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On a simplicial complex associated with tilting modules

Christine Riedtmann and Aidan Schofield

Introduction

Let A be a finite-dimensional associative algebra over an algebraically closed

field, and dénote by modyl the category of finite-dimensional A -modules We fix
the number of pairwise non-isomorphic simple A -modules to be n + 1

Dénote by S a set of fixed représentatives for the isomorphism classes of
indécomposable A -modules T satisfying the following conditions

(î) The projective dimension of T îs at most 1

(n) T does not extend îtself, i e Ext^ (T, T) 0

Following Ringel, we define a simplicial complex C€A on the set ê of vertices

(r0, Tr) îs an r-simplex if Ext^ (To® © Tr, To® ®Tr)=0 Ringel told
us that (SA îs a tnangulated bail for certain hereditary algebras Our goal îs to prove
the following resuit

THEOREM Ifê is fimte, the géométrie reahzatwn of(éA is an n-dimensional
ibail

We wish to thank C Ringel for drawmg our attention to C€A and N A&apos;Campo

for discussing with us the topological aspects of the question

1. The Bongartz completion

1.1. Recall from [3], [5] that a A -module T is a tilting module if ît satisfîes

(i) projdim^ T ^ 1,

(n) Ext^r,r)=o,
(m) There is an exact séquence
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with modules T\ T&quot; that belong to the full subcategory add T of mod A whose

objects are direct summands of TN for some N.
The simplest example of a tilting module is A itself, and for some algebras, e.g.

the selflnjective ones, there are no others (aside from those obtained by changing the

multiplicities of the indécomposable direct summands). Bongartz proved in [2] that
a module T satisfying (i) and (ii) is a tilting module if and only if the number of its
pairwise non-isomorphic indécomposable direct summands equals the number n + 1

of isomorphism classes of simple modules. He also showed that any module T
satisfying (i) and (ii) is a direct summand of a tilting module. We recall his

construction: write T @rl 0 Tp as a direct sum of pairwise non-isomorphic
indécomposables To,. Tr with multiplicities Ao,. K&gt; Choose an exact séquence

with the property that, for any k 0,. r, the induced map

Tk, &lt;£) 7T&lt; )-&gt;ExtlA(Tk,A),

is surjective. Then T@X is the desired tilting module.

Of course the condition (*) does not détermine X uniquely. But it is easy to see

that possible choices for X only differ by direct summands in add T, up to
isomorphism. Hence T détermines a multiplicity-free tilting module f ®&quot;=0 Tn
which is unique up to isomorphism. We call TB Tr+ {© • • •© Tn the Bongartz
completion of T.

1.2. Let r0,. Tn be pairwise non-isomorphic indécomposables, and suppose that
®r=0 Tt is a tilting module.

PROPOSITION. The following statements are équivalent:
(a) ®T=r + i Tt is the Bongartz complet ion of ®&apos;=0 T,.

(b) For j r + 1,. «, there is no surjection from any module in

to Tr

Proof Let ®?=r+1 T, be the Bongartz completion of ®rl QTn and suppose
there is a surjection /: ®,#y 77&apos; -* Tj for some j&gt;r. Consider the following
commutative diagram:
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0—&gt;A

/ y, ^0 —&gt; ,4 —&gt; © 77&apos; 0 © Tf &apos;

© 7?&apos;-»o

0.

The first row is an exact séquence used to construct the Bongartz completion, and
the existence of g follows from the projectivity of A. The square on the right yields
another exact séquence:

i=0 1=0

which must split. But then T} is isomorphic to some Tt for / ^ j, and this is

impossible.
As to the converse, we choose an exact séquence

For any j &gt; r with fy &gt; 0, the composition of h with the canonical projection from
@&quot;=0Tfi to Tfj must be retraction by (b). So we can choose another such

séquence with /?, 0 for y &gt; r. As our séquence then satisfîes (*), ®&quot;=r+ Tt must
be the Bongartz completion oï ®rl 0Tt.

Remark. The same arguments show that T ©?=or, is a projective tilt-
ing module if and only if there is no surjection from any modules in

add(roe---®^-i®^-fie---e^) to tJ9 for j o,...,«.

1.3. Let r0,. Tn__ j be pairwise non-isomorphic indécomposables of projective
dimension 1 at most, and assume that Ext\ (T, T) =0 for T ®&quot;~o Tt. Dénote

by Tn the Bongartz completion of T.

The following resuit has been obtained independently by Happel in [4]. In case

A is hereditary, it was proved in [7] and later in [6].

PROPOSITION. There is at most one indécomposable T&apos;n not isomorphic to Tn

such that T@T&apos;n is a tilting module. If such a T&apos;n exists, there is an exact séquence
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We first hâve to recall the définitions of a source map and a sink map used in

[7]. Closely related concepts hâve been introduced in [ 1]. Let Xx,. Xr be pairwise
non-isomorphic indécomposables and let F be a module not having any direct
summands in add X, where X ® rt= Xt.

A map / : Y-&gt; ® rl==, X\i is a source map from Y to add X if
(i) for any X&quot; in add X, any map from Y to X&apos; factors through /, and

(ii) /is minimal with respect to property (i); i.e. if a o/still has property (i) for
an endomorphism a of ® rl=s

x X\i, then a is an automorphism.
Source maps exist and are unique up to isomorphism. If a map g : Y -+ 0&apos;=

\ X*}1

has property (i), it is isomorphic to : Y -+ ®rl= i X\i ®Xf for any source map

/, where X&apos; lies in add X.
Sink maps from add X to Y are defined by dualizing the définition of source maps.

Proof of the proposition. Let T&apos;n be an indécomposable not isomorphic to Tn

such that T®Tfn is a tilting module. By the preceding proposition, there is a

surjection from some module in add T to T&apos;n. In particular, any sink map

n- 1

a ¦ ff) TK _? T&apos;

i 0

from add T to T&apos;n is surjective. Consider the exact séquence

n- 1

o-z -? 0 Tj&apos; i r;-*o,

where Z ker g.
Since g is a sink map, /lies in the radical of mod A; i.e., its restriction to any

indécomposable direct summand of Z is never a section. Moreover, any map from
Z to Tj factors through / since we hâve Ext1 (T&apos;n, Tj) 0, for j 0,...,«- 1.

Therefore Z has no direct summand that belongs to add T. As g lies in the radical
of mod A, fis a source map from Z to add T.

Obviously the projective dimension of Z is 1 at most, and by construction we
hâve Ext^ (7), Z) 0, for7 0,.. n — 1. Considering maps from our séquence to
Z and Tj, respectively, and using that projdim^ T&apos;n &lt; 1, we find that
Exti (Z, Z) 0 and Ext^ (TJ9 Z) 0, for j 0,...,«- 1. As Z does not belong to
add T, T®Z is a tilting module.

If there were a surjection from some T in add 7 to Z, it would induce a

surjection from Ext^ (r;, T) to Ext1 (r;,Z), since projdim^ Tn ^ 1. But this is

impossible, as the first group is zéro and our séquence does not split. By the

preceding proposition, we know that Z is isomorphic to Tkn for some k ^ 1, and we

may suppose Z T;n.
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We now want to show that X 1. Let h : Tn -? T&apos; be a source map from JM to
add T. The map

o h\-Jn J
&apos;

still has the first property of a source map, and it is therefore isomorphic to

n- 1

I : Tkn - © Tf&gt; 0 2T,
0

for some T&quot; in add T. Comparing cokernels, we fînd that (coker/î)&quot;1 is isomorphic
to T&quot;®T&apos;n9 which implies k 1, by Krull-Schmidt.

Finally, since/: Tw -? ©&quot;rj T?1 is a source map, its cokernel 7^ is determined

uniquely, up to isomorphism, by Tn. Our proposition is proved.

Remark. There exist modules T as in the proposition whose only completion is

the Bongartz completion Tn. Indeed, if ©J^?, is a projective tilting module, at
least one of the modules ©/#y Pt has this property, since chains of injections in the

radical of mod A between projectives hâve bounded length.

2. Proof of the theorem

2.1. We associate a quiver K with the complex (€A defined in the introduction in the

following way: the vertices of K are the «-simplices of %&gt;A. For each {n — l)-simplex
(r0,. Tn_ j) which is face of two «-simplices, K contains an arrow
a (To,.. Tn) -+o&apos; (To,. Tn_,, Tn), where Tn is the Bongartz completion
of ©TrJ Tt. For any simplex t of %&gt;A, we let Kz dénote the full subquiver of K
whose vertices are then «-simplices of &lt;#A containing t.

LEMMA. Let x be a simplex of &lt;€A. If there is a path ox -&gt;&lt;t2—&gt;m
&apos; &apos;

~*Gs ^n K
with Gx,os in Kr, then the whole path lies in Kx.

Proof Recall that, for a tilting module T, the category &amp;~(T) of torsion
modules with respect to T is the full subcategory of mod A whose objects are

quotients of TN for some N. Set 3~(p) F(©r=0 Ti) for * (^o. • • •. Tn).

If ^ contains an arrow a (r0,..., TJ -? a&apos; (r0,. Tn _ Tn), there is an
exact séquence

i 0
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by 1 3, and therefore any module in 3~{o&apos;) belongs to 3~(g) However by 1 2, Tn

does not lie in 3~(p&apos;) Moreover, for any path g -&gt;a&apos;-* -&gt;o&quot; in K, ïF{g&quot;) lies in
ZT(g&apos;) and thus does not contain Tn

The lemma follows by applying thèse considérations to a ak -+g&apos; &lt;rk + x -+
-*o&quot; as in case ax-+ -+os does not lie m Kx, where k îs the maximal index

for which cr, -? —&gt;Gk îs in Kx Then r contains Tn, by the choice of k, but gs

cannot

2.2. Applying the lemma to an w-simplex we find

PROPOSITION K does not contain onented cycles

This allows us to define an order relation for the «-simphces of %&gt;A g &lt; or if
there îs an onented path g gx -+g2-+ -+os g&apos; m K

Remarks (a) The Hasse diagram of this order relation îs the quiver whose

vertices are the «-simphces of (€A and which contains an arrow g -xt&apos; if g ^ g\
g # &lt;t&apos; and g &lt; g&quot; &lt; g&apos; implies either g&quot; g or g&quot; g&apos; Applying the lemma to an

(n — l)-simplex which îs face of two «-simphces, ît îs easy to see that the Hasse

diagram coïncides with K
(b) Our order relation îs in gênerai distinct from the one defîned by g ^ g&apos; if

3~(g)^.2T(g&apos;) The projective and the injective tilting module of a hereditary
algebra of infinité représentation type furnish an example We don&apos;t know, however,

whether the Hasse diagrams coïncide

2.3. Suppose now that ê îs finite Number the «-simphces al9 g2, gm of eSA in
such a way that g, &lt; g} imphes i &lt; j For N ^ M, let &amp;N be the union of

The following proposition imphes our theorem

PROPOSITION The géométrie reahzatwn of@N is an n-ball, for ail N

Proof The resuit is true for n 0, as a local algebra admits no modules of
projective dimension 1

For n &gt; 0, we proceed by induction on N, the case N 1 being obvious

Suppose that the géométrie reahzation of 3$N is an «-bail for some N &gt; 2 Our
goal is to show that the intersection GNn&amp;N_l9 which lies in the boundary of
#/v i, is a union of (n — 1)-faces of gn Then the géométrie reahzation of âtN is

either an «-sphère or an «-bail, according as gn n^N_ { is the whole boundary of
gn or not The case of a sphère can be ruled out, as we know that $N has a

non-empty boundary by the remark in 1 3
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The intersection aNn&amp;N_, contains at least one (n — l)-face of gn, and hence
&amp;N is connectée. Indeed, aN is distinct from the unique minimal «-simplex of &lt;€

A^

whose vertices are the indécomposable projectives (remark 1.2). Any predecessor of
gN in K, and in particular the tail of any arrow in K whose head in aN, belongs to

Now let t (To,. Tr) be a simplex in oNc\&amp;N_u and let ®?=r+, T, be the

Bongartz completion of ®&apos;=or,. By proposition 1.2, the «-simplex
g (To, Tn) is the unique minimal vertex of KT. Note that oN is a vertex of Kx.
As any path in K from g to gn lies in Kx by lemma 2.1, and since any predecessor
of gn belongs to 3&amp;N_,, there is an (n — 1)-simplex in GNr\3#N_ } containing t.

Remark. If &lt;€A is infinité, the same argument shows that the géométrie realiza-
tion of a union a, u • • -ugm is an «-bail, provided that the full subquiver of K
whose vertices are gx gm is closed under predecessors in K.

3. Examples

3.1. Let Q be the quiver • i3 • and A its quiver algebra. Dénote by Pm and Im the

preprojective and preinjective indécomposables, respectively, given by

&quot;1

0

0

0&quot;

1

o

T _M. yy, —

0 0

1

0

0

ô

0

1

1

0

0

0

0

1

for m &gt; 0. Thèse are the only indécomposables that do not extend themselves. As

ê is infinité, our theorem does not apply. In fact, the complex &lt;éA has two
connected components:

/2-/,-/„.
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The arrows of K are:

and

(4 + 2 •&gt; *m + 1
&quot;&quot;* (4 + 1 » Aw »

for m &gt; 0. They ail correspond to almost split séquences.

3.2. Let A be the quiver algebra of g 1 -» 2 -? 3 &lt;- 4, and dénote by // a représentative

of the indécomposable whose support are the vertices /,/ + l,...,y, for
1 &lt; / &lt;j &lt; 4. We only draw K as it contains ail information necessary to build &lt;6A.

(12, 13, 14, 22)

/ \
(Ï3, 22, 23, 24) -&gt; (Ï3, Î4, 22, 24) -&gt; (&quot;Î4, 22, 24, 44) -&gt; (&quot;Î2, Ï4, 22, 44)

î î î \
(T3,M,M,S)^(T3,Î4,HM)^(T4,HH44)^(n,Ï4,H^

î \ /
(T3, 23, 33, 34) -? (Tî, Î3, 33, 34) -? (TT, Î3, 14, 34) -? (Tî, Ï2, Ï3, 14) &lt;

a
3.3. Consider the quiver Q • -? • Q jS, let / be the two-sided idéal in the quiver-
algebra kQ gênerated by j53, and set A kQ/I. Then CA is an interval:

To picture représentations, we represent each basis vector by a dot. The linear map
y(y) : V(ï) -+ V(j) corresponding to an arrow y : i -+j sends a dot in V(i) to the sum
of the heads of ail arrows of type y starting at the dot, and to zéro if there is no
such arrow.
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3.4. Finally, we give an example of an algebra A of infinité représentation type and
for which the complex &lt;€A is finite. Let Q be the quiver

&lt;2

and / the two-sided idéal in kQ gênerated by a/? and yô. The complex (€A for the

algebra A =kQ/I is the following:

0

0 0
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