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One sided branching in Anosov foliations

SÉRGIO R. FENLEY1

Abstract. We study topologically transitive Anosov flows in 3-manifolds. We show that if one of the
stable or unstable foliations in the universal cover does not hâve Hausdorff leaf space (branching occurs)
then both hâve branching in the positive and négative directions.

1. Introduction

Generally speaking there are two well established techniques for studying
Anosov flows. First there is the widely developed regularity theory of stable and
unstable foliations [Gh2, BFL] yielding powerful rigidity results. The second

technique consists of specifying a property of the fundamental group of the
manifold (for instance being solvable, in codimension one Anosov flows [P12, P13])
which détermines the flow up to topological équivalence. In dimension 3, the above
flows are always topologically équivalent to suspensions or géodésie flows, hence

the underlying manifolds cannot be hyperbolic.
On the other hand Goodman [Go] and Christy [Ch] constructed many examples

of Anosov flows in hyperbolic 3-manifolds. The examples were obtained by doing
Dehn surgery on closed orbits of suspension Anosov flows. This idea was then

greatly extended by Fried [Fr], who proved that any topologically transitive
Anosov flow in dimension 3 has a Birkoff section and consequently is obtained by
doing Dehn surgery on finitely many closed orbits of a suspension of a pseudo-
Anosov homeomorphism a closed surface [Ca-Bl].

In order to study Anosov flows in hyperbolic 3-manifolds, a technique that has

proven fruitful is the analysis of the joint topological structure of the stable and
unstable foliations in the universal cover [Fel, Fe2]. This technique was introduced
in a remarkable paper of Verjovsky [Ve] which studies codimension one Anosov
flows. This technique has also been used by Barbot to study transversely projective
Anosov flows [Bal, Ba2], Anosov flows in graph manifolds [Ba3, Ba4] and
incompressible ton in 3-manifolds supporting Anosov flows [Ba5].

1 Research partially supported by NSF grants DMS-9201744 and DMS-9306059.
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The main issue in this theory is whether branching occurs in the stable and
unstable foliations in the universal cover. In this article we deal with a basic

question concerning the structure of such branching. Let &amp;s and &amp;u be the stable
and unstable 2-dimensional foliations (hère called Anosov foliations) associated to
the Anosov flow # in M3. Let #s, #M be the respective lifts to the universal cover.
The leaf spaces of #J and #M, are 1-dimensional manifolds, a priori not Hausdorff.
If they are Hausdorff then they will be homeomorphic to the set of real numbers R
and the foliation (#5 or «#&quot;) is said to be an R-foliation, otherwise we say the
foliation has branching. If #5 (or «#&quot;) is an R-foliation we say that &amp;s (or &amp;u) is
R-covered. Suspensions and géodésie flows are always R-covered.

One fundamental fact in this topological theory is the foliowing: if one of 3Fs or
!FU is R-covered then both are R-covered (hence the flow is R-covered) [Fel, Ba2].
In addition the joint topological structure of $\ #w in Si can be, up to isotopy,
of only two simple types [Fel, Ba2]. The types correspond to the types of
suspensions and géodésie flows.

It is easy to prove that if the flow is R-covered then it is topologically transitive
[So, Ba2]. The main problem in the subject was to décide whether topologically
transitive implies R-covered. This implication was claimed by Verjovsky [Ve] in the

seventies, but later 2 gaps were found in his arguments. Since then the R-covered

property has been proved by Ghys [Ghl] when the manifold is a Seifert fibered

space and by Barbot [Bal] when the fundamental group is solvable. In both cases

this is an essential step in showing conjugation to a canonical model. Barbot [Ba3,
Ba4] showed the R-covered property for many flows in graph manifolds and this

property was also proved in [Fel] for flows obtained by Dehn surgery on closed
orbits of suspensions and géodésie flows.

It was widely expected that ail topologically transitive Anosov flows in dimension

3 are R-covered. However in a striking development, Bonatti and Langevin
[Bo-La] hâve recently constructed a counterexample to this. Then in the past year
Brunella [Br] constructed a large class of counterexamples.

Given this resuit, it now becomes essential to understand the structure of
topologically transitive, non R-covered Anosov flows. In this article we start this

program by analysing the simplest question in this direction. As £î is simply
connected, the foliations «#*, #&quot; are transversely orientable. We say that #5 or (or
#&quot;) has one sided branching if its leaf space is not R, but the branching occurs only
in the positive (or négative) transversal direction. The main resuit of this paper
states that there is a symmetry in branched Anosov flows, that is, one sided

branching cannot occur:

MAIN THEOREM. Let 0 be a topologically transitive Anosov flow in M3. If
one of&apos;«#* or #M has branching then both $s and $u hâve branching in the positive
and négative directions.



250 S R Fenley

The first part of the proof involves showing that if one of the foliations has one
sided branching, then so does the other. This uses only the analysis of the orbit
space. Using the full 3-dimensional picture we then dérive a contradiction to one
sided branching.

This article concerns the study of the global structure of branching in #s or «# &quot;).

In a forthcoming paper [Fe3] we study the local structure of branching. We say that
FetFs (or «#&quot;) is a branching leaf, if it is a non Hausdorff point in its leaf space.
In [Fe3] we study the structure of the set 81F ofnon separated leaves from a branching
leaf F. We show in [Fe3] that &amp;F has a simple, well understood structure.

When studying branching one essential object is the following: given Ge#tt,
consider the set /U(G) of stable leaves intersecting G, see detailed définition in
section 3. Branching in #5 is équivalent to a particular relation between sets /&quot; for
some leaves in #&quot;, see lemma 4.4. Another important idea is that of &quot;perfect fits&quot;

of leaves in the universal cover, see section 4. Thèse two tools are used both hère

and in [Fe3]. Aside from this, the techniques and results are différent in the 2

articles.
This article is organized as follows. The next section contains needed back-

ground material. Section 3 analyses product régions, a very useful condition
implying the R-covered property. In the following section we prove that one sided

branching in one of the foliations implies one sided branching in the other one also.

In section 5 we show this produces a contradiction.

2. Preliminaries

Let $t : M -* M be a nonsingular flow in a closed Riemannian manifold M. The
flow 0 is Anosov if there is a continuous décomposition of the tangent bundle TM
as a Whitney sum TM E°®ES®EU of D&lt;Pt invariant subbundles and there are

constants fi0 ^ 1, ii\ &gt; 0 so that:

(i) E° is one dimensional and tangent to the flow,
(ii) ||D*f(i;)|| £ /^-&quot;l&apos;Ii;! for any v eE\ t ^ 0,

(iii) j|2)#_,(i;)|| £ /^-^&apos;H for any v eEu, t&gt; 0,

In this article we restrict to M of dimension 3. Then Es, Eu are one dimensional
and integrate to one dimensional foliations $FS\ 3Fuu called the strong stable and

strong unstable foliations of the flow. Furthermore, the bundles E°QES and

E°®EU are also integrable [An] producing 2-dimensional foliations &amp;S,3FU which
are the stable and unstable foliations of the flow. The flow is said to be orientable
when both J^, $FU are transversely orientable.
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The leaves of &amp;\ 3Fu are either topological planes, annuli or Môebius bands.
The last two correspond exactly to leaves containing closed orbits of #. The flow is

topologically transitive if the nonwandering set is the whole manifold [Sm]. Equiva-
lently (i) the periodic orbits form a dense subset of M, or (ii) there is a dense orbit,
or (iii) every leaf of &lt;F\ or $FU is dense [An, Pli, Sm]. No closed transversal to
either of the foliations is null homotopic [No].

Let n : M -+ M be the universal covering space of M. This notation will be fixed

throughout the article. The Anosov foliations &amp;s,&amp;u lift to foliations #J, #M in
M. The leaves of #*, #u are topological planes, so Ai is homeomorphic to R3 [Pa].
The induced flow in M is denoted by S.

Let 0 be the orbit space of $ obtained by collapsing flow Unes to points and let

0 : Si -&gt; 0 be the projection map. A key property which will be repeatedly used is

that 0 is Hausdorff and homeomorphic to R2 [Fel]. This is a significant simplification

since now much of the analysis can be done in dimension 2 instead of
dimension 3. We stress that 0 is only a topological object. There is no natural
metric in 0 since the flow direction contracts and expands distances in A?. The
foliations «#5, #M induce two transverse 1-dimensional foliations in 0, which will
also be denoted by «#5, «#&quot;. By an abuse of notation we will many times identify
sets in M or orbits of S to their respective images in 0.

Lew Ws(x) be the leaf of &amp;s containing x and similarly define Wu(x), Wss(x)9

Wuu(x\ W%x\ ftu(x\ ffîss(x) and Wuu(x). General références for Anosov flows are

[An], [Bo], and [Sm].

3. Product régions

The following définitions will be useful. If L is a leaf of #5 or #M, then a half
leaf of L is a connected component A of L - y, where y is any full orbit in L. The
closed half leaf is À A u y and its boundary is dA y. If L is a leaf of #* or #tt
then a flow band B defined by orbits a # /? in L is the connected component of
L - {a, j8} which is not a half leaf of L. The closed flow band associated to it is

B B u {a, p} and its boundary is dB {a, fi}.
We first describe the two topological types possible for the joint structure of #*

and #M in the case of R-covered Anosov flows. First identify the orbit space 0
(homeomorphic to R2) to

H {(x9y)eR2\-\&lt;x&lt;\}.

In the product structure #J is identified to the foliation by horizontal segments in
H and #M is the foliation by vertical Unes in H. In the skewed structure #* is the



252 S. R. Fenley

foliation by horizontal segments in H and #&quot; is a foliation by (bounded) parallel
segments making an angle #7t/2 with the horizontal. In this case, any two distinct
leaves or half leaves of #M do not intersect the same set of leaves of #* and vice

versa. Suspensions hâve product type and géodésie flows hâve skewed type. The
basic resuit about the R-covered case is the following :

THEOREM 3.1 [Fel, Ba2]. Let $ be an Anosovftow in M3. Ifone of&amp;u or &amp;s

is R-covered then $ is R-covered and its structure is up to isotopy (in (9) either product
or skewed.

Furthermore we will use the following resuit, announced by Solodov [So] and

proved by Barbot [Ba2].

THEOREM 3.2 [Ba2, So]. Let $ be an Anosov flow in M3. Suppose that any
leaf of 1FS intersects every leaf of !FU. Then 0 is topologically équivalent to a

suspension Anosov flow.

Let now # be an Anosov flow in M3, not a priori R-covered. Choose transversal
orientations to #5, #M, assumed to agrée with the lifts of the transversal orientations

to ^s, $FU if any of thèse is transversely oriented.
For p € Ai, let 1PS+ (p) be the half leaf of W\p) defined by the orbit SR(p) and

the positive transversal orientation to $u at p. Similarly define Ws_ (/?), W\ (p) and
&amp;U-(P).

A fundamental fact for us is the following: since M is simply connected then any
leaf L in !FS or 3?u séparâtes M. The front of L is the component of M — L defined

by the positive transversal orientation to L. Similarly define the back of L. For
pefiï let ffîsî(p) be the component of ffiss(p) — {p} defined by the positive
transversal orientation to #M atp. Similarly define Wsl(p), W™(p) and W™(p).

The key object for the study of one sided branching is the following:

DEFINITION 3.3. Given p e AÏ (or p g 0), let

Similarly define /!(/&gt;), / + (/&gt;) and /-(p). Let also

&amp;1(P)= U *
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Notice that &lt;£\ (p) is an open subset of M and that lfrs(p) &lt;z d&amp;\ (p). Similarly
define &amp;u_(p\ &lt;£\(p) and 2L{p).

DEFINITION 3.4. A positive unstable product région of ë is defined by a
strong stable segment ]8cJF6#&apos;so that

/,7 j, f\(p)f\(q).
Similarly define négative unstable product régions and stable product régions.

PROPOSITION 3.5. Let &lt;P he a topologically transitive Anosov flow in Af3. If
there is a product région of S in A?, then 4&gt; is R-covered and of product type.
Therefore 0 is topologically équivalent to a suspension Anosov flow.

Proof of 3.5. Since the hypothesis is a statement about the structure in the
universal cover we may lift to a regular finite cover where the lifted flow is
orientable. We may also assume that there is a stable product région defined by a

strong unstable segment jScGg#m. Changing transversal orientation to #M if
necessary suppose this is a positive stable product région.

(a) (b)

Figure 1 Contradiction to a product région.

If 0 is not R-covered then by theorem 3.1, y is not R-covered and there are
F, L e #5 which form a branching pair, that is, they are not separated in the leaf
space of «#*. Suppose they are not separated in their négative sides (so the

branching is in the positive direction), the other case being similar. First notice that
if F, L are not separated then they do not intersect a common unstable leaf. In fact
there is no transversal (to #0 from F to L. Let

with

Switching the rôles of F and L if necessary we may assume that H2 is in front of
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Hx. As k(F) is dense in M, let g be a covering translation of M so that

g(F)n)3#0 and let p eg(F)np,p&apos;= g~l(p). Assume HX is tf^/O- Let
q&apos;eH2nL and G2 g(H2). Since F, L are not separated on the négative side,

choose r&apos;efl^QO near enough /?&apos; so that Ws{rg)nH2¥&gt;0 and r=g(r&apos;)ejS.

After applying g:

But H2nLï0, implies that H2nF 09 hence G2n JP(/?) 0, so G2 £/5+ (/?)
and ,/+ (p) # #\ (r). As a resuit P does not define a product région, contradiction.
This shows that 4&gt; is R-covered. Furthermore there are distinct half stable leaves

intersecting the same set of unstable leaves. Therefore the flow cannot hâve skewed

type, hence by theorem 3.1, it has product type.
The last assertion of the theorem follows from theorem 3.2.

4. One sided branching

If F € $s and Ge#&quot; then F and G intersect in at most one orbit, since two
intersections would force a tangency of &amp;* and &amp;u. This is easiest seen in 0, as #5
and &amp;u are then 1-dimensional foliations of the plane.

We say that leaves F, L e#5 and G,He^u form a rectangle if F intersects

both G and H and so does L. We also say that S intersects F between G and H is

SnF is contained in the flow band in Fdefined by FnG and FnH.

LEMMA 4.1. Let F,Le£s and G, He#w forming a rectangle. If Se#M
intersects F between G and H then it also intersects L between G and H.

Proof of 4.1. It is easier to understand the proof in 0 £ R2. Let S&apos; be the half
leaf of S defined hy SnF and contained in the same side of F that L is. There are
4 cases to consider:

(i) S&apos; stays in the région bounded by F, L, G and H. This is a compact région
in (P. By the Poincaré-Bendixson theorem, S&apos; has to limit on either a closed

curve or a point, both impossible since «#M (as seen in 0, which is

homeomorphic to R2) is a foliation of the plane.

(ii) S&apos; cannot intersect G or H as they are ail unstable leaves.

(iii) If S&apos;nF# 0, then S intersects F in at least 2 orbits, contradiction.

(iv) Therefore S&apos;intersects L and since both G and H separate A?, then S&apos;nL

is between G and H.
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Figure 2 Perfect fits in the universal cover

The following définition will be essential for ail the analysis that follows.

DEFINITION 4.2. Two leaves F, G; Fe#J and G e#M, form a perfect fit if
FnG 0 and there are half leaves F, of F and Gx of G and also flow bands

and HxczHe #&quot;, (see fig. 2) so that:

x dLxndGx, LlnHl dLxndHl9 Hl nFx ôHxndFl9

and

Notice that the flow bands LX9HX (or leaves L, //) are not uniquely determined

given the perfect fit (F, G). We will also say that F and G are asymptotic in the sensé

that if we consider stable leaves near F and on the side containing G they will
intersect G and vice versa.

LEMMA 4.3 (uniqueness of perfect fits). Let Fe&amp;s. Then there is at most one
unstable leaf G making a perfect fit with a given half leaf of F and on a given side

ofF.

Proofof43. Let Fe#* and suppose that G,, G2e#u form a perfect fit with
the same half leaf of F and both are in the same side of F. Let Li9 Hh i 1, 2 be

flow bands defining the perfect fit (F, Gt). Let PiEFrsdHi. By Reeb stability [Re]
there are open, strong unstable segments ti9 with pt e xt and so that the set of stable
leaves intersecting t, and t2 is the same. Let £e/J with Enxt^ 0 and E on the
side of F containing Gt. If E is near enough F it follows (again by Reeb stability)
that EnHt^0 and hence FnG/^0. Notice that E is between F and £,.
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Furthermore since Gx and G2 forai perfect fits with the same half leaf of F then
Er\Gx and EnG2 are on the same side of Hl (and also on the same side of H2).

Suppose first that Gx intersects E between H2 and G2. Then the leaves

E,L2,G2,H2 form a rectangle in 0, so by the previous lemma GxnE^0 =&gt;

GxnL2¥&gt; 0. But this implies that GxnF^0 contradicting the fact that (F, GX) is

a perfect fit. By the same reasoning, G2 intersecting E between Hx and Gx is also
ruled out. Therefore Gx G2 and the lemma is proved.

If (L, G) forms a perfect fit and g is any orientation preserving covering
translation with g(L) L, then g(G) G. This follows from uniqueness of perfect
fits and the fact that, as g acts by homeomorphisms in 09 it takes perfect fits to
perfect fits.

If p, q are in the same strong stable or strong unstable leaf then [p, q] dénotes
the closed segment in that leaf from p to q.

We say that #s+(p) and #s+(q) are comparable and will dénote this by
#s+(p) ~ &lt;/ + (#)&gt; if one of them is cntained in the other. Then we write

# + (p) &lt; &lt;/ + (q) if the former is strictly contained in the latter. Similarly define ^,
&gt; and ^. The symbol j-&gt; means not comparable.

LEMMA 4.4. Let $ be an Anosov flow in M3. Then &amp;s has branching in the

positive direction if and only if there is F e $s and p,qeF with f\ (p) + /\ (q).

Proof of 4.4. Suppose first that $FS has branching in the positive direction. Let
E9LelFs which are not separated in their négative sides. Then there are Fae^s
with Fa -? EuL (in the leaf space of #5) when a -? 0. Fix p&apos; eE,q&apos; e L. For a small
enough Fa intersects both ffîu_ (/?&apos;) and 1VU_ (qf). Let pa and qa respectively be points
in this intersection. Then E e f\ (pa) - f\ (qa) and Lefu+ (qa) - fu+ (pa), hence

thèse sets are not comparable and ffis(pa) ^&apos;(Ça) Fa as desired.

For the converse, let p,q eF e !FS satisfying the hypothesis. Parametrize
ffi&apos;+ip) by arclength as pt9 te(0, +oo). Similarly parametrize ffî™(q) as

qs,se (0, oo). As &amp;&apos;(p) W%q), then for t small J^s(pt) e/\ (q). Let

Similarly define s\ For re(O, t&apos;\ let &lt;p(f)e(O, -f oo) with lfrs(pt) W&apos;iq^). As
leaves of #s separate AÏ it is easy to check that q&gt; : (0, t&apos;) -» (0, s&apos;) is an orientation
preserving homeomorphism. When t-+t&apos;\

f()ufrs(qs,) and #\pf) # W\qs\

so there is branching in the positive direction as desired.
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Therefore if there is no positive branching in &amp;s then a priori various sets #\
will be comparable. This fact will be repeatedly used in the proof of the next
therorem.

THEOREM 4.5. Let 0 be a topologically transitive Anosov flow in M3. Ifone of
gfrs or &lt;pu ^as one sifed branching, then both hâve one sided branching.

Proof of A. 5. The proof will be done using various intermediate lemmas. Up to
finite cover, assume that &lt;P is orientable. Reversing the flow direction and changing
the transversal orientation to $F5 is necessary, assume that $* has one sided

branching and only in the négative direction. By theorem 3.1 since &amp;s is not
R-covered then #&quot;&quot; is also not R-covered.

Fix F e #5 and let p,q eF,q g ffî% (p). By the previous lemma,

f\(p)~S\{q).

LEMMA 4.6. f\{p)±/\{q).
Proof of 4.6. Suppose that they are equal. If for ail z e [p, q]

then [/?, q] is the base segment of a positive unstable product région and by

proposition 3.5, it foliows that # is R-covered, contrary to hypothesis.
Let E g fu+ (p). Then E e fu+ (q) and therefore F, E, Jfru(p) and \fru(q) define a

rectangle. By lemma 4.1 it follows that for any z g [/?, q]9 W\ (z)nE ^ 0, hence

E g /-. (z) and consequently f\ (z) £ f\ (/?).

Choose now z g [/?, q] with / + (z) &gt; /u+ (p). Since S£\ (p) is connected, there
is a unique leaf E e / + (z) which is in the boundary of ï£\ (p). We remark that
E # F. Furthermore

En(Wu(p)ufîru(q)) 0.

Since 0 is topologically transitive n(W\(p)) is dense in M [Fel]. Let g be

a covering translation with g(W\(p)) nFV 0 and so that g(ffîu{p)) is in the

front of W\q). Then /»+ (g(z)) &gt; f\(g(p)). Since Fn W\(g(p)) #0, let weFn
W\ (g(z)). Notice that g(F) g /«+ (w). But g(£) * /«. («(/&gt;)), hence g(£) #/&quot;+ (z)

(since ^M(g(/?)) séparâtes M). Similarly E 4 /u+ (g(z)) so it is not in f\ (w). Since

z9w eF, this contradicts proposition 4.4. D

If necessary switch the transverse orientation to #&quot; and exchange the rôles of
p and q to ensure that #u+(p) &lt; #u+ (q)- We will then prove this implies that $u
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has only négative branching. Let Fp be the leaf in the boundary of S£\ (p) so that

LEMMA 4.7. W\p) and Fpform a perfect fit.

Proof of 4.7. Let z e [p, q] be the point closest to q in [/?, q] with
Wu(z) nFp 0. Any leaf in the back of Fp9 near enough Fp belongs to f\ (p) as

Fp&lt;=.d&amp;\ (p). Hence ffîu(z) and Fp forai a perfect fit. Ifp ^ z then since [/?, z] does

not define a product région, there is we[p,z] with #u+(w) &gt;/u+(p)&gt; Let
Z, 6 / + (w) —/ + (/*)• By lemma 4.4, w,qeF, together with leaves L and /),
produce positive branching in #J, contradiction. D

By uniqueness of perfect fits Fp dépends only on p and not on q. It now follows
that there is a strict ordering in the sets /\ (z), z e Wss(p):

LEMMA 4.8. For any z,we ÏÏss(p) with w e tP% (z) then fu+ (z) &lt;/\ (w).

Proof of 4.8. As before / + (w) ~ f\ (z). Equality is disallowed by lemma 4.6.

If/ + (w) &lt; / + (z) choose a covering translation g so that g(^+ (w)) nF ^ 0 and
is in the back of ^&quot;(/j). As before this is disallowed by proposition 4.4.

As in the proof of lemma 4.7 it is easy to see that if w e F then there is Fw

so that Fw is in the front of W\w) and so that (Fw, W\ (w)) forms a perfect fit. For
fixed q 6 F, the leaves Fw9we Wsl(q) will intersect ffiu+(q) in a nested fashion. We
stress that a priori this set of intersecting points might be a proper subset of ffîu+(q).

LEMMA 4.9. Let FUF2€^S, intersecting a common unstable leaf Ge#&quot;.

Suppose that Fx is in the front of F2. Let u.eF.nG with u^W^fa). Then

#s+{u\) &gt; &lt;/ + (w2) and there is He!Fu making a perfect fit with F2 and so that

Proof of 4.9. There are 4 cases:

Case h /*+
Let HuH2e£u with Hx e/\{ux) -f\(u2) and H2ef*+(u2) - f\(ux). Let

g be a covering translation so that

0 and

Let q eg(F)nG and r e &amp;% (q)nH2. Then Fx e /&quot;+ (q) - /&quot;+ (r). Translating back
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by g we get g&apos;1^) e/ + (g~l(#)) — /u+(g~x(r))&gt; This contradicts the previous
lemma, as g

&quot; l(r) e ff% (g&apos;l(q)) c F

Case 2. f
There is H2ef%(u2) -/ + (wi). Ruled out as in case 1.

Case 3. /&apos;+(«,) / + (&quot;2).

Since # is not R-covered it follows [u{, m2] is not the basis segment of a stable

product région. As in proposition 4.4, there is u3 e [wl5 w2] with /% (u3) &gt; $\ (m,).

Then apply the proof of case 2 to get a contradiction.
Hence it follows that:

Case 4. fs+{ul)&gt;f\(u2).
Let now i/e«#w in the boundary of S£\{u2) so that Hn tf^itii) ^0. The

same proof as in lemma 4.7 shows that H and F2 form a perfect fit as desired.

End of the proof of theorem 4.5. The proof of case 1 in the previous lemma,

together with proposition 4.4, properly applied to .#&quot;, rules out the existence of
positive branching in #M.

In fact the analysis in the theorem shows the following:

COROLLARY 4.10. Let 0 be a topologically transitive, one sided branching
Anosov flow so that «#&apos;s and #&quot; hâve branching only in the négative direction. Then:

For each Gi9G2e^u (LuL2e$s) so that they intersect a common stable leaf
(respectively unstable leaf) and so that G2 is in front ofGx (L2 is in front ofL{), then

there is a unique Ee&amp;s (5e#M) making a perfect fit with Gx (Lx) and so that

Proof of 4.10. Consider the pair GUG2. There is a covering translation g with
g(F) intersecting both G{ and G2. The resuit then follows from lemma 4.8. The
other statement is exactly as in lemma 4.9.

5. Two sided branching

In the last section our only tool was the structure of the foliations in the

2-dimensional orbit space (9. We will now use the full 3-dimensional picture of Si
in order to rule out one sided branching.
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ws(p)

(a) (b)

Figure 3 a A lozenge b Closing up of a lozenge

DEFINITION 5 1 Lozenges - Let /?, q e M, p £ Wu(q\ p $ W\q) Let HP{LP)
be the half leaf of W\p) (ffis(p)) defined by OR(/?) and contamed in the same side

of ffîs(p) (^u(p)) as q Similarly define Hq9 Lq Then p, q form a lozenge, fig 3a,

Lq and Hq, Lp respectively form perfect fits

We say that p,q (or $R(p), #r(#)) are the corners of the lozenge If the lozenge
with corner p îs contamed in the back of Ws(p) then p îs a corner of type + ,*),
otherwise ît îs of type (-, *) Similarly using l¥s(p)9 define types (*, +), (*, —

The sides of the lozenge are Hp, Lp, Hq and Lq

PROPOSITION 5 2 Let $ be a topologically transitive Anosov flow in M3
Assume that both #5, #M only hâve négative branching Then any peM is the

—, — corner of a lozenge

Proof of 5 2 Let F ÏÏs(p\ G Wu(p) By corollary 4 10 there are LeF
and H s #&quot; making a perfect fit with G and F respectively and so that L and H are

m the positive sides of G and F respectively Ail that is left to prove is that
Lc\H #0 Since H forms a perfect fit with F, then G and H intersect a leaf
F&apos;e#* near F and in the positive side of F fig 3, b By corollary 4 10, there is
L&apos;e #5 making a perfect fit with G so that UnH ^ 0 Uniqueness of perfect fits

implies that L L&apos; as desired

DEFINITION 5 3 A (3, 1) idéal quadrilatéral 3 m M (or m 0) is a région
determined by leaves F, E e #5, G, H e #&quot;, for which there are half leaves Eo or E
and if0 of H so that

(F, G), (F, Hq) and (£0&gt; G) form perfect fits and dE0 dH0
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Figure 4. A (3,1) idéal quadrilatéral in the universal cover.

It follows that for any L e # *, L n G ^ 0 &lt;=&gt; LnHo^0 and similarly for un-
stable leaves, see fig. 4. There are 3 idéal vertices and one actual vertex (the orbit
dE0 dH0) in the quadrilatéral.

PROPOSITION 5.4. If&lt;P is a topologically transitive Anosov flow with one sided

branching then there are (3, 1) idéal quadrilatéral in Af.

Proof of 5.4. Assume that #5, #M branch only in the négative direction. Let
C, F e #* which are not separated and let SuS2e^u intersecting C, F respectively.
Assume that S2 is in front of Sx. Consider C e &amp;s with Cc\St # 0, i 1, 2. Let
P^C&apos;kjS,. There is a unique p e Wss_(p2), G Wu(p), so that G nF 0, but for
any p&apos; e [p,p2] with p&apos; ïp, then W\pf) nFï 0, see fig. 5. By lemma 4.7, G and
F form a perfect fit. Let q g S2kjF. By proposition 5.2, q is the -, -) corner of a

lozenge. Let H be the leaf in the unstable boundary of the lozenge which makes a

perfect fit with F.

G W (p)

C&apos; Ws(p) P2

H

Figure 5. Producing a (3,1) idéal quadrilatéral.
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Notice that C&quot; intersects both G and H. By corollary 4.10 there is a leaf E e #5
which intersects H and makes a perfect fit with G. Let y H n 2s and let #0 ^ - (y)
and Eo ^5_(y). Then F, G, £0&gt; #o are the sides of a (3, 1) idéal quadrilatéral.

We say that a leaf F of #* or #M (or an orbit y of #) is &quot;periodic&quot; if there is

a non trivial covering translation g with g(F) F(g(y) y) Recall that Fis periodic
if and only if n(F) contains a periodic orbit of $.

The proof of the main theorem will be completed by:

PROPOSITION 5.5. Let # be a topologically transitive, one sided branched
Anosov flow in M3. Then M has no (3, 1) idéal quadrilatéral.

Proof of 5.5. Assume that #&quot; and #5 only branch in the négative direction.
Notice that # is orientable, since orientation reversing covering translations would
induce branching in both directions. Using corollary 4.10 it is easy to show that the

only type of (3, 1) idéal quadrilatéral that can possibly occur is the one produced
by the previous proposition, that is, one with a (H-, +) actual vertex. We prove that
thèse cannot exist either.

Suppose then that Q) is one such quadrilatéral, with sides Fe#5, Ge/&quot;,

E0,H09 with Eocz E e$s and Ho c H e «#&quot;. IfFis periodic then there is a non trivial
covering translation g with g(F) F. As &lt;P is orientable and (F, G) forms a perfect
fit, it follows that G is periodic and g(G) G. In the same way g(E) E and

g(H) H. Let S E n H. By the above g(ô) ô.LetôlczF with g(Sl ôx. Notice
that

But g(t^u+ (&lt;r,)) W\ (ôl) implies that g(ô&apos;) ô\ Then ô and S&apos; would be periodic
orbits in E, contradiction. Hence none of F, G, E, H is periodic.

Let now q e i% x n{q)y y $R(q) and a 71(7) an orbit of 0. Then a is not a

closed orbit nor is it asymptotic to a closed orbit in the forward direction. Consider

a forward limit point z of a and let z,ea with z, -?z, zt #ri(x), f, -? 4-00.
Choose p a lift of z to A? and let pt-+pbc cohérent lifts of z, to M. Then there

are covering translations gn with plegl(F)9pl=gl(&lt;Pti(^)&apos; ^et ^=^(^) anc*

similarly define GnHnEl9 which form the boundary of the (3, 1) idéal quadrilatéral
®/==gi(^). Since ty\(q)c\E # 0, let u ^(q)nE and let J?s|e fe,w]. Then

/îf =zgt($t,(P*)) &amp; a strong unstable segment from /?, to JE1,, so that

the interior of pt (as a segment) does not intersect /?,. (*)

Furthermore /?, has length /, and /, -* 00 as / -+ 00. As ^MW is a continuous foliation,
then $t-+fl #T(/0&gt; having infinité length.
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After truncating finitely many terms suppose that ail z, are in a box &lt;€ foliated
by sheets of 3Fs and segments of 3Fuu. Furthermore assume that

Vi. (**)

If zt and zk are in the same local sheet of &amp;s in # and i # fc, then the curve a0,

obtained by going from z, to zk along a and then in the local sheet of W\zl in #
from Zfc to z,; is homotopic to a curve transversal to 3Fs hence not null homotopic
in its leaf. Therefore W\zx) is not simply connected, contains a periodic orbit and

F is periodic, a contradiction.
Then up to subsequence there are 2 cases:

(1) For ail i &lt; k, Ft is in the back of Fk.
Since ®l and Qk are (3, 1) idéal quadrilatéral, this implies that E% is in front of

Ek, Gt is in front of Gk and Ht is in the back of Hk9 see fig. 6. Furthermore Gf

intersects both Ek and F*, and so does Ht.
By (**), it follows that p is inside the (3, 1) idéal quadrilatéral 2I9 for ail i.

Hence 0 ^ f} r\El=rl and let ^ &gt; 0 be the length of the segment of P from ptorr
Since E, is in front of Ek if / &lt; k, then a, is a decreasing séquence, so there is a &gt; 0,

with at &lt; a for ail i. Let /?,(0, .s) be the open segment of ^T(a) with one endpoint
/?, and length s. For / big enough ^(0, 2a) is very near /?(0, 2a). Hence the interior
of f$t will intersect Et9 contradiction to In this case we do not use the one sided

branching property.

Fi =Ws(p.)

Figure 6. Etiminating upper convergence of (3,1) idéal quadrilatéral.
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Figure 7. Eliminating lower convergence of (3,1) idéal quadrilatéral in the one sided branching case.

(2) For ail i &lt; k, Ft is in the front of Fk.
In this case Et is in the back of Ek9 Gt in the back of Gk and Ht is in the front

of Hk. The argument above does not apply because the Et are not trapped above,
so there is no contradiciton to length of /?, going to infinity.

Let vY P nFi. By (**), vx e @t for ail / &gt; 1. Hence any such G, intersects Fx. As
Gk is in front of G, for k &gt; i and ail Gt are in the back of ffîu(p)9 then Gt -&gt; S, with

ffs(p) 0, so S # P\p). Let v2 ff^v

CLAIM. /\(vl)=/
(a) If L g fs+ (v2), then as Gt -&gt; S, it follows that LnGt-£09 for i big enough.

As @t is a (3,1) idéal quadrilatéral it follows that LnHt^ 0, hence

(b) Conversely if Lefs+(px) then Lnj8 #0. Choose i big enough so that
j8, ni # 0, hence L nG, # 0 and as S séparâtes M, it follows that LnS # 0,
hence Lefs+(v2), proving the claim.

Since ^ has one sided branching and v2 e Ws{vx lemma 4.6 shows that
&lt;/* •+• (^2) ^ &lt;/ + (^1)» contradicting the claim. This finishes the proof.
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