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Embedded minimal annuli in R3 bounded by a pair of straight Unes

David Hoffman*, Hermann Karcher** and Harold Rosenberg

1. Introduction

The subject of this paper is embedded minimal annuli bounded by two straight
lines. The only known examples of such surfaces are given by subdomains of the

singly periodic Riemann examples, M. There is a 1-parameter family of thèse

surfaces. A fundamental domain of a Riemann example consists of a minimal
annulus bounded by two straight lines, and a copy of that surface produced by
Schwarz reflection about one of the boundary lines. (See Figure 1 and the analytic
description of thèse surfaces in Section 2.)

We will prove that the examples of Riemann constitute ail of the examples,
under certain géométrie hypothèses.1

THEOREM 1. Suppose L — LxuL2 is a pair of parallel lines and A is an
embedded minimal annulus whose boundary is L. Assume furiher that A lies between

two parallel planes with one Une in each plane. Then A extends by Schwarz reflection
to a Riemann example M.

In [13], Shiffman proved that a minimal annulus bounded by circles in parallel
planes is fibred by circles in parallel planes. The assumptions of Theorem 1 can be

viewed as a limiting case of Shiffman&apos;s assumptions, but his proof does not extend.

As is well known, the Riemann examples are fibred by circles. In fact, Riemann

?Partially supported by research grant DEFG02-86ER250125 of the Applied Mathematical Science

subprogram of the Office of Energy Research, U S Department of Energy, and National Science

Foundation, Division of Mathematical Sciences research grants DMS-8802858

**Partially supported by Sonderforschungsbereich SFB256 at Bonn.
&apos;Recently Eric Toubiana has been able to strengthen Theorem 1 significantly by showing that the

same conclusion holds even if the lines are not assumed to be parallel (&quot;On the minimal surfaces of
Riemann&quot;, prepnnt Université de Bourgogne, Dijon, France
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F igure 1 Part of one of the Riemann examples Illustrated hère are four minimal annuli bounded by

parallel lines Joining two annuli together on a common hne boundary produces a fundamental domain
for the surface modulo îts onentation-preserving translations

constructed thèse surfaces by explicitly determining the coordinate functions, in

terms of elliptic intégrais, of ail minimal surfaces iibred by circles in parallel
planes. This was published posthumously [10]. Very soon after the publication
date of this paper, Enneper published a work [2] in which he proved that a

minimal surface fibred by pièces of circular arcs (not necessarily assumed to lie in

parallel planes) was in fact a pièce of one of the Riemann examples, or a pièce of
the catenoid. An excellent summary is given in [9], where we learned about the

work of Enneper.
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From the results cited in the above paragraph, it follows, as observed

by Shiffman, that a minimal annulus bounded by circles in parallel planes is a part
of one of the Riemann examples. As an immédiate corollary of Theorem 1 we
hâve

COROLLARY 1.1. Suppose L L{uL2 is a pair of parailel Unes and A is an
embedded minimal annulus whose boundary is L. Assume further that A lies between

two parallel planes with one Une in each plane. Then A is fibred by round circles in

parallel planes.

We wish to mention some récent papers that are related to our work. Meeks
and White hâve studied minimal annuli bounded by convex curves in parallel
planes [8]. In [4]. Jagy studies minimal hypersurfaces that are foliated by codimen-
sion-2 round sphères in Rn. He proves that when n &gt; 3, the only possibilities are

hypersurfaces of rotation: generalized catenoids. Thus the phenomenon of singly-
periodic minimal embedded surfaces fibred by sphères and planes does not exist in
dimensions higher than three. Hoffman and Meeks [3] provide a géométrie ap-
proach to the Riemann examples, characterizing them by determining their Gauss

mapping. Karcher [6] provides a géométrie approach to the requisite elliptic
function theory for the Riemann examples and related minimal surfaces.

2. A characterization of the Riemann examples

The examples of Riemann can be described easily in terms of their Enneper-
Weierstrass Représentation. On a rectangular torus, Tx C/L, where L is the

lattice generated by {A, i}, for some real k ^ 1, consider the elliptic function P
with a double pôle at 0, a double zéro at co3 (À + /)/2 and no other zéros or
pôles. The Weierstrass P-function 9 has the property that &amp; —^(co3) has exactly
the same pôles and zéros. This détermines the function up to a multiplicative
complex constant. That is:

P c(P - 0&gt;(co3)).

It can be easily checked that this elliptic function has the property that
P(œ3/2) i, precisely when c 1 and that, when c is real, P is real precisely on
the Unes

Re(z)=0, Re(z)=A/2, Im(z)=0 and Irn(z) l/2.
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Another way to produce an elliptic function with thèse properties is to solve the
conformai mapping problem:

0

Figure 2.

and then extend by Schwarz reflection. The Riemann examples are then given by
the Weierstrass Data on Tx - {0, (A -I- 0/2}:

g p9 n idz/P, (2.1)

producing via the Weierstrass Représentation the multivalued immersion X(z),
whose components are:

xx(z) Re f* (1 -g2)rj Re | i(P~l - P) dz,

x2(z) Re f* i(l +g2)ri -Rc f* (P + /&gt;&quot;&apos;) dz,
Jco i Jco i

x3(z) Re \ 2gr\ Re f* 2idz -2 Im (z).
Jco i Jco i

(2.2)

Hère the choice of œ A/2 as the base point for intégration is for convenience.

REMARK 2.1. Since (2.1) defines a minimal surface with a single period
corresponding to the closed curve on Tk given by /*(/) (A/4) + ti, 0 &lt;&gt; t &lt; 1, as will
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be shown in Proposition 2.1, it follows that on y(t) (i/4) + /A, 0 £ f £ 1,

=fRe Pdz -Re | P1 dz.

It follows that if c is any nonzero real number, the data g cP, rj dz/cP on Tx

has not only a period corresponding to \x, but also

Re i(l +g2)r\= -Re (c&quot;1/*-1 +cP) dz (c~l - c)A.
Jy Jy

However, we may evaluate A by integrating P along y (i/2) + fA, 0 ^ t ^ 1, where
P dz is real and never changes sign. Hence A ^ 0, and this period is zéro if and only
if c 1. We will hâve use of this observation later when we prove the uniqueness
of the Riemann examples.

The following Proposition establishes the properties of the Riemann examples.
They are ail previously known.

PROPOSITION 2.1. The Weierstrass data (2.1) and the multivalued immersion

(2.2) defines a minimal surface 0t that has the following
a) Géométrie properties:
1. ât is complète and singly periodic, invariant under a translation T;
2. 0t isfibred by circles in horizontal planes x3 c ^ 2m, m e Z. Thèse correspond

to the closed curves on Tk given by Im (z) constant ^ 0, 1/2;
3. £# n {x3 2m}, m e Z, are straight Unes, parallel to the x2 axis. Thèse correspond

to the Unes on T} given by Im (z) 0, 1/2;
4. 0t is embedded;
5. 0t has an infinité number of fiât ends, asymptotic to planes at height

x3 2m, m e Z;
6. 0t is invariant under reflection in the xx,x3-plane. The intersection of this plane

with 01 consists ofplanar geodesics and they correspond to the Unes on TÀ given

7. 01 is invariant under rotation about horizontal Unes that are parallel to the Unes

0tr\{x3—&apos;km}, lie at heights x3 (m + 1 /2)À, andmeet the surface orthogonally ;

b) Uniqueness properties&apos;.

8. Any minimal surface that is fibred by circular arcs, not necessarily assumed to

be in parallel planes or assumed to be closed, is a subset of either the catenoid

or some $&apos;,

9. Any minimal annulus bounded by circles in parallel planes is either a subset of
the catenoid or of some 0t.
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We give proofs of 1-7 that are self-contained and simpler than those in the
literature. Statement 8 is a lengthy compilation carried out by Enneper in [2] and
outlined in the modem text [9]. Statement 9 follows from Statement 8 and
Shiffman&apos;s theorem: If a minimal annulus is bounded by circles in parallel planes,
it is fibred by circles [13].

Proof. From (2.2), it is clear that X has a period corresponding to the closed

curve (À/4) + ti9 0 ^ / ^ 1. This period has x3 component equal to —2. We will
call this period vector T; T (a, 0, -2).

The conformai metric on Tk induced by the immersion (2.2) has length élément

NI(l + k|2)=(|/&gt;| + |/&gt;-1|)|^|. (2.3)

Because of the way that P is constructed in Figure 2, it is évident that reflection in
the Une Re{z}=0 (equivalently Re(z) A/2), or in the Une Imz 0 (equiva-
lently Imz i/2) induces an isometry of the induced metric. Since thèse four lines

are fixed in Tk by one of thèse reflections, they are geodesics. The second

fondamental form of the immersion (2.2) is given by Re {fgf dz2} Re {i(P&apos;l

P)dz2}. Along ail four lines in question, P and (dz)2 will be real, while P&apos; is

necessarily real along the horizontal pair and purely imaginary along the vertical

pair. This means that {fgf dz2} is imaginary along the lines Im (z} 0, \ and real

along Re{z} =0, À/2. Thus, this second pair of lines is mapped by X to planar
géodésie lines of curvature, while the first pair is mapped into straight lines. (See

[6] or [5] for détails of this sort of argument.) This proves 3. As a conséquence of
this, M is invariant under rotation about thèse lines and reflections through the

planes of thèse geodesics. It is clear from the formula for the third component of
X, that the horizontal line Im {z} c is mapped into the horizontal plane

x3= — 2c(mod2). In fact thèse curves are circles; in particular, they are closed.

We will show this in Lemma 2.1 below. For now we assume it to be true; this

gives Statement 2. This means that there are no periods, except perhaps at the

punctures 0 and \(À + ï). But through each puncture pass a line of rotational
symmetry and an orthogonal plane of reflectional symmetry. Since the period of X
must be orthogonal to both the plane and the line, it has no period at a puncture.
Hence T is the only period and $ is singly periodic. We note that the period
vector T must reflect into itself through {x2 0}. That is J (a, 0, —2). From
(2.3) it is clear that M is complète since |jP| H-1^|~* has a double pôle at either

puncture; the length of any curve diverging to 0 or (A -h ï)/2 must be infinité. This

complètes the proof of 1.

Note that from 2 and 3, we know that the intersection of dt with any horizontal
plane is an embedded curve. In particular, 01 is embedded. This proves 4.
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We now look at an end corresponding to 0 or \(k + /). It is embedded, contains
a line, and the Gauss map has order 2 there. Moreover, it is period-free. This forces

it to be planar. Since the Gauss map is vertical at the end and the end contains a

horizontal line at height x3 2m, we hâve proved Statement 5.

Because of the fact that the planar curves

X(y((0X yc(t)=ci + t, 0£/£l,

are closed circles, the planes which contain the images of jx{t) (À/2) + ti and

jx(t) // must coincide. Since g P is real on \i this plane of symmetry of ^P is

vertical and parallel to the plane {x2 0}. Since we hâve chosen to intégrate from
G), /i(0), this vertical plane of symmetry is exactly the coordinate plane {x2 0}.
This proves 6.

To prove 7, we observe that if

Q(z)

where I(\(X + i) + z) \(X + i) - z,

2(0) =0,

Q(W3) oo,

Checking that g solves the same mapping problem as —l/P on the rectangle
with vertices 0, w,, w3, w2 shows that -l/P. Therefore (\P\ -h |JP| — *) ° /
|J°| •+¦ 1^1&quot;!. Since |/* rfz| \dz\, it follows from (2.3) that / is an isometry in the

induced metric on T,. In fact / is induced by a symmetry of R3 consisting of
rotation by n about a horizontal line orthogonal to the (*,, jc3)-plane and bisecting^
the line segment between X(w2) and X(wx). The horizontal line meets 0t orthogo-
nally at the points X((À +1)/4) and X((X/4) +|i). To see this, simply observe that
because /* dz — dz, and since

(2.4)
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it follows that

That is /* acts on the integrands &lt;P in (2.4) by rotation about the x2-axis. Since /
fixes (À + /)/4, (A/4) + fi, it follows that / is induced by rotation about the line,
parallel to the x&gt;-axis, which passes through X({X + 0/4) and X((Â/4) +|i). This

proves 7. It also proves that the curves Im(z) const # 0, \ are mapped into closed

curves.

LEMMA 2.1. The level curves x3 c ^m in the Riemann example are circles.

Proof. We first dérive for the curvature k of the level lines x3 constant on a

minimal surface

(2.5)

where &apos;

is differentiation with respect to a specially adapted conformai coordinate.
Then we conclude A constant from the differential équation of the elliptic function

g P. We choose conformai coordinates z u + iv so that v x3, up to an
additive constant. If g is the stereographic projection of the Gauss map, we must
hâve 2grj 2i dz. Hence the Weierstrass représentation is given by

X(z) -l
where

4» (1 -g2, i(l +g2), 2g)t,=(g-1 -g, i(g-1 +g),2)idz.

In particular, the conformai metric is given byA (|g| + |g|~&apos;)- The level curves of
x3 are of the form

c(u) X(u + iv0).
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We observe that if N(u) îs the normal to S at c(u), the projection of Nu) onto the

plane x3 v0 îs a scalar multiple of the vector (Reg, Img) Adopting complex
notation, we may then wnte the normal n(u) to the plane curve c(u) as

n(u)=f-

and the unit tangent vector to this curve as

where s dénotes arc length on c We now compute

ds \\g\) \\g\ \g\3 J

where &lt;/, h} Re yi^is the usual inner product, and A îs, as computed above, equal

t° \g\ + |g| Noticing that the second term on the nght-hand-side îs a multiple of
dcjds (or equivalently that &lt;g, ig) 0), we may wnte the curvature of c m the

followmg form

-Vf&apos;

The last equahty follows from the gênerai equahty

co

vahd for any complex numbers z, œ, co # 0 Thus indeed

*=(lm
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We wish to show that k is constant on c. We will do this by showing that dKJdu 0.

We begin by calculating dX~x\du.

dk

du -~kl \g\
~ \gf J

Thus

For the Riemann examples 01, g P, as defined in (2.1). This elliptic fonction
on a rectangle satisfies the differential équation

where a/? 1 and p is a real positive constant. In fact -h a and — p are the values

of P at the half periods œl and co2 (see Figure 2.1, as well as [6], [5]). From this it
follows that

(2.8)

and
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or

-y-(/&gt; + P~1)- (2.9)

Using (2.7), (2.8) and (2.9), we hâve

But notice that in gênerai if œ u H- iv

Im (co — œ~x) =v(

Thus Jfc/û?M 0 on the Riemann examples. This shows that the planar curves c are

round circles, except when k 0 (and the curve c is a line) which happens precisely
when P is real along c. From the behavior of P, this happens precisely when

x3 2m, met.

3. The proof of Theorem 1

We will use the following resuit, proved in [1]. See also [7].

THEOREM 3.1. Suppose M is a properly embedded minimal surface with an

infinité symmetry group and more thon one topological end. Then either M is the

catenoid or:
(i) M is invariant under a screw motion T;

(ii) M/T has finite topology if and only if the total curvature of M/T is

2n(X(M/T)-r),
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where r is the number of ends of M/T;
(iii) AU the annular ends of M are fiât ends. If MIT has finite topology, ail its

ends are flat.

LEMMA 3.1. Suppose A is an embedded minimal surface that is bounded by a

pair of Unes L LokjLx and lies in a slab between parallel planes, P PouP, with

Lt cz Pt. Then A extends by Schwarz reflection to a singly-periodic embedded minimal
surface £f, invariant under a screw motion T, where T is R{ ° Rq, R, being rotation by

n about Lt. IfA has genus k, S/T has genus 2A: -h 1, twoflat ends and total curvature
— 4n(2k + 2). Furthermore, T is a pure translation if and only if Lo is parallel to Ll9
and in that case the translation vector lies in the plane containing LouLl and is

orthogonal to thèse Unes. If T is a translation, the Gauss map of S descends to a

well-defined meromorphic function on S/T.

Proof The hypothesis that the surface lies between two parallel planes and is

embedded and minimal means that it extends by Schwarz reflection about the lines

to a complète embedded minimal surface. Let T be the symmetry of the surface

produced by the composition of rotations about the two line boundaries of A. T
must be the composition of a nontrivial translation, transverse to the planes of the

slab containing A, and a (possibly trivial) rotation. Thus A extends to a singly-
periodic surface Jf that is, modulo F, a twice-punctured genus (2k + 1) surface.

Two copies of A having a line in common form a fundamental domain of Jf /T.
The assumption that A is embedded in a slab forces the singly-periodic surface to
be embedded. By Theorem 3.1(iii) the two ends of J^/Tare flat. By Theorem 3.1(ii)
Jf /T has finite total curvature equal to — A%(2k + 2).

If in addition the lines L are assumed to be parallel, the symmetry T, which is

generated by successive rotations about the two distinct lines in the quotient, is a

pure translation. (This translation will be orthogonal to the boundary planes of the

slab if and only if the lines L both lie in a plane orthogonal to the slab.) In
particular, there is no rotational component to T. This implies that the Gauss map
of Jf descends to Jf \T. Since Jf jT has finite total curvature and is complète in
R3/F, the Gauss map of Jf \T extends to the compactified surface.

REMARK 3.1. Since Jf is embedded, we may assume without loss of general-

ity that the Gauss map of Jf is vertical at the two ends. Dénote by g the Gauss map
of Jf/T. Then Jf may be represented as a multivalued conformai immersion of
Jf /T by using the Enneper-Weierstrass représentation with the data g, rj, where

rj dx3/2g. Since the two ends are flat, rj must hâve a double pôle at each one. But

Jf is constructed in a manner that insures that there is a single Une diverging into
each end, which in this normalization must be horizontal.
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Proof of Theorem 1

Step 1. By Lemma 3.1, the annulus A extends by Schwarz reflection to a

singly-periodic minimal surface S, invariant under a translation T, and S/T a

torus with two flat ends and total curvature —87c. Also, the Gauss map of S
descends to S/T, and extends to S/T. Thus g, the stereographic projection of the
Gauss map is a degree-two elliptic function on this torus. By Remark 3.1 g may
be assumed to hâve a pôle of order two at one end, say px e Lx and a zéro of
order two at the other end, say poa Lo. Because the degree of g is two, it has no
other zéros or pôles. The lines L=LouLx are horizontal and we may assume

without loss of generality that they are parallel to the xx -axis. This forces g to be

real on L. Since g is real along L and has degree equal to two on S/T, it follows
that there is a single simple branch point of g on each of the lines. We will label
the branch point of the Gauss map on L, by b,, i 0, 1.

Step 2. We will prove that 5 is a Riemann example by determining
its Weierstrass représentation. In this step we will détermine S/T and the one-form

n-

First, we détermine the underlying conformai structure of S/T. The two
lines L=LouL, correspond to disjoint closed curves on this torus. Rotation
about one of the lines is an order-two isometry, whose fixed-point set is L.
Consider this isometry as a conformai involution on the torus. Only rectangular
or rhombic tori possess conformai involutions which fix a curve (namely reflec-

tions for the flat metric). However a rhombic torus cannot hâve two such curves
in the same homotopy class as is the case for Lo and Lx. Hence S/T is a

rectangular torus.
Without loss of generality, we may assume that this torus is Tx, that is C

modulo the lattice determined by {1, À}9 for some real X, and that the afore-
mentioned involution is induced by complex conjugation. Hence L corresponds to
the set Im {z} 0, {-, modulo X, and we will label Im z 0 as Lo, and Im z \ as

Lx. Let z m, -h iu2 be the complex parameter on C. Since the lines L are horizontal
and the height function x3 is harmonie on S, it defines a function on C which is a

real multiple of u2 (up to an additive real constant). Hence dx^ idz on C, up to
a multiplicative real constant, which by a homothety of IR3 we may assume to be

equal to 1. Since dx3 2grj, where rj is the one-form in the Weierstrass représentation,

we hâve

on S and S/T.
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Step 3. It remains to détermine the Gauss map g. Recall from Step 2 that we
know g is a degree-two elliptic function on the rectangular torus Tk, which has a

double pôle at p0 0, a finite branch point on Im z 0 and a double zéro and a
finite branch point on Imz=|. We now observe that the branch points of a

degree-two elliptic function on a rectangular torus, which has a double pôle, must
coincide with the branch points of any other such function, up to translation.2

Taking the function P defined in Figure 2 as a model, we may conclude that the
branch points of g, namely p09 pu b0, bx are distributed in one of the following
ways:

P]

Po

Pl
1

Case 1

Po b0

Case 2

Figure 3

In Case 1, note that g has exactly the same zéros and pôles as P, constructed in
Figure 2. Hence g cP for some nonzero complex constant c. However both g and
P are real on Im z 0. Hence

g cP, c real. (3.2)

Thus in Case 1, (3.1) and (3.2) give the Weierstrass data for S on the rectangular
torus Tx. However, in Remark 2.1, we noted that the Weierstrass représentation
will always hâve nonzero period in the x2-coordinate on a horizontal gênerator of
Tk unless c 1. Since this must be a closed curve or a Une parallel to the x,-axis,

2Here is a simple proof. Let h be an elliptic function of degree 2 on Tx. After a translation in C and

composition with a fractional linear transformation on Cu{oo} we may assume that h has a double pôle
at 0, as does the F-function defined in Figure 2 of Section 2. Suppose h is not branched at œ3 — (A + j)/2,
where P has a double zéro. Then (h —h(o)s))IP has a simple pôle at co3 and no other pôles, a
contradiction. Hence h must be branched at œ3. Similar arguments show h is branched at co, À/2 and

co2 — //2, the other branch points of P, and nowhere else. If one only &quot;knows&quot; elliptic functions from
their Riemann mapping définition then one needs such an argument. The standard Mittag-Leffler
expansions are even with respect to the pôle and therefore also give the resuit quickly.
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we conclude that c 1. Hence

Y] =¦
idz

on 7\

613

(3.3)

are the Weierstrass data in Case 1. This case is exactly the Riemann example given
in (2.1) and (2.2).

REMARK 3.2. The fact that S/Tis a rectangular torus Tx on which the branch
points of g are essentially determined can be proved by working more directly with
the minimal surface. Consider the sum of S/T a U^/T with itself in the sensé of
minimal hérissons, according to [11]. At each n e S2 we define Jt(n) to be the sum
of ail q e S/T where G(q) n, G being the Gauss map. Since S/T has flat ends, it
follows from [11] that jf is constant on S2. However, we may arrange things so
that X(ho)/T 0eS/T and b0 is the only point q e J/f where G(q) G(bo).
Hence jf Ô. Moreover, since G has degree two, inversion about Ô in U^/T
(X-^—XmodT) must be a symmetry of S/T. Hence inversion about Ô is a

symmetry of S. Therefore inversion about Ô followed by rotation about Lo
=*,-axis) is a symmetry of S. This symmetry is precisely reflection in the vertical

plane {jc, =0}.
The symmetry lines L and {xl=0}nS/T divide S/T into four rectangles

bounded by geodesics, each one congruent to any other one by a rotation, reflection
or a composition of the two. Therefore, S/Tis a rectangular torus. The symmetries
force the finite branch points to be located as in Case 1 or 2 above.

Sîep 4. It remains to show that Case 2 cannot occur. We will do this by
determining g exphcitly, and then showing that the period problem is not solvable.
Recall that in this case g has a double pôle at 0 a double zéro at i/2 and branch
points at \ and {k 4- i)/2. (See Figure 3.) Let Q be the elliptic function defined by
first solving the Riemann mapping problem:

Figure 4 The construction of Q ;/2-+0, (A/2) + (3i/4) -&gt; 1, 3i/4-» - 1.
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-o sec a

—W&quot;

-0 cosa

6-
Figure 5. The zéros, pôles and branch values of Q along with the horizontal generator y.

and then extending to C by reflection. The mapping Q is an elliptic function of
degree 2, defined on the torus Tx, It has a double pôle at 0 and a double zéro at i/2.
Noting that Q(co3) is some real number (depending on A) between 0 and 1, we may
write Q(co3) cos a, for some a, 0 &lt; a &lt; n/2. This implies that Q((À/2) + i) sec a.

With this information it is straightforward to see that the zéros and pôles of
(Q&apos;/Q)2 and Q + (1/0 — (cos a + sec a) coincide. Since both functions are real and

positive on the line segment (i/2) + /, it follows that

(q) C\Q+h ~(cos a+sec a))&apos; (3.4)

for some positive c g R.

Note that Q is also real on the Unes Re {z} 0, A/2, and has the same zéros and

pôles as g. It follows immediately that the Gauss map g is a real multiple of Q. That
is:

(3.5)

As observed in Remark 3.2, S must hâve a vertical plane of symmetry that passes

through the fini te branch points of g. This implies that the Unes Re z 0, A/2

correspond to planar Unes of curvature in vertical planes. Since Q is real on thèse

Unes, the vertical plane(s) of symmetry must be parallel to the (xux3)-plane. (Of
course, we could hâve deduced this directly from the properties of Q. The metric is

(A \Q\ -h À ~ l\Q\~l) \dz\29 which is invariant under reflection in the Unes Re z — 0, À/2.
Hence thèse Unes are geodesics. The second fundamental form is given by
\Re {g&apos;fdz2} \Re {iQ&apos;/Qdz2}. On thèse Unes dz idv, Q is real and Q&apos; is

imaginary. Hence (iQ&apos;/Q) dz2 is real, which means that this géodésie is a line of
curvature in a vertical plane parallel to the (xux3)-plane.)
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We will now show that along the horizontal curves Imz= constant there îs

always a nonzero penod, which means that the Weierstrass data (3 1), (3 5) on TÀ

can never produce the required example Because thèse curves lie in horizontal
planes and are symmetnc with respect to the (x{, jc3)-plane, the only possible penod
îs in the x2-direction We will choose our generator to be y(t) \i -h t, 0 &lt;&gt; t X

The penod condition îs then

Re f i(l+g2)/&lt;fe -Re [ (g l+g)dz=09 (36)
J

where y(t) |i + /, Q&lt;t&lt;k Using (3 5) we hâve that condition (3 6) îs équivalent
to

]Re f ^= -A Re |

h &amp; Jy
A Re | Qdz (3 7)

Jy

But along y, dz îs real and moreover Q îs unitary, so Q~l — Q Hence (3 6) îs

équivalent to

Re J Q dz=0 (3 8)J

In other words, the parameter A îs irrelevant to the closing of the penod on y with
the Weierstrass data (3 1), (3 5) on T}, either no example exists in Case 2, or there

îs a one-parameter family of examples for each rectangular torus We will now
show that no example exists To do this, we will show that (3 8) îs false

By construction Q o y(t) Q((3i/4) + t) îs a one-to-one and onto map from the

closed curve represented by y onto the equator \z\ 1 Therefore we may wnte
Q e&apos;*, (j) (j)(t) Along y, we hâve dQ/Q i d&lt;t&gt; and

Also note that along y, Q -h Q~l Q -hQ =2cos&lt;/&gt; Hence the nght-hand side of
(3 4) îs real and négative This means that Q&apos;/Q îs purely imaginary on y, in fact
when Q=e&apos;+,

~- ±icy/(cos a + sec a) - 2 cos 0 (3 10)
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Hence,

Re Qdz=±Re\ ^[^&apos;(cos a + seca - 2cos &lt;/&gt;)~1/2] d&lt;j&gt;
f Qdz=±Rc PV

Jy Jo

¦r cos q&gt; d(p

a) - 2 cos

The intégral m (3 11) îs clearly not zéro for the following elementary reason Note
that jo* cos &lt;j) d(f&gt; 0 However, when cos &lt;f&gt; îs positive the denominator in the

integrand of (3 11) îs smaller than cos a + sec a while ît îs bigger than cos a -h sec a

when cos (f&gt; îs négative Hence,

f cos (j) d&lt;f&gt;

(cos a H- sec a — 2 cos (/&gt;)1/2

Thus condition (3 8) îs not satisfied Smce this condition was necessary for the
existence of an example with data given m Case 2, we hâve shown that Case 2 îs

impossible
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