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Convex functionals and generalized harmonie maps into spaces of
non positive curvature

JÙRGEN JOST

Introduction

The theory of harmonie maps between compact Riemannian manifolds is well
developed under the assumption that the image has nonpositive sectional curvature
(see e.g. [Al], [A2], [ES], [H], [DO], [D], [Cl], [JY3], [La]) and has found
important applications (see the introduction of [JY4] for a survey). Thèse applications

in turn led Gromov-Schoen [GS] to consider harmonie maps into more
gênerai metric spaces. With further applications in mind, a theory of generalized
harmonie maps between metric spaces was developed in [J] and [KS]. Thèse latter
papers in particular treat the existence of harmonie maps into non locally compact
target spaces while the domain still needs to satisfy some compaetness (and in [KS]
in addition some smoothness and other) properties.

It is one of the purposes of the présent paper to abandon ail hypothèses on the

domain, apart from those structures required to make the définition of a generalized
harmonie map meaningful. This définition which is taken from [J] is given at the

beginning of §2. (A similar définition was achieved in [KS]). An advantage of this

définition is that it puts the well developed theory of F -convergence (see [dM]) at

our disposai.
The main resuit of §2 then is the following

THEOREM. Let XUX2 be metric spaces. Assume that X2 is complète and

nonpositively curved in the sensé ofAlexandrov {see §1 for the définition, in particular,
X2 is simply connected). Let F be a subgroup of the isometry group of Xx, and

suppose the measures on Xx required for defining the energy of a map from X] are

F-equivariant. Let p :F-+I{X2) be a reductive homomorphism into the isometry

group ofX2. If there exists a p-equivariant mapf: Xx -&gt; X2 {Le. f{yx) p{y)f{x) for
ail x e Xl9y e F) offinite energy, then there also exists a p-equivariant harmonie map

from Xx to X2.

p-equivariant maps include, but are more gênerai than maps between quotients

of Xx and X2. Thus, there are essentially three hypothèses:
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660 JÛRGEN JOST

(Ml) The target X2 has nonpositive curvature in the sensé of Alexandrov.
(M2) p is reductive.

(M3) There exists a finite energy map in the class under considération.

Alexandrov&apos;s définition of nonpositive curvature as required in (Ml) includes
Riemannian manifolds of nonpositive sectional curvature. Other examples of such

nonpositively curved spaces that are important for applications are trees and
Euclidean buildings. Even in the case of smooth Riemannian manifolds, no gênerai
condition other than nonpositive sectional curvature of the image so far has been

found that allows to construct a theory of harmonie maps that is strong enough for
far reaching géométrie applications. Therefore, (Ml) seems to be a natural and

acceptable assumption, and in applications, it is usually easy to verify.
(Ml) is the most important one among the three hypothèses for the présent

paper. This curvature condition entails certain convexity properties of the distance
function that will be crucial for the constructions of §1. In that §, we study convex
functionals F : F-» Ru {00} on a complète metric space F, and we seek minimizers
of such functionals via Moreau-Yosida regularization. This means that for x e Y
and X &gt; 0, we put

F*(x)«=inf (XF{y)+d\x,y))
yeY

(d(. dénotes the distance function on Y). If Y is complète and nonpositively
curved, this infimum is realized by a unique point /, (x) y,. The main theorem of
§1 says that if (y/n)neN is bounded for some séquence Aw-*oo, then (yJ/i&gt;0

converges to a minimizer of F as À -* oo. The existence resuit for harmonie maps
then easily follows by letting Y be the space of p-equivariant maps from X} to X2

that are locally of class L2.

(M2) prevents minimizing séquences from escaping to oo. It is a necessary
hypothesis that is usually easy to verify in concrète applications.

(M3) can be much harder to check. The generality attempted in the présent

paper does not allow to study this hypothesis in more détail. Examples where it has

been successfully verified can be found in [JY1], [JY2], [C2], [JZ1], [JZ2]. In other

cases, the existence of a finite energy map is open, and this sometimes présents the

only obstacle for the application of harmonie maps to a géométrie problem.
In the présent paper, we do not study regularity questions. Regularity results for

generalized harmonie maps hâve been obtained in [GS] and [KS]. Any such

regularity resuit necessarily needs additional assumptions on the domain that are

more spécial than compatible with the gênerai framework adopted hère.

As mentioned above, in §1, we develop a gênerai theory of convex functionals
F: F-»IRvj{ao} on a complète metric space of nonpositive curvature, and this
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represents the second main purpose of the second paper. In nonlinear analysis, one
often studies convex functionals on Banach spaces, or somewhat more gênerai
topological vector spaces. While the functional is nonlinear, the underlying space
still has a linear structure. The method of Moreau-Yosida approximation in this
context is well presented in [At]. In order to develop an analytic theory that more
truely deserves the epithet &quot;nonlinear&quot;, we wish to study functionals in spaces that
only carry a complète metnc, but not necessarily a linear structure. Without further
assumptions, however, this might be too gênerai a setting for obtaining strong
analytical results. We find that the assumption on the space of nonpositive
curvature in the sensé of Alexandrov ties in very well with the convexity assumption
on the functional, and that the method of Moreau-Yosida approximation can be

extended to that setting. Even some résolvent type identities that one might suspect
to dépend crucially on some linear structure in fact still hold in the présent fully
nonlinear setting. (While thèse identities are not needed for our harmonie map
results, we still présent them hère for use in a future paper.)

The author would like to thank Igor Nikolaev for stimulating discussions about
the Alexandrov geometry of metric spaces and generalized harmonie mappings. He
also thanks Scot Adams for suggesting the définition of reductivity employed
below. The author acknowledges generous financial support from the DFG during
the préparation of this paper.

1. Convex functionals on spaces of nonpositive curvature

Let Fbe a simply connected, complète metric space in which any two points can
be connected by a shortest arc. In particular, Y is connected, and its metric is

intrinsic (cf. [N]). We also assume that Y has nonpositive curvature in the sensé of
Alexandrov, that means (cf. [N]) that whenever

y:[0,b]-*Y

y : [0, b] -+ U2

are géométrie arcs parametrized by arclength (IR2 is equipped with its Euclidean

metric, and so y is a straight Une) and p e Y and p e U2 satisfy

d(p,y(0))=d(p,y(0))

d(p,y(b))=d(p,y(b))

then for ail t e [0, b]

d(p,y(t))&lt;d(p,y(t)) (1-1)
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where the distances on the left hand sides are taken in Y and those on the right
hand sides are the Euclidean ones of U2.

Nonpositive curvature implies that the shortest connection between any two
points is unique. Also for any x0 e F,

is a convex function.
For xu x2 e F, we define their mean value m(xux2) as the unique point on the

géodésie arc from x, to x2 that has equal distances to x, and x2.
For x € Y and r &gt; 0, we put

Let D(F) c F, and let F : D(F) -? U be a functional. We say that F is densely
defîned if D(F) is dense in Y. We say that F is convex if whenever y : [0, 1] -? Y is

a géodésie arc parametrized proportionally to arclength, and if y(0), y(l) e D{F),
then also y(t) e D(F) and

F(y(t)) &lt;tF(y(0)) +(1 - t)F(y(l)) (1.2)

for ail / g [0, 1]. If F is convex and A c D(F), then also the convex hull CA of A is

contained in i&gt;(F), see Lemma 2.6 of [J]. We extend any convex functional
F : D(F) -» U to a functional

F: 7-&gt;Ru{oo}

by putting

The extension still satisfies the inequality (1.2) characterizing convexity, since if the

left hand side takes the value oo, so does the right hand side. We therefore call any
functional F : F-*lRu{ao} convex if it satisfies (1.2) in this extended sensé.

DEFINITION 1. Let F : Y-&gt; iu {oo}. For À &gt; 0, the Moreau-Yosida approximation

Fx of F is defined as

F\x) := inf (XF(y) + d2(x9 y)). (1.3)
K
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LEMMA 1. Let F: F-*IRu{ao} be a fonction, A,fx&gt;0. We then have the

résolvent équation

Proof.

1 (\ _&gt;, ç (\ _„ 1

- &apos; - rA * &apos; y) inf t F\y) + - i

yeY\A fi

inf f inf F(z) +1 rf2(j, z) + - d\x, y) 1.

Now for each z g Y,

mf(-d2(y,z)+-d2(x9y)
yeY\2. fi

is realized by a unique point y0, namely the point on the géodésie arc from x to z

with

d(x9 y0) -t~— d(x, z), d(z9 y0) —— d(x, z).
A -h fi A + fi

Thus

- d\y^ z) + - d\x, y0) j±- d2(x, z\
A fi A -f~ fi

and

- (\ F*)\x) inf (f(z) + -?-d\x, z)) -L- F^«(x). q.e.d.

LEMMA 2. W^e assume that F is convex, #oo, and lower semicontinuous. For

every x e Y and A&gt;0, there exists a unique yx g Y with

We write yx
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Proof. We hâve to show that the infimum in (1.3) is realized by a unique yk.
Uniqueness is easy: If there were two différent such points y\,yj, we could take
their mean value y°k. By convexity of F

and by nonpositive curvature of Y,

and hence

+ d2(x, y») &lt; XF(y\) + d2(x, y\) XF{y2) + d2(x9 yj)

contradicting the minimizing property of y\ and yj. In order to prépare the
existence proof, we observe that for any two points y{,y2e Y, their mean value

yo m(yuy2) is the midpoint of the géodésie arc Connecting yx and y2, and it
satisfies

d\x, y0) &lt;
l- (d2(x, y, + d2(x9 y2)) - l- d\yx 9y2) (1.5)

because that inequality holds for the Euclidean metric and Y has nonpositive
curvature. We now let (.yw)W6^ be a minimizing séquence, i.e.

XF(yn) +&lt;/WJ — inf (kF(y) + d2(x9y))=-.Kx. (1.6)
yeY

We claim that yn is a Cauchy séquence. For /, k g I^J we let yk,r-—in(y^ 7/)- Using
the convexity of F as in the uniqueness argument and the stronger version of
convexity for d2(x,.), (1.5), we obtain

By définition of kà, the left hand side cannot be smaller than kx, and so we obtain
from (1.6) that d2(ykiyi)-^Q as k, /-?oo, and (yn)neN is a Cauchy séquence
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indeed. Since the distance function is continuous and F is assumed to be lower
semicontinuous, the limit of (yn) then is the desired yx. q.e.d.

COROLLARY 1. Let F: F-»(Ru{qo} be convex and lower semicontinuous,

xe Y,yÀ=Jx(x) for some À&gt;0. For 0&lt;s&lt;\9 we define yks as follows: Let

y : [0,1]-&gt; Y be the géodésie arc with y(0) x,y(l) =yx, parametrized proportion-
ally to arclength, and put

Then

J&lt;i-s)x(yxs)=yx. (1.7)

Proof. Given the uniqueness resuit of Lemma 2, this follows from the proof of
Lemma 1. q.e.d.

LEMMA 3. Let Y, be as in Lemma 2. Assume that F is densely defined. For
X -? 0, we hâve

Proof. Since F is densely defined, for every ô &gt; 0 there exists xà e B(x9 ô) with

F(xô) &lt; oo. Then

Xim(XF{xô)+d2(x,x6))&lt;ô\

and consequently

lim sup k, &lt; 0.

Let us now assume that there exists a séquence kn -? 0 for n -&gt; oo with

d\x, y/n)&gt;oi&gt;0 for ail n.

Then

lim sup (ÂnF(yJ + d2(x, yj) &lt; 0,
/7-&gt; f

and hence
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—&gt; ~~ °° as « —? oo.

But then

+d2(x9yl)^F(yÀm)^d2(x9yÀM)^-co as n —&gt; oo,

which is impossible. The claim follows. q.e.d.

Remark. If F is not necessarily densely defined, the resuit still holds for ail x in
the closure of D(F).

THEOREM 1. Let F: Y —&gt;Uv{co} be convex and lower semicontinuous, and

assume thaï F is not identically oo. For xeY, let yx =Jx(x) as in Lemma 2. If
(yxn)neN &amp; boundedfor some séquence Àn-^oo, then (yx)x&gt;o converges to a minimizer

ofF as A-?oo.

Proof Since (yÀn) is bounded, it is a minimizing séquence for F, i.e.

F(y,n) — inf F(y),
yeY

because yXn minimizes

We now show that

is monotonically increasing in L Indeed, let 0 &lt; /ij &lt;\i2- Then by définition of yM

hence
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which is compatible with the définition of yfl2 only if

and monotonicity follows. The monotonicity then implies that

is bounded independently of A since it is assumed to be bounded for the séquence
kn -? oo. This monotonicity also implies that

monotonically decreases towards

inf F( y)

for À -&gt; oo. Namely, from the définition of yk,

F(yÀ) inf F(y),

and F{yk) indeed decreases since d(x, yk) increases as A-&gt;oo.

We now show that (ja)a&gt;o satisfies the Cauchy property, i.e. for every e &gt;0

there exists Ào such that for ail A, // &gt; i0,

For that purpose, we choose Ào so large that for A, fi &gt; Ào

which is possible by the preceding monotonicity and boundedness results. We may
also assume

We let y be the mean value of yk and y^ Then by convexity of F and nonpositive
curvature of F,
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F(yx) + i (|

This, however, is compatible with the définition of jA only if

Since F is complète, (yx) converges for X -&gt; oo towards some y e Y which then
minimizes Fbecause F(yk) decreases to inf^g YF(y) and Fis lower semicontinuous.

q.e.d.

We now establish a stabilizing property of the Moreau-Yosida approximates.

LEMMA 4. Let F: y-»IRu{oo} be convex and lower semicontinuous. Then for
any xux2e Y, X &gt; 0

d{Jk(xx\Jx(x2ï) &lt;d(xux2\

Proof. We put yt *=/A(xl), / 1, 2, and we let y : [0, 1] -? Y be the géodésie arc
from yx to ^2» parametrized proportionally to arclength. Since F(y{) and F{y2)
hâve to be finite and F is convex, the restriction of F to y is a bounded convex
function. It then assumes its minimum at some point y0 e y. If y0 is an interior point
of y, then yt has to be the point on y closest to xn because otherwise we would
decrease both the values of F and of d\. ,xt) by moving on y closer to y0,

contradicting the définition of yt. In that case, however, it is an easy conséquence
of nonpositive curvature that

d(xux2)&gt;d(yuy2).

If y0 is an endpoint of y, say yx, we assume

d(yuy2)&gt;d(xux2) (1.8)

and shall reach a contradiction.
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Since yx îs the minimum of F on y and since F îs convex, we hâve for 0 &lt; / &lt; 1

- F(yx &lt; F(y2) - F(y( 1 - t)) (19)

(recall yx y(0), y2 y( 1)) A conséquence of Reshetnyak&apos;s quadrilatéral compan-
son theorems ([Re]), namely Formula (2 lv) of [KS], implies

xx + d\y{ 1 - 0, x2) &lt; d\x, ,yx) + d\x2, y2)

+ td\xux2)-td\yuy2)

-t(d{xux2)+d{y^y2))2 (1 10)

For sufficiently small t &gt; 0, we then conclude from our assumption 1 8)

d\y{\ - il x2) - d2(y2, x2) &lt; d\yx, xx) - d\y{t\ xx) (111)

From (1 9), (1 11), we obtain for such t &gt; 0

- 0) + d\y{ 1 - 0, x2) &lt; ÏF(y2) + d\y2, x2)

&lt;XF{y2)+d2(y2,x2)

by définition of j, Jx(xx) This, however, contradicts the définition of y2 Jx(x2)

Thus, 1 8) cannot hold q e d

2. Existence of harmonie maps between metric spaces

We recall the définition of equihbnum maps of [J] (a related, though less gênerai

construction was given in [KS]) Let Xx and X2 be metnc spaces with metnes

îndiscnminately denoted by d( We assume that X2 îs complète Let a measure

fi as well as a family of measures /4 depending on x e Xx and € &gt; 0 be given on Xx

A typical example îs

ti%=lilÈ(x,e) (2 1)

For / € L2Xoc (Xx, X2\ we define
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and

€-.0

whenever this F-limit in the sensé of de Giorgi (cf. [dM]) exists. Provided we
are willing to restrict ourselves to some fixed subsequence en -+ 0, this limit indeed
exists under quite gênerai assumptions. See for example, by Thm. 8.5 of [dM] if
L\XX, X2) as a metric space has a countable base. If X{ is a finite dimensional
Riemannian manifold, with \i the volume form and \ix as in (2.1), the existence of
E(f) as the r-limit can also be verified in an elementary manner, see [J; §1], for any
complète metric space X2. It also follows from a gênerai resuit ([dM; Thm. 6.8])
that £asa F -limit is lower semicontinuous on L2(XU X2).

For applications, it is important to consider the case of p-equivariant maps,
where p : F -+I(X2) is a homomorphism from some subgroup F of the isometry

group I(XX) of Xx into the isometry group I(X2) of X2. f: Xx -+X2 hère is called

p-equivariant if

f(yx) p(y)f(x) for ail x e Xx, y e F.

Typical examples are the lifts of maps between compact quotients of Xx and X2.

The following définition was suggested by Scot Adams:
A subgroup G c I(X2) is called reductive if there exists a complète totally géodésie

subspace X of X2 that is stabilized by G with the following property: Whenever
there is an unbounded séquence (pn)n e ^ in X with

d(pn, ypn) &lt; const.

for ail y e G (with a constant that is allowed to dépend on y, but not on «), then
G stabilizes a finite-dimensional complète, flat, totally géodésie subspace of X. p is

called reductive if p(F) is.

THEOREM 2. Let X2 be a complète metric space ofnonpositive curvature in the

sensé of Alexandrov. Let F be a subgroup of the isometry group of the metric space

Xx, and assume that the measures \x and fi€x are F-equivariant (y*ii€x \fyxfor ail x, y,
and pi induces a measure fir on Xx /F). Let

p:F-+I(X2)
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be a reductive homomorphism. Assume that there exists some p-equivariant
f:Xx-+X2 with

Ep(f) &lt; oc,

with Ep{f):= F — limitée Ep{f) {or perhaps for a subsequence ew -»0) and

Then there exists a p-equivariant equilibrium map, i.e. a map that minimizes Ep in the

class of p-equivariant maps.

Proof We define Y as the space of p-equivariant maps/: Xx -+X2 of class L2

on Xx jr. Y then is a complète metric space, with metric given by

d\fg)= d2{f{x\g(x))diir{x).

Since X2 has nonpositive curvature, so does Y. We then apply the results of §1 to
F Ep. We choose f0 e Y and put for n e N

fn := Jn(fo) (Moreau-Yosida approximation).

Since Ep is not identically oo, we hâve

E\fn) &lt; oo.

We hâve for y e F

d\fnjn o y) [ d2(fn(x), P(y)fn(x)) diir(x).
J

Since by equivariance Jn(f0 © y) =fn o y, Lemma 4 implies

d2(fnjnoy)&lt;d2(f0j0oy)9

and this quantity is bounded for each y independently of n. Thus, if/n is unbounded,
i.e. if/n(jc) is unbounded on a set of positive nr measure, the reductivity assumption
implies that p(F) stabilizes a finite dimensional totally géodésie flat subspace L.
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We can then search for the desired minimizer among p-equivariant maps from A&quot;,

into L. Since the metric of L is Euclidean, its group of translations is commutative,
and we may therefore conjugate with suitable translations, in order to construct a
bounded minimizing séquence, without destroying the p-equivariance. Therefore,
we obtain in any case a bounded minimizing séquence.

Since X2 has nonpositive curvature, d2 is convex, and consequently, for e &gt; 0, E€

is a convex functional on Y. Therefore, also

E: 7-R
is convex by Thm. 11.1 of [dM]. By Thm. 1, we then obtain the existence of a

minimizer of E. q.e.d.

Remark. Thm. 2 includes the case of infinité dimensional or other non locally
compact domains. Of course, for such domains, one needs to check whether

measures appropriate for the définition of harmonie maps exist. The standard
examples where such measures do exist are Wiener measures or other Gaussian type
measures, e.g. on loop spaces.

Our methods can also be used to treat some generalizations of harmonie maps
that hâve been considered in Riemannian geometry. Let, for simplicity, M and N be

compact Riemannian manifolds. N having nonpositive sectional curvature. Let
a : M -? R be a positive function, and for a Sobolev map / : M -&gt;N, we consider

/(/)= f \df{x)2\c(x)dvo\M(x\
JM

with expressions defined through the Riemannian metries in the standard manner.
It then follows from Thm. 1 and the arguments of Thm. 2 that / assumes a

minimum in a given homotopy class (expressed through an equivariance condition
for the lifts to universal covers).

Likewise, we can treat, for compact M again, variational problems of the type

H(f) -
(in local coordinates, (yxfi) is the metric of M, (yxfi) (y^)~l), if for each

x e M, gtJ(x, )defines a Riemannian metric of nonpositive sectional curvature. We

thus consider harmonie sections of fibre bundles, with nonnegatively curved fibres.

The existence of energy minimizing sections in this context has been shown by
Kourouma [K], and our methods reproduce his resuit (obtained by a différent

method).
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