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The structure of branching in Anosov flows of 3-manifolds

Sergio R Fenley*

Abstract. In this article we study the topology of Anosov flows in 3-manifolds Specifically we
consider the lifts to the universal cover of the stable and unstable foliations and analyze the leaf
spaces of these foliations We completely determine the structure of the non Hausdorff points in
these leaf spaces There are many consequences (1) when the leaf spaces are non Hausdorff, there
are closed orbits in the manifold which are freely homotopic, (2) suspension Anosov flows are, up
to topological conjugacy, the only Anosov flows without free homotopies between closed orbits,
(3) when there are infinitely many stable leaves (in the universal cover) which are non separated
from each other, then we produce a torus in the manifold which is transverse to the Anosov flow
and therefore is incompressible, (4) we produce non Hausdorff examples in hyperbolic manifolds
and derive important properties of the limit sets of the stable/unstable leaves in the universal
cover

Mathematics Subject Classification (1991). Primary 58F25, 58F18, 58F15, 57R30,
Secondary 57M10, 57M99, 58F22

Keywords. Anosov flows, stable and unstable foliations, closed orbits, homotopic behavior of
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1. Introduction

In this article we study the topological structure of the lifts to the universal cover
of the stable and unstable foliations of 3-dimensional Anosov flows In particular

we consider the case when these foliations do not have Hausdorff leaf space
We completely determine the structure of the set of non separated leaves from a

given leaf in one of these foliations We show that these leaves project to leaves

in the manifold containing periodic orbits of the flow and produce a non trivial
free homotopy between closed orbits of the flow As a consequence suspensions
are characterized, up to topological conjugacy, as the only 3-dimensional Anosov
flows without freely homotopic closed orbits Furthermore we establish a connec-

* Research partially supported by NSF grant DMS-9201744 and an NSF Mathematical
Sciences Postdoctoral Fellowship
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tion with the topology of the manifold: if there are infinitely many leaves not
separated from each other then there is an incompressible torus transverse to the
flow. Transitivity is not assumed for these results. Finally we specialize to Anosov
flows in hyperbolic 3-manifolds: we produce many non Hausdorff examples and
then derive some important properties of the limit sets of leaves in the universal
cover.

The study of the topological structure of the lifted foliations of an Anosov
flow in a closed manifold was introduced in a remarkable paper of Verjovsky [Ve]
in order to study codimension one Anosov flows. If the lifted stable foliation has

Hausdorff leaf space, then the leaf space is homeomorphic to the set of real numbers
and we say that the stable foliation in the manifold is R-covered. An important
fact for 3-dimensional Anosov flows is that the stable foliation is R-covered if and
only if the unstable foliation is also R-covered [Fe3,Ba2], in which case the flow
is said to be R-covered. In this article we restrict to Anosov flows in (closed)
3-manifolds.

Two early uses of this technique were: (1) Ghys [Gh] showed that an Anosov
flow in a Seifert flbered space is R-covered. This was an essential step in showing
that the flow is, up to finite covers, topologically conjugate to the geodesic flow in
the unit tangent bundle of a closed surface of negative curvature (briefly, a geodesic
flow). (2) If the fundamental group of the manifold is solvable then the R-covered
property, proved by Barbot [Bal,Ba2], is again an essential step in Plante's proof
[P12,P13] that the flow is topologically conjugate to the suspension of an Anosov
diffeomorphism of the torus (a suspension). In fact this last result holds for any
codimension one Anosov flow. This highlights the importance of the topology of
the lifted foliations in order to understand the flow.

More recently, a lot of information has been gained by analysing not just the
individual leaf spaces, but rather the joint topological structure of the stable and
unstable foliations. Using this and Dehn surgery on closed orbits of suspensions
or geodesic flows [Fr,Go], a large family of examples was constructed where every
closed orbit of the flow is freely homotopic to infinitely many other closed orbits
[Fe3]. This never happens for suspensions or geodesic flows, and was thought to
be impossible for any Anosov flow.

Our initial motivation was to understand Anosov flows in hyperbolic 3-manifolds,
of which there are many examples [Go,Ch], but which are still fairly misterious.
Up to now, the only technique that yields any information when the manifold is

hyperbolic is the topological theory mentioned above. For instance the topological
theory gives information about metric properties of flow lines: a flow is said to
be quasigeodesic if flow lines are uniformly efficient (up to a bounded multiplicative

distortion) in measuring distances in relative homotopy classes. Suspensions
and geodesic flows are always quasigeodesic and there are many quasigeodesic
"pseudo-Anosov" flows in hyperbolic 3-manifolds [Ca-Th,Mosl,Mos2,Fe-Mo] (a
pseudo-Anosov flow is a generalization of an Anosov flow, where one allows finitely
many singular orbits, which have prong type singularities, see [Fe-Mo]). The quasi-
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geodesic property is extremely important in hyperbolic 3-mamfolds [Thl,Mor] and

was used for instance in the proof of the geometrization conjecture for Haken
manifolds Using the topological theory and the Dehn surgery construction mentioned
above, one produces a large family of Anosov flows in hyperbolic manifolds which
are not quasigeodesic [Fe3] All these examples are R-covered Anosov flows One

important question is to understand how such flows interact with the hyperbolic
structure and the ideal compactification of the universal cover We will return to
this question later

Barbot [Ba3,Ba4] also used this topological theory to study Anosov flows and
proved the following remarkable result Assume that there is a Seifert fibered

piece in the torus decomposition of the manifold [Jo,Ja-Sh] and suppose that the
corresponding fiber is not freely homotopic to a closed orbit of the flow First
isotopically adjust the boundary ton of the Seifert fibered piece to be as transverse
to the flow as possible [Ba3] It follows that the flow restricted to that piece is

topologically conjugate to a (generalized) geodesic flow on the unit tangent bundle
of a compact surface with boundary If the manifold is a graph manifold (that
is, all pieces of torus decomposition are Seifert fibered) and all fibers satisfy the
condition above, then the flow in M is, up to topological conjugay, obtained by
Dehn surgery on finitely many closed orbits of a geodesic flow [Ba4] Using this
Barbot [Ba4] has obtained the first known examples of graph manifolds which are
neither torus bundles over the circle, nor Seifert fibered and which do not admit
Anosov flows

The results above are in great part due to a complete characterization of the
possible joint topological structures of R-covered Anosov flows [Fe3,Ba2] On the
other hand very little is known about the non R-covered case, for the simple reason
that their structure is not understood at all

It is easy to show that mtransitivity implies that the flow is not R-covered
[So,Bal] and for many years there was a great effort in trying to prove that these
two properties are equivalent [Ve,Gh,Fe3,Ba2] However in a surprising development

Bonatti and Langevm [Bo-La] have recently constructed a transitive, non
R-covered Anosov flow in dimension 3 Subsequently Brunella [Br] produced a

large class of examples by doing Dehn surgery on geodesic flows The common
tool used to show that the flows are not R-covered is the existence of an embedded
torus transverse to the flow, which is then incompressible Hence the underlying
manifolds are not hyperbolic

One fundamental question which remained to be answered was whether the
manifold M being hyperbolic would imply that any Anosov flow in M has to be
R-covered A positive answer would have enormous consequences no Anosov flow
in a hyperbolic 3-manifold could be quasigeodesic [Fe3] and in such flows every
closed orbit would be freely homotopic to infinitely many other closed orbits [Fe3]

In this article we answer this question in the negative

Theorem A. There is a large class of transitive, non R-covered, Anosov flows
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where the underlying 2>-manifold is hyperbolic. This includes all Anosov flows in
non orientable, hyperbolic 3-manifolds.

Therefore transitive non R-covered Anosov flows can occur in graph manifolds
[Bo-La], in hyperbolic 3-manifolds and in manifolds containing Seifert fibered and
hyperbolic pieces in their torus decomposition [Br]. This highlights the importance
of understanding the structure of non R-covered Anosov flows, which up to now are
completely mysterious. The main goal of this article is to start a systematic study
of Anosov flows which are not R-covered, where we then say the lifted foliations
have branching. We will not a priori assume that the manifold is hyperbolic or
that the flow is transitive.

This leads us to two basic and very important questions: (1) when can branching

occur and (2) what are the possible structures of branching in Anosov flows
of 3-manifolds? In this article we address question (2) and completely determine
the local structure of branching. We then show that the branching structure is

strongly related to the dynamics of the flow, the topology of the manifold and the
metric behavior of the stable and unstable foliations.

Let then $ be an Anosov flow in M with two dimensional stable and unstable
foliations JFS,JF". Here M is always closed. Let iFs,ÏFu be the respective lifts
to the universal cover M. Let Hs and Hu denote the leaf spaces of Ts and Tu
respectively. If Ts is not R-covered, Hs is not Hausdorff, and the branching leaves

of Ts correspond to the non Hausdorff points in Hs. Two leaves F =/= F' of Ts
form a branching pair if the corresponding points in Hs are not separated from
each other. Equivalently F,F' do not Jiave disjoint saturated neighborhoods in
M,jvhere a saturated neighborhood of Ts is an open set which is a union of leaves

oiP. _Since M is simply connected, Ts and Tu are always transversely orientable
and an orientation is fixed. Then there is a notion of branching in the positive
or negative directions. The first important result was proved in [Fe5]: Suppose
that $ is transitive. If there is branching in the positive direction of (say) the
stable foliation then this foliation also has branching in the negative direction.
This concerns the "global" structure of branching.

Here we analyse the "local" structure of branching. In general the local structure

of branching in the lifted foliations can be very complicated [Im]. We show
that branching in Anosov foliations is^of a simple type which is very rigid. For
simplicity thejbheorems are stated for Ts but work equally well for Tu.

A leaf of Ts or Tu is said to be periodic if it is left invariant by a non trivial
covering translation of the universal cover. Equivalently, its image in M contains
a closed orbit of $.

Theorem B. Let $ be an Anosov flow in M If F is a branching leaf of Ts,
then F is periodic.
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Figure 1. The set of non separated leaves from F G Ta and in the back of F. D is between E
and L.

Theorem B should be interpreted as a rigidity result in the sense that periodic
leaves are "rigid", while non periodic leaves are non rigid. This is best seen in the
manifold M: if the stable leaf (in M) is periodic then it contains a closed orbit
of $ and every orbit in the leaf is forward asymptotic to this closed orbit. The
nearby returns (in forward direction) are in the same local stable leaf. In case
the leaf is not periodic, then the orbits in the leaf limit in points of M, but the
nearby returns are always in distinct local stable leaves. This means that when
lifted to the universal cover one can slightly perturb the local structure, producing
a contradiction.

Our next goal is to understand the local structure of branching. Let F be a
leaf of Ta which is a branching leaf. Let £b(F) be the set of leaves of Ta which
are non separated from F and are either equal to F or are contained in the back
of F. Similarly define £j(F). We show there is a natural order in £b(F) given
by: if E ^ L G £b(F) then we say that E < L if there are G,H G fu with
GC\E^$,HC\L^$ and G is in the negative side of H, see fig. 1. Using this we

can say that a branching leaf D G £b(F) is between E and L if E < D < L.
One measure of the complexity of branching is the number of branching leaves

between any E,L G £b{F). A priori there could be infinitely many in between
branching leaves producing a very complicated structure. However we prove:

Theorem C. Let $ be an Anosov flow in M3. Let F be a branching leaf of Ts
and £b(F) be the set of non separated leaves from F and in the back of F (F is
included in £b{F)), with the order defined, above. Then either

(1) £b(F) is finite, hence order isomorphic to {1,2, ...,n} or,
(2) £b(F) if infinite and order isomorphic to the set of integers Z.

In particular given any E, L G £b(F), there are only finitely many branching leaves

between them. Analogous results hold for £f(F).

Notice that there are examples where both £b(F) and £f{F) contain leaves
other than F. This is what happens in the intransitive examples created by Franks
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and Williams [Fr-Wi]. A careful analysis of those examples shows that for any
branching leaf F G Ts, then both £b{F) and £f(F) contain exactly two elements.

As in the case of theorem B, there is a rigidity proof of theorem C. However
the rigidity proof is quite long and complicated. Our tactic will be to first show
the following result:

Theorem D. Let $ be an Anosov flow in M and let (F,L) be a branching pair
of Ts. Let g be a non trivial covering translation with g(F) F and so that g

preserves transversal orientations to J-s,J-U. Then g(L) L.

Using the important idea of lozenges (see définition in section 3) and a key
result from [Fe4], we show that theorem C follows easily from theorem D, except
that to rule out the case that £b{F) is order isomorphic to the natural numbers N
we need theorem F below. Section 4 contains a more detailed description of the
set £b{F).

Theorem D also implies that tt(F) and tt(L) contain freely homotopic closed
orbits and highlights the pervasiviness of freely homotopic closed orbits. This
shows that the topological structure of Ts

1 Tu is intimately connected with the
dynamics of the flow:

Corollary E. Let $ be an Anosov flow in M Then $ is topologically conjugate
to a suspension of an Anosov diffeomorphism of the torus if and only if there are
no freely homotopic closed orbits of $ (including non trivial free homotopies of a
closed orbit to itself).

Corollary E does not assume that $ is not R-covered. Another consequence
of theorem D is the following:

Theorem F. Let $ be a non IL-covered Anosov flow in M Then up to the

action of covering translations, there are finitely many branching leaves in J-s.

Equwalently there are finitely many distinguished closed orbits of $ in M so that
their stähle leaves lift to branching leaves in the universal cover.

We again stress that these results on the structure of branching are the most
general possible, because there is no assumption on the manifold nor on the flow.
In particular we do not assume that the flow is transitive. Theorems B, C, D and
F were previously proved under the assumption that M has negatively curved
fundamental group and furthermore that the flow is quasigeodesic [Fe4]. This last
hypothesis is a very strong assumption and made the proofs relatively easy. The
techniques used here are different because in general there are no metric properties
available to use. The proof only uses the topological structure of Ts.

We also show that the structure of branching is strongly related to the topology
of the ambient manifold. We say that there is infinite branching in Ts if there
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is an infinite collection of leaves of Ta, all of which are non separated from each
other. Otherwise we say that Ts has only finite branching.

Theorem G.^Let $ be an Anosov flow in M3 orientable so that there is infinite
branching in Ts. Then there is associated infinite branching in Tu and there is an
embedded torus T transverse to $. Hence T is incompressible. In particular M is
toroidal and cannot be hyperbolic and neither can tv\(M) be negatively curved.

A big part of theorem G follows quickly from theorem D and 3-manifold topology,

namely the fact that M atoroidal implies there is no infinite branching (corollary

4.8). However this "quick" proof uses 2 deep results: (1) The general torus
theorem [Ga] which in turn depends on the solution of the Seifert fibered conjecture,

and (2) The characterization of Anosov flows in Seifert fibered 3-manifolds
[Gh]. We give a proof of theorem G which depends only on the topological structure

of P and fu.
We remark that infinite branching does occur, for example in the Bonatti-

Langevin flow. Conversely theorem A yields many examples of non trivial finite
branching.

We also describe in detail the structure induced by infinite branching. This
uses "product regions" (see section 3), a tool which also has applications in [Fe8].

With the description of branching in general given by theorems B,C,D and

F^we can then specialize to Anosov flows in hyperbolic 3-manifolds. In that case

M is compactified with a sphere at infinity S^ and it is extremely important
to understand the asymptotic behavior of stable and unstable leaves in M and in
particular to study their limit sets [Thl,Th2,Mor,Bon]. The intrinsic geometry of a

leaf F of Ts or Tu is always negatively curved in the large and there is an intrinsic
ideal boundary dooF:_We say that $ has the continuous extensionjproperty if the
embedding ip : F —s- M extends continuously to ip : F U d^F ->MU S^, for any
leaf F in Ts or Tu. This property can be defined for any Reebless codimension
1 foliation in hyperbolic manifolds [Fe2] and it is true for fibrations [Ca-Th] and

many depth one foliations [Fel,FelO]. This property is weaker than quasigeodesic
behavior of $ [Fe3]. Recall that the limit set of B is the set of accumulation points
of B in S^q In this article we use the structure of branching to analyse limit sets
of leaves in connection with the continuous extension property:

Theorem H. Let $ be a non R-covered, Anosov flow in M3 hyperbolic. Suppose

that^ hasjhe continuous extension property. Then the limit set Kp of any leaf F
of J-s or J-u is a Sierpmski curve, that is, the complement of a countable, dense

union of open disks in S^. In addition there is k < 2 so that Ap has Hausdorff
dimension < k for any F G Ts or Tu, so in particular kp has zero Lebesgue area.

This result (except for the last statement) also works under the assumption that
tv\(M) is negatively curved. Theorem H is a significant improvement over results
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in [Fe4] : in [Fe4] we assumed the stronger hypothesis that $ is quasigeodesic and
were only able to show that Aj? is neither SÏL nor a Jordan curve.

In a forthcoming paper [Fe8] we use the results of this article to study Anosov
flows in toroidal manifolds, specifically to study incompressible tori in such
manifolds. It is of great interest to find, in the isotopy class of the torus, the best

position with respect to the flow [Ba3,Ba4]. We prove:

Theorem. ([Fe8]) Let $ be an Anosov flow in M and let T an incompressible
torus in M. Suppose that no loop in T is freely homotopic to a closed, orbit o/$.
Then $ is topologically conjugate to a suspension Anosov flow. Furthermore T is
isotopic to a torus transverse to $.

This article is organized as follows: in the next section we develop background
material and in section 3 we prove that branching leaves are periodic (theorem
B). Section 4 is the core of the paper, where theorems D,C,F, corollary E and

part of theorem G are proved. Section 5 studies product regions and applies this
to completely describe infinité branching. For the sake of presentation we collect
the results concerning hyperbolic manifolds in the last two sections: In section 6

we produce non R-covered Anosov flows in hyperbolic 3-manifolds and in the final
section we study the continuous extension property.

We thank Bill Thurston for encouragement and many helpful conversations
relating to this work. We also thank Thierry Barbot for useful suggestions to a
first version of this article. Finally we thank the referee for an extremely careful
reading of the manuscript and for inumerous suggestions which greatly improved
the paper and also simplified some of the proofs.

2. Background

Let $t : M3 —s- M3 be a nonsingular flow in a closed, connected Riemannian
manifold M. The flow $ is Anosov if there is a continuous decomposition of the
tangent bundle TM as a Whitney sum TM E° © Es © Eu of continuous D$t
invariant subbundles and there are constants /xo > 1, m > 0 so that:

(i) EP is one dimensional and tangent to the flow,
(ii) ||L>$t(v)|| < /ioe^^lMI for any v £ Es, t > 0,

(iii) ||L>$_t(V)|| < /ioe^^lMI for any v£ Eu, t>0.
The bundles Es, Eu integrate to one dimensional foliations 1FSS, Tww : the strong

stable and strong unstable foliations of the flow [An]. The bundles E° © Es and
EP © Eu are also integrable [An] producing 2-dimensional foliations Ts, Tu which
are the stable and unstable foliations of the flow.

The flow is said to be orientable if both JFS,JF" are transversely orientable.
There is always a regular cover of order < 4 where the lifted Ts and Tu are
transversely orientable. Whenever possible we lift to such a cover.
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The leaves of Ta
1 Tu are either topological planes, annuli or Möebius bands.

The last two correspond exactly to leaves containing closed orbits of $. There is

at most one closed orbit in a leaf of Ts, in which case all other orbits are forward
asymptotic to it. Similarly for Tu.

The foliation Ts is Reebless, so Novikov's theorem [No] implies that given any
closed orbitj of $, 7™ is not null homotopic for any n^O.

Let it : M —s- M be the universal covering space of M. This notation will be

fixecHhroughout the article. The Anosov foliations Ta ,-F" lift to foliations Ta ,ÏFU

in M. The leaves of Ta ^Tu are topological planes, so M is homeomorphic to R
[Pa]. Therefore M is irreducible that is every embedded sphere in M bounds a

3-ball. The induced flow in M is denoted by $.
Let O,be the orbit space of $ obtained by collapsing flow lines to points and

let © : M —s- Ö be the projection map. A fundamental result which will be used

throughout this article is that Ö is Hausdorff and hence homeomorphic to R
[Fe3]. This is a significant simplification because now much of the analysis can be
done in dimension 2 instead of dimension 3. We stress that O is only a topological
object - there is no natural metric in O since the flow direction contracts and
expands jiistances in M. Therefore arguments that involve distances have to be
done in M, while topological arguments (e.g. leaves Ft converge to F, or leaf F
intersects leaf G) can be done in O.

The foliations TS,TU induce^ two transverse 1-dimensional foliations in Ö,
which will also be denoted by !FS,!F^. By an abuse of notation we will many
times identify sets in M or orbits of $ to their respective images in O.

The fundamental group tv\(M) is isomorphic to the set of covering translations
of M. We will usually assume one such identification is fixed. Given a covering
translation g, we will also denote by g its action on Hs ,HU (the leaves spaces of

Let Ws (x) be the leaf of Ts containing x and similarly define Wu (x), Wss (x),
Wuu(x), Ws(x), Wu{x), Wss(x) and Wuu(x). In the same way if a is an orbit
of $ we define Ws(a), etc.. General references for Anosov flows are [An], [An-Si],
[Bow], [Sh] and [Sm].

An incompressible surface (^ S2) is an embedded surface in M3 which is in-
jective in the fundamental group level. A manifold is toroidal if it contains an
incompressible torus and atoroidal otherwise.

3. Periodic branching leaves

In this section we prove theorem B of the introduction. The following définitions
will be useful. If L is a leaf of Ts or !FU, then a half leaf of L is a connected
component A of L — 7, where 7 is any full orbit in L. The closed half leaf is

A A U 7 and its boundary is dA 7. A flow band B defined by orbits a ^ ß in
L is the connected component of L — {a, ß} which is not a half leaf of L. The closed
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flow band associated to it is B B U {a, ß} and its boundary is dB {a, ß}.
Since M is simply connected, Ts and Tu are transversely orientable. Choose

one such orientation. Notice that in general, covering translations may not preserve
transversal orientations.

_^ ^For p £ M, let W"+{p) be the half leaf of Ws{p) defined by <lR(p) and the

positive transversal orientation to Tu at p. It is called a positive half leaf of
Ws(p). Similarly define Wl(p) (a negative half leaf), and also define W^_(p) and

A fundamental fact for us is that any leaf L in T^ or Tu separates M. This
is a consequence of M being simply connected and Ts ,TU being Reebless, which
together imply that L is properly embedded [No]. The front of L is the component
of M — L defined by the positive transversal orientation to L We also call this^the
positive side of L. Similarly define the back (or negative side) of L. For p G M let

W+s (p) W+(p) C\Wss{p). Similarly define Wls(p), W^(p) and Wm{p).
If F G Ts and G G Tu then F and Gjntersect in at most one orbit, since two

intersections would force a tangency of Ts and Tw. This is easiest seen in Ö, as

Ts and Tu are then 1-dimensional foliations of the plane.
We now describe four objects which are thejnain tools in this article.
We say that leaves F,L G Ts and G, H G Tu form a rectangle if F intersects

both G and H and so does L, see fig. 2 a. We also say that E intersects G between

F and L if EC\G is contained in the flow band in G defined by GC\F and GC\L. It is

easy to prove that if E G Ts intersects G between F and L then E also intersects
H between F and L. To see this just project to the plane O: then one sees a

true rectangle [0,1] x [0,1] foliated by horizontal (stable) and vertical (unstable)
segments - this last fact follows from index computations of foliations in the plane.
Hence there is a product structure of Ts and Tu in the region bounded by F, L, G
and H.

Definition 3.1. Given p e M (or p G O), let

an open subset ofHs. Notice thai the lea,fWs(p) (Ë J^_{p). Similarly define Ju_[p),

Js+(p) and Js_(p). Let also C\(j>) U {p G M \ p G F G J+(p)}. Then C\(j>)
is an open subset of M and Ws(p) C dC^_(jp). Similarly define Lu_ (p), jCs+(p) and
Cs_{p).

Definition 3.2. Two leaves F G Ts and G G Tu, form a perfect fit (F, G) if
F Pi G 0 and there are half leaves F\ of F and G\ of G and also flow bands

L\ C L G fs and Hi C H G fu, so thai:

TlnTIl=dLlndHl, HlnTl
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G H

E

F

(a) (b)

Figure 2 a Rectangles, b Perfect fits in the universal cover

VSef", 5 nil t^0 =4- 5 n F\ ^ 0 (1) and

See figure 2 b The flow bands L\, H\ (or the leaves L, H) are not uniquely
determined by the perfect fit (F, G)

We claim that the implications (1), (2) in fact imply equivalences (that is S l~l

L\ ^ 0 <S> S n Ft ^ 0 and the same for (2)) To see this let S G fu with
SnFi ^ 0 Choose RgF near enough F, so that RnHi ^ 0 and RnS ^ 0 By
(2), R n G\ ^ 0 If S G then G n F ^ 0, contradiction If G separates iï from
S, then G separates F from S, contradiction to F\ n S ^ 0 Hence S* intersects 1?

between G and iï Smce L, G, iï form a rectangle, this implies that S intersects
L between G and H, that is, S intersects L\ This proves the stronger equivalence
in (1) and similarly for (2)

Perfect fits produce "ideal" rectangles, in the sense that even though F and G
do not intersect, there is a product structure (of Ts and Tu) in the interior of the

region bounded by F,L,G and H ^There is at most one leaf G G Tu making a perfect fit with a given half leaf of
F G Ts and in a given side of F [Fe5] Therefore if (L, G) forms a perfect fit and

g is an orientation preserving covering translation with g(L) L, then g(G) G
This follows from uniqueness of perfect fits and the fact that g takes perfect fits
to perfect fits, because it acts by homeomorphisms in the leaf spaces

Definition 3.3. Lozenges - - Suppose p^q G M satisfy

JKp) n J%(p) Ju_(q) n Js_(q) (t)
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Wu(p) Wu(q)

(b)

Figure 3. a. A lozenge, b. A chain of lozenges.

Then we say that this intersection is a lozenge B in M with —, —) corner p (or
r(-P)^ and (+!+) corner q. Notice that equation (i) implies thai J^_(p) Ju_{c[)

and i7!|_(p) Js_{q). If on the other hand p and q satisfy

JS+(P) n Jl(p) Js_(q) n J${q) in).

then this intersection is a lozenge B with (+, —) corner p and —,+) corner q. In
any case it follows that Ws(p), Wu(q) form a perfect fit and so do Ws(q), Wu(p)
- this is an equivalent way to define a lozenge. The lozenge is an oven region in
M. The sides of the lozenge in case (i) are W^{p),W^{p),Ws_{q) andW^(q) and
are not contained, in B, but rather are contained, in dB. Similarly for case (n).

Since given any four leaves there is at most one lozenge with sides in them we
also sometimes refer to the full leaves as the sides of the lozenge.

Two lozenges are adjacent if they share a corner and there is a stable or unstable
leaf intersecting both of them, see fig. 3 b. A chain of lozenges is a collection
{Bt},i G /, where / is an interval (finite or not) in Z; so that if i,i + 1 G /, then
Bt and B,^\ share a corner see fig. 3 b. Consecutive lozenges may be adjacent or
not. The chain is finite if / is finite.

Definition 3.4. Suppose r/ C F G J~s is a (possibly infinite) strong stable segment
so that

V p, q e V, JU+('P) JU+(q)- In that case let V \J W
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I
L

E

L

E

(a) (b)

Figure 4 a A product region with bounded base segment, b A product region with infinite
base segment Horizontals are stable leaves and verticals are unstable leaves Dots indicate an
infinite basis segment Arrows indicate that unstable leaves extend indefinitely

Then P C M is called a positive unstable product region with hase segment r\,
see fig 4 The basis segment is not uniquely determined, by V Similarly define
negative unstable product regions and stable product regions

The mam property of product regions is the following for any Fefs,Ge Tu
so that (l) FC\V ^ 0 and (n) G n P ^ 0, then F n G ^ 0 To see this, first notice
that (n) implies that 0 ^ G n r\ p By (l) let q £ r\ with F n W^(q) ^ 0 Then
F £ J^{q) hence F £ J%(p), that is F n G ^ 0

We will also denote by rectangles, perfect fits, lozenges and product regions
the projection of these regions to O One good way to visualize these objects in
Ö is as follows Consider proper embeddmgs £ U —> Ö of sets U C R into
Ö, sending the horizontal and vertical foliations induced in U to the stable and
unstable foliations in £,{U) C Ö Then a proper embedding is associated to a

rectangle £,{U) if U [0,1] x [0,1] A proper embedding is associated to a perfect
fit if U is a rectangle without a corner, that is, U [0,1] x [0,1] - {(1,1)} A
lozenge is associated to the image of a rectangle without two opposite corners
U [0,1] x [0,1] - {(1,1), (0,0)} (the lozenge is the interior of £([/)) A stable
product region is associated to the image of U [a, b] x [0, oo) (or U R x [0, oo)
when the base segment is infinite) and similarly for an unstable product region

We say that an orbit 7 of $ is periodic if it is left invariant Jay a non trivial
covering translation Similarly we define periodic for F £ Ts or Tu

If p, q are in the same strong stable leaf let [p, q]s denote the closed segment in
that leaf from p to q and let (p, q)s be the corresponding open segment Similarly
define [p, q]u and (p, q)u
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A

B

Figure 5. Branching in Ta.

Theorem 3.5. Let $ be an Anosov flow in M3 and let F be a branching leaf of
Ts. Then there is a non trivial covering translation g with g(F) F, thai is, F
is periodic.

Proof. By taking a finite cover if necessary, we may assume that $ is orientable.
Let L G Ts, L ^ F, so that F, L form a branching pair of Ts. Assume without loss

of generality that F and L are not separated on their negative sides, that is they
are associated to branching of Ts in the positive direction (positive branching).

Let wo € F'1_wl G L. Since F and L are not separated injtheir negative sides

there are yo € Wvm'{wq) (j/o sufficiently near wo) and xq Wu{w') n Wss(yo) so

that if r0 W%u(xQ) D L, then for any E eP,

This fact, which follows from the separation property of leaves of fs} will often
be implicitly used.

_^ _^
Switch F and L if necessary, so that Wu{xq) is in the front of Wu(yo). We

first find unique leaves associated to the branching, which form perfect fits with
F and L. As there are z G [yo^ojs with Wu(z) D F $ (e.g. z xq), let po be

the closest point to yo m [î/Oj^oJs so that Wu(po) D F $.

Claim. The leaves F and Wu(po) form a perfect fit.

For flow bands let A $R_((yo,wo)u) and B $j^((yo,Po)s)- Then AC\B

Let EeTs with^nA + 0. Then EnWu(x0) + $. Since Wu (p0 separates M
it follows that EC\Wu{po)^$. As E is in front of ^s(yo) then
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Let ReTu with RC\B ^ 0. If RC\F 0, then z Rn[yo,po]s is closer to y0 (in
Wss(yo)) thanpo, contradiction. Hence R(~)F =/= 0, in particular RC]W^_(wo) =/= 0.

By definition it follows that W^_(wq) and W^(po) form a perfect fit. This finishes
the proof of the claim.

_^In the same way there is a unique qo G [yo^ols with Wu(qo) and L forming a

perfect fit. By uniqueness of perfect fits, the leaves Wu(po),Wu(qo) depend only
on F and L. If follows from (*) and the claim, that given E G Ts, E n W+(po) ^
0 <-> E n W$(qo) ± 0. Equivalent^ J
Case 1. po =LJO- __

Let G Wu(po) Wu{qo). If G is periodic there is g ^ id with #(G) G.

By uniqueness of perfect fits and preservation of transversal orientations [Ts ^Tu
are transversely orientable in the finite cover) it follows that g(F) F and we are
done. Hence assume from now on that G is not periodic.

Let co 7r(po)- Since G is not periodic, $p_(co) is not a closed orbit, nor
is it backwards asymptotic to a closed orbit. Let c be a negative limit point of
<£r(co) and let ct $^(co), tt —> — oo, with ct —> c. If ct and c0 are in the same
local unstable leaf near c, then there is a closed path in Wu(ct) consisting of the
flow segment from ct to c0 and a small arc from c0 to ct in the local unstable leaf
through Cj. This path is not null homotopic in Wu(ct), hence Wu(ct) contains
a closed orbit, contradiction to our assumption. This is the key fact used in the
proof of the theorem and it will imply that non periodic leaves in the universal
cover are not rigid ^ ^Lift ct to pt G M with pt —> p and ir(p) c. Then pt gt(^t^(po)), where

gt are covering translations. By the above argument Wu(pt) ^ Wu(pk) for any
i ^ k. This is the non rigid behavior we are looking for.

Let FL gt(F),Lt gt{L),A^= gt(A), B% gl(B) and G% gt(G). Let

Vi 9i($u(yo)) an(i let xt gt($ti(xo))- Up to subsequence assume that all

pt and p are near enough, in a product neighborhood of Tu of diameter << 1.

Assume also that for all i,

KÖ>u([yo,Po]s))>l and '(*t.([PO,*o]s))>l- (**)

Choose indices i,k so that pt is in the back of Wu{pk), see fig. 6. Since

d(pt,pk) « 1 it follows that Wl(pk)nWu(pt) ^ 0 and W^(p,)fW"(pfc) ^ 0. By

(**), this implies that y/. is in the back of Wu(pt) and xt is in the front of Wu(pk),
see fig. 6. Hence Wu(yk) is in the back of Wu(Pl). Then Wu(Pl) C\Bk ± 0 and by
the defining property of perfect fits Wu(pt) D Fk ^ 0. As Lt makes a perfect fit
with Wu(pt), then Lt is in front of Fk, hence Lt is in the back of Wu(pk).

On the other hand, LlDWu(xl) ± 0. Since Wu(xl) is in front of Wu(pk) then

Wu{pk)C\^-^{\p%,x,]s) ^ 0. As L% and Wu{p,) form a perfect fit, this implies that

n Lt ^ 0. This contradicts the conclusion of the previous paragraph.
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B,

P;

wu(Pi)

X:

Figure 6. Rigidity of branching leaves: the adjacent case

This shows that if po 90, then G is periodic, left invariant by g, hence F and
L are periodic and both left invariant under g. This finishws the proof in case 1.

Remarks. (1) Applying this argument when G is periodic, we get Ws(pt)
Ws(pk) Wi,k. There is no small perturbation of the local picture which is then
rigid.

(2) It is tempting to try the following "intuitive" approach to the above proof:
as tt(W^(po)) is not compact, there are translates Si and S% of Wu(po) and points
ut G St arbitrarily near each other. The problem with this approach is that there
is no control of the rest of the picture. For instance we do not know a priori what
happens to the respective stable lengths. This is the reason why we fixed an orbit
$j^(tt(po)) and flowed backwards in order to insure that stable lengths are as big
as we want. This is also why the proof is done in M and not in O.

Case 2. poy^qo.
We use the same notation as in case 1. As qo =/= po, let qt g,,(^t^(qo))- Choose

i, k with pt in the back of Wu(pk). As in case 1, W^(pt) n Fk ^ 0. There is no a

priori contradiction because now Lt does not form a perfect fit with Wu(pt), and

in fact Lt is probably in the front of Wu(pk), see fig. 7. Let then

ei Wu(pk)nW^(Pt), e2 Wu(pt) C\W!_s{pk).

Notice that W^(pk) and Fk form a perfect fit and W+(e2)nFfc ^ 0. These two facts

imply that J^_(pk) < J^ie^)- In addition the local product structure of Ts,^FU
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Figure 7 Rigidity of branching the separated case

near p implies that J\{p%) > Ju+{e\), see fig 7 Choose E £ J\{p%) - Ju+{e\)
By the above considerations it is clear that E l~l Wu{pk) 0 But

hence S G J+(&) Then Enf|(?,)^| But Wu(qt) is in the front of Wu{pk)
and as VK"(pfc) separates M, then SnVF^^fc) 7^ 0 This contradicts the conclusion
of the previous paragraph As before we conclude that G is periodic, left invariant
by g =/= id, so F is also left invariant by g D

Caution. The same arguments show that L and Wu(qo) are also periodic We
do not know at this point that the same covering translation leaves invariant both
F and L This is a much stronger fact which will be proved in the next section

4. Branching structure

In this section we show that if F and L are not separated, then not only they
are periodic, but there is a non trivial covering translation leaving both of them
invariant As an immediate consequence, branching produces a non trivial free

homotopy between closed orbits of $ m M and this leads to a homotopic
characterization of suspensions We also show that the periodic orbits in F and L
are connected by a finite sequence of lozenges This completely determines the
structure of the set of non separated leaves from F and implies that there are only
finitely many branching leaves up to covering translations We then show that if
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there is infinite branching then there is an incompressible torus in M transverse
to the flow.

^ _^ _^
We say that two orbits 7, a of $ (or the leaves Ws(j), Ws(o) and similarly for

unstable leaves) are connected by a finite chain of lozenges {Bt}, 1 < i < n, if 7 is

a corner of B\ and a is a corner of Bn. The following theorem will be essential for
the results in this section:

Theorem 4.1. [Fe4] Let $ be an Anosov flow in M3 and let Fq ^ F\ G Ts.
Suppose that there is a non trivial covering translation g with g(Ft) Fx, i 0,1.
Let at,i 0,1 be the periodic orbits of $ in Ft so that g(at) at. Then «o
and o.\ are connected by a finite chain of lozenges {Bt},l < i < n and g leaves

invariant each lozenge Bt as well as their corners.

Furthermore there is a unique chain that is minimal, in the sense that any
other chain from «o to «i contains this chain [Fe7]. For any chain {Bt}, 1 < i < n
from «o to a\, let 70 «o an(i inductively define ~/t,i > 0 to be the remaining
corner of Bt. The minimal chain from «o to a.\ is characterized by: Bt^\ is on
the same side of Ws{^%) and Wu(^/t) that a.\ is [Fe7]. Equivalently the lozenges
{B,,}, 1 < i < n are all disjoint [Fe7].

A closed orbit of $ traversed once is called an indivisible closed orbit.
The following result will be often used in this article:

Theorem 4.2. (Fe7) Let $ be an orientable Anosov flow in M3. // 7 is an
indivisible closed orbit of $, then 7 represents an indivisible element in tv\(M).
Equivalently if g is a covering translation and gn(F) F, where F € J~s or Tu
with n^Q, then g(F) F.

There is a related result if $ is not assumed to be orientable.
The stabilizer T{F) of a leaf F of fs (or fu) is the subgroup of -k\ (M) of those

g with g(F) F. If ir(F) does not contain a periodic orbit, then T(F) is trivial.
Otherwise let 7 be the indivisible closed orbit in ir(F). Then T(F) is infinite cyclic
and it has a generator conjugate to [7] in tv\(M).

The main technical result in this section is theorem D of the introduction:

Theorem 4.3. Let $ be an Anosov flow in M Suppose that F, L form a branching

pair of J-s. Let g be a non trivial covering translation with g(F) F, so that

g preserves transversal orientations to Ts ,^FU. Then g(L) L. Similarly for Tu.

Proof. Up to a cover of order < 4, assume that $ is orientable. As g preserves
transversal orientations, then g is still a covering translation of the the universal
cover of the finite cover. Assume that F and L are not separated on their negatives
sides and also assume that g generates T{F).

As in theorem 3.5 there are unique leaves G,H G Tu making perfect fits with
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Figure 8 Iterating non invariant leaves

F and L respectively and so that G separates^ F from L and so does H Let
p G G so that Wss (p) intersects H and let q Wss (p) n H Recall from the proof
of theorem 3 5, that J^_{p) J^{q) Assume that H is in the front of G

Since g preserves transversal orientations then g{G) G Our goal is to show
that g{L) L If G H then this is clear Suppose then that G =/= H and that
g(L) ^ L, therefore g(H) ^ H Let 7 C G be the periodic orbit of $ in G, so

ail) 1

Claim 1 There is R G Tu in the back of L making a perfect fit with a positive
half leaf of L, hence R is in the front of H _^

We may assume that p G W^_{^) Let E Ws{p) By taking g~^ if necessary
assume that g(E) is in front of E Hence g(E) G J\(p), therefore g(E) G J\{q)
Then H n g{E) ^ 0 There are 2 cases

(1) g(ff) is mjTont of H, see fig 8 ^LetLete'= Wss(g(p))nH Since g(p) eW^ip) then J%(g(p)) J+(e') But
also J^g(p)) so J^(e'), where and e' G

Since L makes a perfect fit with H and (?(L) makes a perfect fit with g(H) this
shows that (?(L) is not separated from L As in the proof of theorem 3 5, there is

a unique eo G (e',g(q))s with Wu(eo) making a perfect fit with L In this case let

(2) Suppose now that g(H) is in the back of H
Notice that E,g(E),H and G form a rectangle Since g(H) D g(E) ^ 0 and

g(H) is between G and i? it follows that g(H) D E ^ 0 and g(iï) n E is an orbit
in i? between BnG and E D tl

In this case let c #(ff) n VKSS (p) Then c G (p, q)s Since J+(p) J+(g) and

J+{q), then g{L) £ J^{q), so n H 0 Hence is in the back of H
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As in case (1), it follows that L and g{L) form a branching pair. Let ci G (c,q)s
with Wu(c2) making a perfect fit with g(L) and with g(L) in the back of Wu{c<2).

Then R g{Wu{c<2)) makes a perfect fit with L and L is in the back of Wu{c<i).
This finishes the proof of claim 1.

By theorem 3.5, H, L and R are periodic, so let a, a* and t be the periodic
orbits in H, L and R respectively. Let h a generator oîT(H). Since $ is orientable,
h{H) H, h{R) R and h{L) L.

Claim 2. Wi(a*) C L and W"(a) C H are two sides of a lozenge A/"i with other

sides in W^_(a) and W™(a*), see fig. 9.

Let a G a, b G a* and Z e P with Z D W^(a*) + 0. Assume that h

is a contraction in the set of orbits of Wu(a*). Then for n > 0 big enough

hn(Z)DWl(a) ^ 0, because VF"(a) and ïys(a*) form a perfect fit. Since W^(a)
is /i invariant then Z n W^(a) 7^ 0. Using similar arguments one concludes that
J\{a) J~"L(b) and Js_^(a) Js_{b). Consequently a and b are the corners of a

lozenge N\ as claimed.

Equivalently the claim says that if A\ G Ts and A2 G Tu form a perfect fit
and there is a non trivial covering translation g' with g'{A\) A\, then Ai and
A<i are two sides of a lozenge B. The corners of the lozenge are two periodic orbits
which are invariant under g'.

_^ _^
In the same way as in the claim above W^_(a*) and W^(t) are the 2 sides of a

lozenge .A/2. Thejozenges A/"i, A/2 are adjacent and intersect the stable leaf E. Let
A/" A/i U A/2 U VF"(a*), an open connected set.

We now show that F also makes a perfect fit with U G Tu, U =/= G and F in
the front of U, hence G is in the front of U, see fig. 9. If h{G) G then since g
generates T{G), it follows that h gn for some n G Z — {0}. Theorem 4.2 then
implies that g(H) H contrary to assumption. Hence h(G) ^ G. Using claim 1

with the roles of F, L exchanged, we produce the required U G Tu. As shown in
claim 2, there are two adjacent lozenges T>\ and T>i with (some) sides in U,F,G.
Both lozenges intersect a stable leaf which we may assume is E. Let a be the
periodic orbit in F and V I?i U I?2 U VF^(cr).

From now on the proof roughly goes as follows: We will show that Ws(j)
intersects W^_{a) and similarly that Ws{a) intersects W^j), producing a
contradiction.

Taking g~^ if necessary, suppose that g{H) is in the back of H. Let Ht gl{H).
Then as in case (2) of claim 1, H%+\ is in the back of H%, and H%C\E ^ 0, Vi > 0.

Since Ht is always in front of G, then Ht —s- S with S* n E ^ 0 (and maybe Ht also

converges to other leaves of Tu\
Let V» be the front of H% and let V U,eNV». Then g(Vt) V%+\ so g(V) V

and consequently g(dV) dV. Since S* <£_ V it follows that dV is a non empty
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Figure 9. Double lozenges.

union of unstable leaves and furthermore S C dV. Notice that S is the unique
leaf which is either equal to G or separates G from V. In the second case since

g{V) V and g{G) G it follows that g{S) S. In either case we have that
g(S) S.

Then there is an orbit ß of $ in S with g(ß) ß. By theorem 4.1, ß and 7 are
connected by a minimal chain of lozenges {Bt}, 1 < i < n.

Furthermore

Ens En G Vi.

Otherwise choose smallest i so that EnBt ^ 0. Then EnB%_\ 0 and there is a
stable leaf, call it U, containing a stable side of Bt and a stable side of Bj_i, which
separates £7 from Bt. By the characterization of the minimal chain from 7 to ß, it
follows that U separates E from all Bo, j > i. But EnBn^$ because EnS ^$
and S contains a side of Bn, contradiction. Therefore consecutive lozenges in the
chain Bt are adjacent.

Claim 3. 7 and all Bt are in the front of Ws(ß).
Suppose not. Let r G ß and r' G 7. Notice that p G W^(r'). Since 7 and ß are

connected by a chain of adjacent lozenges all intersecting E andj^ is in the back
of Ws(ß), it follows that Ju_{r) 3\{r'). For all i big enough Ws{r) nR%^%.
Notice that gl(q) e H%. If ^(9) is in front of Ws(r) then Ws(gl(q)) is in front
of Ws(r), contradiction to Ws(gl(q)) Ws(gl(p)) being in the back of Ws(r).
Clearly g,,(q) G Ws(r) is also disallowed. The third possible option is that g,,(q) is

in the back of Ws(r). But then Ws(r) G J%(gl(q)) and hence Ws(r) G J%(gl(p)),
which is also a contradiction. This shows that Ws(r) nHt 0 is impossible. This
finishes the proof of claim 3.

_^
Consequently 7 is in front of Ws (ß) and 7, ß are connected by and even number

of adjacent lozenges. Therefore J^_{r) J^_{r').
Since R, gl(R) separates H, from ff,_i, then Ws(ß) n R,, + 0 and îî?s(/3) n

ff, ^ 0, for i big enough. But ^(M?s(/3)) Ws(ß), therefore Ws(ß) n ß ^ 0 and
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X H

Ws(ß)

Figure 10 Impossible intersection of leaves a Case S a, b Case

Ws(ß) n H ^ 0 Consequently Ws(ß)) n Af ^ 0 and as a result W"(/3) intersects

Conclusion. There is an orbit ß of $ with g(ß) ß, Ws{ß) n 0 and

Because 7 and /3 are connected by lozenges^Bj all intersecting E G Ts, then
there is Z G j^s making a perfect fit with Y Wu (ß) so that Z is in the back of Y
and Z and L are not separated, see fig 10^a Hence Z, L satisfy the hypothesis of
this theorem As in claim 1 there is X G !FU, X =/=Y, X making a perfect fit with
Z and intersecting E, see fig 10 a Therefore we could have started the analysis
with Z instead of F and Y instead of G, considering the orbits ß C Y and a C H

Now switch the roles of Y and H and apply the same_ arguments as above
Then as in the conclusion above we find an orbit ô of $ with h(ô) ô and

WS(S) n Wl(ß) ± 0, WS(S) n X + 0 In addition S is connected to a by an even
chain of lozenges all intersecting a common stable leaf Hence if u G ô, u' G a,

If S a this produces an immediate contradiction since Ws(ß) intersects

W^_(a) and Ws(o) intersects W+(/3), see fig 10 a

Suppose that Ö ^ a As ïys((5) n W^(/3) ^ 0, then ïys(/3) is in the back of

Ws(6) In particular Ws(ß) £ J^(u) Hence Ws(ß) £ J^(u'), a contradiction to
the fact that Ws(ß) intersects W^(a), see fig 10 b

This contradiction implies that the assumption g(H) =/= H is impossible to hold
We conclude that g(H) H and consequently that g{L) L This finishes the
proof of the theorem D

Corollary 4.4. Let $ be an Anosov flow m M Suppose $ is not ^.-covered Let
F,L G Ts which are not separated from each other Then F and L are connected
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Figure 11 The correct picture of in between branching

by an even chain of lozenges, all intersected by a common stable leaf In particular
there are only finitely many branching leaves between F and L

Proof Up to finite covers we may assume that $ is orientable Suppose that F, L
are not separated in their negative sides

Let g ^ id be a covering translation with g(F) F By the previous theorem
g(L) L Let 7 and ô be the respective periodic orbits in F and L Furthermore

suppose Wu(j) is in the back of Wu(ö)
By theorem 4 1,7 an(i ^ are connected by a chain of lozenges {Bt}, 1 < 1 < n,

assumed to be the minimal chain from ô to 7 Let 70 =jj and inductively define

7ï to be the other corner of Bt Since S is in the back of Ws(^/) and in the front of

Wu(j) it follows that 7 is the (+, —) corner of B\ Then ö is in front of Ws(^/\)
and in front of Wu(^/\)1 hence B% has —, —) corner 71 Hence B\,B% are adjacent,

intersecting the same stable leaves and Ws(^/2) is non separated from Ws(^/q) and

Ws(ö) Induction then shows that 7j_i is the (+,— corner of Bt if 1 is odd,
and the —, —) corner of Bt otherwise In addition Ws(jt) is non separated from

Ws("/o) if and only if 1 is even, hence n 2k

Suppose now that^B G Ts is not separated from F and is between F and L
Let {Xk},k e N C .F8, with Xk -> F as k -> 00 Then Xk -> E in W when
k —s- 00 In addition for A; big X^ n Bt 7^ 0 for 1 < 1 < n Therefore the only
possible leaves in the limit of Xk which are between F and L are those in the
stable boundary of the lozenges Bt This completely characterizes such leaves and
hence there are finitely many in between leaves D

An R-covered Anosov flow can only have one of two topological types (up to

isotopy in M) for the joint structure of Ts, Tu [Fe3] They are characterized by
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(1) Any leaf of Ta intersects every leaf of Tu. This is the product type.
(2) There is a leaf of Ts which does not intersect every leaf of Tu. This is the

skewed type, see detailed characterization in [Fe3].
Suspensions have product type and geodesic flows have skewed type.

Corollary 4.5. Let $ be an Anosov flow in M Then $ is topologically conjugate
to a suspension of an Anosov diffeomorphism of the torus if and only if there are no
free homotopies between closed orbits of $ (including non trivial free homotopies
from an orbit to itself).

Proof. If $ is not R-covered, theorem 4.3 produces Fq =/= F\ G Ts and g a nontrivial
covering translation with g{Fl) Ft. If at is the periodic orbit in Ft, then g{a%)

at. Therefore Tr(ao),Tr(ai) are closed orbits of $ (they may be the same orbit)
which are non trivially freely homotopic to each other. If Tr(ao),Tr(ai) are the
same orbit of $ in M,_then the free homotopy is non trivial because ao,a\ are
distinct orbits of $ in M.

Suppose now that $ is R-covered. If $ has product type, then by theorem 2.8

of [Ba2] (see announcemment in [So]) $ is topologically conjugate to a suspension.
Otherwise $ has skewed type and theorem 3.4 of [Fe3] produces many non trivial
free homotopies between closed orbits of $. D

Given 2 adjacent lozenges B\ and B<i the pivot of their union is the common
corner of B\ and B<i-

Corollary 4.6. Let $ be an Anosov flow in M Then up to covering translations
there are only finitely many branching leaves.

Proof. Assume that there are infinitely many inequivalent stable branching leaves,
where the associated branching is in the positive direction. Given any two non
separated leaves F, L let 7,« be the respective periodic orbits which are connected

by a chain of adjacent lozenges. For any two adjacent lozenges, the pivot is

uniquely determined, furthermore the pivots are always periodic orbits.
It follows that there are infinitely many inequivalent periodic pivots pt,i G N.

Since Tr(pt) accumulates in M, assume up to covering translations that all pt are

in a very small product neighborhood of p G M, so let i =/= k with

Wu(Pl)nWs(Pk)^9 and Ws(Pl)nWu(Pk)^9.

An argument exactly as in case 1 of theorem 3.5 shows this is impossible. D

We can now completely characterize the structure ofjhe set of non separated
leaves: Given Fefs, let £b(F) be the set of leaves of Ts non separated from F
and which are either equal to F or contained in the back of F. Similarly define
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Corollary 4.7. Let $ be an Anosov flow in M Let F be a branching leaf of Ts
and £b(F) be the set of leaves of J-s which are non separated from F and which
are either equal to F or in the back of F. If E ^ L G £b{F) we say that E < L in
£b{F) if there are G,H G fu, with G n E ^ 0, H n L ^ 0 and G m the back of
H. Then < is a well defined relation in £b(F) which is a total order and with this
order either

(1) £b(F) is finite, hence order isomorphic to {l,2,...,n}, or
(2) £b(F) if infinite and order isomorphic to the set of integers Z.

Similarly for £f(F).

Proof. Up to finite^cover if necessary assume that $ is orientable. Given E ^ L G

£b{F), let G,H G .P^ with GC\ E ^ 0 and HC\ L ^ 0. Since E, L form a branching
pair, there is A G Ts intersecting both G and H. Therefore either G is in the
back of H and H is in the front of G or vice versa (for arbitrary leaves of !FU, it
can happen that G is in the front of H and H is in the front of G). Consequently
either E < L in £b(F) or L < E in £b(F). It is easy to check that the outcome is

independent of the choices of G, H and A. Hence < is well defined and all distinct
points in £b(F) are related to each other. Finally it is easy to see that < is an
order relation. This shows that < is a total order in £b(F).

Since < is a total order in £b(F) then if £b(F) is finite case (1) holds. Hence

assume that £b(F) is infinité.
Since £b(F) is infinité corollary 4.6 implies that there are E' =/= E* G £b(F) and

/ a covering translation with f(E') E*. Assume that E' < E* in the ordering of
£b{F). Corollary 4.4 implies that E', E* are connected by a finite chain of adjacent
lozenges with positive stable boundaries in Eq E',E\, ...,En /(£"o) E* G

fs. Then E% G £b{F),0 < i < n. Clearly E, < E3 if i < j. Since Eo is not
separated from En, then f(Eo) En is not separated from f(En). This produces
En+1,...,E2n f(En). Using f\i G Z, one constructs {Et}ieZ C £b(F). If
P{E) E for some i =/= 0, then f(E) E contradiction. This easily implies that
the {Et}iez are all distinct.

Let now E G £b(F). Then E and Eq are not separated, hence connected by a
minimal finite chain of adjacent lozenges Ct,l < i < 2m, all intersecting a common
stable leaf and having an even number 2m of lozenges. Suppose that Eq < E in
£b(F). Consider now the chain Bt,l < i < 2m as constructed in corollary 4.4.
Notice that the lozenges in a chain are completely determined by a corner plus a
direction. Since both chains Ct and Bt consist of consecutively adjacent lozenges,
all of which intersect a common stable leaf, it follows that Ct Bt for all i.
Consequently E Em. Hence £b(F) {Et}tez and £b(F) is order isomorphic to
Z as desired. D

Notice that any covering translation / conjugates the stabilizers of F and f(F)
that is / o (T(F)) o f~^ T(f(F)). Therefore conjugation by / takes a generator
of T{F) to a generator of T{f{F)).
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Corollary 4.8. Let<$> be an Anosov flow m M orientable. Suppose that {Ft}iej$ C

Ts is a collection of distinct leaves, so that Ft is not separated from F%^\ for all
i. Then M has an incompressible torus.

Proof. There is a finite cover Mi of M where the lifted flow is orientable. By
corollary 4.6 there is a covering translation / of Mi with f(Ft) F3 and i < j.

Let g be a generator of T(F%). Then fgf~^ generates T(F3). Since Ft,Ft^\,...,
F3 are not separated one from the next, then repeated application of theorem 4.3
shows that g{F3) Fo. By theorem 4.2, g is indivisible in tti(Mi), so g also

generates T(F3). Hence either fgf~^ g or fgf~^ g~^.
In the first case / and g generate an abelian subgroup of tv\{Mi). If fngm 1,

then fngm{F%) Ft hence fn{F%) Ft. If n ^ 0 theorem 4.2 implies that
f(Ft) Ft, contradiction to Ft ^ F3. Hence n 0. Since no multiple of a closed
orbit is null homotopic, them gm id implies that m 0 also. Hence there
is a Z © Z subgroup of ir\{Mi). If on the other hand fgf~^ g~^, then /2
and g generate an abelian subroup of tti(Mi) and the same argument produces
Z©Z <7Tl(M2).

We conclude that there is a Z © Z subgroup of ir\{M). By the torus theorem
[Ga] (which uses M being orientable), either M is a Seifert fibered space or there
is an embedded incompressible torus. In the first case, Ghys [Gh] proved that $ is

up to finite covers, topologically conjugate to a geodesic flow. But then $ would
be R-covered, contrary to hypothesis. In the second case M is toroidal as desired.

D

Notice that corollary 4.8 does not assume that all {Ft} are non separated from
each other, which in fact may not be the case. Consider for instance the first set
of examples of intransitive Anosov flows constructed by Franks and Williams in
[Fr-Wi]. Then each such flow has a sequence of distinct leaves Ft so that Ft is not
separated from Ft^\ on their negative sides if i is even, otherwise non separated
on their positive sides, see description in the end of section 5. Therefore Ft is

separated from F3 if \i — j\ > 2.

If on the other hand one assumes that all {Ft},i G N are non separated from
each other (infinite branching), then we can prove a much stronger result, using
only the topological structure of Ts, Tu :

Theorem 4.9. Let $ be an Anosov flow in M orientable. If there is infinite
branching in (say) J-s then there is an embedded torus transverse to $.

Proof. Assume first that $ is orientable. Let £ {Et}iez be an infinite, ordered
collection of non separated leaves, (say) not separated on their negative sides.

Let 7j be the periodic orbit in Et. By corollary 4.4, every Et forms part of the
boundary of two lozenges: let $2»-l be the lozenge with (+, +) corner jt and let

B% be the lozenge with (+,—) corner 7^. Let Ft G Ts be the other leaf in the
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Fcr
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Figure 12. Part of an infinite chain of lozenges.

boundary of B%_ and 02»+1, where B%_ and
periodic orbit in Ft, see fig. 12. Let

s

are in front of Ft. Let (t be the

and let ^ be the restrictions of P, fu to S.
Then all of the following sets are equal: Ju_{yk),i G Z, J+(Cj), j G Z. This

shows that any leaf of ÏFS intersects VF™ (70), hence the leaf space of ÏFS is homeo-

morphic to R. Similarly every leaf of Tg either intersects one of the lozenges Bt or
is one of W"(jt) or VF™(£j). So the leaf space of !Fg is also R. In addition any leaf

of Tg intersects every leaf of Tg and vice versa. We conclude that @(<S) is home-

omorphic to a plane, and up to isotopy Ts,Tg are the foliations by horizontals
and verticals in this plane, see fig. 13.

We can now apply corollary 4.8 to produce non trivial commuting /, g, so that
oili) In^i € Z and /(70) 7fc for some k ^ 0. Clearly both / and g preserve
<S. Let /*,(?* be the induced actions in @(<S).

LetpG 0(VF^(7o)) and q /*(p) G 0(VF^(7fc)). Given the structure of 6(J|)
and Q(iFg) in @(<S), it follows that we can connect p and q by a curve ainO, with
a always transverse to Q(!Fg) and Q(!Fg). Let p\ G M with @(pi) p and lift a
to o.\ starting at p\ and ending at q\ f{p\). We may assume that o.\ is a smooth

curve. Let ß\ be a curve in VF"(7o) frompi to g{p\) and so that ß\ is smooth and

transverse to $. Since / and g commute then £ o.\ * g{ß\) * (/(«l))^1 * (ßl)~^
is a closed loop in M, which is transverse to $. Then ©(£) is the boundary of a

"parallelogram" in @(<S) and it is easy to produce an embedded smooth disk D\
in M which is transverse to $ and so that dD\ £.

Since the sides of D\ are ß\,g{ß\), a\,f{a\), it follows that after a small
perturbation of D\ we may assume that D tv{D\) is a smooth, immersed closed
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ß

g*(p)

q f. (p)

f*(ß)

f.fl.(p)

g* (a)

Figure 13. Producing a transverse torus.

surface transverse to $. Using cut and paste techniques [He,Ja], as explicit done

by Fried [Fr], one can eliminate all triple points of intersection and double curves
of intersection, transforming D into a union of embedded surfaces transverse to
$. Any such surface has induced stable and unstable foliations hence it has zero
Euler characteristic. It is transverse to the flow, hence it is two sided in M and as

M is orientable, then this transverse surface has to be a torus.
If $ is not orientable, lift to a finite double cover Mi of M where the lifted

flow is orientable. The image in M of the transverse torus in Mi is an (immersed)
torus in M, so cut and paste techniques yield the result. D

5. Product regions, infinite branching and scalloped regions

In this section we first show that the existence of product regions implies that
the flow is R-covered. The main difficulty is that we do not assume that $ is

transitive, in which case the proof is very simple [Fe5]. This result is used to give

a detailed description of the structure induced by infinité branching in Ts or Tu.

Theorem 5.1. Let $ he an Anosov flow in M If there is a product region in
M then $ is topologically conjugate to a suspension Anosov flow.

Proof. We may assume that $ is orientable. Suppose that there is a positive
unstable product region defined by rj C Wss(y\). If Q is the nonwandering set of
$, then WS(Q) M [Pu-Sh], even if $ is not transitive. As the periodic orbits
are dense in Q [Sm,Pu-Sh], there is a periodic orbit 7 of $ with Ws(j) D rj ^ 0.
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Wu(t>i) G,

gk(G)

m

W>m)
Figure 14 Boundary components of product region with infinite basis segment Ws(b^ —>

U gzGj, when % —> +oo

Let p G 7 Let t be an open segment m Wss(p) with p G t, so that for any
2 G t,Wu{z) Or] =/= 0 Hence t is a basis segment of a product region Let g be

a generator of T(Ws(p)) For any y2 € t, J+(y2) J+(p) Since

VF^(p), then

hence A \J W^(

is a product region with an infinite basis segment Wss (p)

Claim. dA Ws{p) ^ ^Suppose not and let a G dA— Ws(p) Let at G A with at -^ a and bt Wu(at)D
Wss(p) Assume bt G W+s (p) Notice that Wu{a) n ï^s(p) 0 and in addition
VF" (a) C dA If 6j 7^> oo in W^{p), assume up to subsequence that bt -^ bo Since

Ws(a) DA + 0 and .A is a product region then Ws(a) n VF"(ç) ^ 0,Vç G Wss(p)
But if g is in front of Wu(bQ) then Wu(q) D Ws(a) 0, contradiction Hence

6j —s- oo in W^{p)
Let G Wu(a) and F Ws(p) Notice that gn{G) ^ g^(G) for_n ^ m G Z

Otherwise there is an orbit J of $ in G with g(J) (5 But WS(S) n VF"(p) ^ 0, a
contradiction to both left invariant under g _^

Since gfc(^l) A, then #fc(G) C 8A As 6, -> +oo in W^{p), then the

gk(G), k G Z are all not separated from each other By theorem 4 3, gk{G) contains

a periodic orbit £& Take inverse if needed so that Wl(ök) l~l W^"(p) qu

Qk{tt)) -^ P as ^ —>¦ +oo, see fig 14
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Let / be a generator of T(G0). Then f(Gt) G,,Vi G Z, so f(Ws(öt))
Ws(ö%). As Ws(ö%) -s- F as i -s- +00, then /(F) is not separated from F. The

case f(F) F is ruled out as above. If f(F) ^ F assume that f{Wu(p)) is in the

front of Wu(p). Then f(Wu(p)) DWu(p) $, hence f(Wu(p)) C\A= 9, which

implies that f{Wu{p)) separates A from all Gt. This contradicts Gt C <9*4 and
finishes the proof of the claim.

Let now V { set of positive unstable product regions U with base segment

Wss(z) and Mfli ^ 0}. The above claim shows that this set is ordered by
inclusion. Let V C MJae the union of all WeD. Then V is Ta saturated. If
V ^ M let E $R(ïyss(w)) C dV. Since Wss(n(w)) is not compact, choose

a translate f(E) in the back of E with £7, f(E) intersecting a common unstable
leaf R. Choose Wss(v) basis of a product region and with v near enough £7 so

that f{Wss(v)) intersects R between E and /(£?). Then /(W?SS(V)) is the basis

segment of aj>roduct region intersecting A and not contained in V, contradiction.
Hence V M.

_ _Therefore for any £T G Tu, H n .A 7^ 0, hence £T n VKs(p) ^ 0. This shows

that Tu is R-covered. JJsing similar arguments one shows that any leaf of Ts
intersects every leaf of Tu and vice versa. Theorem 2.8 of [Ba2] implies that $ is

topologically conjugate to a suspension Anosov flow. This finishes the proof. D

Theorem 5.1 has applications here and also in [Fe8] and [FelO].
We now show that infinité branching is associated to a particular type of structure,

called a scalloped region in M (or Ö).

Theorem 5.2. Let $ be an Anosov flow in M3. If there is infinite branching in
Ts, then there is associated infinite branching in Tu.

Proof. We use the notation from theorem 4.9. Let £ {Et}tez C Ts be an
ordered collection of leaves non separated on their negative sides. Let {Bt},i G Z
be the lozenges associated to £ and let Ft be the leaves on the negative sides of
B%. Let 7j and Q be the periodic orbits in Et and Ft respectively. Let

S U (B, U W«(7t) U WHQ).

Recall also that all of the following sets are equal J"(^t),i G Z, J"(Q),j G Z.

Let C% be the back of Wu(^%) and let C U,eNCt. For any p, q G ^"(70)
and any i > 0, Wu(yk) G Js+(p) n Js+(q). If C M, then the intersections of

Wu(jt) with W^(p) and W^s(g) are escaping to infinity in these leaves. Hence

J+(p) <J+{q) an(i ^""(70) is the basis segment of a positive stable product

regionjn M. By theorem 5.1, $ would be R-covered contrary to hypothesis. Hence
C =/= M. This is the key fact which will show that <S has the form of a scalloped
region, see fig. 15.
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R
2k-1

2i B

Figure 15 A scalloped region in the universal cover

Let then p G dC, hence Wu(p) C dC For i big enough Wf_{p) n Wu(1%) ^ 0,

hence WL(p) n W^(1%) ^ 0, Vî G Z As a result ^"(p) C 9<S

Since g(C) C, then ^"(^"(p)) C dS for jmy n € Z If ^"(^"(p)) r(p)
for some n ^ 0, let ß be the periodic orbit in Wu(p) Then

and n 0,

contradiction Hence the leaves gn{Wu{p)),n G Z are all distinct and all non

separated from each other on their negative sides By theorem 4 3, gn(Wu(p)) are
all periodic and let h be the indivisible covering translation leaving all invariant
and acting as an expansion in the set of orbits in Wu (p)

Notice that g(Ws(p)) is in front of Ws(p) Let Ho Wu(p),Ht, ,Hn
g(Wu{p)) be the chain of non separated leaves from Wu{p) to g{Wu{p)) Then
one constructs {Hk}keZ> aU m &$ Let ßf. be the periodic orbits in Hk Then
ßk is the corner of two lozenges 72-2fe—1 an(i ^-2fc an(i all IZk intersect a common
unstable leaf

_^ _^
Furthermore if q G <9C, then VF"(g) is not separated from Hq, so Wu(q) is one

of Hk Let {Gfc}fcez be the sequence of leaves which form the negative unstable
boundary of the lozenges {R-k}keZ Then h(Gk) G]~ for all k Let ök be the
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periodic orbit in Gk and let

M (J {nk u wtißk) u w^(4)).
fceZ

Given / G Z then for j > 0 big enough W^(7j) n W^(A) ^ 0- Since all
<J'-(ßk),k G Z are all equal as are all ^"(7^) this implies that for any i,k G

Z, ß, nTlfe ^ 0. As g(Bt) B% for any i G Z and there is no G Z so that
g(lZk) 72-fc+no f°r anY k € Z, then for any t e Z, 8, C M. In the same way

In addition notice that #m(W"(/30)) -^ U,eZ£; =5 asm^+oo. As
VFS (/9fc We G Z then / leaves invariant the set £. Therefore there is jo G N

so that f(Et) £j+J0 for all i G Z. Since f(TZk) Ti-k,^k G Z, then the same
argument as above implies that IZk C S for any A; G Z. The important conclusion
is that S A4. The region S is called a scalloped region, see fig. 15. The region
is decomposed into two essentially different ways as an infinite union of disjoint
lozenges (plus some of the sides). Whenever there is infinité branching in one of
Ts or Tu, there is an associated scalloped region. D

Examples

As explained before the non R-covered property can occur for transitive and
intransitive Anosov flows. We now consider infinité and finite branching.

The Anosov flow constructed by Bonatti and Langevin [Bo-La] is transitive and
has infinité branching. The scalloped region of thisfiow was explained in detail
in [Ba3]. The Bonatti-Langevin flow is the simplest Anosov flow with infinite
branching in the sense that there is only one orbit v of $ which does not intersect
the transverse torus constructed by the infinité branching. In this case all the
periodic orbits in the boundary of the scalloped region are lifts of v.

As for examples of finite branching we will produce in the next section a large
family of non R-covered Anosov flows in hyperbolic manifolds. These are transitive
and by corollary 4.8 they cannot have infinité branching. Hence they have only
finite branching.

As for intransitive examples with finite branching we consider the flows
constructed by Franks and Williams [Fr-Wi]. The structure of Ts near a branching
leaf is described in fig. 16. Notice that F\ is not separated from F% on their negative

sides, F<i not separated from F3 on their positive sides and so on. In fact the
only non separated leaf from F\ in the negative side of F\ is F^. Hence there is

only finite branching and £b(Ft) has always two elements.
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Figure 16 The structure of non separated leaves of
indicate positive transversal orientation to Ta

in the Franks-Williams example Arrows

6. Non R-covered Anosov flows in hyperbolic 3-manifolds

In this section we produce examples of transitive, non R-covered Anosov flows in
hyperbolic 3-mamfolds Recall that any Anosov flow in a hyperbolic 3-manifold is

necessarily transitive [Fe4]

Theorem 6.1. There is a large class of transitive, non R-covered Anosov flows
in hyperbolic 3-mamfolds, including all Anosov flows in non orientable hyperbolic
3-mamfolds

Proof Theorem C of [Ba2] states that if $ is an R-covered Anosov flow in M3, then
either $ is topologically conjugate to a suspension Anosov flow or the underlying
manifold is orientable (notice that Barbot uses the term "product" instead of R-
covered) Since hyperbolic manifolds can never be the underlying manifolds of
suspension Anosov flows, it suffices to produce Anosov flows in non orientable
hyperbolic 3-mamfolds

Consider therefore the suspension of an orientation reversing Anosov diffeo-
morphism of the torus T2 Let M be the underlying manifold of the suspension
and let a be an orientation preserving closed orbit of the flow As described by
Goodman [Go] and Fried [Fr], (n, 1) Dehn surgery along a yields an Anosov flow
in the surgered manifold M/n ±\

It is well known that (M — a) is irreducible, atoroidal and homeomorphic
to the interior of a compact 3-manifold with boundary [Thl] By Thurston's
hyperbohzation theorem [Th2,Mor] it follows that (M — a) admits a complete
hyperbolic structure of finite volume By the hyperbolic Dehn surgery theorem
[Thl], most Dehn fillings on (M — a) yield closed, hyperbolic manifolds Since M
was non orientable, all of these manifolds are non orientable Whenever the Dehn

surgery coefficient is of the form (n, 1), the surgered manifold admits an Anosov
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a F

Figure 17 Intrinsic ideal points

flow This produces a large class of Anosov flows in non orientable hyperbolic
3-manifolds and finishes the proof D

7. Continuous extension of Anosov foliations

In this section we study the asymptotic behavior of leaves of Ts and Tu when

tv\(M) is negatively curved
If $ is an Anosov flow m M3, Sullivan [Su] showed that the intrinsic geometry

of leaves of Ta and Tu is negatively curved in the large as defined by Gromov [Gr]
Then any leaf F G Ts U Tu has a canonical compactification with an intrinsic
ideal boundary d^F [Gr] and d^F is always homeomorphic to a circle [Fe2] All
of this works without any assumption on M or $

If F G Ts then the intrinsic ideal points are the (distinct) negative limit points
of flow lines m F and the common positive limit point of all flow lines [Fe3] The

intrinsic geometry of F G Ts is similar to the hyperbolic plane H2 where the flow
lines correspond to the geodesies m H2 which have a common limit point m the
ideal boundary of H2, see fig 17

If p G F G Ts, let p_ be the intrinsic negative ideal point of the flow line
through p, that is, ^

P- Inn §t(p) & dooF,

where the limit is taken m F U dçx,F, see fig 17 Similarly define p+ For any

p,q G F G Ts, p-\- q-\- G d^F and this is also denoted by F+ Furthermore if
Pi G Wss(p) and p% —s- oo in Wss(p), then [pl)~ —? p+ as points in d^F [Fe3]
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This can be clearly seen in the model of H2. If p, q are in the same flow line a of
$, then p_ q~, which is also denoted by (a)- G d^F. Similarly (a)+ F+.

From now on we assume that tti(M3) is negatively curved, as defined by Gromov

[Gr], who constructed a canonical compactification of M with an ideal boundary
dM. Since M is irreducible [Ro], Bestvina and Mess [Be-Me] showed that dM is

homeomorphic to a sphere, denoted by S^. Furthermore MUS^ is homeomorphic
to a closed 3-ball.

^ ^We say that $ has the continuous extension property if for any leaf F £JFSU^FU,
the embedding ipp : F —s- M, extends continuously to ipp : F U d^F ->MU S^.
This gives a continuous parametrization of the limit sets Ap <pp(dooF). This
also implies that there is a continuous function

rj- : M —s- S*2^, rj-(x) lim <J>t(x),
£—> — oo

where the limit is computed in M U S^. The function ry_ is constant along an
orbit a of $, with value r]-(a) f>^rTS («-)• Furthermore for any G G Tu, r\-W (a) ^is a constant function in G with value ipa(G-). Similarly define 77+ : M —s- S*^.
Given any set

XcM, let J7_(X) U ri-(x).
x£X

The continuous extension property implies that for any FeF and any p £ F,
then

AF ipF(dooF) ri-(Wss(p)) U ri+{p).

In [Fe6] we study the continuous extension property for R-covered flows.

Recall that the limit set of a subset B of M is Aß BCiS"^, where the closure is

taken in MUS"^. Also recall that Ts, Tu are transversely oriented. Given F G Ts
or Tu and p G S^ — Ap, we say that p is above F if there is a neighborhood [/ of

p in M U S^ so that t/ n M is in front of F. Otherwise we say that p is below F.
Given a connected component of S^ — Ap either all of its points are above F and
we say this component is above F, otherwise we say the component is below F.

Theorem 7.1. Let $ be a non R-covered, Anosov flow in M3 with negatively
curved, tv\(M). Suppose thai $ has the continuous extension property. Then for
any leaf G G J-SUJ-U, the limit set Ac is a, Sierpinski curve, that is the complement
of a countable, dense union of open disks in the sphere S^. In addition if M is
hyperbolic, then there is k < 2 so thai the union of all limit sets,

N= [j
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G Si

G Si

Figure 18. Sequence of lozenges.

has Hausdorff dimension < k. In particular every limit set Kp has zero Lebesgue
measure in the sphere at infinity.

Proof. We first prove that Ac ^ S^ and then use part of this proof to show that
limit sets of leaves are Sierpinski curves. The first part is similar to the proof of
theorem 5.5 of [Fe4], except that in [Fe4] we assumed the very strong hypothesis of
quasigeodesic behavior of $, which is not assumed here. The continuous extension
property is a much weaker property than quasigeodesic behavior.

Since $ is transitive, Ts has branching in the positive and negative directions
[Fe5]. Using theorem 4.7 we produce A, a union of two adjacent lozenges in M and
a common side, all intersecting a common stable leaf so that: (1) the boundary of
A has unstable sides in G, S G Tu, and stable sides in E,F,Le fs (2) E, L are
not separated on their negative sides, (3) G is in the back of S and (4) EDG ^ 9,

L n S ^ 0, see fig. 18. By G we mean the half leaf in the boundary of A. Then
tt(G) is dense in M [Fe3].

Let C G Ts be a leaf intersecting both G and S, hence C intersects A. Choose

a covering translation g\ so that

As g\(F), g\{G) form a perfect fit, then g\{F) is in the back of F. As g\{L),g\{E)
form a perfect fit, then both are in the front of L. Since g\{S) n g\{L) ^ 0 and

g\{S),g\{F) form a perfect fit, it follows that g\{S) is in the front of g\{G), in the
back of S and intersects both L and F. Inductively choose covering translations
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gt so that gl{G) is in the back of S,

gx{G)C\F^$, gx{G)C\L^%, gt(G) -> S as i -> oo,

and gt(G) is in the front of gt-i(S), see fig. 18. Let Gt gt(G) and similarly
define Fl,Ll,St and Et. _^

Let Ct C n <?î(A). For any flow line 7 G i*l, Wu(^/) intersects Cj and vice
versa. Hence i]-(Ct) i]-(Ft). Let q G Cn5. By continuity of ry_, there is a

neighborhood y of q in M so that r]-(Y) is contained in a small neighborhood

y of r}-{q) in S^. As C, n Wss(q) -> q, then r}-{Cx) C Y' for i big enough.
Therefore i]-(Ft) C Y' and as a result Aj^ is contained in the closure of Y' and is

not S^. This shows that AF A i,F n g~l(Ap^) ^ S^.
Since Ta has branching in the positive and negative directions and Ap ^ S^,

then theorem 3.3 of [Fe9] shows that, for any L' G Ts, there are components of
S^ — Al> above L' and components of S^ — Al> below V. For each i let Zt be a

component of S^ — Apz below Ft. Since C is in front of Ft, Zt n Ac 0. Hence

Zj is contained in a component Z* of S*^ — Ac which is below C. The argument
above used to prove that Aj^ ^ S^ shows that Aj^ C Ac, hence the component
Z* of S"^ - Ac is equal to z\.

For each i, Zt is below Ft. In addition for each i =/= j, Ft is in the front of Fo
and Fj is in the front Ft. This implies that Zt (~) Zj 0. Hence {Zt},i G N is an
infinité family of distinct components of S^ — Ac below C. Using branching of Ta
in the negative direction, one constructs countably many components of S^ — Ac
above C'.

^Since $ is transitive, then for any C G Ta there is a covering translation / so
that f(C) nA^i. The argument above shows that S^ — Af/C') has infinitely
many components above and below f(C'). Translation by Z^1 yields the same
result for C. By theorem 4.4 of [Fe9], Ac has empty interior, hence Ac> is a

Sierpinski curve. ^ ^
Suppose now that M is hyperbolic. Again since Ts ,TU have branching in the

positive and negative directions, corollary 3.9 of [Fe9] shows that there is k < 2 so

that for any F G Ts or Tu, the Hausdorff dimension of Ap is < k. In particular
Ap has zero Lebesgue measure. _^ ^Let {Wj}îe]\-, be a collection of 2-dimensional disks in M transverse to $,so
that each Wt projects to a rectangle in Ö and so that any flow line of $ intersects
at least one of the Wt. Then

M= (J AF= U (r]-(z)Ur]+(z))= \J(v-(Wt)Ur,+ (Wt)).

f&TsuTu zeM îeN

Let Ft be a stable leaf intersecting Wt. Since Wt projects to a rectangle in Ö then
77_(Wj) i]-(Wt nFj) C Aj^. Since Aj^ has Hausdorff dimension less than k and
TV" is a countable union of such sets, then M also has Hausdorff dimension < k.
This finishes the proof. D
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