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The connection between a conjecture of Carliste and Kropholler,
now a theorem of Benson and Crawley-Boevey, and
Grothendieck&apos;s Riemann-Roch and duality theorems1

Amnon Neeman

0. Introduction

Recently Benson and Crawley-Boevey succeeded in proving a conjecture of
Carlisle and Kropholler. The proof breaks into two parts; an easy local computa-
tion, and a global argument to reduce to the local computation. The global
argument proceeds by two main lemmas. In this article, they are Lemma 2.5

=Corollary 2.5 of [1]), and Lemma 2.6 Section 3 of [1]). The key point of this
note is that Lemma 2.5 is a spécial case of the Grothendieck Riemann-Roch
Theorem, while Lemma 2.6 follows immediately from Grothendieck&apos;s Duality
Theorem.

This in no way detracts from the beautiful idea of Benson and Crawley-Boevey.
It should be noted that both the Riemann-Roch and the duality theorem are deep

results; it is not so surprising that by using them the argument simplifies. The

simplified argument allows one to highlight the central idea of the proof.
The author would like to thank the référée for many suggestions of expository

improvements.

1. The statement

Let F be a finite-dimensional vector space over a field k. Let G be a finite group
acting on V linearly. Then the symmetric algebra k[V] is a graded ring, as is the

invariant subring /c[F]G. Let the corresponding Hilbert functions be denoted

P(k[Vl ri) and P(k[V]G, ri). That is

&apos;The research was partly supported by the NSF grant DMS-9204940.

339



340 AMNON NEEMAN

P(k[Vln)=dimk(k[V]n) and P(k[V]G,n) dimk{k[V]G).

Of course, P(k[V], ri) is completely known; after ail, k[V] is just a polynomial ring.
The theorem of Benson and Crawley-Boevey computes the top two coefficients of
P(k[V]G,n). Precisely, forai the Poincaré séries

It is known that p(k[V]G, t) is a rational function in t, whose pôles occur only at
roots of unity. In other words, there is an expression

where R(t) is a polynomial in f, atJ are complex numbers, and col are roots of unity.
The sum is assumed finite.

It is known that the numbers j satisfy the inequality 0 &lt;j &lt; r, where

r + 1 dimAr(F). It is also known that the order of the pôle at t 1 is exactly r; in
other words, the coefficient al&lt;7 where col 1 and j r is nonzero. Put still differ-
ently, the term a/(l — t)r in the expansion above has a #0. The conjecture of
Carlisle and Kropholler, now a theorem of Benson and Crawley-Boevey, states

THEOREM (Benson, Carlisle, Crawley-Boevey, Kropholler). Suppose k ¥p is

a prime field. In the expansion ofp(k[V]G, t) around t — 1, that is

one has a0 1/|G|, and

where the sum runs over hyperplanes W a V, and the integers aw and hw are defined
by \GW\ hwpaw, where Gw cG is the subgroup stabilising Wpointwise, and hw is

prime to the characteristic p.

Note now that both sides of the équation in the theorem remain unchanged if
we replace V by V® k ®k, with the action of G being trivial on k ® k. It is clear
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that the right hand side in the formula remains the same, since the hyperplanes of
V®k ®k fixed by a non-trivial subgroup of G are just W®k®k, where W is a

hyperplane of V fixed by a non-trivial subgroup. To see that the coefficients a0 and

a} are also unchanged on replacing Kby V®k®k9 observe that

and hence

p(k[V®k®k]G, t) =^J-^-2p(k[V]G, t)

and it is therefore immédiate that a0 and olx do not change. The advantage of
replacing F by V ® k ® k is twofold. First, the group G does not meet the center
of GL(V®k®k), and hence acts faithfully on the associated projective space.
Secondly, one has an estimate

where R(t) is a polynomial. This leads to the estimate

P(k[V®k ®k]G, n) a0nr+2 + axnrJr l

where a0 ao/(r + 2)!, and ax can be similarly expressed as a linear function in a0

and a!. The point is that in the Taylor séries for

V ™

the coefficients are of degree &lt;m in the number n. It follows that in the sum

the coefficients of tn is of degree &lt;r in n. The only terms contributing coefficients
of degree r + 1 or r -h 2 to the sum

o -Rio=^^+
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are the ones involving a0 and ocx The Taylor séries allows one to compute a0 and
ax in terms of a0 and olx

From now on we will assume that V is a vector space on which G acts, we will
assume that G contains no scalar matrices, and furthermore that there is an
estimate

where r -f 1 dimk(V). The idea of the proof of Benson and Crawley-Boevey is to
replace k[V]G by some other module M, so that there is also an estimate

n) aonr + axnr~l + O(nr~2),

for the same a0 and #i. It follows that then the a0 and olx also agrée for the modules

k[V]G and M, and we can then use M to compute. Since the computation of a0 and

a1 is admirably explained in [1], I will only deal with the finding of M.

2. The proof

Let V be a finite dimensional représentation of the finite group G, satisfying the

assumptions at the end of Section 1. Let X Proj (k[V]) and Y Proj (klV]0). Let
n : X-+ 7be the natural projection. Then X Pr is projective space, and on it there
is a line bundle 0(1), the hyperplane bundle. The map n : X -+ Y is given as Proj (/),
where i : k[V]G c* £[F] is the inclusion.

It is slightly non-trivial but well-known that the rational map n : X -» Y is

everywhere regular. In other words, one needs to show that the base locus is trivial.
In this case, this is known because K[V] is a finite module over K[V]G. By the

going-up theorem, we then know that the only prime idéal of K[V] lying over the

zéro idéal of K[V]G is the zéro idéal; thus the base locus is trivial.
The scheme Y Proj(k[V]G) is projective, simply by virtue of being Proj of

something finitely generated over k. Let us encode it as a remark.

Remark 2.1. Suppose k is a fîeld, R a finitely (positively) generated graded
fc-algebra. Let {r,, r2,..., rt) be generators of degrees {&amp;,, b2,..., bt} respectively.
Let B be the least common multiple of the integers {bx,b2,bl}. Then the terms in
R of degree IB give an embedding of Y Proj(R) into projective space.

The proof is very simple. Given any monomial m of R of degree d &gt; IB, then it
has the form m rfr^2 • • • r)1. Because the total degree is bxu.x + b2&lt;x2 + • • • + b^
and exceeds /£, it follows that some bt(xt &gt; B. But then a, &gt; Bjbn and j8f J5/èf is an
integer because B was chosen divisible by ail br Thus,
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m

where m&apos; r\xr°^ • • • r*1 ~Pl ¦ • • r]1 is an élément of i£, and the degree of m&apos;is exactly
B less than the degree of m. We deduce that any monomial of R of degree &gt; IB can
be expanded as a product of éléments of degree B and an élément of degree &lt;IB.

It immediately follows that if m is a monomial of degree MB, that is a multiple of
IB, then m can be written as a product of éléments of degree precisely IB.

The fact that this can be done is very classical; it goes back to the Italian school.

It is classically known as the fact that &quot;weighted projective space&quot; can be embedded
in projective space. Since the argument is very simple, we included it.

Thus, if we choose t to be an integer sufficiently divisible by the degrees of the

generators of k[V]G as a A&gt;algebra, then the degree t part of k[V]G gives an

embedding of Y Proj(k[V]G) into a projective space of some dimension. Let if,
be the corresponding very ample line bundle on Y. Then it is obvious that the map
n : X-+ Y satisfies n*J?t — @(t). This amounts to no more than considering the

degree t part of the homomorphism i : k[V]G c* k[V] defining n.

More generally, let S£n be the cohérent sheaf n*(9{ri) on Y. We should perhaps
remind the reader of the notation. The sheaf n*(9(ri) on Fis clearly well-defined,
being the ordinary direct image. The group G acts on this sheaf, since G acts on
&amp;(n), and the map n is G-equivariant. But then the sheaf n*O(ri)G is defined as the

equaliser of ail the maps

where g e G. Practically by the définition of Y we know that for some integer t9

(same t as above), the sheaf S£t n*O(i)G is a line bundle on F, and in fact for any
integer n, there is an equality ^n + t S£t ®S£n. The point is that the question is

local in Y, and locally in Y S£t is isomorphic to (9Y-

Remark 2.2. The preceding few paragraphs are ail fairly standard conséquences
of géométrie invariant theory. In the last few paragraphs I tried to give a

self-contained exposition, largely because to give références would be awkward.

Traditionally, géométrie invariant theory is always exposed over fields of character-
istic 0. It is known, as a conséquence of Haboush&apos;s proof of the Mumford
conjecture and of related work by Nagata, that the theory is only slightly différent
in finite characteristic. However, there is no convenient gênerai référence I could

appeal to. In any case, the preceding results are so easy to deduce directly in the

case of an action by a finite group, that it seemed unkind to the non-expert to make



344 AMNON NEEMAN

him chase this down in the literature. The author included this remark to make it
clear that I claim no originality for the preceding discussion.

We are assuming that there is an estimate

dimk(k[V]ï) dimk{H°(Y, &lt;£n)}

Let coxfY be the sheaf Hom^J^i^^ ArOy}, ArQx). let cox/Y(n) u&gt;X/Y®(9(n) be the
Serre twist. There is, of course, an estimate

dimk{H°(X, 0(n) 0cox/Y(n))} bonr + blnr~l + O(Nr~2)

given by the Hilbert polynomial. In this section we will prove that b0 2\G\a0 and
bx 2\G\ax. The calculation of bo/2\G\ and bJ2\G\ is then the same as in [1], Section
4.

It suffices of course to show that in the expansions

dimk{H°(Y, &lt;ent)} =a0nr

and

dimk {H°(X, (9(nt)@œXIY(ni))} bonr -hbxnr~l + O(nr~2).

the coefficients satisfy bo 2\G\ao and bl=2\G\al. After ail, replacing n by nt
only replaces a0 by aotr, b0 by bQt\ ax by axtr~l and bx by bxf~x. But of
course G(t) =n*&amp;&apos;t, and hence H°(X9 O(nt)®œXIY(n)) can be rewritten as

H°(X9 {@®(oXIY}®n*£ent). But the map n : X^&gt; Y is fînite, and hence

for any cohérent sheaf Sf. In particular, letting $f — {(9®wXiY}®n*££nt and

recalling that the projection formula gives

hâve an identity

H°(X9 O(nt) ®cox/Y(nt)) H°(Y,
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Thus, we will try to establish that the estimâtes

*) aonr + a{nr~] +&amp;(nr-2) (1)

2) (2)h°\Y, © &amp;l) aonr + a, nr~l + &amp;(nr-

\ 2|G| times /

both hold, with the same a0 and ax We will prove a more gênerai séquence of
lemmas

LEMMA 2 3 Let &apos;V be a cohérent sheaf of a normal vanety Y Let S£ be an
ample Une bundle on y Let U c: Y be the smooth locus of Y Let the Hubert
polynomial of V be

h°(Y, r ®Gy £&gt;&quot;) aonr + axnr~l -h 0(nr~2)

Finally, let ch(r&apos;) be the Chern character ofr, and let ch^r) and ch^r) be the

Oth and Ist classes of ch(i^) on the smooth vanety U Then the coefficients a0 and ax

dépend only on ch^i^) and chx{i^) That is, there is a formula for a0 and ax in terms

ofchQ{r) andchx(r)

Remark 2 4 Perhaps we owe the reader an explanation of Chern classes Let Y
be a vector bundle on a manifold Classically, the Chern classes were some

cohomology classes on the manifold It is an observation of Grothendieck [4] that
m fact, very httle of the structure of ordinary cohomology is needed to define Chern
classes The key property needed is that the cohomology of projective bundles is a

truncated polynomial ring What this means is the following Let H* be a

contravanant functor taking spaces X to graded rings //*(Z) Let/ X-&gt; Y be a

map of spaces Then H*(f) H*(Y) -+H*(X) expresses H*(X) as a i/*(7)-alge-
bra Suppose the map f X-+Y gives X the structure of a P&quot;-bundle over Y The
key to being able to define Chern classes is that, as an //*(F)-algebra, H*(X)
should be naturally isomorphic to a truncated polynomial rmg, that is

(pu))
&apos;

where P(t) is a monic polynomial of degree n -f 1 In fact, the Chern class ct is, up
to sign, the coefficient of tn + ï~l in this polynomial P

Many cohomology théories other than ordinary cohomology hâve this property
Topologists refer to a cohomology theory hke this as a &quot;complex onented theory&quot;
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Complex K-theory and complex cobordism are examples, among many others. See

for instance [6].
In algebraic geometry, we often work with varieties defined over fields of

characteristic p (for instance right now), and none of the topological work seems

relevant. But by Grothendieck&apos;s gênerai construction, Chern classes may take their
value in any theory satisfying the complex orientability criterion. At least two corne

to mind: the étale cohomology, and the Chow ring. To fix ideas, in this article the

Chern classes of the cohérent sheaf &quot;T are understood to take their values in A *(£/),
the Chow ring of U a Y. It is of course possible to take them in any motivic
cohomology theory, and thèse days there are plenty of candidates. This is not the

appropriate place for a thorough discussion of motivic cohomology. The Chow ring
has the advantage of being well documented in the literature. The bare essentials

may be found in Grothendieck&apos;s [4]. A far more extensive discussion appears for
instance in Séminaire C. Chevalley, 2e année: 1958, entitled Anneaux de Chow et

Applications. The reason I am not including this in the bibliography is that there are

exposés by several authors, so it is not clear under whom it should be listed.

Proof of Lemma 2.3. This is essentially immédiate from the Riemann-Roch
theorem. The slightly délicate point is that Y may be singular. Hère is how we get

around this technical difficulty. First, the question is géométrie, so we may assume

that the ground field k is algebraically closed.

Replacing if by S£m, we may assume if very ample. Use if to embed Y in

projective space PN for some large N. By projecting from a gênerai linear space of
dimension N — r — 1, we deduce a finite surjective map p : Y-+ Pr. The idea will be

to study p.
Let Z c Pr be the image of the singular locus of Y. Let V c Pr be the

complément, V P2 — Z. Put U&apos; =p~lV. Then U&apos; a U is an open set in Y, and the

complément Y — U&apos; is of codimension 2 at least. It clearly suffices to show that
there is a formula for a0 and ax in terms of co(^|t/&apos;) and Ci(^|t/). We henceforth

replace U by U&apos;.

We want to compute the leading coefficients of h°(Y, -T ®Oy g&quot;1). But
££ =p*0(i)5 since the map Y-*Pr was obtained from the complète linear System

|if| by projection from gênerai position. Thus, by the projection formula

y*p,m,

and

h°(Y, r ®,
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Because 0(1) is ample, for n large enough and i &gt;0, A&apos;(Pr, (p+1^ ® G(n)) =0.
Thus for n large

ir® 0(n))

is the Euler characteristic. But the Riemann-Roch theorem says that

where the intégral stands for the top degree part of the class inside it, and the
&quot;integrand&quot; is the Chern character ofp^ ® O(n) times the Todd class of Pn. The

Chern character is multiplicative. Hence we deduce

ch(Q(n)).

Of course, the Chern character of the line bundle (9(n) is given by enc\ where c] is

the first Chern class of ^(1). It is

It is clear now that the coefficients of nr and nr~x in the top degree class of the

product

can only involve degree 0 or 1 terms from [chip*^) • t(Pw)], in other words they
involve only ch^p^Y) and ch^p+i^).

Now applying the Riemann-Roch theorem to the map/? : £/-&gt; F, we hâve that

x(U)} ch(p*r) • t(F),

which gives a formula

x(V)&apos;\

and if we only care about ch^p+Y) and chl(p*ir\ the formula for them involves

only cho(r) and chx(T).
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LEMMA 2.5. Let n .X^Ybe a finite surjective map ofvarieties over k, and

suppose X is smooth and Y normal. Suppose the degree of the map n is d. Then the

following two sheaves on Y hâve the same two leading coefficients in their Hilbert
polynomials.

Tr^ + Hom^Tr*^,^); (1)

© &lt;V (2)
/= î

Proof. By Lemma 2.3, it suffices to establish that the first two classes ch0 and chx

agrée, and in fact it suffices to check this on the smooth locus C/c7. The zeroth
class ch0 is just the rank of the bundle, and those are clearly two vector bundles on
U of equal rank. But chx cx is the first Chern class, and can be computed by
taking the highest wedge product of the bundle. In both cases, we get (9Y.

LEMMA 2.6. The two sheaves on Y

Y)&apos;, (1)

^, cox/Y); (2)

hâve Hilbert polynomials with equal top two leading coefficients. Once again,

(ox/Y HomC)x(n*{ArQy}. ArQx).

Proof. By Lemma 2.3, it suffices to show that the two agrée as sheaves on the

open set C/ c: K But U is a manifold, and over U the sheaf cox/Y is just the dualizing
sheaf for the map n : n ~l U -? U. By Grothendieck&apos;s duality theorem, we hâve

R Hom^iRn + Gt-iu, (9V) Rn*R Hom^.,^^.^, œx/Y).

where R Hom means the Hom functor in the derived category. It is a complex of
sheaves whose Oth cohomology is the ordinary sheaf Hom, the thing that was

denoted Hom in Lemma 2.6. Because n is a finite (hence affine) map, Rn* n*
(there are no higher derived functors). Because (9n-\v is locally free on n~lU a X,

R Hom^^-ij,, %/r)=Hom^_1(/(^_,[/, œx/Y\

and, finally, because n^0K-iu is locally free on U (this is because n is flat over U),

In other words, we may delete ail the higher derived functors in the formula.
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COROLLARY 2.7. It follows that the two sheaves on Y

œXIY; (1)
2d

© e&gt;r; (2)
/ 1

hâve the same two leading coefficients for their Hilbert polynomials. In other words,
2d h°(Y, ££?n) is asymptotically aonr -h alnr~l for the same a0 and ax as the top two

coefficients in the Hilbert polynomial of h°(X, (9(n)) + h°(X, œx,Y{n)).
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