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A theory of cobordism for non-spherical links

Vincent Blanloeil and Françoise Michel

Abstract. We define an equivalence relation, called algebraic cobordism, on the set of bilinear
forms over the integers When n > 3, we prove that two 2«, — 1 dimensional, simple fibered links
are cobordant if and only if they have algebraically cobordant Seifert forms As an algebraic link
is a simple fibered link, our criterion for cobordism allows us to study isolated singularities of
complex hypersurfaces up to cobordism
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0. Introduction

In this work we present a cobordism theory for links which is motivated by the
study of the topology of isolated singularities of complex hypersurfaces Let us be

more precise
(0 1) Let / (Cn+1,0) -> (C,0), be a holomorphic germ with an isolated

singular point at the origin We denote by _D2fc the compact ball of radius 5

centred at 0 in Cfc, and by Sg~ its boundary The orientation-preserving home-

omorphism class of the pair (_D2n+2, /~1(0) Pi _D2n+2) does not depend on the
choice of a sufficiently small e, by definition it is the topologtcal type of /
The orientation preserving diffeomorphism class of the pair (<Sfn+1, K(f)), where

K(f) (/^(O)) n S?n+1 is the link of / The Milnor's conic structure theorem
(see [M3, 68]) shows that the link K(f) determines the topological type of /
Moreover, J Milnor has also proved that

1 f/\f\ Sfn+1 \ K{f) —> S*1 is a differentiate fibration which is trivial on

U \ K(f), when U is a sufficiently "small" open tubular neighbourhood of
K{f)

2 The manifold K(f) is (n — 2)-connected
3 The adherence F of a fiber of f n ri is a compact, oriented, (n — l)-connected
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smooth submanifold of Sfn+1 having K(f) as boundary. By definition F is the
Mtlnor fiber of K(f).

(0.2) More generally, we will say that a link is a (n — 2)-connected, oriented,
smooth, closed, (2n — 1) dimensional submanifold of S>2n+1. A knot is a spherical
link (i.e. a link abstractly homeomorphic to S*2"^1). It is well-known that, for
any link K, there exists a smooth, compact, oriented 2n-submanifold F of S'2"^1,
having K as boundary ; such a manifold F is called a Seifert surface for if.

(0.3) Following M. Kervaire [Kl, 65], we say that two links Kq and K\,
abstractly diffeomorphic to the same manifold /C, are cohordant if there exists an
embedding $, $ : /C x [0,1] -> S*2^1 x [0,1], such that:

$(/C x {0}) Xo and $(/C x {1}) -ifi,
where —ifi is the link K\ with the orientation reversed.

(0.4) Let F be a 2n dimensional oriented smooth manifold of S>2n+1, and let
G be the quotient of Hn(F,Z) by its Z-torsion.

The Seifert form associated to F is the bilinear form i:GxG-»Z defined
as follows (see also [K2, 70] p.88 or [L2, 70], p. 185): let (x,y) be in G x G, then
A(x,y) is the linking number in 5>2n+1 of x and i-\-(y), where i+(y) is the cycle

y "pushed" in (S'2"^1 \ F) by the positively oriented vector field normal to F in
S2n+K

By définition a Seifert form for a link K is the Seifert form associated to a
Seifert surface for K.

When n > 2, J. Levine ([LI, 69]) and M. Kervaire ([K2, 70]) gave a complete
characterization of cobordism classes of knots in terms of Witt-equivalence classes

of Seifert forms.
(0.5) A simple link is a link which has a (n— l)-connected Seifert surface. A link

if is a simple fibered link if there exists a differentiable fibration ip : 5>2n+1 \ K —>

S*1, ip being trivial on U\K, where U is a "small" open tubular neighbourhood of
K, and having (n — l)-connected fibers, the adherence of which are Seifert surfaces
for K. In this paper we define in §1 (see (1.2)) an equivalence relation on integral
bilinear forms which is much more sophisticated than "Witt-equivalence" and the
theorems 2 and 3, stated in §1, imply:

Theorem A. If n > 3, two simple fibered links are cobordant if and only if they
have algebraically cobordant Seifert forms.

(0.6) By définition an algebraic link is a link K(f) associated, as described
above, to a holomorphic germ / with an isolated singularity. Furthermore, Milnor's
theory of singular complex hypersurfaces implies that algebraic links are simple
fibered links. So theorem 2' and 3 stated in §1 imply:

Theorem B. Ifn~>3, two algebraic links are cobordant if and only if the Seifert
forms associated to their Milnor's fibers are algebraically cobordant.
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In [Le, 72], D.T. Le showed that two cobordant algebraic links of plane curves
(i.e. when n 1) are isotopic. In [DB-M, 93], P. du Bois and F. Michel found
(using the classical cobordism theory for knots of M. Kervaire and J. Levine), for
all n > 3, examples of non isotopic but cobordant algebraic knots. But in general
algebraic links are not spherical links. So theorem B gives a cobordism theory for
algebraic links.

Furthermore, having algebraically cobordant Seifert forms is also a necessary
condition of cobordism for simple flbered links when n is 1 or 2. So we obtain in
§5, without any restriction of dimension, a "Fox-Milnor" relation (see [F-M, 66])
for the Alexander polynomials of cobordant simple flbered links which implies:

(0.7) Corollary. Let Kq and K\ be two algebraic links having respectively Ao
and Ai as characteristic polynomials of monodromy. If Kq and K\ are cobordant
then the product Ao-Ai is a square in 7L\X\.

(0.8) Comments. In [VI, 77] and [V2, 78] R. Vogt gave, when n > 3, a
sufficient, but not necessary, condition of cobordism for simple links having torsion
free homology groups. As shown in [DB-M, 93] the sufficient condition of cobordism

for algebraic links given in [Sz, 89] by S. Szczepanski, cannot be true. So

the problem of finding a criterion for cobordism of simple flbered links was largely
open. Our définition of algebraic cobordism for Seifert forms solves the problem.

(0.9) In this paper we use the following notations: If X is a differentiate
o

manifold we denote by dX its boundary, by X its interior and by Hfc(X) the kth-
homology group of X with coefficients in Z. If a is a k-cycle of X we denote by
[a] its homology class in Hfc(X). If G is an abelian group let rk(G) be the rank of
G, and Tors(G) be the torsion subgroup of G.

1. Definitions and statement of results

Let A be the set of bilinear forms defined on free Z-modules G of finite rank.
Let e be +1 or —1.

(1.1) If -A is in A, let us denote by AT the transpose of A, by S the e-symmetric
form A + eAT associated to A, by S* : G —s- G* the adjoint of S (G* being the
dual Homz(G;Z) of G), by S : G x G —s- Z the e-symmetric non degenerated
form induced by S on G C/KerS**' ^ submodule M of G is pure if G i^j- is

torsion free. If M is any submodule of G let us denote by MA the smallest pure
submodule of G which contains M. In fact MA is equal to (M <g> Q) n G. For a
submodule M of G we denote by M the image of M in G.

Definition. Let A : G x G —> Z be a bilinear form in A. The form A is Witt
associated to 0 if the rank m of G is even and if there exists a pure submodule
M of rank ^ in G such that A vanishes on M ; such a module M is called a
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metabohzer for A.

(1.2) Definition. Let At : Gt x Gt —s- 7L, »=0,1, be two bilinear forms in A.
Let G be Gq (B G\ and A be (Aq © —A\). The form Aq is algebraically cobordant
to A\ if there exists a metabohzer M for A such that M is pure in G, an
isomorphism ip from KerSg to KerS^ and an isomorphism 9 from Tors(Coker<Sq)
to Tors (Coker S±) which satisfy the two following conditions:

c.l: MnKerS* {(i^(i));ieKer50*},
c.2: d(S*(M)A) {(x,9(x));x G Tors (Coker Sfi)}, where d is the quotient map

fromG* to Coker S*.

In §2 (see (2.3)) we prove:

Theorem 1. Algebraic cobordism is an equivalence relation on the set A.

(1.3) From now on, Aq and A\ will always be two Seifert forms associated to
some (n — l)-connected Seifert surfaces Fq and F\, of two simple links Kq and

K\. Let us justify the définition of algebraic cobordism. As a generalization of
the Kervaire-Levine theory of knot cobordism we obtain in §3 (see (3.10)):

Proposition. If Kq and K\ are cobordant simple links, then A Aq © —A\ has

a metabohzer.

Remark. Let e be — 1)", then for »=0,1, St At + sA^ is the intersection form
on Hn(Ft), Ker S* is the image of Hn(Kt) in Hn(Ft) and CokerS* is isomorphic
to Hn_i(lfj). So for spherical links, both Ker5* and CokerS* are zero, and
conditions c.l and c.2 in définition (1.2) vanish. Then, for spherical links, two Witt
associated Seifert forms are algebraically cobordant, and we recover the Kervaire-
Levine criterion for cobordism.

In the non-spherical case, the topology of the cobordism implies that the
restriction of Aq on Ker <Sq is isomorphic (on Z) to the restriction of A\ on Ker S\ (it
is easy to check it directly, and it is also implied by the more general proposition
(3.10)). This necessary condition for cobordism is not implied by the fact that
Aq ® —A\ is Witt associated to 0, but by condition c.l in définition (1.2). The
topology of the cobordism also implies that the linking forms on Tors (Hn_i(Äj))
are isomorphic. This necessary condition for cobordism is contained in point c.2

of définition (1.2).
(1.4) The major result of this work is theorem 2 proved in §3 (see (3.10) and

(3.13)):

Theorem 2. Let Kq and K\ be two cobordant simple links. If Kq and K\ have

(n — l)-connected Seifert surfaces Fq and F\ with unimodular Seifert forms Aq
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and A\, then Aq is algebraically cobordant to A\.

Remark. Let i be 0 or 1. Let us suppose that Kt is a simple fibered link and let
Ft be a (n — l)-connected fiber of a fibration ipt : 5>2n+1 \ Kt —> S*1

; then, the
Seifert form At associated to Ft is unimodular. Conversely, if n > 3 and if At is

unimodular then Kt is a simple fibered link (see [K-W, 77] chap. V, §3, p. 118).

So, theorem 2 implies:

Theorem 2'. Let Kq and K\ be two simple fibered links having Fq and F\ as

(n — 1)-connected, fibers of differentiate fibrations ipo and ip\. If Kq is cobordant
to K\, then the Seifert forms Aq and A\, associated respectively to Fq and F\, are
algebraically cobordant.

(1.5) Using classical methods of surgery, we prove in §4 (see (4.4) and (4.5)):

Theorem 3. Let n be greater or equal to 3 and let Kq and K\ be two 2n — 1

dimensional simple links. If the Seifert forms Aq and A\, associated to some
(n — l)-connected Seifert surfaces Fq and F\ of Kq and K\, are algebraically
cobordant then Kq is cobordant to K\.

(1.6) Proposition (3.10), which does not use (as remarked in (3.12)) any
hypothesis on the Seifert forms, gives:

Theorem 4. Let Kq and K\ be two cobordant simple links. If Aq (resp. A\) is
a Seifert form associated to any (n — \)-connected Seifert surface for Kq (resp.

K\), then Aq © -A\ has a metabohser M such that M n Ker S* {(x,ip(x));x G

KerSg}, where <p is an isomorphism between KerSg and

2. Algebraic cobordism

(2.0) Let Aq and A\ be two algebraically cobordant forms, let A be the form
Aq ® —A\ defined on G Gq © G\ and S be A + e AT. In this section we

prove proposition (2.1) which shows that the algebraic cobordism between Aq and

A\ allows us to describe S ; this characterization of S is fundamental to prove
theorem 3 (see §4). Let M, <p and 9 be as in (1.2), let m be rk(G) and r be

rk(KerS3). Then definition (1.2) implies that s rk(5*(M)) ^rk(5*(G)) and

rk(M) =r + s f.
We use the following notations: if E is any subset of G we denote by (E) the

submodule of G, generated by E. If L is any submodule of G then:

L± {xeG s.t. S(x,l)=0VleL}
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Homz(G,L,Z) {/gG* s.t. /(Z) 0VZgL}

Moreover if L\ and Li are two submodules of G, orthogonal for S, we denote by
L\ ©-1- Li their (orthogonal) direct sum.

Lemma. We have: S*(G) D S*(M)A S*(M±).

Proof Let r be the rank of KerSg and s be the rank of S*(M). As M is a
metabolizer for S which fulfills condition c.l in (1.2) we have:

rk(KerS*) 2rk(M n Ker S*) 2rk(KerS£) 2r, rk(5*(G)) 2 s and
rk(M-L) s + 2r. Hence ML (M + KerS*)A and S*{ML) C S*(G) C\S*(M)A.

Moreover, S*(M) is of finite index in Homz(G,, ,j_; Z). As Homz(G,. ,^;Z)
is a pure submodule of G*, we get S*(M)A Homz(G,M±; Z). So if S*(x) G

S*(M)A, then 5*(x,Z) 0 for all Z in ML and x is in M^. D

Since S*(M) is of finite index in S*(M)A, one can write (S*(M)A) is*fM\
s

^ftZ / ^ where o, gN\ {0} and a^ divides a^i (we do not exclude that there
.=1

*

exists an integer Z such that at 1 for i 1,... Z).

Proposition. TVie submodule M is pure in G if and only if S*(M±) S*(M).

Proof. We suppose that M is pure in G. As M D KerS** A(y>) has rank r, the
rank of M + Ker S* is s + 2r. So M + Ker 5* is of finite index in ML. Let x be in
M1- ; there exists a positive integer k such that kx y + m, where y is in Ker S**,

to is in M ; so to kx. Since M is pure in G then x is in M, so there exists
y' in KerS* such that x + y' is in M. Finally 5*(x) S*(x + y') G S1*(M), and
S* (M-1) C S* (M). But McM^o S^M-1) 5*(M).

We suppose that S*(M) S*(M±). First we prove that M1- is pure in G. Let
z be in M1- with J kx where x is in G and A; is a positive integer. So there exists y
in Ker S* such that A;x z+y. For all to in M we have S(kx, to) S^z+y, to) 0,

so S(x,m) 0 and x is in ML. Now we prove that S*(M±) S*(M) implies
M M1. Let z be in ML. HS*(z) f there exists to in M such that S*(m) f.
So z — to y is in Ker S**, and z to is in M. Finally, since M1- is pure in G and
M1- C M we get M1- M is pure in G. D

By définition (1.2) M is pure in G, so lemma (2.0) and proposition (2.0), and,
conditions c.l and c.2 in définition (1.2) imply that CokerS** is isomorphic to
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(2.1) Proposition. There exists a basis B {mt,m*;i=l, ,s+r} of G such
that:
1. {mt;i=l, ,s+r} is a basis of M,
2. {mt,m*;i=s+l, ,s+r} is a basis of Ker S* and {m*;»=s+l, ,s+r} is a basis of

KerSfi,
3. the submodules (mt,m*), »=1, ,s+r ; are orthogonal for S, i.e.: G fln (m

l<t<s+r
3. when %=\, ,s,S{mx,m*) at.

Definition. Such a basis is called a good basis of G associated to M.

The form S A + eAT is always an even form. Moreover, when the at are odd
we get the following corollary:

Corollary. When the at are odd, the isomorphic class of S is given by m rk(G)
and the isomorphic class o/CokerS**.

Proof ofproposition (2.1). In (2.0) we have seen that S*(M)A Homz(G, M±;Z
Let Mq be any direct summand complement of (MnKerS**) in M. There exits a
basis {m,/,i=l, ,s} of Mq and a basis {h,/,i=l, ,s} of Homz(G ^,j_;Z) such that

S*(mt) at ht where at G N \ {0} and at divides a%^\. Let m\ be any element in
G such that G Ker hi © (mj) and hi(m\) S(mi,ml).a^1 1.

Claim. For all x in G, ai divides S(x,m\).

1 it is obvious. Ifai > 1, condition c.2 in (1.2) implies that {S*{G)A)/g*(

is isomorphic to (S'*(M)A)/S*(M\Y ((£)%/a ¦£) and the rank of 5*(G) is 2 s.

i=\
So ai divides S*(x) for all x in G.

Now, we will construct an orthogonal complement (Mi © i?i) for (mi,m|) in
G such that:

i) M (mi) ©Mi,
ii) Ker hi M© Ri.
Let Mi be the submodule of M generated by m' m% — a^ S(m%,m\).mi7

2 < i < s, and M C\ KerS**. By construction Mi is orthogonal to (mi,m|) and
M (mi) ©Mi.

By construction Ker/ii is orthogonal to mi and M is in Ker hi.
If {xt, i=1, ,s+r} is a basis of any direct summand complement of M in Ker hi,

let Ri be the submodule of Ker hi generated by x[ where: x[ xt—a^ S{x%,rn[).rni.
Then Ker hi (mi) © Mi © Ri and Ri is orthogonal to m\.

Now we have an orthogonal decomposition of G in (toi,toJ) ©^ (Mi ©i?i). By
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induction on s we obtain an orthogonal decomposition:

G (e1^,,™,*)) 01- (Ms © Rs) where Ker S* Ms © Rs.

Let {ms_|_i,... ,ms-\-r} be any basis of KerS** n M. Thanks to condition c.l,
Ker S*C\M {(x, <p(x)); x G KerSg}. So we can choose any basis {m*_|_1;... ,m*^_r}
of Ker Sq to build up a basis of G which fulfills proposition (2.1). D

(2.2) Now, we use the notations established in §1 and the following convention:
if / : R —> S is an isomorphism of Z-modules, A(/) is the submodule {(x, /(#)); x G

R} in R © S. To prove theorem 1, we need the following proposition which gives
an equivalent définition of algebraic cobordism.

Proposition. Let Aq and A\ be in A. Then Aq is algebraically cobordant to A\ if
and only if there exists a pure submodule H of G Gq(BG\ on which A Aq(B — A\
vanishes, an isomorphism ip from Ker Sq to Ker SJ and an isomorphism 9 from
Tors(CokerS'(J) to Tors (CokerSjf) such thai:

c.ll: A(cp) c H,_ _ _ _c.12: the image H of H in G G/icer a* is a metabolizer for S Sq © —5*1,

c.2: d(S*(H)A)

Proof Let M,ip,9 be as in définition (1.2). Then M satisfies c.l and c.2. The
existence of (p shows that Ker Sq and Ker SJ have the same rank, r. So the rank of
Gis (mo+mi-2r). By c.l MnKerS* A(y>) and rk(M) m°|mi because M
is a metabolizer for A. So rk(M) m"+mi _ r and S vanishes on M. It implies
that M is a metabolizer for S.

Conversely let H, (p and 9 be as in the statement of proposition (2.1). As A(y>)
is pure in H and in Ker S*, there exists a direct sum decomposition H n Ker S*
A((p) © Mq. As KerS** is pure in G, there exists also a direct sum decomposition
H Mi © (H n KerS**). Let M be Mi © A(ip). By construction A vanishes on
M, MnKerS* A(cp) and S*(M) S*(H). So M, cp and 9 satisfy c.l and c.2
of definition (1.2). Furthermore, H M\ M and by c.12 the rank of H is
mo+mi - r. But Mi being isomorphic to ~M[, the rank of M is m°+mi and M is

a metabolizer for A. D

(2.3) Proof of theorem 1. The only non trivial property to check is the transitivity

of the relation " algebraic cobordism".

(2.4) Lemma. Let Bt : Gt x Gt —> Z be in A, i 0,1,2. Let mt be the rank of
Gt. If there exists a metabolizer Hq\ (resp. Hyi) for Bq © —B\ (resp. B\ © —B^)
and if the Bt are non-degenerate, the form Bq © —B% vanishes on Hq2 tt(L)
and rki?02 ^rk(Go © G2)7 where: G Gq © G\ © G\ © G2, H Hq\ ©
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A {(y,y) € G\ © G\ ; y G G\}, L HC\{Gq © A© G2) and n is the projection
of G on Gq © G*2 ¦

Proof. As Bq © — _E>2 vanishes on i?02 by construction, it is sufficient to prove
that the rank of i?02 is m° j,"™1. The définition of i?02 gives the following exact
sequence:

So we get:

If v is in H, there exists unique x in Go, yi and 2/2 in Gi and z in G2 such that
v (x,y\,y2,z). Let p : H ^ G\ (B G\ be defined by p(u) (y\ — j/2,0). Let us
denote by L\ the image p{H). By construction L is the kernel of p and we get the

exact sequence: Q^L-^H-^L\^Q. Both this sequence and (*) show:

(**)

Claim. By {B\ © -Si), A n L is orthogonal to Li © A.
Indeed, A is self-orthogonal ; if [y, y) is in AnL, then (0, y) is in Hq\ and [y, 0)

is in H\i- On the other hand, an element of L\ is of the form [y\, —y<i) where
there exists {x,y\) in Hq\ and (1/2,z) in H\i- So B\{y,y\) B\{y\,y) 0 and

The rank of Li © A is mi + rk(Li). The claim implies that the rank of the
restriction of B\ © —B\ to (AnL) x (G\ ®G\) is smaller or equal to m\ — rk(Li).
But B\ © — B\ is non-degenerate by hypothesis, so: rk(AnL) < m\ — rk(Li). By
(**) it implies: m°+m2 < rk(ffO2)-

As Bq and B% are non-degenerate by hypothesis and as Bq © —B% vanishes on
#02, rk(i?02) < m°|m2 ¦ It ends the proof of the lemma. D

Let us go back to the proof of theorem 1. Let At be algebraically cobordant to
At^\, i 0,1. Let Mjj-i-i be a metabolizer for At © —At^\ with the isomorphisms
(pt and 6t fulfilling conditions c.l and c.2 in definition (1.2).

Let us take the following notations: G Gq © G\ © G\ © G*2, S02 5*0 © —5*2,

G02 Go © G2, 5 So © -Si © Si © -S2, A {(x,x) ; x G Gi} C Gi © Gi, d
be the quotient map from G to CokerS* and do2 the quotient map from Gq2 to
CokerSQ2- Let it (resp. yf) be the obvious projection from G (resp. CokerS*) to
Go©G2 (resp. CokerS^). Since Mti,^i is pure in Gt(BG,^i we have the following
decompositions Mt\+1 A(ipt) © KerS* © Rltl+i with Mhl+i A(ipt) © ^+1,
and Rt/l-\-i is pure in Gt © Gj_|_i. Let <5Ji4+i be any direct summand complement
of M^+1 in Gt © Gj_|_i. If Tj^+i ßj^+i © Qj,»+l, then we have the following
decomposition G Ker S^ © Ker S*2 © Toi © ^12 • Let us denote by To (resp. Ti,
T{, T2) the projection of TOi (resp. TOi, Ti2, T12) to Go (resp. Gi, Gi, G2). We
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modify R\<2 and Qi2 by adding to them some elements of A(yi) in order to have

T\=T[. Moreover, we have the following equalities: Gt Ker5* © T i 0,1,2.
Let To2 be T)2 tt(Toi © Ti2) To © T2. Let i?02 be the smallest pure

submodule of T02 which contains the projection of (i?oi © -R12) H (Co © A © G2)
onT02: R02 (7r((ßoi©ßi2)n(Go©A©G2)))A ; and let A be Ao © -A2, ^> be

y>l o y>o and 0 be —{9\ o 0q).

By proposition (2.2), to prove that Aq is algebraically cobordant to A% it is

sufficient to prove that H A(y>) © i?02 is a metabolizer for Aq © —A2, and, H
fulfill conditions c.ll, c.12 and c.2 of (2.2). First we remark that H fulfills c.ll by
definition.

(2.5) Lemma. We have the equality do2(S^2(H)A) A(-#i o é>0).

(2.6) Lemma. The submodule H is a metabolizer for A, and H is a metabolizer

for So © —52.

Proof of lemma (2.5). By construction: d(S*(G)A) Tors(Coker5*) and
do2(5o*2(iï)A) n(d(S*(L)A)). But c.2 implies:
d(S*(L)A) (A(0O) © A(0i)) n d(S*(Go © A © G2)A), so:

d(S*(L)A) {(x,e0(x),y,e1(y));xeToT8(CokeiS^ y=-60(x)}.
Finally: dO2(S^2(H)A) {(z,-0i o0o(z));z G Tors(Coker5(J)} A(-0io0o).

D

Proof of lemma (2.6). The restriction 5M_|_i|ji on Thl-^i, of the e-symetric

bilinear form Stl^i, is non-degenerate ; and the submodule i?M-|_i is a metabolizer
for 5jj_i_i|rTi i 0,1. By construction To (resp. T\, T2) is the projection

' IJ«,«+1
of Toi (resp. Toi, T12) onto Go (resp. G\, G2). So we have S%%+\\T

S,irp ©— 5j_|_i|ji We use lemma (2.4) replacing Bt by S,irp so 5o2iy vanishes

on i?o2 and rki?o2 ^rkTo2. Since the pure submodule H of Go2 Ker5Q2ffiTo2
is defined by the equality H A(y>) © i?02 then vkH ^rkGo2. Moreover for
all hi, h% in H there exist two integers ai and ai such that for i 1, 2 we have:

ath% Tr(mt) and ro, (xl,ipo(xl),ipo(xl),ip(xl)) + (moi,,roi],,mi],,m2],) is in

Moi © M12. So A{hi,h2) -^{Ao\ © -^12)('«i,m2) 0, so A vanishes on
the pure submodule H of Go2. Finally H is a metabolizer for A. By construction
5*02 ij1 is isomorphic to 5o2, so as i?o2 is pure in T)2 then i?o2 is a metabolizer

for 5o2. D

The above properties of H, and, lemmas (2.5) and (2.6) imply conditions c.12
and c.2 of proposition (2.2), and Ao is algebraically cobordant to A%. This ends
the proof of theorem 1. D
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3. The necessary condition to have a cobordism

Let Ko and K\ be two cobordant links. Let us denote by S the product 5>2n+1 x
[0,1] and by S its oriented boundary. The definition of cobordism gives a sub-
manifold C $(/C x [0,1]) of S such that X n C Ko II(-Ki). Let N be
Fq UCU(—F\) where Ft is a Seifert surface for Kt. By construction N is a closed,
compact, oriented, 2n-submanifold of <S.

(3.1) Lemma. There exists a smooth oriented,, compact, submamfold W of S
such that N is the boundary of W.

Proof. This lemma is a consequence of classical obstruction theory. If n > 3 a

proof is written in [L2, 70], p. 183. As the existence of W is fundamental to
obtain theorem 2, we write a proof which works in any dimension.

Let C3 for j 1,... k be the k connected components of C. As C has

a trivial normal bundle in S, it is possible to choose disjoint, closed, tubular
neighbourhoods U3 of C3 and a diffeomorphism I : C x D -> [/ TT U3.

Now we have meridians rn3 on dU3 defined by: m3 ^{P3 x S*1) where P3 is

some point of C3 and m3 is oriented such that the linking number of m3 and C3
o

(in <S) is +1. Let X be <S\ U, v be the diffeomorphism induced by the inclusion
of dX in U, e be the excision isomorphism and d% (resp. dlx) be the connectant
homomorphism for the pair (S,U) (resp. (X,dX)). Then we have the following
commutative diagram:

§ H\X,dX) ^ H\X) ^ H\dX) °k H2(X,dX) -+

=| e T v Î =| e

^ Hl{S,U) -+ Q Hl{S) -> ff^t/) ^ H2(S,U) -+ 0

The commutativity of all the squares of the above diagram implies that the
homomorphism p is zero so a is injective and dlx is surjective for 0 < i < 2n — 1. We have
the following direct sum decomposition: Hx(dX) c^ff^X)) 0w(i71(t/)). Any
element of <r(i71(X)) is represented by a differentiable map from dX to S*1, which
is, up to homotopy, characterized by its degree on each meridian m3, and which
has a unique extension to X. Let g : X —s- S*1 be the unique, up to homotopy,
differentiable map which has degree +1 on each meridian. Thanks to the Thom-
Pontriagin construction there exists a differentiable map / : E\ (Ko II —K\) —> S*1

o o

which has Fq U(— Fi) as regular fiber and / has degree +1 on the meridians of
the connected components of Kq U(—AÎ). So / and g have homotopic restrictions
on X n S and we can choose # such that its restriction onlnE coincides with /.
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Then g has a regular fiber W such that W n S (Fo ]J —Fi) n X. The union of
W with a small collar in U is the manifold W such that N dW. D

(3.2) Let us take Aq (resp. Ai) the Seifert form associated to a (n — 1)-
connected Seifert surface Fq (resp. F\) for Kq (resp. K\). Let t : Ko —>¦ ^l be
the diffeomorphism defined by: t(P) $($~1(P) x {1}) where P is any point
of Kq. The diffeomorphism t induces isomorphisms 0j : EL,(Ko) -^ Hj(K'i) such
that for any j-cycle x of Kq, {x,63(x)) is a boundary in C $(/C x [0,1]). Let
Xi '¦ Hn(Xj) -^- Hn(Fj) and A^ : Hn(Fj) -^- Hn(iV), i 0,1, be the homomorphisms
induced by the inclusions Kt C Ft C N. The Mayer-Vietoris exact sequence
associated to the decompostion of N in the union of Fq U C and CU (—Fi) gives:

Hn(F0) 0 Hn(Fi) A Hn(JV)

where x= (xo,Xl°^n) and A= (A0,Ai)
(3.3) Remark. Let ro, be rk(Hn(F,)), m be rk(Hn(AT)) and r be rk(x(Hn(Xo)))-

By Poincaré duality m mo + mi, r rk(J(Hn(./V))) and r rk(Ker5*) where
S* is the adjoint of the intersection form St on Hn(F4).

(3.4) Construction of the isomorphisms tp : KerSg -^ KerS*]" and
9 : Tors(CokerS'(5) -^ Tors(CokerS'J).

Let S„ : Hn(F,) -> Hn(F4,^) and ö : Hn(F4,^) -^ Hn_i(^) be the
homomorphisms given by the long exact sequence for the pair [Fl,Kl). Let
U : EP(Fj) —s- Homz(Hn(Fj); Z) be the universal coefficient isomorphism (F4 is

(n — l)-connected) and let P : Hn{Fl,Kl) -^ Hn(Fj) be the Poincaré duality
isomorphism. We have the following commutative diagram:

0 ^
=| UoP A,,

s*
0 -^ KerS* -+ Hn(F,) ^> Homz(Hn(F,); Z) ^ CokerS1;
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By definition A^ : d(Rn(Ft,Kt)) —> CokerS** is the quotient of the isomorphism
(7 o P, so At is an isomorphism.

Let us consider again the isomorphism 93 : EL, (Ko) —>¦ Hj(X'i), which is defined
in (3.2) thanks to the existence of the cobordism. Since Ft is (n —l)-connected then

and 9n(KeiXo) KerXi, so 9n_x o d(Rn(F0, Ko))=

Let 9 be the restriction of the isomorphism Ai o Qn_\ o AQ on the Z-torsion
of Coker <Sq

Let ip be the restriction of 9n on xo(Hn(-Ko))- As Xi(H-n(Kt)) Ker 5* so tp

is defined on Ker <Sq

We denote by A(y>) the submodule {(x,y(x)); x G Ker5^} of Hn(F0)eHn(Fi).
(3.5) Remark. By construction tp fulfills: tp o xo Xl°"n an(i

x(Hn(#o)) where x= (xo,Xl°#n) as in (3.2).
(3.6) To prove theorem 2, we will construct a metabolizer M (in Hn(Fo TJ —

for A Aq © —-Ai- This metabolizer M will fulfill conditions c.l and c.2 in
definition (1.2) of the algebraic cobordism, for the isomorphisms (p and 9 defined
in (3.4). To do that, we have to choose an oriented submanifold W of S with
d(W) N (thanks to (3.1) such a W exists). Let j : Rn(N) -> Hn(W) be the
homomorphism induced by the inclusion of N in W.

(3.7) Lemma. The form A Ac, © -A\ vanishes on A^Ker jA).

Proof. It is sufficient to prove that A vanishes on A"1 (Ker j). Let a [x] and
b [y] be two homology classes in A"1 (Ker j). As A is induced by the inclusion
of Fq TJ —F\ in N (see (3.2)), there exists two (n + l)-chains a and ß in W such
that da x and dß y. Let i_|_ be the positively oriented normal vector field to
W in <S. The intersection of a and i+(/3) is zero. Hence the linking number in S
of x and i+(y) is zero. But this linking number is, by definition, equal to A{a,b),
so A(a, 6) 0 and the lemma is proved. D

(3.8) Lemma. Let m be the rank ofRn(N). The rank o/Ker j is f.
Proof. The long exact sequence for the pair (W, N) gives the exactness of:

0 ^ H2n+i(WO ^ R2n+l(W,N) -+ R2n(N) - ^ Hn+1(^,W) ^ Kerj ^ 0

The alternating sum of the ranks in this exact sequence together with the Poincaré
duality give:

rk(Hn(A0 m
rk(Ker j)

(3.9) Lemma. There exists a direct summand decomposition of X (Ker jA) in

2 2

D
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A(cp)(&R0(&R where A(y>) {(z,y(z)), x£ KerS^}, Ro A"1 (Ker j)
and R is any direct summand complement of X~ (Ker jA)DKer S* in A~ (Ker jA)

Proof As the considered submodules of A^1(Ker^A) are pure, the lemma comes
from the following equalities

Ker A C A-1(KerjA) (see (3 2)),

'o* D

(3 10) Proposition. The submodule M A(ip) © R of A"1(Ker^A)
metabohzer for A Aq © —A\, which fulfills M n Ker S*

Proof By lemma (3 9), MnKerS* A(y>) By (3 6), A vanishes on M So we

only have to show that M is of rank ^ As remarked in (3 3), r rk(ö(Hn(N))),
so rk((5(Ker jA)) < r Let us consider the following exact sequence induced by

(3 2) 0^ A(f) ^ A-1(Ker^A) À KerjA -^ô(KeYjA) -^ 0 This exact sequence
together with the equalities rk(Ker^A) ^ (see (3 8)), rk(A(y>)) r give
rk(A-1(Ker jA)) =r + f- rk((5(Ker jA)) So rk^-^Ker jA)) > fWe can remark that if A is non degenerated (as supposed in theorem 2) then
we have rk(A"1(Ker jA)) < -|rk(Hn(F0) © Hn(Fi)) f, because A vanishes

on A"1 (Ker jA) (see (3 6)) So, if A is non degenerated, rk(A-1(Ker jA)) f,
rk((5(Ker jA)) r, rk(iî0) 0 and M A"1 (Ker jA) is a metabohzer for A

Come back to the general case Let ro be the rank of Rq By construction
rk(M) rk(A-1(Ker jA)) - r0 r + f - rk((5(Ker jA)) - r0

(3 11) Lemma. The rank I of ö(Hn(N)) ixi\<reT ^\ %s greater or equal to ro

Proof Let {e0}, j 1, ro be a basis of Rq Let {e*} be in Hn(N) <g>z Q
such that S>Ar(A(eJ),e*) StJ where Sjy is the intersection form on Hn(N) <g>z Q
The e* exists because Sjy is ummodular Let R* be the submodule of Hn(N) <8>zQ

generated by {e*} Since Ro n Ker A {0}, then rk(A(i?o)) ro As S vanishes

on Ro, then Sjy vanishes on X(Rq) It implies that rk(i?*) rk(i?o) ro, and
Ker jC\R* {0} Since Rq C Ker Sq, we have S(x, y) 0 for all z in i?o and all y in
H„(Fo LJ -Fi) So Ä* n A(Hn(JFb U -*l)) {0} and rK^H^W))/^^^))

r0 D

In order to end the proof of (3 10), we only have to show that rk(i?) ^ — r
But rk((5(Ker jA)) r — I so we already have shown that rk(i?) rk(M) — r
f " (r ~ I) ~ ro

By lemma (3 11), we have / -r0 > 0, so rk(fl) > f -r But ßnKerS1* {0}
by construction, and the form S induced by S on Yin(Fo ]J "^O/KerS** ls non"
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degenerate of rank m — 2r. So rk(i?) < ^ — r because S vanishes on R

R/(RDKeiS*)- D

(3.12) Remark. We have found a metabolizer M A(y>) © R for A which
fulfills condition c.l of the algebraic cobordism without any condition on A. We

already have got theorem 4 (see (1.6)). To prove condition c.2 and M is pure in
G, we will have to choose (n — l)-connected Seifert surfaces Ft for Kt on which
the Seifert forms At are unimodular. So the following proposition (3.13) together
with proposition (3.10) imply theorem 2 stated in (1.4).

Let 0n_i be the isomorphism betweeen Hn_i(Ko) an(i Hn-i(Ki) defined in
(3.2), and let 6 the isomorphism between Tors(Coker<S>Q) and Tors(Coker S^)
defined in (3.4). Using the notation of (2.2), let A(0n_i) (resp. A(0)) be the group
{(x,ön_i(x)) ; xeTors(Hn_i(Ä-0))} (resp. {(z,0(z)) ; z € Tors(CokerS3)}).

(3.13) Proposition. If Aq and A\ are unimodular the metabolizer M
R of A A0(&-At, fulfills d(S*(M)A) A(0) ; and~M is pure mRn(F) /KelS*-

Proof. Let us denote Fo TJ -Ft by F, Ko TJ -i^i by K, and S£ © -5J by S*.
We consider for F the following commutative diagram already constructed for Ft
in (3.4):

Il II =1 U o P =1 Ao © Ai

O -> KevS* ^ Hn(F) S Homz(Hn(F);Z) -i CokerS* -> 0

(3.14) Lemma. TVie equality d(S*(M)A) A(0) is equivalent to the equality
d(S*(M)A) A(0n_i).

Proof. The lemma is a consequence of the two following statements:

The restriction of Ao © Ai on A(0n_i) is an isomorphism to A(6) because
9 o Ao Ai o 0n_i by construction (see (3.4)).

The restriction of Ao © Ai on d(S*(M)A) is an isomorphism to d(S*(M)A)
because the commutativity of the above diagram gives UoP(S*(M)A) S*(M)A.

D

Let k : Hn(N) -^ Hn(N,C) be the homomorphism which is defined in the long
exact sequence for the pair (N,C) and p : Hn(N,C) —> Nn(F,K) be the inverse
of the excision isomorphism induced by the inclusion of the pair (F, K) C (N, C).
Let £ po k : Hn(AT) —>¦ Rn(F,K) and ~6 (Id, 0n_i) : H„



Vol. 72 (1997) A theory of cobordism for non-spherical links 45

With the notations used in (3.2) we have the following commutative diagram:

- Rn(K0) ^ Bn(F) A Rn(N) -i Hn_!(if0) -
(*) II (I) U (II) 10

-+ Bn(K) XO^X1 Rn(F) ^ Bn(F,K) ^ Bn-l(K) -+

The square (I) is commutative by fonctoriality, and (II) is commutative by definition

of £ and 9.

(3.15) Lemma. // Aq and A\ are ummodular, then we have (5(Ker jA)
Hn-i(K0).

We first show that lemma (3.15) implies proposition (3.13).
We show that M is pure in Hn(-P1)/KerS'*' wnicn is equivalent to prove that

the quotient Hn(F)/(]^eTg* _i_ m) ls torsion free. Since A Aq © —A\ is non-

degenerate M A (Ker jA). Furthermore by diagram (*) we get A(KerS'*)
Ker£. Let pr be the projection of Hn(iV) on Hn(iV);/T^ 'A + K (t\, so Ker (pr o

A) M + KerS**. The quotient of pr o A induces an injective map from

S* + M) into R

Claim. The module H„(JV)yw -a t^ ^ is torsion free.

Proof of the claim. There exists xt, i 1,... ,r, in KerjA such that Hn_\(Ko)

(ô(xl))®Tors(Hn-i(Ko)). Let (y,)t=it ,r a basis of Ker£ such that Sfq{xt,y:])

ötJ. By induction on r, we can construct these bases such that Hn(N) T©^ T1-
r

where T (^){xt,yt). If we denote by D the module D TL n Ker jA and by
i=\

D* any direct summand complement of D in TL, then we get:
H„(A0 /(Ker£ + Ker jA) ~ D* wnich is torsion free. D

Finally Hn(F) /(KerS** + M) is torsion free and M ls Pure m H™(^)/(Ker 5*V
So if n 1, the links i^o an(i K\ have torsion free homology groups (/C is a

one dimensional compact manifold), so Tors(CokerS'*) {0} and we have already
proved proposition (3.13).

Now let us take n > 2.

Thanks to lemma (3.14), the equality: A(0n_i) d(St(M)A) gives proposition

(3.13). The above diagram (*) and lemma (3.15) imply: 6>(Hn_i(Ko))
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A(0n_i) C <9(S*(M)A). To show that the inclusion: A(0n_i) C <9(S*(M)A) is an
equality, it is sufficient to take any x in (d(St(M)A) C]d(Rn(Fo, Ko)), and to show
that such a x is zero.

Let us denote by L (resp. Lt) the linking form on Tors (Hn_i(K)) (resp.
Tors (Hn_i(Kt))). By définition (see remark (3.16)) such a form L Lq © —Li
is non degenerated and vanishes on d(S*(M)A) because Sq © —5*1 vanishes on M.
Let (y,0„-i(y)) be in A(0n_i). Then L{x, (y,0„-i(y))) Lo(z,y) 0 for all
y G Tors(Hn_i(Äo))- The non degeneracy of Lq implies x 0. This ends the
proof of proposition (3.13). D

(3.16) Remark. The linking form L is defined as follows (see [L-L, 75] prop.
2.1): Let x,y be in Tors (Hn_i(if)) such that p and q are the smallest positive
integers with p.x q.y 0. Let x and y be in Hn(F) such that d(S*(x) <g> -) x
and d(S*(y) ®\)=y. Then: L(x,y) ^ s(x, j/) mod Z.

Proof of lemma (3.15). As shown in (3.10), if Aq © —-Ai is non degenerated,
M A~1(Ker jA) has rank Ç and is the chosen metabolizer. So A induces a

monomorphism A on Wn{F) i-^j- to Hn(./V) /-^ -a and we get the following exact

sequence:

0 - H„(F)/M À Rn(N)/KeijA I Hn^K0)/s{KeijA) ^ 0.

As A is injective and M is pure in Hn(F) there exists two Z-bases {ëo\j=\, ,-ç}
of Hn(F) i-^/j- and {fcj;j=l, ,-f} of Hn{N) i-rr -a such that A(ëj) p3.k3 with

Pj G Z \ {0}. Let £? (resp. iî) be a direct summand complement of M (resp.
Ker jA) in Hn(F) (resp. Rn(N)). Let also {e^^l, ,f} (resp. {/^; j=l, ,f}) be

a Z-basis of i? (resp. H) such that e^ ~ê3 mod M (resp. fcj k3 mod Ker jA).
By construction \{e3) —p3.k3 x G Ker jA. So there exists a (n+ l)-chain 7 in VF

and a positive integer a such that: cfy a A(ej) — ap3.k3. Let p be a (n+ l)-chain
of S'2n+1 x [0,1] with dp k3. Soae3 is the boundary of ~f+ap3.p in S2n+1 x [0,1].

Statement: for all m in M, p5 divides A{e3,m).
Let m be in M A^Ker^) and A be a (n + l)-chain in S2n+1 x [0; 1] such

that <9A i_|_(77i). By définition A(ae3,m) is the intersection in 5>2n+1 x [0,1] of
7 + ap3.p and A. But A(am) G Ker j so there exists a (n + l)-chain /x in VF such
that d)i am. We have d(i^(p)) ai^(m). Since <9(aA) ai_|_(m), we get
7l~l(aA) 7n(i+(/i)) 0. But a > 0, so a(-jC\ A) 0 implies 70 A 0. Finaly
A(aej,m) apj.(pD A) and p5 divides A{e3^rn).

If A is unimodular the statement implies that p3 ±1 for all j 1,... ^- So

A is an isomorphism and his cokernel is zero. As asked we have got: S(Kei jA)
Hn-\{Ko). This ends the proof of lemma (3.15). D

(3.17) Remark. As above we can also prove that: for all m in M p0 divides
A(m,e3).
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4. The sufficient condition to have a cobordism

(4.1) Let Kq and K\ be two 2n — 1 dimensional simple links, with n > 3. We

suppose that there exists (n — l)-connected Seifert surfaces Fq and F\, for Kq and

K\, such that the associated Seifert forms Aq and A\ are algebraically cobordant.
We consider Kç, (resp. —K\) as embedded in the sphere 5>2n+1 x {0} (resp.
S2n+1 x {1}) which are oriented as the boundary of S2n+1 x [0,1].

Let x be in S2n+1 x {0} such that (x x [0,1]) n (Fq TJ -F\) is empty, and let
U be a "small" open ball around x in 5>2n+1 x {0}. The boundary S of the disk
D {S2n+1 x [0,1]) \ (U x [0,1]) contains Fo LJ --^1- Let G be the closure of the

o o

connected sum, in S, of the interiors Fq and — F\. By construction A Aq(B— A\
is the Seifert form of Kq TJ —K\, associated to G.

(4.2) Proof of theorem 3. In order to prove theorem 3 we will do in D, an
embeded surgery on G, the result of which being a manifold G diffeomorphic to
/Cx [0,1].

By proposition (2.1) we can choose a good basis B {(mt,m*);i=l, ,s+r} of
Hn(G). Thanks to J. Milnor ([Ml, 61] lemma 6 p. 50), any cycle of G can be

represented by the image of an embedding of Sn. Furthermore:

(4.3) Proposition. There exists s + r disjointed embeddmgs ript : _Dn+1 X Dn —s-

D such that for any i€{l,...,s + r} we have

2- x Dn)) n G

Proof. Let ^ : S*" —s- G be an embedding of S*" which represents m-j. Let i,j
with i 7^ j, be in {1,... s + r}, then mt and m^ are in the metabolizer M and
we have: S(mt,mj) A(mt,mj) + — l)n A(mj,mt) 0. Since n > 3, thanks to
Whitney's procedure [Wh, 44] we can choose the ipt such that ipt(Sn)P\ipj(Sn) 0.

Since n > 2, the Whitney obstruction to extend ipt to disjoint embeddings ipt of
£P+1 m ^e (2n + 2)-disk D, is the matrix A{m%1mJ) which is zero. Furthermore,
A(mt,mt) 0 is the classical obstruction to extend ipt to ipt : _Dn+1 x Dn —> D.
(see [Br, 72] and for details see [Bl, 94] proposition 5.1.2, p.58). We choose this
extension i/jt such that the restriction to Sn x Dn is a tubular neighbourhood of
'ipt(Sn) in G. D

So thanks to proposition (4.3) we obtain a submanifold G of D as follows:

s-\-r s-\-r

G (G \ JJ V.(S" x £")) U JJ

(4.4) Proposition. The inclusion ko (resp. k\) ofKq (resp. K\) mG, induces

isomorphisms kOyJ (resp. k\0) from Hj(Äo) (resp. Yi.3(K\)) to Hj(G) for all j.
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(4.5) Corollary. We have H*(G, Ko) H*(G, Kx) 0.

This corollary (4.5) and the h-cobordism theorem imply that G is diffeomorphic
to Kq x [0,1]. More precisely dim G 2n > 6 and:

h-cobordism Theorem [M2, 65]. Let A4 be a k-dimensional differentiable compact

manifold with <9A1 A^o LI-Mi such that A4, A^o and -Ml are simply
connected. //H*(A1, A4q) 0 and k > 6 then A4 is diffeomorphic to A4q X [0,1],

So to end the proof of theorem 3 we only have to prove proposition (4.4).

Proof of proposition (4-4)- According to proposition (2.1), the intersection form
on Hn(F) splits in an orthogonal sum on the submodules (mt,m*), i 1,... s+r.
So the proof of (4.4) when s + r 1 implies the general case.

Let us suppose that rk(M) 1 and let m be a generator of M, then Hn(G)
{m,m*). We denote by ip : _Dn+1 x Dn —s- D an embedding choosen as in proposition

(4.3), by j] : Sn —s- G an embedding such that [^(S*")] m*, and by Gt the

manifold GT G\ %l){Snx Dn).
(4.6) The Mayer-Vietoris sequence associated to the following decomposition

of the manifold: G GT U ip(Sn x Dn) gives:

0 -^ ^(^(S1" x S1"-1)) ^ Hn(GT) 0 ^(^(S1" x Dn)) -+ Hn(G)

^> Hn_1(^(S'n x S1"-1)) ^ Hn_!(GT) ^ 0.

where (5 is given by the intersection of cycles with m.
(4.7) The Mayer-Vietoris sequence associated to the following decomposition

of the manifold: G GT U ^(-Dn+1 x S1""1) gives:

0 ^ Rn('HSn x 5"-1)) ^> Hn(GT) ^ Hn(G) ^> Hn_i(V(S" x S^1))

0 Hn_!(GT) ^ Hn_!(G) ^ 0.

Remark that the homomorphism ß is injective into Hn_i(V'(-Dn+1 x S*"^1)), hence

7 0 and the sequence (4.7) splits up into:
(4.8) 0 ^ Kn(iKSn x S1"-1)) ^ Hn(GT) ^ Hn(G) ^ 0,

(4.9) o ^ Hn_1(^(S'" x S1"-1)) ^> Hn_1(^(JD"+1 x S1"-1)) e Hn_!(GT) ^
Hn_!(G)^0.

Since rk(M) 1 s + r we have to consider the two following cases: s 0,r
1 and s l,r 0.

• Is* case: s 0 and r 1, then KerS** (m,m*).
In sequence (4.6) we have Ker (5= (m,m*), then Hn(GT) (['ip(Snx{l})],[r/(Sn)})
and Hn_i(GT) ([^({1} x S™-1)}). In sequence (4.8) we have Im a
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{[ip(Sn x {1})]), so Hn(G) {[v(Sn)\) By construction of the good basis

(2 1), [^(S*™)] is a generator of Im(Hn(Äo) —>¦ Hn(G)) So the inclusion of Äo

in G induces the isomorphism &o n Hn(Äo) —*¦ Hn(G)
Since Hn_i(GT) ([^({1} x S1™"1)]) in sequence (4 9), we have Hn_i(G)
([^({1} x Sn~^~)\) Condition c 1 of the algebraic cobordism gives that there
exists a in Ker Sq such that m (a, <p(a)) If we denote by 70 Hn(Äo) —>¦ Hn(G)
the homomorphism induced by the inclusion, then we can choose b in Hn_i(Äo)
such that Hn_i(Äo) (b) and b is the dual of 7q (a) for the intersection form
of Äo There exists B in Hn(G, Ko) such that <9_B b and the intersection be-

o

tween B and m is +1 The boundary of the n-chain (B - (Bn-tp(Snx Dn))) is
1 ^ 1homologous to the (n- l)-cycle b-O({1} x S1™"1)), hence b and [^({1} x S1""1)]

are homologous in Hn_i(G) ([^({1} x 5*"~ ¦*¦)]) Thus the inclusion of Kq in
G induces the isomorphism &o n_i Hn_i(Äo) ~^ Hn_i(G)

• 2nd case s 1 and r 0, then Ker S* {0} and Hn(X~o) 0

In sequence (4 6) we have Ker S (m), then Hn(Gr) {[ip{Sn x {1})]} and
Hn_i(GT) ([^({1} x S71-1)}) In sequence (4 8) we have Ima= {[4>{Sn x {1}])
Since Hn(GT) {[4>{Sn x {1})]) we have Hn(G) 0 Hn(X0)

- if S*(m) is indivisible (1 e Hn_i(Ko) 0), then ô in (4 6) is surjective
Thus Hn_i(G) 0 H„_i(Äb)

- If a 7^ 1 is the greatest divisor of S*(m) (1 e Hn_i(Ä"o) — ^/al) ^en
condition c 2 of algebraic cobordism together with lemma (3 14) give that
there exists c in Hn_i(K~o) such that d(-^ S*(m)) (c, 0n_i(c)) Let 6 in
Hn_i(Ä"o) be the dual of c for the linking form of Kq There exists B
in Hn(G, Äo) such that dB b and the intersection between B and m is

+1 As before the boundary of the n-chain B - {B n ^"x £>")) is the
n-cycle 6 — ^({1} x ^n~1)J hence b and [^({1} x S*"^1)] are homologous in
Hn_i(G) Since Hn_i(GT) ([^({1} x S^1)}) in sequence (4 9) we have

Hn-i(G) ([^({1} x S1""1)]) Thus 6 and [^({1} x S^1)} are homologous
in Hn_i(G) and the inclusion of Äo in G induces the isomorphism ko n_\

Since G is obtained by surgery on n-cycles, this surgery only modifies homology
groups of dimensions n and n — 1 Hence for k =/= n,n — 1 we have Hfc(G)

Hfc(Äo) Hfc(G) By symmetry we also have the same results with K\
Finally ko 3 and k\ 3 are some isomorphisms for all j This ends the proof of
proposition (4 4), and the proof of theorem 3 D

5. Appendix — Alexander polynomials of cobordant links.

Let Ä be a 2n — 1 dimensional simple link, and e — 1)" One can associate a

polynomial A G 7L\X\ to any Seifert surface F for the link Ä, defined by A(X)
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det (XA + £ÄT), where A is the Seifert form associated to F Such a polynomial
A is called a Alexander polynomial for the link K Changing the Seifert surface
to another multiplies A by ±Xm with m in Z

For a polynomial 7 in Z[X] we define the polynomial 7* by 7*(X) Xdeg7

(5 1) Proposition. Let Kq and K\ be two cobordant simple 2n— 1 dimensional
links If Aq and A\ are Alexander polynomials for Kq and K\, then there exists

7 in Z[X] such that 77* ±Ao Ai

Remark. If F is the Milnor fiber of an algebraic link K, then the associated
Alexander polynomial is the characteristic polynomial of the monodromy Hence
the above proposition and the monodromy theorem imply corollary (0 7)

Proof of proposition (5 1) We denote by Fq and F\ two (n — l)-connected
Seifert surfaces for Kq and K\, and by Aq and A\ the associated Seifert forms
The links Kq and K\ are cobordant so proposition (3 10) implies that the form A
Aq(B—Ai has a metabolizer M Therefore, there exists a basis for Hn(Fo)®Hn(Fi)

such that in this basis the matrix for A is „ „I where Bt, %=\ 2 3 are square
\ £>2 £>3\

matrices We have A0(X) Ai(X) det (XA + eAT), hence A0(X) Ai(X)
e det {XBi+eBl) det {XB2 + eBl) Let 7(X) be det(XBi+e5j), then 7*(X)
det(XS2 + eB\) Finally we get 77* ±A0 Ai D
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