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Some results on the geometry of convex hulls in manifolds of
pinched négative curvature

B H Bowditch

0. Introduction

A &quot;Hadamard manifold&quot;, X, îs a complète simply-connected nemanman mam-
fold of non-positive curvature Such a mamfold îs diffeomorphic to Rv, and can be

naturally compactified to a closed bail Xc luX, on adjoinmg the &quot;idéal sphère&quot;,

Xf We refer to [BaGS] for a gênerai account of such manifolds
In this paper we shall be assuming that X has pinched négative curvature, î e

that ail the sectional curvatures lie between two négative constants, which (on
scahng the metnc) we can take to be — k2 and — 1, where k ^ 1 In this case, X îs

a &quot;visibihty mamfold&quot;, which means that any two points x, y s Xc are joined by a

unique géodésie [x, y], (where [x, x] {x}) We say that a subset A £ xc îs convex

if, for ail x,y eA, we hâve [x, y] ç A Given any closed subset Q £ Xc, we define
the (closed) convex hull, hull(0, of Q to be the intersection of ail the closed convex
sets containing Q Clearly, hull{x, y} [x, y]

A major deficiency in the theory of Hadamard manifolds îs the sparsity of good
constructions of convex sets In the gênerai situation httle seems to be known The

only obvious examples of convex sets are uniform neighbourhoods of points or of
géodésie segments, and their intersections We see, for example, that any three

(non-ideal) points m a Hadamard mamfold must lie in the boundary of their
convex hull Note that with variable curvature, one would expect genencally for the

convex hull of three points to hâve non-empty interior It îs by no means clear what
the convex hull of three idéal points might look like, even when given an upper
curvature bound away from 0

In the spécial case of pinched curvature, there îs a much more gênerai construction

due to Anderson [A] Thus, for example, Anderson shows that if Q £ Xc îs

closed, then Xf n hull(g) X, n Q In this paper, we aim to develop further the

theory of convex sets m this context Our paper sphts into four sections
The main resuit of Section 1 îs that the map [Q i-&gt; hull(0] which sends a closed

set to îts convex hull îs continuous with respect to the Hausdorff topology
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(Theorem 1.1). The techniques employed in this section are rather différent *from
the rest of the paper, although the results will be quoted later.

In later sections, we shall focus our attention mainly on convex hulls of finite
sets of points. Thèse play a central rôle in hyperbolic geometry as they are precisely
the finite-sided finite-volume polyhedra. One would not expect such a nice picture
in pinched variable curvature (for example a natural décomposition into faces),

although many properties do généralise.
In Section 2, we describe how the convex hull of finite set P £ xc is &quot;tree-like&quot;,

in that it approximates a certain spanning tree for P, in a manner that will be

clarified later (Theorem 2.1). An analogous statement for hyperbolic polyhedra has

been used [Be] to study the degeneration of discrète hyperbolic groups actions. The

importance of generalising this fact is made apparent, for example, in [P].
In Section 3, we give généralisation of Anderson&apos;s construction. Specifically, we

are aiming at Propositions 3.4 and 3.5.

In Section 4, we put together the ideas from the previous sections to give two
new theorems. The first of thèse, Theorem 4.1, tells us that the volume of the

convex hull of a set of n points of Xc is always finite, and in fact is bounded by
some constant C(v, k, n), depending only on n, the dimension v, and the pinching
constant k. It turns out that, for fixed v and k, C(v, k, n) is bounded by some

polynomial in n. I suspect, in fact, that this could be improved to a linear function
of n. In an appendix, I show that this is indeed the case in constant curvature. The
second resuit of Section 4 (Theorem 4.2) tells us that the volume of the convex hull
of a set of n points varies continuously in thèse points, provided that no two

converge on the same idéal point.
The présent paper combines two articles written at the University of Melbourne,

under an Australian Research Council fellowship. I would like to thank Craig
Hodgson for suggesting some of thèse questions to me. I am also endebted to the

référée for many helpful comments.

1. Continuity of convex hulls

In this section the main resuit will be Theorem 1.4. First we quote some basic

results used throughout this paper.

Notation

Recall, we are assuming that ail the sectional curvatures of X lie in the interval

[-k2, -l]. We write TXX for the tangent space of X at x. Given £, Ç e TXX, we

write (£, C) and \Ç\ x/(^, £), respectively, for the riemmannian inner-product
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and norm on TXX. Given x eXand y eXc\{x}, write xy g TxXfor the initial unit
tangent vector of the géodésie from x to y, parameterised by arc length. If
z g Xc\{x), write yxz cos~\xy, xz) e [0, n] for the angle between xy and xz. We
write d for the induced path-metric on Xc. We shall sometimes refer to d as the
&quot;distance function&quot; on X, to avoid any confusion with the riemannian inner-
product.

Basic comparison theorems

Given X g — oo, 0), write HV(A) for the v-dimensional space of constant curva-
ture —P. We need the following variants of the Toponogov comparison theorems

(see for example, [Sp] or [CE]). We write dx for the path-metric on W(X).

LEMMA 1.1. Suppose x e X and y, z e X\{x}. Choose points x&apos;, y&apos;, zr g H2(l)
such that dx(x\y&apos;) d(x, y), dl(x\ z&apos;) d(x, z) and y&apos;x&apos;z&apos; yxz. Then dY(y\ z&apos;)

* d(y, z).

LEMMA 1.2. Suppose x eX and y, z eX\{x}. Choose points x\ y\ z&apos;gH2(k)

such that dK(x\ y&apos;) — d(x, y), dK{x\ z&apos;) d(x, z) and y&apos;x&apos;z&apos; — yxz. Then dK(y&apos;, z&apos;)

&gt;d(y,z).

Thus, the Rauch Comparison Theorem gives us the infinitésimal case with y close

to z.

Another basic property of X is the convexity of the distance function, which is

essentially Busemann&apos;s characterisation of non-positive curvature [Bu]:

LEMMA 1.3. If a, jB : [0, 1] -&gt; X are geodesics parameterised proportionately to
arc-length, then the map [(/, u) \-&gt; d(a(t), p(u))] is convex on [0, l]2.

Discussion of the main resuit on continuity

Let ^(Xc) be the set of ail closed subsets of Xc. Now, Xc is a topological bail, and
hence metrisable. Choose a metric p on Xc. Given P e^(Xc) and r ^ 0, we write
N(p)(P, r) {xelc| p(x, P) ^ r} for the uniform r-neighbourhood of P. Given
P, Qe%(Xc), write hd+(p)(P, Q) g[0, oo) for the smallest r^0 such that
P Ç N(p)(Q, r). Write

hd(p)(P, Q) =max(hd+(p)(/&gt;, 0, hd+(p)(Ô, P)).
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We call hd(p)(P9 Q) the &quot;Hausdorff distance&quot; between P and Q, with respect to p.
Thus, hd(p) is a metric on %&gt;{XC). Since Xc is compact, it is easily verified that the
induced topology on ^(Xc) is independent of the choice of metric p. We refer to it
as the Hausdorff topology. Thus ^(Xc) is a compact hausdorff space in this

topology.
We remark that a more natural approach would be note that since Xc is

compact hausdorff, it admits a unique uniformity [K]. This naturally induces a

uniformity, and hence a topology, on

THEOREM 1.4. The map [Q h-&gt; hull(0] : V(XC) -&gt;&lt;$(Xc) is continuous, where

is given the Hausdorff topology.

In fact, we shall find a path-metric p on Xc such that [Q \-+ hull(0] is distance

non-increasing on (${XC)9 hd(p)).
Note that, clearly, the map [(x9 y) i-+ {x9 y}] : Xc x XC-^^(XC) is continuous,

and so as a spécial case we hâve that [(x, y) »-* [x, y]] : Xc x XC-^^(XC) is continuous.

This is also a corollary of Proposition 1.5 below. However, this statement is

easily verified directly, and we may leave it as an exercise. (Indeed, it is true without
the lower curvature bound, — k2.)

Another conséquence of the continuity of geodesics is that the convex hull map
has to be &quot;lower semicontinuous&quot; in the following sensé. Suppose p is a metric on
Xc. Then, given Pe^iXc) and £&gt;0, there is some &lt;5&gt;0 such that if
hd+(p)(P9 Q)£ô9 then hd+(p)(hull(P), hull(g)) &lt; e. (Note that hd+(p)(P, Q)

hd(p)(ô, P u 0, and so lower semicontinuity can be expressed in terms of the

Hausdorff topology, and the partial order on ^(Xc) by set inclusion.) To prove
lower semicontinutiy, suppose that Pn is any séquence with hd+(p)(P, Pn) -&gt;0. We

claim hd+(p)(hull(/&gt;), hull(PJ) -? 0. Let H e &lt;#(XC) be the set of ail yeXc such that

xn -*y for some séquence (xn) with xn € hull(Pw). From the continuity of geodesics,

we see that H is convex. Clearly P c //, and so hull(P) £ //. Now, since Xc is

compact, we must hâve hd+(p)(H9 h\ù\(P„)) -+0. Otherwise, we could find a

séquence of points yneH with p(yn9 hull(Pn)) bounded away from 0, and passing to
a convergent subsequence would give a contradiction to the définition of H. It
follows, then, that hd+(p)(hull(P), hull(Pn)) -*0 as claimed.

We thus see that the lower semicontinuity of convex hulls is fairly trivial.
Achieving continuity in the pinched curvature case will involve us in a bit more
work. The basic idea is as follows.

Given Q e &lt;€(XC)9 write
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Given the continuity of geodesics, we see that join(0 is closed in Xc. We define,

inductively, join&quot; + x (Q) join(joinw(0) and join°°(0 (J£-1 joinw(0. Clearly

join°°(0 is convex, and, again given the continuity of geodesics, we see that, if Q

is closed, then hull(0 is just the closure of join°°(0. Our aim, then, will be to find
the metric p on Xc such that the map [Q f—? join(0] is distance non-increasing on

\ hd(p)). It suffices therefore to show:

PROPOSITION 1.5. There is some path-me trie p on Xc such that if
c, then

0, y0], [xx, yx ]) &lt; max(p(x0, xx p{ y0, yx

Some other observations about continuity

Before we set about proving this, let us note another more trivial sensé in which

convex hulls vary continuously. We may define, in a similar fashion, a Hausdorff
distance, hd(d), on the set &lt;tf(X) of ail closed subsets of X. In this case, the analogue
of Proposition 1.5 follows directly from the convexity of the distance function
(Lemma 1.3). We deduce:

PROPOSITION 1.6. The map [0i-&gt;hull(0] is distance non-increasing on

On the subset of %&gt;(XC) consisting of ail compact subsets of X, the topologies
given by hd(d) and hd(p) agrée. However, in gênerai, the topologies are quite
différent. For example, (^(X), hd(d)) has infinitely many components.

A related observation which will be used in Section 4 is:

LEMMA 1.7. IfP9Q^X are convex, then hd(d)(dP, dQ) &lt;: hà(d)(P, Q).

Proof. Suppose for contradiction, that hd(d)(P9 Q) h, and hd(ôP9 dQ) &gt; h.

Without loss of generality, there is some x edP, with d(xy dQ) =k&gt; h. Now
d(x, Q) ^ h so N(d)(x, k) e Q. Since P is convex, it&apos;s easy to see that there is some

y e ôN(d)(x, k) with d( y, P) k9 contradicting hd(d)(P, Q)&lt;k.

Putting the last two results together, we see that the map [Q t-* dhull(0] is also

distance non-increasing on (^(X), hd(d)).
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The metric p

We next construct the metric p on Xc described by Proposition 1.5. In what
follows, we shall write \ds\ for a riemannian norm defined pointwise on our space.
This induces a path-metric, d, giving the distance between two points.

The metric p on Xc will arise from a construction of Floyd [F] (described
originally in the context of discrète groups). We introduce this construction with
référence to the Poincaré model for hyperbolic v-space Hv Hv(l). Recall that Hv

may be realised a conformai metric on the euclidean open unit bail, B, obtained by
pointwise scaling the euclidean riemannian norm \dseuc |. Thus, the hyperbolic norm,
\dshyp | is given at the point x e B by the formula

where he[09l) is the euclidean distance deuc(o,x) from the origin oeB. This
induces the hyperbolic path-metric dhyp. We may invert the process. To recover the
euclidean bail, we fix a point p g Hv and scale the riemannian norm at the point
x e Hv by a factor of \ sech2(r/2) where r dhyp(x,p).

We can généralise this idea to our manifold X. Suppose that/: [0, oo) -»(0, oo)
is a smooth function with j£°/(r) dr R &lt; oo. Fix any point psX, and set
&lt;j&gt;{x) =f(d(x, p)) for x g X. We now scale the riemannian norm \ds\ on X according
to the function &lt;/&gt;. Thus, the new norm, \dsf\ is given at the point xel by
\dsf\ #(jc)|ds|. In this way, we get a riemannian metric (at least on X\{/?}), and we
write df for the induced path-metric. In gênerai, there may be a singularity at the

point p. However, if / has the form /(r) =/0(r2), where /0 is smooth on a

neighbourhood of 0, then the map (/) : X-^(0, oo) will be smooth at /?, and so we

get a riemannian metric everywhere.
Now ail d-geodesic rays emanating from p are also a^-geodesic paths, each of

which has d^-length equal to R. (Note that if y is a smooth curve joining p to
some point q with d{p, q) k &gt; 0 and parameterised by arc length dt, then

(d/dt)d(p, y(t)) ^ 1, and so the ^-length of y is at least jo/W dr, with equality if
and only if y is a rf-geodesic.) Also, if s &lt; R, then N(df )(/?, s) N(d)(p, r) where r
is given by Jo/(0 dt s. In particular, each such bail is compact.

The idea, then, is to describe Xc as the metric completion of (X, df). However,
we first need to ensure that/does not decay too fast. (For example, if we had

f(r) O(e ~}r) with X&gt;k, then we would just obtain the one-point compactification
of X.) Suppose then that, for some r0 &gt; 0, we have/(r) ^ cosech r for ail r ^ r0. In
this case, we hâve the following property. Suppose that p is a smooth path in
X\N(d)(p, r) joining points y and z. Then ypz is less than or equal to the ^-length
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of /?. This fact may be deduced from Lemma 1.1, or directly from its infinitésimal
version (the Rauch Comparison Theorem). Now, we may use the ^-exponential
map based at p to identify X with a euclidean open metric bail B. It is easily
checked that Xc is naturally identified with its closure N, so that the topologies

agrée. We thus need to verify that N is indeed the metric completion of X B with
respect to the metric df. To this end, we make the following simple observation:

LEMMA 1.8. Suppose N is a compact, first countable topological space. Suppose

B &lt;= N is a dense subset which admits a metric p inducing the subspace topology on B.

Then, N is (naturally homeomorphic to) the completion of B precisely if the following
condition holds. Suppose (xt) and (yt) are séquences in B converging respectively to

x,y eN. Then p(xn yt) -*0 if and only if x—y.

We apply this to our situation, with p df. The &quot;only if&quot; part of the above criterion
follows from the relation of c^-length to visual distance at p already referred to. The
&quot;if&quot; part is an exercise, on noting that euclidean distance along any ray emanating
from p agrées with ^-distance. We remark that we do not need the lower curvature
bound for this construction, unless we want explicit estimâtes for df.)

For définiteness, in the rest of this paper we shall set/(r) =(sechK:r)/i where

\i &gt; 0 is sufficiently small. Specifically, we set \i 1/4jc2. We choose this particular
form for computational convenience. There is probably nothing very spécial about
this formula, and I suspect that Proposition 1.5 is true much more generally.

We write p df. Now, the completion of a path-metric space is a path-metric
space, and so p is a path-metric on Xc. Suppose that /çR is some interval, and

y : I-+X is a smooth path. We may define the p-length of y as

lengthp y &lt;j&gt;(y(u))

du
du

where dy/du is shorthand for y*(d/du). Clearly lengthp y agrées with the rectifiable

length. Now, standard riemannian geometry allows us to approximate rectifiable

paths by smooth paths of nowhere-vanishing derivative, and so:

LEMMA 1.9. Suppose x,yeX and e&gt;0. Then there is a smooth path

y : [0, 1] -&gt;X such that y(0) x, y(\) y and

for ail u e [0,1].
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Proof of main theorem

At last, we are ready to start on the proof of Proposition 1.5. To begin with, let

us suppose that xo,yo, xx,yx ail lie in X. We shall describe later how to deal with
idéal points. Set / max(p(jco,jc,), p(yo,y\))- By Lemma 1.9, we can find paths

y, :[0, 1]-*^ with 7,1(0, 1) smooth, with yo(O) =x0, yo(\)=xx, yx(0) y0 and

° that

du

for ail u g[0, 1] and / 0, 1. It will be convenient to assume that yo(u) ^yx(u) for
ail u g(0, 1). This can always be achieved by a small perturbation. (Alternatively,
it will not be hard to see how to deal with a degenerate situation.)

Our first task is to span the rectangle you[x0,yo] uy,u[jc,, yx] by a ruled
surface. More specifically, we are looking for a closed subset SçRx[0,l] together
with a smooth map P : S-+X with the following properties.

(1) There are smooth functions q0, qx : [0, 1] -&gt;R such that qo(u) &lt; qx(u) for ail

u g (0, 1), and so that S {(t, u) e R x [0, 1] | qo(u) &lt; t &lt; qx(u)} (Figure
la).

(2) yt=po(jn where &lt;jt : [0, 1] -»R x [0, 1] is given by a,(m) (ql{u\ u) for

i=0,l.
(3) The map &lt;xu — [t i-&gt; /?(/, u)] : [qo(u)9 qx(u)] -&gt;X is a rf-geodesic parameterised

with respect to arc length, for ail u e [0, 1],

(4) ((Ôp/dt)(t, ii), (ô/?/ôii)(f, ii)&gt; 0 for ail (/, u) g S.

Note, in property (4), that the vectors ôp/dt =p*(d/dt) and dp/du =p*(d/du) are

well-defined over the whole of S.

yf (q.(u).u)

///////////////A

Figure la
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Now,

du du dt du

and so

~r(u)=~r (w) t~ fo (M)) + &quot;^~
(o&quot;i (M))-

du du dt du

Thus,

Note that ^(w) (dp/dt)(at (u)) is determined by the points x &lt;70(w) and y cr^w).
Thus £0(w) 3cy and £,(w) — yx.

Suppose, then, that we hâve y0 and yl9 and want to construct p. We can obtain
the fonctions ql9 up to an additive constant, by integrating the quantity ((dyjdu)(u),
£,(!*)&gt;. We see easily that (d/du)(q{(u) - qo(u)) (d/du)(d(yo(u), yx(m))), and so we

can arrange that qx{u) — qo(u) d(yo(u), yx(u)) for all m g [0,1]. Now let

au : [&lt;7o(MX &lt;7i(w)] ~*^ be tne géodésie joining yo(w) to yx(u)9 parameterised with
respect to arc-length. Define fi:S-+X by p(t, u) otu(t). Thus, poGl=yl and

(dp/dtXaXu)) =ii{u) for wg(0, 1). Now (from the Implicit Function Theorem),
we know that Ç0(u) varies smoothly in u. It follows that /? is smooth. We
need finally to verify property (4). From the formula for dqo/du, we find that
((dp/dt)(&lt;T0(u)\(dp/du)(&lt;T0(u))) 0 for all «6(0,1). Now the vector field [n-^
(dp/du)(t, u)] along au is the first variation of a géodésie, and so its component
parallel to olu is constant, and thus equal to 0, i.e. ((dfi/dt)(t9 u), (dp/du)(t, w)) =0
for all (t, u) g Sn(R x (0, 1)) and so, by continuity, for all (/, w) g S. We hâve thus

constructed /?.

LEMMA 1.10. For all (t, u) g S, we hâve

du

Given this lemma, we may complète the proof of Proposition 1.5 as follows:

Suppose xO9yO9xX9yx el, and S, P are as above. Given ^g[^0(0), qo(l)]&gt; let

t : [0, 1] -» S be the path defîned as follows. If qo(u) &lt;t &lt; qx(u) for all u g (0, 1), we
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set t [«k (t, u)]. Otherwise, we let x begin as the path [u \-+ (t, u)] and continue
until it runs into either a0 or ax. We then continue along either &lt;r0 or ox until we
arrive at &lt;ro(l) or &lt;r,(l).

Now, let ô — fi o % : [0, 1] -»Ar. Thus ô is a path joining cco(t) s[x09y0] to
a, (5(l))e [*,,;&gt;,]. Moreover, (dô/du)(u) is either (dp/du)(t,u) or (dyjdu)(u).
In any case, we hâve (f)(ô(u))\(dô/du)(u)\ &lt; / + £, and so lengthp (5 &lt; / + e. Thus

P(ao(0» [*i » .Vil) ^ l + €- But / and e &gt; 0 were arbitrary, and we may also invert the

rôles of [x0,y0] and f*!,^], and conclude that hd(j&gt;)([x0,y0], [xï9yx]) &lt; l.

Now suppose that xO9yO9 xuyx eXc, are arbitrary. Choose e &gt;0. If xo^yo,
then we can find x&apos;O9y&apos;oe[xo,yo]nX so that [xo,x&apos;o] ^N(p)(xo,e) and [yo,y&apos;o] £
N(p)(y0, e). (This is trivial given that p induces the usual topology on Xc) If
*o .Fo&gt; we find *o j;ieA&apos; so that rf(x0, x&apos;o) &lt; e. In either case, we hâve

hd(p)([xo,yo]9[xo,y&apos;o]) &lt;&gt;e. We can similarly find x\9y\eX with hd(p)([*,,}&gt;,],

t^î^i]) ^ £- The gênerai case of Proposition 1.5 now follows by applying the first

part, and letting e tend to 0.

Proof of Lemma 1.10. Fix we(0, 1) and write ^o ^o(w) and q\=q\(u). For
fao&gt;0iL set

M- eu-

and

We want to show that G(t) £ l + e.

Now ./(fc) K^/SwX^Cm))! ^ \(dyjdu)(u)\, and so
&lt; / + e. It thus suffices to see that G cannot attain a maximum in the open interval

(%,qi )•

We shall use primes and double primes, G\ G&quot; etc., to dénote the first and

second derivatives with respect to t.

Write a aM for the géodésie [/ h-+ /?(/, w)]. Now, [f h* (dfi/du)(t9 u)] is a Jacobi

field along a. Thus, except where it vanishes, j is smooth in t. Moreover, from the

Jacobi équation and the upper curvature bound (see for example [CE]), we hâve

that/(
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We shall want to bound the first and second derivatives of g. Now,

g(t) #x(0) =/(*(*)) (sech Kh(t)y,

where h(t) d(p, a(0), and \i 1/4/c2. Thus, g(t) (#(/)) -&quot; where
cosh **(*). We claim that |#&apos;(0|^*#(0 and |//&quot;(0| ^ K2H{t). Note that // is

smooth, even in the case where a(t) p. In this spécial case, the inequalities
are easily verified, so we shall assume that a(7) =£/?. Let r{x) d(x,p), so h(t)

Now, /f&apos;(0 Kdr{a&apos;(t)) sinh k/z(7). Since |&lt;ir| &lt;, 1, the first inequality follows.
For the second inequality, write D2r for the second derivative of r at the point

x=tx(t). Thus D2r restricted to kert/r is the second fundamental form of the
sphère of radius r(x) h(t) at x. From the lower curvature bound, the principal
curvatures of such a sphère are at most k coth K{h(t)) (i.e. that of a sphère of
radius h(t) in Hv(k)). We see that \D2r(a&apos;(t\ a&apos;(0)| ^ k coth Kh(i){\ - dr(a\t))2).
Now,

H&quot;(t) k: ûnh{Kh{t))D2r{a\t\ a&apos;(0) + ^2 coshCfc/ïCOX^KaXO))2,

from which we deduce that 0 &lt; H&quot;{i) &lt; K2H(t), as required. This proves the claim.
Now, recall that g(t) (H(t))~^. Thus g\i) -^H\t){H{i))-1-^ and g&quot;(t)

2-r We see that

\g&apos;(t)\&lt;Kllg(t)

and

\g&quot;(t)\&lt;

Now, finally, suppose for contradiction, that G(t) g(i)j(t) attains a maximum
at some point t e (#0, qx). Thus G\t) g&apos;{f)j(i) + g{t)j\t) 0 and so

&gt; 1 — 3k2ax ^ 1/4.

Thus G&quot;(0 &gt; 0 contradicting the existence of such a t.
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In summary, there is no maximum of G on (qo,gi) and so G(t) ^
max(G(#0), G(qx)) &lt;&gt; l + e as required.

2. Spanning trees

In this section, we describe the treelike nature of convex hulls. First, we
introduce some terminology and notation.

Notation

From now on, we deal with only one metric on X, namely d, the path-metric
induced from the riemannian metric on X. If Q ç Xc is closed, we write
N(Q, r) Qu{x eX | d(x, QnX) &lt; r} for the uniform r-neighbourhood of Q.
Thus, N(Q, r) is closed in Xc.

By a (combinatoriaï) tree, T, we mean a simply-connected finite 1-complex, with
vertex set V(T), and edge set E(T). We write V0(T) ç V(T) for the set of extrême

points of T, i.e. those vertices which hâve degree 1. We demand that each vertex of
VX(T) V(T)\V0(T) should hâve degree at least 3. It follows that |F(r)|&lt;
2|Fo(jT)| — 2, and so there are only a finite number of combinatoriaï types of trees

with a given number of extrême points. Given s, t eT, we shall write (x(s, t) for the

arc in T joining s to /.

Suppose that P S Xc is finite. By a (géodésie) spanning tree, (T,f) for P, we

mean a tree T together with a map/: T-&gt;XC9 such that:

(a) f\V0(T) is a bijection from V0(T) to P,

(b)/(K,(r))£jir, and

(c) if e e E(T\ then/(e) [f(v),f(w)] where v, w e V(T) are the endpoints of e.

It will be convenient to allow for the possibility that v w so that fie) is a single

point. Otherwise, we shall assume that f\e is injective. Note that, up to isotopy
along the edges, / is determined by its restriction to V(T). Note also that

f(T)nXI

The main theorem on spanning trees

THEOREM 2.1 (Figure 2a). Suppose that P^XC is a set of n points. Then,

there is a spanning tree (T,f)for P such that
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(1) hull(P) contains f(T) and lies inside an rx-neighbourhood off(T), and

(2) Suppose s, t eT and u lies in the arc &lt;x(s, t) s T joining s to t. If P is any path
from f(s) to f(t) lying in hull(P), then f(u) lies a distance at most r2 from p.

Hère rt rt (k, n) are functions only of n and k, which hâve the form rt (k, n)

X{k) + /^(tt). Moreover, we can arrange that iix{ri) O(log\ogn) and fi2(n)

O(log n).

In most (if not ail) cases, one can take / to be injective, so that we get an
embedded tree. If the dimension v is at least 3, this can always be achieved by a
small perturbation. It seems more natural, however, to speak in terms of immersed

trees.

Note that property (1), alone, is not sufficient to capture the treelike nature of
hull(P). Without property (2), we could form a spanning tree simply by choosing

any point a e hul\(P), and joining it to each point of P by a géodésie path. In this

way, rx would be independent of n.

Even if property (2) is added, I suspect that r, can be made independent of n,
i.e. that we should be able to get rid of the term /ij(«). However, //,(«)
O(\o% log n) is the best I can do. On the other hand, ii2{n) 0(log n) is the best

possible, as can be seen by considering a set of n points evenly spaced about a circle

of radius r in the hyperbolic plane. In this case, the convex hull is a regular polygon
with n vertices. It is not hard to see that the best spanning tree (in the sensé of
minimising fi2(n)) is obtained by joining each vertex to the centre by a géodésie

Figure 2a
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segment of length r. Now, as r tends to infinity, 2r minus the length of a side of the

polygon tends to — log ûn(njn) O(log n). I make no attempt hère to find the best

multiplicative constant.
There are several ways one might attempt to refine this resuit. One of thèse will

be relevant to the proof of Theorem 4.1 in Section 4. Note that the term
ix2 0(log ri) only really enters when we hâve a cluster of O(n) vertices oïf{Vx{T))
in a small région of X. Thus, if we hâve a long edge f(e) in our spanning tree, we
would expect that hul^P) should hâve small cross-section along most of f(e). In
other words, hul^P) séparâtes into two pièces joined by a long thin tube, which we

can imagine as a tubular neighbourhood off(e). Such tubes hâve bounded volumes,
as will be explained in Sections 3 and 4.

It is by no means clear that the lower curvature bound — k2 is necessary.
Perhaps the term X{k) can be removed. However, Anderson&apos;s construction gives

à(k) -&gt; oo as k -&gt; oo. For this reason, we do not bother to estimate A(k) hère. The
reader can obtain such an estimate by referring to [A] and [Bo2]. We note however,
that À can be assumed continuous in k.

A basic géométrie lemma

To study the geometry of spanning trees, we shall need a simple resuit (Lemma
2.3) related to well-known facts about the approximation of quasigeodesics by
geodesics in hyperbolic space. The argument we apply is a standard one. First, we
note the following simple conséquence of Toponogov&apos;s comparison theorem

(Lemma 1.1), and some hyperbolic trigonometry:

LEMMA 2.2. Suppose that a9b eX, and p e [a, b] is the midpoint of [a, b]. Set

r d(a9 p) \d(a, b). Suppose that P is a path from a to b with d(p, /?) ^ r. Then

length p ^ n sinh r.

LEMMA 2.3. Suppose the points x, y e X are joined by a path P of length at most

d(x,y) -f h, where h ^ 0. Then, p lies inside a &lt;t&gt;(h) -neighbourhood of the géodésie

[x,y]. Conversely, [x9y] lies inside a 9(h)-neighbourhood of p. Hère 9(h) O(\ogh)
and &lt;j&gt;(h) O(h) are universal functions of h.

Proof Choose p s [x9 y] so as to maximise d(p9 p). Let r d(p, P). Let a e [x, p]
and b e [y9 p] satisfy d(a9 p) d(b9 p) r. If d(x9 p) ^ 2r, let a&apos; e [x, p] be the point
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with d(a\ p) 2r, and choose z e P with d(z, a&apos;) &lt; r. If d(a\ p) &lt; 2r, set a&apos; z — x.
Note that d(p, [a\ z]) ^ r. Similarly choose a point b&apos;e[y,p] and we/? with
d(w, b&apos;) &lt;r and J(/?, [£&apos;, w]) &gt; r (Figure 2b). It will not matter to us in what order
the points z and w occur along p. Let y be the segment of p lying between z and w.

Then, by Lemma 2.2, we hâve

d(a, a&apos;)+ d{a\ z) -h length y + d{w, b&apos;) + d(b\ b) ^ n sinh r,

and so

length y ^ 7i sinh r — 4r.

Let /T be the path obtained from p by replacing y with the path [z,a&apos;]Kj[a\br]

u[6&apos;, w]. We hâve

h length )3 - d(x, y) &gt; length j8 - length P&apos;

&gt; length y — 6r ^ n sinh r — lOr.

Thus r ^ 0(/O where 0(/i) 6&gt;(log h), and so

Now suppose that # g p. The point # divides p into two subpaths px and j52. By
continuity, we can find some s e [x, y] with d(s, px) &lt; 6(h) and d(s, p2) ^ 0(h). Since

length p &lt; d(x, y) + h, it follows easily that d(p, s) &lt; &lt;j)(h) 20(h) +h/2 O(h).

Figure 2b
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Spanning trees

Next, we describe the spanning tree construction. Given the upper curvature
bound, we see that X is /r-hyperbolic in the sensé of Gromov [Gr], for some fixed

parameter, k. (Hère k dépends only on the précise formulation of hyperbolicity we
choose to use.) In [Gr, Section 3.2], Gromov outlines a method of constructing
spanning trees of finite sets in such spaces. We quote the following refinement of
this resuit [Bo2, Theorem 7.6.1]:

LEMMA 2.4. Suppose P çl is a set of n points. Then, there is a géodésie

spanning tree, (T,/) for B, with the property that ifv,we V0(T), then

length/(a(t&gt;, w)) ^ d(f(v)J(w)) + h{n\

where h(n) O(log n).

Hère, length/(a(t?, w)) is equal to Zf= d(f{vl),f{vl_l)) where vo v,vp w and

vu v2,..., vp_, are the successive points of V(T) along the arc ol(v, w). Note that
it follows that for arbitrary s,teT, then length f(a(s, /)) £ d(f(s),f(t)) + h(n).

Inspection of the construction of [Bol, Chapter 7], shows that f(T) c hull(P).
Most of the work in proving this lemma is involved in obtaining the logarithmic

bound on h(n) (which gives us the polynomial bound on volume in Section 3). If
one is unconcerned about this, it is possible to give an elementary argument as

follows. We choose an arbitrary order on the set of n points, and construct an
embedded spanning tree f(T) inductively by joining the (ï + l)th point by a

géodésie arc to the nearest point on the spanning tree of the first / points (see [Bol,
Lemma 3.3.1]). We easily see the existence of some bound h{n). With some work, it
turns out to be linear in n. (Unfortunately, the argument of [Bol, Chapter 7] is not
guaranteed to give us an embedded tree in the case where X has dimension 2,

though I suspect this ought to be possible.)
We want a version of Lemma 2.4 which allows for the possibility of P

containing some idéal points:

LEMMA 2.5. Suppose P ^Xc is a set of n points. Then, there is a spanning tree

(7,/) for P such that if s9t eT and &lt;x(s, i) is the arc joining them, then

length/(a(5, /)) * d(f(s)J(t)) + *(w),

where h(n) O(log n) is the same constant as in Lemma 2.4.
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Proof. As remarked after Lemma 2.4, the case where P £ Zis already dealt with.
For a gênerai P ç Xc, we choose a séquence (Pt) of subsets of X, each with n

points, and with Pt tending to P. From the first part, we obtain a spanning tree (Tnf)
for each Pt. We can imagine Vo V0(T) as a fixed set, with/,(i?) tending to a certain
élément /(u) eP, for ail DeF0. Thus,/: V0-*P is a bijection. Now there are only
finitely many possibilités for combinatorial trees with extrême points Vo. Thus,
passing to a subsequence, we can take Tt T to be a fixed tree. It now suffices to
define/(w) for ail u e VX{T) V(T)\V0. We shall take/(w) to be a limit point of the

séquence/ (m). However we do not want/(w) to be an idéal point, so we hâve to rule
out this possibility.

Suppose then, that ue VX(T). By définition, u has degree at least 3. Choose

vx, v2, v3 e V0(T) so that no two lie in the same component of T\{u}. In other words,

Mea,na2na3 where a, a(f7, v +l) and 3+1 1. From the construction, and

applying Lemma 1.3, we hâve /(a,) c A^([/(f7),/I(t&gt;y+1)], p) for ail *eiV and

j e {1, 2, 3}, where p (j&gt;{h(n)\ In particular, f(u) e ()]= i N([ft(vJ)Jl(vJ+l)]9 p).
Now, as / -» oo, we have/(î;7) -&gt;/(t?,) and so the géodésie [/,(f7),/,(f7+ 0] converges
t0 [/(î;;)»/(i;&apos;y+1)]- In particular, given any e &gt; 0, then for ail sufficiently large /, we
hâve ft(u) eN f]]=l N([f(Vj),f(vJ+î)], p +e). Now, this intersection, N, is a

compact subset of X (see the discussion of &quot;centres&quot; in [Bol, Chapter 3].) Thus,
passing to a subsequence, we hâve that / (u) converges to a point f(u) e X.

We hâve thus defined/: V(T) -*XC. We may extend/over T by sending each

edge e e E(T) to the géodésie segment [f(t),f(u)] where t, u g V(T) are the endpoints
of e. Note that/(e) converges to/(e), so the conclusion of the lemma may be verified.

n

Note that, in the above proof, we hâve ft (m) g hull(P, for ail /, and for ail

ueVx(T). It follows, by Theorem 1.5, that/(m) GhullCP). Thus,/(r) &lt;= hull(P).

Proof of the main theorem

From now on, we assume that X has curvature pinched between — k2 and — 1.

The proof of Theorem 2.1 will combine the results of the last section with the convex
hull construction of Anderson [A]. The ideas behind this construction will be

described in Section 3. For the présent section we just need to quote one direct

conséquence, which is described in [Bo2].
We say that a closed set Q ç Xc is À&gt;quasiconvex if a géodésie joining any two

points x, y of Q remains within a distance K of Q, i.e. [x, y] s N(Q, K). In [Bo2] it
was shown that, in such a case, hull(g) lies in a uniform /^-neighbourhood of Q,
where R dépends only on K and k. The idea is that if we are sufficiently far away
from a quasiconvex set, it will appear &quot;small&quot; as measured by the maximal angle
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subtended by two points in the set. Now Anderson&apos;s construction may be used to
find a convex surface separating us from the set.

Now suppose Q £ Xc is an arbitrary closed set. Recall the définition,
)oin(Q) \J{[x,y]^Xc\x,y eQ}, thought of as a first approximation to the

convex hull. Now any two points of join(g) can be joined by a piecewise géodésie
path in join(0 with at most 3 géodésie segments. It follows that join(0 is

(2cosh~1 x/2)-quasiconvex. We arrive at the following (described in [Bo2]):

LEMMA 2.6. If Q^XC is closed, then hull(g) lies inside a a-neighbourhood of
join(g) where a o(k) is some fixed function of the pinching constant k.

(Although it is not explicitly stated in [Bo2], it is apparent from the construction
that o is independent of the dimension v.)

Proof of Theorem 2.1. Suppose that (T,f) is the spanning tree given by Lemma
2.5. Thus f(T) ç hull(P). Applying Lemma 2.3, we see that if s, / e T, we hâve

[f(s)J(t)] c N(f(oc(s, 0), /ii(/i)) where 11,(11) 0(h(n)) 6&gt;(log log n). In particular,
we hâve join(P) cN(f(T), fii(n)). By Lemma 2.6, it follows that hull(P) Ç
N()oin(P)9 (t(k)) c N(f(T)9 r,), where r, &lt;j(k) + fi^n). This proves property (1).

To see Property (2), suppose s,teT and ueol(s, t). We can suppose that
u$V0(T), and so T\{u} is disconnected. Thus we can write T=-TxkjT2 with
s e Tx and teT2 and such that wea(;c, y) whenever xeTu and yeT2. (Thus
TxnT2 {u}.) Now, let fi be any path joining f(s) to /(/) in hull(P). By contin-
uity and using Property (1), we can find some b e fi with d(b,f(Tx)) ^rx and

d(bJ(T2)) £r,. Thus, we can find x e Tx and yeT2 with d(b,f(x)) &lt;&gt; r, and

d(b,f(y)) &lt; rx (Figure 2c). By the construction of (T,f), we hâve that

length/(a(x, y)) &lt; d(f(x)J(y)) + h{n) &lt; 2rx + h(n).

Figure 2c
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Since usa(x,y), we hâve, without loss of generality, that d(f(u),f(x)) ^
£(2r, + *(/!)). It follows that d(f(u), p) &lt; r, + £(2r, + *(«)) 2r, + £A(/i) X{k) +
//2(«), where A(k) 2g(k) and ju2(«) 2^x{n) + |A(/i) 0(log/i). D

3. Tubular neighbourhoods of geodesics

In this section, we describe a variation of Anderson&apos;s construction of convex
sets. Specifically we are aiming at Propositions 3.4 and 3.5. Thèse will be used in the

proof of Theorems 4.1 and 4.2.

As remarked in the introduction, a uniform neighbourhood of a géodésie

segment is always convex (by the convexity of the distance function, Lemma 1.3).

The problem for us is that, given a fixed radius, there is no upper bound on the
volumes of such neighbourhoods. Indeed the volume will be infinité if one of the

endpoints is idéal. To deal with this problem we will need to vary the radius along
the tube in such a way that convexity is preserved. Our basic building blocks will
be called &quot;joints&quot;. They are convex pièces used to connect together pièces of tube

of différent radii. By choosing thèse radii appropriately we arrange that total
volumes remain bounded.

Basic observations

Recall that X has dimension v and curvature pinched between — k2 and —1.

Given a closed convex set Q ^ Xc, we shall write n nQ : Xc -» Q for the nearest

point retraction. This map is continuous (see for example [Bo2]). We shall write
volv for the v-dimensional volume. For m &gt; 0, we write A{m) for the m-volume of
the unit sphère in euclidean {m -h l)-space (so that A(0) 2).

Let us begin by recalling some basic facts about hyperbolic v-space, Hv. The
volume of a uniform r-ball in Hv equals

d(v-l) | sm\iv-x xdx&lt;A^V e(v~l)r.sinh
Jo

The boundary of the r-ball is a totally umbilic surface with principal curva-
tures equal to coth r. Suppose x, y are distinct points of H}. Let n be the nearest

point retraction of H^ to [x9 y]. Suppose a,be [x, y] nX, and let / d(a, b). Then,
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for ail r &gt; 0,

volv(N([x, y], r)nn-l[a, b]) lA(v - 2) sinhv&quot;2 x cosh x dx
Jo

sinhv ~ &apos;

r.
v — 1

The boundary dN([x,y],r) has one (longitudinal) principal curvature equal to
tanh r, and ail the remaining principal curvatures (in the radial directions) equal to
coth r.

From thèse observations, we obtain bounds on the corresponding quantities in
X. Thèse may be proven by standard arguments, using Jacobi fields and the Rauch

Comparison theorem (see [CE]). Thus, the volume of a uniform r-ball in X is at
most [A(v — 1)/kv(v — l)]eK{v~i)r. Also the principal curvatures of a sphère of
radius r lie between coth r and k coth Kr. Suppose that x,yeXl9 and n : Xc -&gt; [x, y]
is the nearest point retraction. Suppose that a,be[x,y]nX and l d(a,b) and

r &gt; 0. Then,

volv(iV([x, y], r)nn~l[a, b]) £ Jf}l\ *inhv&quot; l kt.

Also, the principal curvatures of dN([x9 y], r) ail lie between tanh r and k coth kt.
Note that for any a e[x,y]r\X, the preimage n~l(a) is a properly embedded
codimension-1 submanifold - the image of a subspace under the exponential map
based at a.

The following may also be proven by comparison with hyperbolic space.

LEMMA 3.1. Given AT&gt;0, there is some l l(K)&gt;0 so that the following
holds. Ifx,yeXf are distinct, and n : Xc-+[x, y] is the nearest point retraction, then

for ail p,qsX with d(p, q) &lt; /, we hâve that d(n(p), n(q)) &lt; Ke~\ where r
mm(d(p,[x9y]\d(q,[x,y])). D

A variation on Anderson&apos;s construction

We now describe the idea behind Anderson&apos;s construction. Given x e X, we
write TXX for the tangent space to X at x. We write T\X s TxX for the unit tangent
space at jc. Given ^, 6 TXI, we write (^, C) and |£| for the riemannian inner-
product and norm respectively.
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Given a smooth function cj&gt; : X -* R, we write grad 0 for the gradient vector
field, and write D2&lt;j) for the second derivative of &lt;/&gt;. Thus, if &lt;!;, g 7^, we hâve

^ 0 /&gt; W, 0 &lt;P^ grad &lt;j&gt;, f &gt;. We write

Suppose that gçl is closed and convex. Define p pô : A&quot;-?[(), oo) by
p(x) d(x, Q). Thus p is C\ and |grad p| 1, on X\Q (see [BaGS]). Let us assume
that p is smooth on X\Q. (This is always true in the cases that interest us, for
example if g is a single point or a bi-infinite géodésie. In fact it is enough to assume
that p is C2.) The boundaries of uniform neighbourhoods of Q are level sets of p.
We aim to join together pièces of such level sets by convex surfaces, obtained from
perturbations of p. Our goal, in this regard, is Lemma 3.3.

Now, D2p(x)(Ç, grad p) 0 for ail &lt;J g TxX, and D2p(x) restricted to the sub-

space (gradpC*))1^ =ker dp{x) gives us the second fundamental form of the
surface dN(Q, p(x)) at x. Since dN(Q, p(x)) is strictly convex, the second fundamental

form is positive définite. It follows that if f g TlxX, then D2p(x)(Ç, Ç) ^
(1 — (£, gradp)2)m(x), where m(x) is the mimimal principal curvature of
dN(Q, p(x)) at x. In fact, using the Jacobi field équation, we find that always
m(x) &gt; tanh p{x). We shall only need this resuit hère in the case where g is a

bi-infinite géodésie, which we described above.

Now, suppose that we hâve a map \jj : X -* R which is continuous on X, and
smooth on X\Q. Suppose that \j/(x) &lt; 0 for ail x e Q, and that (grad i//, grad p) &gt; 0

everywhere on X\Q. Given r &gt;0, let M{r) =\j/~~l( — ao,r]. Then M(r) is a con-
nected submanifold of X with smooth boundary ôM(r) =\j/~ *(r), and containing Q
in its interior. We may compute the second fundamental form of dM{r) at

xedM(r) as (l/|grad \l/(x)\)D2\l/(x) restricted to ker#(x). Thus, M(r) will be

convex if D2il/(x) is positive definite on ker d\l/(x).
We shall take {// to be a perturbation of p. Thus ijj p —e(f) where e ^ 0, and

&lt;/&gt; : ^-?[O, 1] is smooth, and satisfies |grad (f)\ &lt; c, and |Z&gt;20| ^ c2 where C! and c2

are constants. If c &lt; \/cl9 then (grad ^, grad p)^l — c!£&gt;0on X\Q. Suppose

r &gt; 0, and jc g dM(r). Then p(x) &gt; ^(x) =r. If &lt;^ g ker #(x) n T^, then
|&lt;«, grad p)\ &lt; cxe &lt; 1, and so D2p{x){^ 0^(1- (c,£)2)m(x). Thus Z&gt;2iA(x)(£, 0

&gt; 1 - (clé)2)m{x) - c2e. Therefore, given that m(x) ^ tanh p(x) ^ tanh r, the

manifold M(r) will be convex provided that c2e &lt; (1 — (c1e)2)tanh r. Note that

and that

ôM(r) n(f&gt;-](0)= dN(Q, r) n0 &quot;&apos;(0)

n 0 ~ 1) dN(Q, r + £) n &lt;f&gt;
~ \ 1).
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The following lemma gives us a suitable perturbation, 0.

LEMMA 3.2. Given any / &gt; 0, there exist constants cx,c2,ri &gt; 0, depending on l
and k, such that for ail p e X, there is a smooth map &lt;j&gt; (j)p : X-+[0, 1] such that
|grad (j)\ ^ cx and \D2&lt;j)\ &lt; c2 everywhere, and such that 4&gt;{x) 0 if d(x9p) &lt; rj and
&lt;K*) 1 ifd{x,p)*l-ti.

Proof. Let pp be defined by pp(x) d(p,x). Thus pp is smooth on X\{p},
and we know from the above discussion that \D2pp(x)\&lt;&gt; k cothKpp(x). Choose

any rj &lt; 1/2, and some smooth fonction g : [0, oo) -+[0, 1] such that g|[0, rj] 0,

g\[l - rj, oo) 1 and such that, for ail r ^ 0, \g&apos;(r)\ ^ Ci tanh Kr and |^&quot;(r)| ^ ^3»

where cx and c3 dépend only on k and /. Now let &lt;t&gt; =&lt;t&gt;p=g ° Pp- Then
|grad &lt;Kx)\ £ \g&apos;{Pp{x))\ &lt; cx and \D2&lt;t&gt;{x)\ &lt;&gt; \g&quot;{pp(x))\ + |g&apos;(P&gt;))||/)2PpW| ^
c3 -h kcx c2.

Let&apos;s return to our discussion with Q ^X closed and convex, and with
p(x) p(Q, x) smooth on X\Q. Given r &gt; 0, we choose e &gt; 0 so that
c2 ^ (1 — (c!Ê)2)tanh r. Given p e X, write \jjp= p —e(j)p. We see that ./^(r, 6)

\//pl{ — oo,r] is convex. Suppose we hâve A ç dN(Q, r + e) and 2? ç dN(Q, r) both
closed, and such that J(^, 5) ^ /. Set M5(r, c) C\peBMp(r, e). Then M5(r, e) is

convex, and

and

dMB(r, e) nN(A, rj) ÔN(Q, r + e)nN(A, rj)

ÔMB(r, e)nN(B, ri) ÔN(Q, r)nN(B, ri).

The construction given in [A] takes Q to be a single point. Hère, we take Q to
be a bi-infinite géodésie.

LEMMA 3.3. For ail k &gt; 0 there is some ô ô(k, k) such that the following holds

(Figure 3a).

Suppose x,y eXt are distinct. Let n : Xc -? [x, y] be the nearest point retraction.
Suppose r &gt; 0, and that a,b e [x, y] nX with b e [a, y] and d(a, b) &gt;ke~r. Suppose
that r &lt;&gt; R&lt;&gt;r + ô tanh r. Then there is a convex set M çj such that
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X

aN([x.y].R)
\

a b

3N(ky],r)i
y

and

Figure 3a

dN([x,y]9R)nU

dN([x,y],r)nV,

where U, V are, respectively, neighbourhoods in X ofthe sets dN([x, y], R) nn ~l[x, a]

and dN([x,y], r) nn~l[y, b].

Proof. Given k &gt; 0, let / l(k) be the constant of Lemma 3.1. Given this, let cx

and c2 be the constants of Lemma 3.2. Choose ô &gt; 0 so that c2ô &lt;&gt; 1 — (c,&lt;5)2. Thus,
ô dépends only on k and k. Now suppose that jc, y, a, b, r, JR are as in the

hypothèses. Let e=R-r ^ô tanh r &lt;ô. Thus c2e ^ 1 - (c,c)2)tanh r. Set

g [x, y] and let ^ dN(Q, R)nn~l[x, a] and B dN(Q, r)nn~l[y, b]. Thus, by
Lemma 3.1, we hâve d(A, B) &gt; L Set M MB(r, e\ U N(A, rj) and V N(B, t]\
where n cornes from Lemma 3.2. The resuit follows from the above discussion.

Given jc, y, a, b, r, R as in the hypothèses of Lemma 3.3, we shall write
J(a, b, R,r) M r\n~l[a, b], where M is the convex set thus constructed. We may
think of J(a, b, R, r) as a &quot;joint&quot; used to connect two tubes of unequal radii. Write
doj(a, b,Rir)=dMnn~l[a, b]. Since J(a, b, R, r) s N([x,y], R) nn~}[a, b], we

hâve

volv J(a, b, R, r) &lt; d(a, b) J^\ ^ sinhv - l KR.

(Recall that A(v - 2) is the volume of (v - 2)-sphère.)
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Application to the construction of long thin tubes

Suppose that x9yeXl9 and p e[x9y]nX. Let H n~l[x9p]. (Thus H is the

image of a half-space under the exponential map based at p.) We construct a convex
set containing H u [x9 y] by stringing together a bi-infinite séquence of joints as

follows.
For convenience, set k — 1, and let ô ô(k9 1) be the constant given by Lemma

3.3. Let c tanh 1, and rj cô. Let L 1/(1 - e~n). Note that tanh r &gt; cr for
r e [0, 1] and tanh r &gt; c for r g [1, oo).

We form a bi-infinite séquence (at)fL .^ of points of [p,y], with a/+1 e[any]
for ail /, as follows. We set aoe[p,y] to be the point such that d(a09p) =L, and

demand, for ail i ^ 0, that d(an al+x) \ and d(a_0 + 0, a_J ^&quot;l&quot;. Note that as

/ -? oo, we hâve at -&gt;y, and, since L yLfLod(a_l, a_(l+l)), we hâve that a_t -&gt;p.

For i&apos; ^ 0, set r, (1 + rj)~l and r_t 1 -f ?//. Thus, r/+, &lt; r, for ail /.

If / ^ 0, then r, - r,+ rj(l + z/)&quot;0^1} rjrl+l &lt;5(cr,+1) ^ ô tanh rI+ and 1

d(at+l9at) ^e~r&apos; + l. Thus, by Lemma 3.3, we can construct the joint Jt

J{anat+\, rn rl+x). We also hâve that r_0+1) — r_, =^ =5c ^ &lt;5 tanhr_, and

rf(a_0+1), a_z) =e~nt ^ e-(1 + ^)==^-&apos;-_, Again, by Lemma 3.3, we construct
•^-(1+ 1) ~J(a-(i+ 1)&apos; a-n r-(i+ 1)» r-i)-

Let J — H\j\J^L_co Jt (Figure 3b). Thus, /, is connected, with boundary
dJ \Jfl _00 d0Jt. We see that, for ail i, the boundary dJ agrées with

1
«-(1+1)

f-l

h-H

Figure 3b
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dN([x, y], rt) on some neighbourhood, U, of dN([x, y], rt) r\n~\al), i.e. dJnU
(d0Jtud0Jt_i)nU dN([x, y], rt) nU. Since convexity for a connected set is a

local property, we see that / is convex. Clearly H u [x, y] ç J.

For / &gt; 0, we hâve

Now, r, (1 -h rj) l &lt; 1, and so

sinhv&quot;&apos;icr, &lt;r;-J sinh&quot;&quot;1 k: (1 + n)~l{v~ ° sinhv

Thus

and so

volv (/ n n l [a0 ,y])= £ volv /,

&lt;
A(v - 2) /sinh /cV

which is finite, and a function only of v and k.

Similarly, for any fixed i0 &gt; 0, we hâve that vo\v(Jnn~l[a_lQ, a0])
S&apos;°=

j volv J_n which is bounded by some function of v, k and /0. Note that given

any q e [/?, y]\{p}, we can find some /0, such that q e [p, alQ\. This i0 dépends on k
and d(p, q). We conclude:

PROPOSITION 3.4 (Figure 3c). Given any £ &gt; 0, f/œre is some constant

K(v, k9 0 such that thefollowing holds. Suppose that x, y e Xt are distinct points, and

that p,qe [x, y]nX with q e [p, y] and d(p, q) ^ Ç. Let n : Xc -? [x, y] be the nearest

point retraction, and let H n ~l[x, p] and H0 n~l[q, y]. Then,

vo\v(H0 n hull(# u {y})) ^ K(v, k, Q.
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6hull(HU{y})

Figure 3c

In fact, we see that ^(v, k, Ç) -? 0 as £ -? °o
By a similar argument, we arnve also at the followmg

PROPOSITION 3 5 (Figure 3d) Gwen any Ç&gt;0, there is some constant
K&apos; K&apos;(v, k, 0 such that the followmg holds Suppose that x, x&apos; g Xf and p,q9p\q&apos;

e[x, x&apos;]nX are points occurnng in the order xpqq&apos;p&apos;y along [x,x&apos;], so that

d(p, q)&gt;C and d(p\ q&apos;) &gt; Ç Let H n~l[x,p], H&apos; n x[x\p&apos;] and
Ho n~x[q,q&apos;] Then,

\olv(H0nhul\(Hu/T)) &lt; K&apos;(v, k, 0

For notational convenience, we set K&apos;{\, k, Q K(v, k, Q (Thus, Proposition
3 4 may be regardée as a corollary of Proposition 3 5)

Figure 3d
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4. Boundedness and continuity of volume

The first resuit of this section is the fact that convex hull of finite sets hâve finite,
indeed bounded volume:

THEOREM 4.1. Given n e N, there is some constant C(v,K9n) such that if
P £ Xc is a set of n points, then volv hull(P) ^ C(v, k, n). Moreover, for fixed v and

k, C(v, k9 n) is bounded by some polynomial in n.

We also note that, for fixed v and «, C(v, /c, n) can be assumed continuous in k.
As far as I know, it may be possible to remove dependence on k altogether, though
I suspect not.

The second resuit of this section shows how thèse volumes vary continuously.
Let P {/?!, ...,/?„}. Thus P, and hence hull(P) vary continuously in (pl9... ,pn)
el&quot;c. In proving Theorem 4.1, we will effectively show that most of the volume of
hul^P) lies inside a certain compact convex set. Usually this set can be chosen to be

locally constant. The only problem arises if two vertices pt and p} converge on the

same idéal point. Let A be the set of (pl9.. ,/?„) eXnc such that for two distinct

i,je{l9. ..,«}, we hâve pt=Pj e Xf.

THEOREM 4.2. The map from Xnc to [0, oo) which sends (pu...,pn) to
volv hullf/?!, ...,/?„} is continuous on Xnc\A.

Proof of boundedness of volume

The ingrédients we use for Theorem 4.1 are the existence of a spanning tree

(TJ) with the property that length/(a(^, 0) ^ d(f{s\ f{i)) + h{n) for ail s, t € T
(Lemma 2.5), together with the fact that for such a tree we hâve hull(P) s
N(f(T), r{(K, n)) (Theorem 2.1). If we want the polynomial bound, we need that
h(n) O(log n) and that rx(K, n) à(k) + pix(ri) where nx{ri) O(log n). (We know
that fi^n) O(log log n).) I suspect that, in fact, C(v, k, n) is always bounded by a

linear function of n.

Given such a spanning tree, (T,f)9 we write V(T) V0(T) u VX(T\ where

V0(T) is the set of extremal vertices, and VX{T) is the set of internai vertices. Thus,

f(V0(T)) P. We write £0(^) for the set of extremal edges, i.e. those incident on
some vertex of V0(T). We write EX(T) E(T)\E0(T) for the set of internai edges.

We hâve \V0(T)\ |£^(D| n and \VX(T)\ &lt;: n - 2 and EX(T) &lt;&gt; n - 3.

The proof of Theorem 4.1 is based on the observation (Lemma 4.5) that hull(P)
lies inside a certain neighbourhood of f(T) which consists of uniform balls about
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each internai vertex, together with tubes along each of the edges. The volumes of
thèse tubes are bounded by the results of Section 3. The balls about the vertices can
be taken to hâve radii O(log n) which gives us our polynomial bound on C(v, k, n).

We assume that n &gt; 3. Suppose that e eEx{T) with endpoints v0, vx g VX{T).
Any point in the interior of e divides T into two components, Tx and T2, with
v, g Tt. Let Wt Ttn V0(T) and P, =f{Wt). Thus P Po lj Px. Let n : Xc-+f(e) be

the nearest point retraction to f(e) =[f(vo),f(vx)].

LEMMA 4.3. IfeeEx(T), and v0, vx, Po, Px, n are as above, then d(f(vt), n(p))
&lt; h{ri) for ail p e Pn and i 0, 1.

Proof. Let p =/(w) where w eWr Let n(p) =f(u) where uee. Suppose first,
that peX. By the définition of n, we hâve d(f(w)9f(u)) d(p,n(p)) &lt;

d(p,f(Vt)) ^ length/(a(w, vt)). By the construction of (T,f) (Lemma 1.5), we
hâve length/(a(w, u)) &lt; d(f(w)J(u)) + *(»). Thus d(f(vt\ n(p)) d(f(vt)J(u))
length/(a(w, w)) — length/(a(w, vt)) ^ A(«). The case where p =f(w) e Xf can be

dealt with by taking a séquence of points w; e T\{w} tending to w.

By a similar argument, we hâve:

LEMMA 4.4. Suppose e e E0(T) is incident on v e VX(T) and w e V0(T). Then

d(f(v), n(p)) &lt; h(n) for ail p ef(V0(T)\{w}).

Now suppose e e E{T). For any £ &gt; 0, we define S(e, Ç) to be a (possibly
empty) closed segment of f(e) as follows. If e eEX(T), incident on v, w g K,(r),
let S(e9O {xeAe)\d(x,{f(v)J(w)})&gt;h(n)+t}. Thus, by Lemma 4.3,

d(S(e, 0,7r(/0) &gt; C for ail /?gP. If ee^oCO, incident on DeF,(r) and

w g K0(r), let 5(e, 0 {* 6/(e) | d(xj(v)) ^ h(n) -h C}. Thus, by Lemma 4.4,

d(S(e,Q,n(p))*C for ail /?gP\{/(w)}. In either case, set G(e, Q hull(P) n
^, 0). Applying Propositions 3.4 and 3.5, we find that

for ail eeE(T).
For the proof of Theorem 4.2, we will need to note that, given any c &gt; 0, we can

assume that G(e9 0 lies inside a c-neighbourhood of f(e), provided C is sufficiently
large depending on c and ?c.

We now corne to the resuit that confines the convex hull to a union of balls
and thin tubes. Let R R(k, n) rx (k, n) + h(n) X(k) + /i, (n) -h h{ri)

O(logw).
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LEMMA 4.5. For any { &gt; 0,

hull(/&gt;)ç (J N(f(v),R + 0v U G(e&apos;O-

veVx{T) eeE(T)

Proof Suppose x ehull(P). Let y ef(T) be a nearest point in f(T) to x. We
thus hâve d(x, y) ^ r,. Now, j&gt; e e for some e e £(7). If y e S(e9 Q, then x e G(e,

If j Ef(e)\S(e, £), then, by définition of »S(e, ()&gt; there is some v e VX{T), incident on
e, so that d(f(v), y) &lt; h(n) + £. Thus x e iV(/(i;), J? + C).

Proof of Theorem 4.1. For the proof, we take £ 1.

In Section 3, we gave an upper bound for the volume of a uniform bail. Thus,

volv N(f(v), R + l)&lt; A{\ ~ X\ e«v ~ I)(/?(^ +l) B(v, k, n).
K\V — 1)

From the form of R(k, n), we see that, for fixed k and v, B(v, k, n) is bounded by
some polynomial in n. By Lemma 4.5, we hâve that

volv hull(P) &lt; \Vx(T)\B(v, k, n) + \E(T)\K(v, k, 1)

&lt; (n - 2)B(v, k, n) + (2/2 - 3)K(v, k, 1)

C(v, /c, «).

For fixed v, *c, we see that C(v, /c, n) is bounded by a polynomial in n. This
concludes the proof of Theorem 4.1.

Proof of continuity of volume

To prove Theorem 4.2, we need to observe that the boundary, dQ of a convex
subset Q ^ X has zéro Lebesgue measure. (Note, for example, that the Lebesgue

density of Q dit any point of dQ is at most \.) Thus, if Q is compact, we can choose

rj &gt; 0, to make volv N(dQ, rj) arbitrarily small.

We shall also need the following lemma, which will confine most of the volume

of a convex hull to a certain bounded set.

LEMMA 4.6. Suppose AX9...9An are closed subsets of Xc satisfying

Xlr\Alc\AJ — 0 if i^j. Then there is a compact convex set M^X with the

following property. Suppose P {pl9 ...,/?„}, with pt e A, for ail i, and suppose
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(T,f) is a spanning tree for P satisfying the same criterion as that of Lemma 2.5,

(namely length f(a(s, t)) &lt;&gt; d(f(s), f(i)) + h(n) for ail s, t e T). Then, f{v) e M for
each internai vertex v e VX{T).

Proof Suppose v séparâtes the three extremal vertices vl9vJ9vke V0(T), so that
pa=f(voc) eA^ for ae{/,y, k}. As in the proof of Lemma 1.5, we see that

f(v)eN([pl,pJ]9p)nN([pJ,pklp)nN([pk,pllp) for some fixed p&gt;0. Now this
intersection is bounded. Moreover, as pn pJ9 and pk vary in An A; and Ak

respectively, thèse intersections are ail contained in some bounded subset, D(i9j9 k)
of X. (This is an elementary conséquence of Gromov hyperbolicity of X - see [Gr]
or [Bol].) Now choose some compact bail M, which contains the sets D{i9j9 k) for
ail distinct i9j9 k e {1,...,«}.

Proof of Theorem 4.2. Suppose (/?,,... ,pn) e Xnc\A, and e &gt; 0. Choose Ç &gt; 0

so that K(v, k, 0 &lt; e/4/ï, where K(v9 k, Ç) is the constant in Proposition 3.4.

Choose neighbourhoods At of pt so that X/nAlnAJ 0 if i^j. Let M^X
be the compact convex set given by Lemma 4.6, and let M&apos; N(M, R+0
where R R(k9 n) is the constant of Lemma 4.5. Choose rj &gt; 0 so that
volv N(ô(M&apos; n hull(P)), rj) &lt; e/2. By continuity in the Hausdorff topology (Theorem
1.5), we can assume (shrinking the At if necessary) that if ql e At for / 1,.. «,
then hd(d)(M&apos;nhull(P), M&apos;c\hull(0) &lt;rj9 where Q {q» ,qn}. (Note that
Theorem 1.5, refers to a différent metric on X, so we need to observe that any
two metrics induce the same uniformity on the compact set AT). So, by Lemma
1.7, hd(d)(d(M&apos; n hull(P)), d(Àf

&apos;

n hull(g))) ^ n, and so |volv(Af
&apos;

n hull(P)) -
volv(M&apos;nhxûl(Q))\£e/2.

Now, let (T9f) be a spanning tree for P. By Lemma 4.5, we hâve

hull(P)ç= (JveVl(T)N(f(v),R + 0vVeeE(T)G(e90- By Lemma 4.6, if veVx{T\
then/(t;) g M, so N(f(v)y R + Ç) e M&apos;. If e is an internai edge of T, then it follows
that f(e) c M, so, from the remarks following Lemma 4.4, we can assume that
G(é&gt;,Q&lt;=M&apos;. Thus, h\ûl(P)\M&apos;c\jeeEo{T)G(e9Q, where £0(r) is the set of
extremal edges of T. So, volv(hull(P)\M&apos;) &lt; nK(v, k, Ç) &lt; n(e/4n) e/4.

Now exactly the same argument shows that volv(hull(0\ÀT) &lt; e/4. Putting
thèse facts together, we see that |volv h\ù\(P) — volv hull(0| ^ e. D

5. Appendix

In this appendix, we give a brief discussion of the case of constant négative
curvature. In this case, we can use a différent technique to obtain a linear upper
bound on volumes.

Let Hv be v-dimensional hyperbolic space (of constant curvature — 1). We can
define a (closed, convex, fini te volume) polytope in Wc as the convex hull of a fini te
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set of points. Given such a polytope, 77, there is a unique minimal such finite set,
which we refer to as the set of vertices, vert(77), of 77. Thus vert(/7) is the union of
77 n H/ and the set of extrême points of 77nHv. We shall write/(77) for the
number of /-dimensional faces of 77.

THEOREM 5.1. For ail v, there is a constant c(v) &gt; G such that i/ïïgH^ is a

polytope with n vertices, then volv 77 ^ nc(v).

Before beginning the proof, we make some gênerai observations. We shall

assume that ail polytopes hâve non-empty interior.
Suppose Z ç Hvc is a v-simplex (i.e. fo(Z) v + 1). Then, it&apos;s not hard to see

that the volume of Z is bounded in terms of the dimension, v. In fact it&apos;s known
[HM] that volv Z is maximised precisely when Z is a regular idéal simplex, Zv0. Such

a simplex Zq is unique up to isometry.
Now suppose that 77 ç H^ is a polytope with /O(77) n, and with non-empty

interior, int77. By subdividing, we can assume that ail the codimension-1 faces of
77 are simplices. By choosing an arbitrary point yoeint77, and coning on v0, we
obtain a subdivision of 77 into fv _ l (77) simplices of dimension v. Obviously,
f_x(Il) &lt; (&quot;) and so this immediately gives us an upper bound for volv 77 which is

polynomial in n. In fact, the solution of the Upper Bound Conjecture (see [MS])
gives a sharp upper bound for/v_,(77) which is O(n[vf2]) where [v/2] is the integer
part of v/2. Thus for v ^ 3, we get a linear bound. (This also follows directly from
Euler&apos;s formula.) The 3-dimensional case is discussed in [S1TT]. In higher dimensions,

we need to do some more geometry.
Suppose Z çHvc is a v-simplex. Let E(Z) be the set of edges of Z, i.e. closed

1-dimensional faces. Suppose xeZ is an interior point of some e e E(Z). Let
Q(Z, x) be the set of unit normal vectors to e based at x which point into the

interior of Z. Let 0(1, e) be the (v — 2)-dimensional spherical Lebesgue measure of
jQ(r, x). This is the &quot;solid angle&quot; of I in e. It is independent of the choice of x.
(Thus if v 3, then 0(1, e) is the dihedral angle.) Given v e vert(£), let

E(I, v) s E(I) be the set of edges incident on v (so that \E(Z,v)\ v). Let

LEMMA 5.2. Given v, there is some k(v) &gt; 0 such that if Z &lt;= H£. is a v simplex,
and v € vert(r), then volv I &lt; k(v)&lt;P(Z, v).

Proof. Since (J E(Z, v) ^ Z is starlike, and Z hull( (J E(Z, v)), we hâve some
universal constant r &gt; 0 such that

),r)= [j N(e,r).
e e E(I, v)
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(Note that a starlike set is quasiconvex - for example, since any two points are

joined by a path consisting of at most two géodésie segments.)

Fix, for the moment, some e e E(I9 v), and x in the interior of e. Any unit vector
£ 6 Q(I9 x)9 together with e, détermines a 2-plane a which intersects I in a

hyperbolic triangle. Given u &gt;0, let /(£, w) be the length of the arcanln7V(e, u).

We may obtain the total volume of InN(e9 r) by integrating the quantity
/(£, u) sinhv ~2 u fîrst in w from 0 to r, and then with respect to spherical Lebesgue

measure, as Ç varies over Q(I9 x). Now, we may bound jrol(Ç9u) sinhv~2 u du

independently of £ as follows. Note that /(£, u) ^ L(m), where L(w) is the length of
the boundary of the w-neighbourhood of an edge in a hyperbolic idéal triangle II.
Thus |S° L(u) du vol2 II n &lt; oo, and so fc(v) J^ ^(&quot;) sinhv~2 u du is finite. We
deduce that

volv(i: nN(e, r)) £ k(v)0(I9 e).

Finally, summing over ail e e E(I, v)9 we obtain

voivr &lt;; k(v)&lt;P(i, v). n

Proof of Theorem 5.1. Let 17 be a polytope with n vertices and non-empty
interior. We subdivide 77 into a set Sf of v-simplices, by coning over an arbitrary
voeintn, as described above. In this triangulation, there are precisely n edges

(1-cells) incident on v0. If e is such an edge, then

where ^(e) £ Sf is the subset of those simplices which hâve e as an edge. Summing
over ail edges incident on v0, we obtain

X &lt;P(I9v0)=nA(v-2).
Ze&amp;

Applying Lemma 5.2, we obtain

volv TI ^ nc(v)

where c(v) fc(v)J(v - 2).

Certainly, we cannot do better than a linear bound. I don&apos;t know what is the

best multiplicative constant in dimensions greater than 3. In dimension 3, the best
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such constant îs twice the volume of a regular idéal 3-simplex (2 vol3 Il
2 x 1 01494 In other words, the maximal volume of a polytope with n vertices,
divided by 2n vol3 II, tends to 1 as n tends to oo

Note that, in dimension v 2, the same method of subdivision works with
variable curvature, since convex hulls are always polygonal. Hère, the lower
curvature bound îs irrelevant, and we obtam a best multiplicative constant of

o :vol2 II n
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