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Simplicial approximation and low-rank trees

HENRI GILLET!, PETER B. SHALEN? AND RICHARD K. SKORA?

Introduction

In [GS] a structure theorem is proved for certain group actions on A-trees,
where A is a subgroup of R. When A has Q-rank 1, the theorem applies to an
arbitrary action of a group I' on a A-tree; it also applies when the Q-rank is 2,
provided that the action satisfies an “Ascending Chain Condition” [GS, 6.1] for
segment stabilizers. The ascending chain condition holds if the action is free, and it
holds in the especially important case where the action is small and the small
subgroups of I are all finitely generated. (A group is small if it has no rank-2 free
subgroup; an action on a tree is small if the stabilizers of non-degenerate segments
are all small.)

It is shown in [GS] that by applying the structure theorem one can largely solve,
in the case of Q-rank < 2, the problems about actions on A-trees (4 < R) raised in
[Sh] and motivated by questions about degeneration of hyperbolic structures or by
Lyndon’s conjecture.

There are two questions that are not addressed in [GS] but are closely related
to the questions answered there. An action without inversions of a finitely generated
group I' on a A-tree T defines a (translation) length function Z on I’ taking
non-negative values in A. It is an open problem whether the given action can always
be “simplicially approximated”, in the sense that there is a sequence (¢,);., of
length functions defined by actions of I' on Z-trees, and a sequence (n,);>, of
positive integers, such that lim,_,  Z;(y)/n; = £(y) for every y € I'. (In the language
of [MS] or [CM] this says that the projectivized length function defined by the given
action is in the closure of the set of projectivized length functions defined by
simplicial actions.) A second question arises in the case that the given action is
small: can one take the approximating length functions ¢; to be defined by small
simplicial actions?
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The main result of this paper, Theorem 5.1, gives affirmative answers to these
questions when I is finitely presented and A has Q-rank at most 2, assuming, in the
rank-2 case, that the action satisfies the ascending chain condition. In particular,
Theorem 5.1 implies (Corollary 5.2) that the second question has an affirmative
answer if A has Q-rank at most 2 and the small subgroups of A are finitely
generated. We also observe (Theorem 5.3) that the results remain true if I' is
assumed to be finitely generated, rather than finitely presented, but the given action
is assumed to be free.

Of course the proofs of Theorems 5.1 and 5.3 rely heavily on the structure
theorem of [GS]. On the other hand, Theorems 5.1 and 5.3 can be interpreted
(via the Bass—Serre theory [Se]) as partial refinements of Theorems A, C
and D of the introduction to [GS]. Likewise, Theorem B of the introduction to
[GS] can easily be derived from Theorem 5.1 and the fact (see [FLP]) that the
projective measured foliation space of a surface is compact. (Using a very differ-
ent method, Skora has recently generalized Theorem B of [GS] to all subgroups of
R.)

The starting point for the proof of Theorems 5.1 and 5.3 is the observation that
the structure theorem of [ GS] allows one to approximate arbitrary actions satisfying
the hypotheses of the theorem by actions which are “geometric” in the sense that
they arise from actions on measured foliated singular surfaces. We prove a general
result (Theorem 1.3) which applies in all @-ranks and allows one to approximate
geometric actions by simplicial ones. This result is a refinement of Thurston’s
theorem that measured foliations of surfaces admit rational approximations. Theo-
rem 1.3 seems to be of independent interest; it could play a role in generalizing
Theorem 5.1 to the higher-rank case.

Section 1 contains some preliminary definitions and the statement of Theorem
1.3. The proof of the theorem is divided into a “soft” step, done in Section 3, and
a “hard” step which occupies Section 4. The soft step is analogous to the
observation that a measured foliation can be rationally approximated in terms of
train-track coordinates; the hard step involves showing that convergence of general-
ized train track coordinates actually implies convergence of length functions. To
prove that our approximation procedure preserves “smallness”, we need a simple
characterization of small geometric actions which is established in Section 2. In
Section 5 we combine Theorem 1.3 with the results of [GS] to prove Theorems 5.1
and 5.3.

We assume that the reader is familiar with the paper [GS], to which the present
paper is a sequel. We have given specific references to [GS] wherever appropriate,
but have included relatively little explicit review. In the very few places where we
depart from the terminology of the earlier paper we have been careful to explain the
differences.
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1. Simplicial approximation of geometric length functions: the statement

1.1. In the following discussion, A will denote a subgroup of R, and I' will
denote an arbitrary group.

Suppose that we are given a l1-connected singular surface Z (see [GS, 5.1]) and
an action p of I' on X by simplicial automorphisms. Let u be a A-foliation [GS,
5.21] of £ which is invariant under the action p. Then (2, u, I', p) is by definition
a l-connected A-foliated singular surface with simplicial symmetry. Suppose in
addition that (X, u, I', p) is uniform in the sense that X is finite mod I' [GS, 3.2 and
5.25]. Recall from [GS, 5.28] that (X, u, I', p) has a well-defined leaf space (T, I', p)
which is a A-tree with symmetry; by definition this means that 7 is a A-tree and
that p is an action of I on T.

We shall say that an action p of I' on a A-tree is geometric if there exist a
1-connected singular surface X, an action p of I' by simplicial automorphisms such
that X is finite mod I', and an invariant A-foliation yu of X, such that (7, I', p) is
isomorphic to the leaf space of (X, u, I', p).

As in [GS] we say that a group is small if it has no free subgroup of rank 2.
Following the terminology of [CM], we shall say that an action of a group I" on a
A-tree is small if the stabilizer of every non-degenerate segment of T is a small
subgroup of I'.

1.2. A non-negative-valued function ¢ : I' - A will be called a A-length function
if it is the length function [GS, 1.16] determined by some action without inversions
of I' on a A-tree. Note that a A-length function is in particular a non-negative
real-valued function on I'. It follows from [AB, 6.15-6.16] that a A-length function
is in fact an R-length function. On the other hand, it follows from [AB, Theorem
7.13(c)] that an R-length function that takes values in A is a 3 A-length function. An
R-length function will often be called simply a length function.

A A-length function will be termed geometric (or small) if it is the length
function determined by some geometric (or, respectively, small) action of I" on a
A-tree.

It follows from [CM, Theorem 3.7] that if ¢ is a small length function on a
group I', then any action of I' on a A-tree which determines the length function ¢
is a small action. In particular, a length function is small and geometric if and only
if it is determined by some small geometric action on a A-tree.

1.3. The proof of the following theorem occupies the next three sections.

THEOREM. Let ¢ be a geometric R-length function on a group I'. Then there
exist a sequence (£;) of geometric Z-length functions on I' and a sequence (n;) of
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positive integers, such that lim;_, . (£;(g)/n;) = £(g) for every g € I'. Furthermore, if
the geometric R-length function ¢ is small then the geometric Z-length functions ¢;
may be taken to be small as well.

In Section 3 we introduce the basic machinery used in the proof of Theorem 1.3,
and reduce the proof to a technical result — Proposition 3.12 — which is proved in
Section 4. The proof of the last sentence of Theorem 1.3 will involve a characteri-
zation of small geometric actions which is proved in Section 2.

2. A characterization of small geometric actions

In this section we establish a simple criterion for a geometric action of a group
on an R-tree, defined by a given action on an R-foliated singular surface, to be
small. The condition does not depend on the foliation, but only on the underlying
action of the group on the singular surface.

2.1. PROPOSITION. Let (2, u, I', p) be a uniform 1-connected R-foliated sin-
gular surface with simplicial symmetry. Let (T, I, p) denote the leaf space of
(Z, u, I', p). Then the geometric action p of I' on the R-tree T is small if and only if
for every 1-simplex 1 of X, the stabilizer I, is a small subgroup of I.

2.2. In order to establish Proposition 2.1 in complete generality, without a
countability assumption, we need the following lemma. Recall from [GS, 5.19] that
if (T, I, p) denotes the leaf space of a uniform 1-connected R-foliated singular
surface with simplicial symmetry (Z, u, I', p), then there is a natural I'-equivariant
map x, of 2 onto T.

LEMMA. Let (Z, u, I, p) be a uniform 1-connected R-foliated singular surface
with simplicial symmetry. Let (T, I', p) denote the leaf space of (X, u, I, p). Then
every non-degenerate segement in T contains a point z such that the leaf L =y '(2)
contains no vertex of ZX.

Proof. Set x = y,. Let [x, y] be any non-degenerate segment in 7. Let a and b be
points of 2 such that y(a) = x and x(b) = y. It follows from [GS, 5.25, 5.17 and
5.20] that there is a topological arc A joining a to b in X such that y |4 is a
monotone map of A onto [x, y]. Since 4 is a non-degenerate arc it must have a
sub-arc A, which contains no vertices. Thus A, is contained in some global branch
[GS, 5.3] of Z, say #. Since 4 is either a surface with points at infinity or a closed
1-simplex [GS, 5.3], it contains only countably many vertices. Hence there is a point
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z € A, such that y ~'(z) contains no vertex of #. But the definition of y implies that
x " '(z) is a leaf of u and is therefore a connected set. Since the topological frontier
of # consists of vertices it follows that ¥ ~!(z) = #. Hence x ~!(z) contains no vertex
of Z. O

Proof of Proposition 2.1. Set y =y, : £ - T. It follows from [GS, 5.19] that if ©
is any l-simplex of 2 then y(7) is a non-degenerate segment of 7. By equivariance
we have I', = I',(,,. Thus if § is a small action, I',,, is a small subgroup of I', and
hence so is I',.

Now suppose that the stabilizer of every 1-simplex of X is a small subgroup of
I'. We must show that p is a small action; thus if [x, y] is any non-degenerate
segment in 7, we must show that I, ,; is small.

By Lemma 2.2, there is a point z € [x, y] such that the leaf L = y ~!(z) contains
no vertex of X. Thus for every 2-simplex o of Z, the set L na either is empty or is
a line segment in ¢ whose end points are interior to the edges of o.

Recall from [GS, 5.1] that in the singular surface X, the valence of each
1-simplex 7, i.e. the number of 2-simplices incident to t, is either 0 or 2. Hence L
either is a point in the interior of a valence-0 1-simplex of Z, or is homeomorphic
to R; and in the latter case, L has an induced triangulation in which the 1-simplices
are the non-empty intersections of L with 2-simplices of Z.

In the stabilizer I';, ) there is a subgroup G of index at most 2 which fixes [x, y]
pointwise. In particular, G fixes z and hence leaves L invariant. In the case where
L is homeomorphic to R, G acts simplicially on L with respect to its induced
triangulation. Since the full group of simplicial homeomorphisms of a triangulation
of R is isomorphic to the infinite dihedral group D, it follows that in this case G
has a normal subgroup N which acts trivially on L, and such that G/N is
isomorphic to a subgroup of D, . Now if ¢ is any 2-simplex intersecting L, the
group N fixes (pointwise) the set ¢ N L; since the latter set is a line segment
containing no vertex of ¢ it follows that N fixes g. In particular, N is contained in
the stabilizer of a 1-simplex of 2 and is therefore small. Since G/N is a subgroup of
D, and G has index at most 2 in I, ), it follows that I'|, , is small in this case.

In the case that L is an interior point of a l-simplex 7 of X, the group G
stabilizes t and is therefore small. Again, since G has index at most 2 in I, ,, it
follows that I'j, ,; is small. O

3. The space of length systems

In this section, ¥ will denote a l-connected singular surface. As in [GS,
Section 7], we shall study measured foliations on 2 in terms of length systems.
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3.1. Let u be a measured foliation of X. According to the definitions given in
[GS, Section 5], the underlying foliation of u induces a standard k-prong decompo-
sition of B for some k = 2. We shall call k£ the order of B with respect to u. We
shall say that u is strictly non-degenerate if every non-compact local branch of X
has infinite order with respect to u. It is clear that if u is invariant under a group
I' of simplicial automorphisms of X, and X is finite mod I', then u is strictly
non-degenerate.

Suppose that the measured foliation u is tame in the sense of [GS, Section 5]:
that is, no simplex is contained in a leaf, and the induced decomposition of every
2-simplex ¢ of X is a parallel family of open line segments in 6. (In particular, all
singularities of a tame foliation must occur at vertices.) Then we can define a
positive-valued function 4 on the set of 1-simplices of 2 by defining A(t) to be the
measure u(t). It follows from the definitions that 4 is a length system in the sense
of [GS, 7.1-7.2]. (This means that the edges of each 2-simplex é can be labeled t,
7’ and 7” in such a way that A(t) = A(1") + A(t"). The edge 7 is called the long edge
of 4.) The order of any local branch § of X2 with respect to u is equal to its order
with respect to the length system ¢ in the sense of [GS, 7.2], i.e. the number of
2-simplices é < f such that v is not incident to the distinguished edge of 4. In
particular, if u is strictly non-degenerate then A is non-degenerate in the sense of
[GS, 7.2] — that is, every 2-dimensional branch of X has order > 2 with respect to
A, and every non-compact 2-dimensional branch has infinite order.

Moreover, it follows from [GS, 7.3] that this construction defines a bijective
correspondence between tame measured foliations of 2 and non-degenerate length
systems. If A is a non-degenerate length system we shall denote the corresponding
measured foliation by pu;.

3.2. It will be useful to extract combinatorial information from a length system.
We define a ferroviary structure on X to be a function that assigns to each 2-simplex
o of 2 a 1-simplex © < g, called the distinguished edge of 1. Each length system on
2 has an underlying ferroviary structure in which the distinguished edge of each
2-simplex is its long edge. (The underlying ferroviary structure of the length system
corresponding to a given tame measured lamination is similar to a train track
carrying a given measured lamination in Thurston’s theory.) If a group I' acts on
2 by automorphisms, and if £ is a I'-invariant length system, then the underlying
ferroviary structure of ¢ is also I'-invariant; that is, if ¢ is a 2-simplex of 2 with
distinguished edge t, then y - 7 is the distinguished edge of y - ¢ for any y e I.

Non-degeneracy of a length system can be detected from its underlying fer-
roviary structure. If 6 is a ferroviary structure on X, and g is a 2-dimensional local
branch [GS, 5.2] of 2 at a vertex v of X, we define the order of B with respect to
0 to be the number of 2-simplices é = B such that v is not incident to the
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distinguished edge of 6. We shall say that 0 is non-degenerate if for every vertex v
of 2, every 2-dimensional local branch at v has order = 2, and every non-compact
2-dimensional local branch has infinite order. Thus when 6 is the underlying
ferroviary structure of a length system ¢/, the order of  with respect to 0 is equal
to its order with respect to 7. In particular, a length system is non-degenerate if and
only if its underlying ferroviary structure is non-degenerate.

3.3. We shall see that the set of all length systems on X which have a given
underlying ferroviary structure can be regarded in a useful way as a subset of a
vector space. (This is similar to Thurston’s parametrization of measured lamina-
tions by solutions of track equations.)

Suppose that we are given a singular surface X with a ferroviary structure 6. We
let  denote the set of all 1-simplices of X, and we consider the vector space R¥ of
all real-valued functions on %.

Let o be any 2-simplex of X. Let 7 denote the distinguished edge of o, and let
7’ and t” denote its other two edges. Then

V,=V,(0) ={ieR¥: At) = At") + At")}

is a linear subspace of R¥.

We set V() = V = (), V,, where o ranges over all 2-simplices of Z. Then V is
a linear subspace of R* which we call the length space associated to the given
ferroviary structure on 2. We let C = C(0) denote the positive cone in V, i.e. the set
of all A € V which are (strictly) positive-valued functions on %. According to the
definitions, C is precisely the set of all length systems on X whose underlying
ferroviary structure is 6.

3.4. Now suppose that a group I' acts on X by automorphisms in such a way
that X is finite mod I' and 0 is I'-invariant. The action of I' on X induces a linear
action on R¥ given by (g - A)(t) = A(g ' - 7); the subspace V is I'-invariant. The
elements of V (or R¥) which are fixed by the action of I" form a linear subspace V-
(respectively, R%). The set C = C(0) = Cn V. consists of all I'-invariant length
systems on X with underlying ferroviary structure 6.

3.5. For the rest of this section we assume that 8 is non-degenerate. Let A be a
point in C.. Since @ is non-degenerate, A is a non-degenerate, I'-invariant length
function; hence p, is a tame, I'-invariant measured foliation on Z. Thus we have a
l-connected R-foliated singular surface with simplicial symmetry (Z, u;, I, p),
where p denotes the given action of I" on X. Since X is finite modulo the simplicial
action of I', it follows from 1.1 that (X, u,;, I', p) has a well-defined leaf space
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(T;, T, p;), where T, is an R-tree and p, is a geometric action of I' on T,. The
geometric length function defined by this section will be denoted ¢;.

3.6. If 1 € C, has its coordinates in a given subgroup 4 of R, then (2, u,, I', p)
is obviously a A-foliated singular surface with simplicial symmetry [GS, 5.21].
This implies that ¢, is a A-length function. (Indeed, according to [GS, 5.28] we
may regard the leaf space (T,, I', p;) as the completion of a canonically defined
A-pre-tree with symmetry (79, T, p9), the pre-leaf space of (X, u;, I, p). The
A-completion of (T9, I', p%) is a A-tree with symmetry whose R-completion is again
(T,, T, p;); by [GS, 1.18], the length function defined by this A-tree with symmetry
is £;.)

3.7. For any A € C, and any positive real number a, we have u,; = au; ; hence
T,, is the R-tree which has the same underlying set as 7, and in which the metric
is obtained by multiplying the metric of T, by a. It follows that 7,; = af;.

3.8. Since 2 is finite mod I', the vector space R¥ is finite-dimensional; in fact,
R¥ is canonically identified with R¥*/". An element A of R¥ is identified with the
point (x,), c 4, of R*/", where x, is the value of 4 on the orbit « € %/rI.

Note that V is a linear subspace of R?. As finite-dimensional real vector spaces,
R¥ and V| have natural topologies. The positive cone C is an open subset of V..

3.9. It follows from Proposition 2.1 that for a given A € C,, the action p; is
small if and only if for every 1-simplex t of X, the stabilizer I, is a small subgroup
of I'. In particular, the condition that p,; be small does not depend on the choice of
the point 4 € C but only on the action of I' on Z. We record this as a

PROPOSITION. If p; is a small action for some A € C., then p, is a small action
for every A€ Cr. a

(Of course Proposition 2.1 actually shows more than this: it shows that the
condition that p; be small is not only independent of the point A € C but is
independent of the underlying ferroviary structure 6.)

3.10. An element A of R¥ will be called rational if we have A(t) € Q for every
7 € 4. Equivalently, A € R*" is rational if and only if it has rational coordinates. A
subspace of R¥ will be called rational if it is spanned by its rational elements, or
equivalently if it can be defined by equations with rational coefficients in the
coordinates of R¥*”. Note that any rational subspace has a dense subset consisting
of rational elements.



Simplicial approximation and low-rank trees 529

3.11. The subspace V. of R¥ is rational. Indeed, if a,, ..., 6, is a complete set
of orbit representatives for the action of I' on the set of 2-simplices of X, and if for
each i we denote by o, the orbit of the distinguished edge of g;, and by o} and o/
the orbits of the other two edges, then V, is defined by the equations

Xo, = X7 + Xor (1£i<k)
in the coordinates of R#%/T,

3.12. For any point 4 € C, we shall let W, = W,(0) denote the intersection of
all rational subspaces of R¥ containing A. Clearly W, is a rational subspace of R¥,
and by 3.11 we have W, c V.. Hence W, nC = C.

3.13. The following result will be proved in Section 4.

PROPOSITION. Let A, be any element of Cr. Let (4;);>, be a sequence in
W, _0C which converges to A, in the topology of R¥. Then for any g eI the
sequence (¢, (g)) converges to £; (g) in R.

It is not obvious to us whether the conclusion remains true when (4;) is an
arbitrary sequence in C which converges to 4. ; that is, whether the assignment
A —¢,(g) is continuous for every g € I'. The assumption that the 4, lie in W, _ is
used in the last paragraph of the proof of Lemma 4.5 below, on which the proof of
Proposition 3.13 depends.

Proof that Proposition 3.13 implies Theorem 1.3. Let ¢ be the length function
defined by a geometric action p of a group I on a tree T. Then we may identify
(T, I, p) with the leaf space of (X, u, I, p), where X is a l-connected singular
surface which is finite modulo a simplicial action p of I', and u is a tame
I'-invariant measured foliation u on X. As we observed in 3.1, u must be strictly
non-degenerate since X is finite modulo I

We let % denote the set of 2-simplices of Z.

According to 3.1, u is defined by some non-degenerate length system 4 on X.
Since u is I'-invariant, so is A. Let 6 denote the underlying ferroviary structure of
A. Since 1 is non-degenerate, 6 is a non-degenerate ferroviary structure. We regard
/ as an element of C,(6). By the above remarks, W,(0) is a rational subspace of
R¥ and thus has a dense subset consisting of rational points. Furthermore, A
belongs to the open subset W,(6) n C(0) of W,(0). Hence there is a sequence (4;); o
of rational points of W,(0) nC(0) converging to A. The 4;, regarded as points of
R*’, have rational coordinates. Hence we may write 1, = A;/n;, where the n, are
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positive integers and the A; are points with integer coordinates in R*/7. Clearly
;e W,(0) nC(0).

Set £, = ¢, for each i. By 3.6, 7, is a geometric Z-length function. By 3.7 we have
2:(g)/n; = ¢, (g). Proposition 3.13 implies that

tim 8 _ tim ¢, (¢) = ()

i N i— 0

for every ger.

If £ is a small geometric length function, then we may take the geometric action
p; to be small. It then follows from Proposition 3.9 that the p, are small as well.
Hence the geometric length functions #; are small. O

4. Comparing two notions of approximation

In this section we prove Proposition 3.13, which was shown in the last section
to imply Theorem 1.3. Proposition 3.13 generalizes a result of Thurston’s about
rational approximation of measured foliations of surfaces; our proof is based
largely on Thurston’s techniques.

We are given a singular surface X and a fixed non-degenerate ferroviary
structure 6. We use the notation of Section 3.

4.1. In the course of the proof we shall need to consider paths in Z. We shall
use slightly different conventions from those of [GS]. Here we define a path in X to
be a continuous map of an arbitrary compact interval in R into X'; in particular, the
domain interval may consist of a single point, in which case the path is said to be
trivial. A path is said to be constant if its image is a single point, and is called an
arc if it is a 1-1 map; thus a trivial path is at once a constant path and an arc.

An (affine) re-parameterization of a path y | [a, b] - Z is a path of the form y - A
where A is an orientation-preserving (affine) homeomorphism of some compact
interval onto [a, b]. An initial sub-path of y is the restriction of y to an interval [a, c]
where a < c < b.

A path y :[a, b] - X is called a composition of paths y,,...,y, if there exist
points @ = a, . . ., a, = b, such that y |[a;, b;] is an affine re-parametrization of
for i=1,...,n. In this case, we write (ambiguously) y =y, % - - x7,.

4.2. An affine path in a simplex ¢ of 2 will be called proper if it is non-constant
and has its endpoints in the boundary of . By an admissible path we shall mean a
piecewise-linear path in Z of the form y =¢, *- - - *¢,, where each ¢; is a proper
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affine path in a maximal simplex o; of X. (To say that ¢, is maximal means that it
is not a face of a higher-dimensional simplex. Thus it is either a 2-simplex or a
valence-0 1-simplex.) If we set P, =¢y(0) and P, =¢;(1) fori=1,...,n, then P, lies
in an open simplex 4; of dimension < 1 for i =0, . . ., n. Note that the sequences of
simplices (6,,...,0,) and (4,, ..., 4,) are uniquely determined by y. Two admis-
sible paths which determine the same sequences (o,,...,0,) and (4,, ..., 4,) will
be termed combinatorially equivalent.

Note that any admissible path y is a piecewise-monotonic path in the sense of
[GS, 5.9] with respect to any tame measured foliation u of Z. In particular y has a
well-defined p-measure u(y).

4.3. LEMMA. Let y be an admissible path in £. Then the real-valued function
A —u;(y) is continuous on C.

Proof. 1t suffices to prove the lemma in the case where y is a proper affine path
in a maximal simplex ¢ of X. The assertion is trivial if ¢ is a 1-simplex of valence
0; thus we assume that ¢ is a 2-simplex. Let t denote the distinguished edge of o,
and let t” and t” denote its other edges. Let v, v’ and v” denote the vertices of o
opposite 7, t” and 1” respectively. For any 4 € C, let f*: ¢ — R be an affine map (cf.
[GS, 7.1]) which maps v, v’ and v” to A(r"), A(t) and 0, respectively. If P and Q
denote the initial and terminal points of 7, then there are linear functions
¢, ¥ : Vi - R such that f4(P) = ¢(4) and f4(Q) = y¥(4), for all A € C,.. Hence for
any A € Cp we have u;(y) = |¢(4) — Y(4)|. This establishes the lemma. O

4.4. If 1 is a point of C, and if x and y are two points of a closed 1-simplex 1
of X, we define the A-distance between x and y, denoted d,(x, y), to be their distance
in the affine metric of length A(r) on t. Equivalently, d,(x, y) is the u, -measure of
the sub-segment of t with endpoints x and y.

4.5. As in Section 3, we identify R¥ with R*/". A linear real-valued function on
R will be said to be defined over Z if it is a Z-linear combination of the coordinate
functions on R*/T,

LEMMA. Let A, be any element of C.. Let y be an admissible path in a leaf of
U, such that y(0) is a vertex of X. Then there is a neighborhood U of 4, in W; N C,
such that for every A € U, there is an admissible path vy, which lies in a leaf of u,
and is combinatorially equivalent to y; and y, is uniqgue modulo re-parametrization.
Furthermore, if y(1) lies in the interior of a 1-simplex © of Z, and if v is an endpoint
of t, then there is a linear function w : R*'" - R defined over Z, such that for every
A € U the A-distance from y;(1) to v (along 1) is w(A).
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Proof. If the leaf carrying y is a point, the assertion is trivial; thus we assume
that this is not the case. We may therefore write y =¢, * - - - % ¢,,, where each ¢, is
a proper affine path in a 2-simplex o; of . We argue by induction on n; if n =0
then y is a trivial path and the assertion is trivial. Now suppose that » > 0 and set
y =¢ *---*¢,_ ;. We assume that there is an open neighborhood U’ of 4 in
W, nC, such that for every A € U’, there is a unique admissible path y; which
lies in a leaf of u; and is combinatorially equivalent to y’. Furthermore, if
y’(1) lies in the interior of a 1-simplex of X, we let t’ denote this 1-simplex;
and in this case we assume that for each endpoint v’ of t’, there is a linear
function o’ : R¥" >R defined over Z, such that d,(y5(1),v") = w’(4) for every
LelU’.

We may write y =y’ *x ¢, where ¢ =¢,. We set P =9(1) =¢(1) and P’ =y’'(1) =
£(0). We also set ¢ = 0,,. Thus P and P’ are boundary points of ¢, and ¢ is the affine
path in ¢ joining P’ to P.

Let us first consider the case where P’ is a vertex of 2. Let t denote the edge
of ¢ opposite to P’. Since ¢ is contained in a leaf of u; , the point P must lie in
the interior of 7, and 7 must be the distinguished edge of ¢ in the ferroviary
structure 6.

Let A € U’ be given. Since P’ is a vertex and y} is combinatorially equivalent to
y’, we have y;(1) = P’. There is a unique affine path ¢; which is contained in a leaf
of u; and joins P’ to a point of t. Hence y, = y; * ¢, is (modulo re-parametrization)
the unique admissible path which lies in a leaf of u, and is combinatorially
equivalent to y. If 7, denotes the edge of ¢ joining P’ to a given vertex V of 7, then
the A-distance from v to y,(1) =¢;(1) is A(r,). Hence in this case we can complete
the induction by defining U = U’ and w(4) = A(t,).

Next consider the case that P’ is an interior point of an edge t’ of 4, and that
P is an interior point of another edge of o, say . Since ¢ is carried by a leaf of y;,
either t or t" must be the distinguished edge of ¢ in the ferroviary structure 6. We
denote by v’ the common endpoint of T and 7’. The induction hypothesis gives a
linear function w’:R¥T 5 R defined over Z, such that d,(y5(1),v") = w’(4) for
every Ae U’.

For any A € U’, consider the point P’} = y;(1). There is a unique affine path ¢,
which is contained in a leaf of yx; and joins P to another boundary point P, of o.
If 7 is the distinguished edge of ¢ then P, is an interior point of 7 for any 4 € U’;
in this subcase we set U’ = U. If 7’ is the distinguished edge of t then P, will be an
interior point of t if and only if A(t) > w’(4). The points A € U’ for which this
inequality holds form an open set U in W; nC, and we have A € U since P is an
interior point of 7. It is clear in both sub-cases that for any A € U, the path
P, =75 * & is (modulo re-parametrization) the unique admissible path which lies in
a leaf of u,; and is combinatorially equivalent to y.
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To complete the induction in this case we must show that for any vertex v of 1,
there is a linear function w : R¥" - R, defined over Z, such that the A-distance
from P, =7v,(1) to v is equal to w(4) for every A e U’. We clearly have
d,(P,,v)=d;(P},v") =w’'(4); and if v" i1s the other endpoint of 7, we have
d,(P,,v")=Mt) —d;(P,,v) = A1) —w’'(4). Thus we need only set w =’ if
v=v’, and define w by w(i) = A(t) —w’ if v =v”. (The latter function is defined
over Z since A(t) is one of the coordinate functions on R¥*/"))

Finally we consider the case that P’ is an interior point of an edge t’ of o, and
that P is the vertex of ¢ opposite . We fix a vertex v’ of t’, and denote by 1, the
edge joining P to v’. Again the induction hypothesis gives a linear function
o’ : R*'" - R, defined over Z, such that d,(y5(1), v’) = w’(4) for every A € U’. Since
the path ¢ is carried by a leaf of u;_, the 1-simplex " must be the distinguished
edge of o, and we have A (t,) =d(P’,v") =w'(4,).

Thus A, is in the kernel of the linear map ¢ : R*" - R given by ¢(1) =
w’(A) — A(t;). Since w’ is defined over Z, so is ¢; hence N = V. nker ¢ is a rational
subspace of V. It therefore follows from the definition of W, that W, <N, i.e.
that ¢ vanishes identically on W, . This means that for any 4 € U" we have
Aty) =w’(A) =d(P%,v"). This implies that there is a unique affine path ¢; in ¢
which joins P’ to P and is contained in a leaf of u;. Hence y, =y * g, is the unique
admissible path which is combinatorially equivalent to y and is contained in a leaf
of u;. Thus we can complete the induction in this case by setting U = U". O

4.6. ADDENDUM TO LEMMA 4.5. If the admissible path v is an arc, then
the neighborhood U of 4., can be chosen so that for every A € U the path vy, is an
arc.

Proof. If U is the neighborhood of 1, given by 4.5, we must show that 4 has
a neighborhood U’ = U such that y; is an arc for every 4 € U".

It is clear that an admissible path which is not an arc must have two distinct
admissible initial sub-paths with the same terminal point. Hence for any 4 € U the
path y, is an arc unless it has two admissible initial sub-paths y; and y7,
combinatorially equivalent to distinct sub-paths y” and y” of y, with y;(1) = y5(1).
Since y has only finitely many admissible sub-paths, it is enough to show that for
any given sub-paths y” and y” of y there is a neighborhood V = V... < U of 4, such
that y; (1) # y7(1).

The hypothesis that y is an arc guarantees that y’(1) # 9”(1). Hence if either
y’(1) or y”(1) is a vertex of X, the combinatorial equivalence of y}, y; with y’, y”
guarantees that y5(1) # 74(1). The same argument applies if y’(1) and y"”(1) lie in
distinct open 1-simplices of ~. Hence we may assume that y’(1) and y”(1) are
interior to the same 1-simplex . We fix a vertex v of r.
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It follows from Lemma 4.5 that there exist a neighborhood V, < U of A, and
linear functions w’, ®” : R¥ — R defined over Z, such that d,(y;(1), v) = w’(4) and
d,(y7(1),v) = w"(4) for every A € V,. Since y’(1) # y"(1) we have w'(A,) # 0"(Ay).
Hence for all 4 in some neighborhood V < V, of 4, we have w’(4) # w”(4) and hence
ya(1) #y3(D). O

4.7. LEMMA. Let A, be an element of C-. Let (4;); > o be a sequence in W, nC
which converges to A, in the topology of R¥. Let y, be an admissible path in X which
has its endpoints at vertices of X and is quasi-transverse [GS, 5.15] to u, . Then there
exist an integer iy 2 0 and a sequence (), » ;, of admissible paths which are combina-
torially equivalent to y,, such that v; is quasi-transverse to y,_ for each i 2 iy, and

ilin; M,(%‘) = ﬂzm()’oo)'

Proof. According to the definition [GS, 5.15] of a quasi-transverse path, we may
write y in the form y® * - - - * y®_ where each 7/ is either a strictly monotonic path
or an arc in a leaf, and for each j < n there exist a final sub-path «”? of y> and an
initial sub-path B¢ of y/*+ " such that one of the following alternatives holds:

(i) |«”| and |B?| lie in distinct local branches at y(1); or

(ii) there is a standard neighborhood Z of y¢“)(1) in a 2-dimensional local

branch of X such that
(a) |«’| and | B| are interior to different sectors of Z, or
(b) one of the [x| and | | lies in a prong of Z and the other is interior
to a sector not containing that prong.
(Note in particular that when y)(1) is not a vertex, Z has exactly two sectors and
(a) always holds.)

We shall denote by J; (respectively J,) the set of all indices j such that y¢? is an
arc in a leaf (respectively, a strictly monotonic path). Since y is admissible, we may
take all the ¢ to be admissible, and for j =1, ..., n we may take a” and g’ to
be proper affine paths in 2-simplices > and §”? of Z. Furthermore, we may take
) =BU=D =190 for each j € J,.

It follows from Lemma 4.5 and its Addendum 4.6 that for all sufficiently large
i, and for each jeJ,, there is an admissible arc y{” which is combinatorially
equivalent to ¢ and is contained in a leaf of y, .

For each j € J, we set /) = 9", Note that for all sufficiently large i, the path
y$? =91 is strictly monotonic with respect to y, . (Indeed, by Lemma 4.3 we have
lim, , o, 1, (v”) = u;, () #0, and hence y*” is not contained in a leaf of u, when
i is large; since 7/ is a proper affine path in a 2-simplex, this means that it is strictly
monotonic.)

Lemma 4.3 also implies that lim;_, , p, ) =p, () forj=1,...,n.
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We set y, =y % - - - x y{ for large i. Then lim, , ,, p; (;) = s _(7,)- Since the
7 are admissible and combinatorially equivalent to the y{/), it is clear that the y,
are admissible and combinatorially equivalent to y.

It remains to show 7y, is quasi-transverse when i is large. For this purpose we
consider an arbitrary index j < n. For all large i we let a{” (respectively {) denote
the unique final (resp. initial) sub-path of y? (resp. /) which is a proper affine
path in o (resp. ¥). In order to show that y, is quasi-transverse (for large i), it
suffices to show that either (i) or (ii) holds with «{” and B¢ in place of «‘”> and
B Since y¢ and y¢/* D are combinatorially equivalent to y and y“*Y, it is
clear that if «*” and B satisfy (i), then a{” and B¢ also satisfiy (i) for all i for
which they are defined.

Now suppose that «‘? and B¢/ satisfy (ii), and let Z be a standard neighbor-
hood of v =y")(1) in a 2-dimensional local branch of X such that (a) or (b) holds.
Since y is admissible, we may take Z itself to be a local branch of X at the vertex
v; the link C of v in Z is a PL 1-manifold.

Suppose that (b) holds; then by symmetry we may assume that P =|B‘"| is a
prong of Z, and that |x‘/| is interior to a sector not containing P. Thus we have
jelJ,and j+ 1eJ,. There exist distinct prongs P’ and P”, meeting C in points B’
and B”, such that «a/)(0) and B = (1) lie in distinct components of C — {B’, B"}.
(See figure.)

Pziﬁ(/)l

PII

Ia(/)'

B/

When i is large, P; =|B¢{”| is the unique prong P; of the foliation u,, at v which is
contained in the same 2-simplex as P, and B; = ${/(1) is the point of intersection
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of P, with C. An application of Lemma 4.5 to f (or an easy direct argument)
shows that B, converges to B (in the topology of the 1-manifold C) as i — 0.

Similarly, for large i there is a unique prong P; (resp. P;) of the foliation u, at
v which is contained in the same 2-simplex as P’ (resp. P”); this prong meets C in
a single point B; (resp. B}), and B; (resp. B}) converges to B’ (resp. B”) as i — 0.
Hence for large enough i, the points a{’(0) and B, = B{/(1) lie in distinct compo-
nents of C — {B}, B} }. This means that (b) still holds if we replace ¢ and B by
a$/) and B¢,

A very similar argument shows that if «” and g satisfy (a) then a!” and g{?
also satisfy (a) for large i. O

Proof of Proposition 3.13. For 0 <i< o0, set u;=p,, let T, denote the leaf
space of u;, d; the distance function in T}, and x; the natural map from X to T,.
According to [GS, Theorem 5.20], the image under y; of the 0-skeleton of X is an
R-pre-tree TY < T,. Let g € I' be given. According to [GS, 1.16], we have £, (g) =
min, . 7o d(x,g - x). Let us fix a point x% e T, such that d(x%,g x%) =
£ (g). It follows from [MS, Theorem II1.2.3] that the segments [g~'  x%,6 x2%],
[x%,g - x%) = T, intersect only at the point x%. Hence x% e[g~'-x%,g-x%],
and d, (g~ x5, g x%) =21, (g).

Since x% e T?, there is a vertex v of X such that y,(v) = x%. For 0 <i < co we
set x? =y, (v) e T?.

We claim that there is a path y, from g~ '-» to g -v, quasi-transverse to
Ko, such that |y, | contains some vertex v’ in the leaf y5'(x%) of p.. Indeed,
according to [GS, Proposition 5.25], there exist a path n_ from g~'-v tov, and a
path n_, from v to g - v, which are quasi-transverse to u . By [GS, 5.17], n_ and
are parametrized arcs in Z. It follows from [GS, 5.20] that x., maps |7_| and |, |
monotonically onto [g~'-x%,x%] and [x%,g-x%] respectively. Hence
In_|nn.| < xz'(x%). Since n_ and n, are quasi-transverse to u,, it follows from
[GS, 5.16] that |n_|n|n_| is a (possibly degenerate) arc in x'(x%). If [n_|A|n. |
is degenerate, we may set y,, =n_ x5, and v’ =v; it follows from the definitions
that y,, is quasi-transverse. If |[n_|n|n,| is non-degenerate, let v’ denote the
endpoint #v of [n_|n|n, |- It follows from quasi-transversality that either X has at
least. two local branches at v’, or some local branch v’ has order at least 3 with
respect to u; since u is tame it follows that v is a vertex of 2. Furthermore, if {_
denotes the sub-arc of n_ with endpoints g ' - v and v’, and {, denotes the sub-arc
of n, with endpoints »” and g - v, then it again follows from the definitions that
Yoo ={_ *{, is quasi-transverse to .. This proves the claim.

Since v and v’ lie in the same leaf of u., it follows from Lemma 4.5 that they
lie in the same leaf of g, for all sufficiently large i. Thus y,(v’) = x;(v) = x? when i
is large.
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According to Lemma 4.7, there exist an integer i, =0, and a sequence of
admissible paths (,); - ,, in Z, such that y, is quasi-transverse to u; and combinato-
rially equivalent to ., and

,-l_i.“; (Vi) = oo (Voo )-

Since y, is combinatorially equivalent to y., it joins g~'-v to g -v and passes

through v’. Since 7, is quasi-transverse to y;, it follows from [GS, 5.20] that v, is a
parametrized arc and that y;, maps |y;| homeomorphically onto [g~'- x?, g - x?].
Hence x? =3, (v) e[g ' - x?, g - x?] for large i.

This means that [g ' - x?, x?] n[x?, g - x?1 = {x?}. By [MS, proof of Lemma
I1.2.4] this implies that either x? is fixed by g or [g~' - x? x?JU[x% g - x?] is
contained in the axis [MS, II.2] of g; hence by [MS, Theorem II.2.3] we have
[g="-x% g x%]=2¢:(g). Using [GS, 5.19], we see that
1

2 lim £;(g) = lim [g~

1 -0

x), g x]]= _lim pi (v:)

I — 00

=l (Poo) =[g" ' x%, 8- x%]=2¢,(8). O

5. Simplicial approximation of length functions in low Q-ranks

In this section we prove our main results, which allow one to obtain simplicial
approximations of certain length functions defined over subgroups of R of Q-rank
at most 2.

5.1. THEOREM. Let ¢ be a length function on a finitely presented group I.
Suppose that { takes values in a subgroup A of R whose Q-rank is at most 2. If A
has Q-rank 2, assume that ¢ is defined by an action of I' on an R-tree which satis-
fies the Ascending Chain Condition [GS, 6.1]. Then there exist a sequence (£;) of
geometric Z-length functions on I' and a sequence (n,) of positive integers such that
lim, , , (Zc(8)/n) = £(g) for every g € I'. Furthermore, if ¢ is a small length function
then the Z-length functions ¢, may be taken to be small as well.

Proof. Let us fix an action of I' on an R-tree which defines the length function
. According to [AB, Theorem 7.13(a)] or [CM, Proposition 3.1], we may assume
the action to be minimal in the sense that no proper sub-tree is I'-invariant. Since
¢ takes values in A, it follows from [AB, Theorem 7.13(c)] that the tree on which
I' acts is the real completion R7 of a A-tree T, and that the action of I on RT is
obtained by completing an action p of I' on T. After possibly enlarging A we may
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assume A to be a Q-vector space; then I' acts on T without inversions. By [AB,
6.15-6.16], £ may be interpreted as the length function defined by the action p.

If A has Q-rank 2 then by hypothesis we may take the action of I' on RT to
satisfy the ascending chain condition. It is then clear that the action p of ' on T
also satisfies the ascending chain condition.

The A-tree with symmetry (7, I', p) is now seen to satisfy the hypotheses of [GS,
Proposition 2.6] (in the case where A has Q-rank 1) or [GS, Proposition 6.4] (in the
case where A has Q-rank 2). Hence there exists a strongly convergent direct system
(T;, T, p;) of A-trees with symmetry such that all the actions p; are geometric, and
(T, T, p) is the limit of the system. Let ¢’ denote the length function on I' defined
by p,. By [GS, 1.28], the sequence (/) of functions on I' converges strongly to ¢;
that is, for every g € I' we have £(g) = ¢(g) for all sufficiently large i.

Now apply Theorem 1.3 to each #,. This gives, for each i, a sequence (£]) of
Z-length functions on I' and a sequence (n}) of positive integers, such that

lim £,(8) (:_g)

Jj— o0 j

=7'(g)

for every ge .

Let us now index the set of all elements of I" by positive integers: I' = {g, : r = 1}.
For each positive integer k& we choose an index i, so that for all i =, and for
r=1,...,k we have £'(g,) = /(g,). Likewise, for each k we choose j, so that for all
j2j.and for r =1,...,k we have

Ve
e _giq)

J

< 1/k.

We take the sequences (iy ), > and (ji)c =0 to be monotone increasing.
It follows at once that the sequence (£,) of Z-length functions defined by

¢, =1¢ ) satisfies

fim Zi(8)
k—+w Ny

=£(g)

for every g € I', where m, =nJ\:.

If ¢ is a small length function then it follows from [CM, Theorem 3.7] that the
action of I' on T is small. The action p is then automatically small, since the
stabilizer of a segment [x, y] = T is also the stabilizer of the segment [x, y]gr in the
given tree. This implies that the actions p; are small; for by the definition of the
limit of a strongly convergent direct system, we have for each i a I'-equivariant
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morphism of A-trees ¢, : T; - T. The definition of a morphism of trees implies that
the image of any segment in T contains some segment in T’; hence the stabilizer in
I' of any segment in T is contained in the stabilizer of a segment in T and is
therefore small.

Thus the ¢/ are small length functions in this case. Hence by Theorem 1.3 we
may take the length functions ¢; to be small. In particular the ¢, are then
small. O

5.2. If all small subgroups of I" are all finitely generated, then any small action of
I' on an R-tree satisfies the ascending chain condition. Hence Theorem 5.1 has the

COROLLARY. Let I be a finitely presented group whose small subgroups are all
finitely generated. Let { be a small length function on I' which takes values in a
subgroup A of R whose Q-rank is at most 2. Then there exist a sequence (£,) of small
geometric Z-length functions of I' and a sequence (n,) of positive integers, such that

limy _, , (4i(8)/ne) = £(g) for every g €T O

5.3. Our final result is a variant of Theorem 5.1: the group is assumed only to
be finitely generated (rather than finitely presented), but the action must be
assumed to be free.

THEOREM. Let ¢ be a length function defined by a free action of a finitely
generated group I' on an R-tree. Suppose that ¢ takes values in a subgroup A of
R whose Q-rank is at most 2. Then there exist a sequence (£,) of small geo-
metric Z-length functions on I' and a sequence (n,) of positive integers, such that

limy _, o, (Z(8)/n) = £(g) for every g €T

Proof. This is proved in the same way as Theorem 5.1, except that in the rank-1
case we use [GS, 2.2] in place of [GS, 2.6], and in the rank-2 case we use [GS, 6.3]
in place of [GS, 6.4]. O
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