrary, suppose that « is a cycle in Y bound-
ing a chain B in X. Because of compactness, § lies in a finite union

U &7, g €F,.

i=1

Consider the graph I', of F,; vertices of I',, are labeled by elements 4 € F, and
each vertex h is joined by an edge with vertices ht,, ht; ', i=1,..., u. It is well
known that I',, is a tree.

Let T =TI, be the subgraph of I', spanned by g,, ..., g, (one of the g’s is
1 € F,). We may assume that T is connected and so T is also a tree. Thus there
exists a vertex g; , g;, # 1 of T with only one edge of T incident to g; . Let this edge
join g; with g, =g, t;, e = +1, ke {l,..., u}. The chain B defines an element of

Hq+l(U giYs U giY>qu+l(gi0Y’gioak~8Y)qu-kl(Y» ak—ey)

i=1 i=1
i#ig

Since V is minimal, the boundary homomorphism
Hq+ I(Y9 ak.EI,) —)Hq(al:ey)

vanishes and thus # can be changed in a neighbourhood of g; Y in such a way that
the new chain B, lies in

U gY

i=1

i#ip
and 0, = a as well. Proceeding in this way, we will get a chain g in Y with 0f, =a.
6.18. Let

fiH,(V) > H/(X)

be the composite of i,,—i_,: H,(V)—>H/(Y) and i,: H,(Y)— H/(X), where
i: Y —>X denotes the inclusion. f is a monomorphism, since iy ,—i_, Is an
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isomorphism and i, is a monomorphism. We can complete the proof of Theorem
6.11 by showing that

(1) f(m,a) =n,f(a) forae H(V), ie{l,..., u};
(i1) f(za) = zf(a) for a e H,(V);
(i) the image of f generates H,(X) over A4;
(iv) the Blanchfield form on im (f) is given by the formula

@S] = 3 T x*(@%, mb>x, (mod A),

where 0% denotes 0; 0, -+ 0; for a =(i,...,I); cf. §3.

is -1

In fact, (1), (ii), (iii)) would mean that im ( /) is a lattice in H,,()? ). Let us prove
that im (f) is quasiminimal (cf. 4.1), that is n,H (V)/nzH, (V) and n, H (V)/
n.zH (V) are finite. If for instance, the first group is infinite then there exists an
element aen, H,(V), a #0 with {a, m,zH, V) =0. Then {za, H(V)>=0 and
a =0 (since V is minimal).

From (iv) and Theorem 3.2 it would now follow that im ( f) is a self-dual lattice
isomorphic (as an isometry structure) to H (V).

6.19. Let us prove (i) and (i) of 6.18. For ae H(V), a=ma+n,a+ - +mn,a
and each ma can be represented by a cycle in V,, the i-th component of V.
Since

07Y=t07Y
we have
fma) =i li, (ma) —i_(ma)]

=1i,0, (ma) —ti,i, (ma)

=(1—¢)i,i, (ma).

Thus,

fla) = Zf(na) Z(l—-fi)i*h(ﬂ,-a).

i=1 i=1
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Now we can compute
n.f(a) = (1 —1,)i,i, (ma) = f(ma),

@)= iyi, ma)=i,i,(a)

=1, ({4 —i_)za)) = f(za).

Here the definitions of n; and z (given in 1.3) have been used; in the last stage we
have used the identity

iy(a)=(,—i_)za)

which defines the operator z in H (V), cf. 6.11.

6.20. Let us prove (iii) of 6.18. Assume that a € Hq()? ); we want to show that « can
be represented in the form

N
=) gb,

Jj=1

where g, e F, and B, < i H (Y). Represent a by a cycle c in X. There are a finite
number of elements g;e F,, j=1,..., N such that c lies in

N
U g7.
j=1

Consider g; as vertices of the graph I', of F, (cf. 6.17) and join g; and g;, by an
edge if there is an edge joining g; and g;, in I',. We shall get a graph T each
component of which is a tree. Thus, there is a vertex g;, in T which is incident to
only one edge of T. Let it be the edge joining g; with g; t,e=+1,ke{l,..., u}.
The cycle ¢ determines an element a; of

N N
Hq( U g]Y’ U g]Y)qu(gj()Y9 gjo a/;—sy) qu(Y3 aI‘(—GII)'

Jj=1 Jj=1
i#jg
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Now, since V' is (g — 1)-connected, «, can be represented by an absolute cycle of the
form g; c,, with ¢, lying in Y. Let B, € H,(Y) denote the homology class of c,. It
follows that « — g; B, can be represented by a cycle lying in

U &Y

Jj=1
J#Jjo

and so we can obtain (iii) by induction.

6.21. All that remains to be proven is (iv) of 6.18; that is, we have to compute the
Blanchfield form on the image of H,(Y).

Recall the definition of the Blanchfield form, cf. [F2].

Fix a triangulation of X and consider the corresponding equivariant triangula-
tion of X and the simplicial chain complex C,(X). Let X' denote the dual
triangulation of X and let C,(X") denote the similar chain complex. C,(X) and
C *(.f ') are complices of free finitely generated left A-modules, where A = Z[F,].
There is an intersection pairing, see [M2],

Cq+1(fl)xcq(f)—’/13 (d,ﬁ)Ha'B,
with the following properties:
(1) bilinear over Z;
(ii) (go) - B =g(a - p),
o« (gh)=(x Pg~'
forgeF,, a e C,, ,(X"), B € C,(X). Consider the “completed” chain complex

C;(fl) =TI ®A C*(fl)’

where I' = Z[[x,, ..., x,]] is the ring of formal power series (the completion of A
with respect to the augmentation ideal). There is an intersection pairing

Cr (@) ®C(X) - T,

with similar properties.
Assume that cycles « € C,(X') and B € C,(X) represent classes [a], [f] € H,(X).
As was shown in §5 of [F2], the cycle « is a boundary in C,(X') and if
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ceC,, 1(X") is a chain with dc = a then the intersection ¢ - § € I, viewed modulo
A, is equal to the value of the Blanchfield form,

c-B=lablerl|A, a = [a], b=[ﬂ]qu(A~’).

We are going now to construct some special chains in Y and in X in order to find
the precise form of the chain c € C, (X" with oc =a.

6.22. LEMMA. Let
A:H,, (Y,0Y)—»H,V)

be the composite of 0:H,, (Y,0Y)—->H/(OY) with the identifying map
Yy H(0Y)—> H/(V) (note that 0Y consists of two copies of V and Y sends each of
them homeomorphically onto V). Then
(1) A is an isomorphism;
(2) €% (i — - )(D)Dy = — <A, YDy
forxe H,, (Y,0Y)and y € H V), where {, >y, {, ) denote the intersec-
tion forms in Y and V respectively.

Proof. (1) follows from (2) and the above-mentioned fact that
iy ,— i, H,(V)->H/Y) is an isomorphism.

To prove (2), note that i, (V)< dY,i_ (V) < dY, the orientation of i_(V)
coincides with the orientation of dY, and the orientation of i, (V) is opposite to the
orientation of 0Y. Thus,

X0 ()y = —<07(x), ¥)v,
<x: l—(y)>)’ = (5“(x), y>V3

where 0 *(x) and 0 ~(x) denote the corresponding parts of d(x), lying on i (V) and
i_(V), respectively. These formulas imply (2). This completes the proof.

6.23. Identify Y with its image under i : ¥ — X. Identify V with its image under
Vxo*tY 5 X.

Let v be a g-dimensional cycle in V and let m,zv be a cycle representing
nizlvle H(V), i=1,..., u. According to the definition of z (cf. 6.11), there exists
a (g + 1)-dimensional chain ¢, in Y with dc, = dY such that

dc, =i, (v) — (i, —i_)(zv).



Hermitian forms on link modules 233

In other words, identifying i, (v) with v, and i, (zv) with zv we should identify
i_(zv) with

i t;(m;zv)

i=1

and the equality above gives

oc, =0v -+ i (t; — 1)(m;zv)

i=1

or

u
de, =v+ Y x;(mzv),

i=1

where x; =1, — 1 € A.

6.24. The chain ¢, is a cycle modulo 0Y and we obviously have
A(le,]) =[v] € H,(V),

where [c,] € H,, (Y, 0Y) denotes the corresponding homology class.

6.25. Assume that we are given a homology class a € H (V). For each multi-index
a = (i, ...,I) and each number i € {1,..., u} define

a,=mzn; z---7 zma € H/(V)

and let a g-dimensional cycle v/, realize a’. Note that

a¢=7t,~

a.

According to the construction of 6.23, for each multi-index « and for each
ie{l,...,u} there is a (g + 1)-dimensional chain ¢! in i(Y) < X with boundary
lying on i(dY) < X such that

A(lcy]) = a,

"
iy .
oc, = vl + Z XiUq)s
j=1

where oj = (i, ..., i,j) for a =(i,..., ).
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Denote

u
c=Y Y (=Dk+Ixxci,

a i=1

where a runs over all multi-indices a = (i;, . . R 70 L
clear that ¢ is an infinite chain representing an element of C 4 l(X ). Computing dc

one gets

1] M:

M
(—1)'“‘“x,-x°‘[v;+ > v;,]

J=1

=2

i

u oo
—DEFxxwl +Y Y Y (=D Ixxexpl

@ i=1j=1

I

II.M*:

P2

1

[ gk
=
<
o=

i

Since v}, represents the homology class a}, = m;a, the cycle

I
~>.'<
<
.~

i=1

represents f(a) € H,(X), see 6.19.

If be H, (V) is another homology class represented by a cycle w then the
homology class f(b) EHq(f ) is represented by the cycle i, (w) —i_(w) lying in
i(Y) c X and

[f(@), f(B)] =c - (i, (W) —i_(w)) mod 4,

see 6.21. Thus

L@, ] =F 5 (= DE+ xx=et], iy y — i B>y

a i=1

%, 3 (= DHx(AGeid. by

2

Il

i (= D)Fxx*Cal, by

Y (=1 X, X (myzm  x o zm a, b
(o)

s=21
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= Y X Xy x {0, _ 0, 0 0;a,mb)

-1 i

=Y $ x%0%a, mbdx, (mod A).

a i=1

This proves formula (iv) in 6.18 and thus completes the proof of Theorem 6.13.

§7. Some remarks

7.1. Any minimal isometry structure A of multiplicity u admits an embedding (cf.
6.10) in a A = Z[F,]-module M of type L supplied with a non-degenerate form

[,]: M x M—T/A.

Proof. Assume A is e-symmetric and let g be an integer with (—1)?=¢,¢q = 3.

By Theorem 4.7 of [F2] there exists a (g — 1)-simple u-component link
Y-l §%+1 and a (g — 1)-connected Seifert manifold ¥ of ¥ such that the
associated isometry structure

(H,(V),{,>z,m,...,m,)

(cf. 6.11) is 1somorphic to A. Let X be the free covering of the complement of .
Consider the Blanchfield form

[,]1: H,(X) x H(X)>T/A.
By Theorem 6.13 the isometry structure H, (V), which is isomorphic to 4, admits
an embedding in H,(X).

This completes the proof.

7.2. Let g > 3 be an integer. Any A = Z[F,]-module M of type L supplied with a
non-degenerate (—1)9+ '-hermitian form

MxM=T/A
can be realized as the Blanchfield form
H/(X)x H(X)-T/A

of a (g — 1)-simple (2q — 1)-dimensional p-component link X in S*~ 1.
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Proof. Let A = M be a self-dual lattice (cf. 5.6). Consider A as an isometry
structure and realize it by a Seifert manifold of (¢ — 1)-simple x-component link
22-1< §%+! 35 in the previous remark 7.1. Now, A embeds both in M and in
Hq()? ) and by 6.10 there exists a A-isomorphism M —»Hq()? ) preserving the forms.
This completes the proof.

A similar realization theorem was proved by Duval [D].
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