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Higher generation subgroup sets and the E-invariants of
graph groups

John Meier, Holger Meinert and Leonard VanWyk

Abstract. We present a general condition, based on the idea of «.-generating subgroup sets,
which implies that a given character x £ Hom(G, represents a point in the homotopical or

homological E-invanants of the group G Let Q be a finite simphcial graph, Q the flag complex
induced by Q, and GQ the graph group, or 'right angled Artin group', defined by Q We use our
result on ra-generating subgroup sets to describe the homotopical and homological E-invanants
of GQ in terms of the topology of subcomplexes of Q In particular, this work determines the
finiteness properties of kernels of maps from graph groups to abehan groups This is the first
complete computation of the E-invanants for a family of groups whose higher invariants are not
determined — either implicitly or explicitly — by E1
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Keywords. Graph groups, E-invanants, finiteness properties and ra-generating subgroup sets

1. Introduction

For almost two decades there have been two competing notions of finiteness for
infinite groups C T C Wall introduced a geometric measure of 'finiteness' by
defining a group G to be Tm if and only if there is a K(G, f with finite m-
skeleton Wall's properties T\ and T<i are topological reformulations of the two
most common finiteness conditions, finite generation and finite presentation On
the other hand, Bien introduced the FPm property, where a group G is FPm if
Z, thought of as a trivial ZG-module, admits a projective resolution with finitely
generated m-skeleton More generally, for any commutative ring R, with 0 ^ f, G
is FPTO(i?) if R thought of as a trivial RG-module admits a projective resolution
with finitely generated m-skeleton (See Chapter VIII of [8] for background on
finiteness properties of infinite groups

Examples of groups exhibiting one kind of finiteness, but not another, are
known Let Gm be the direct product of m copies of a finitely generated non-
abelian free group F Let x Gm —s- Z be the map where each generator is carried
to f G Z Then Stallmgs (m 3) and Bien (m > 3) have shown that the kernel
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of x is Fm-1 but not Tm (or FPm). (See [25] and [4].)
Using covering spaces it is easy to show that Tm =4- FPm; Hurewicz's Theorem

shows that if a group G is T<i and FPm, then G is Tm\ however, for any m > 2

Bestvina and Brady have shown that FPm 76- Tm [2]. Their work is a natural
outgrowth of the work of Stallings and Bieri in that they discovered their groups
by examining kernels of maps from 'graph groups' onto Z.

Given a finite simplicial graph Q the corresponding graph group, or 'right-
angled Artin group', has generators corresponding to the vertices of Q, where two
generators commute if and only if they are adjacent in Q. The class of graph groups
includes all finite direct products of finitely generated free groups. The graph Q is

the defining graph and the corresponding graph group is denoted GQ. For example,
if the defining graph Q is the 1-skeleton of an octahedron, then the graph group GQ
is the direct product of three copies of F%. In an abuse of terminology, we use vt
to denote both a vertex of the defining graph and a generator of the corresponding
graph group. If y is a subset of the vertex set of Q and all vt, v3 G Y are adjacent
in Q, then Y is called a (commuting) clique.

Our main result is a complete description of the E-invariants of graph groups.
These E-invariants are subsets of the real vector space Hom(G,R) and were
introduced by Bieri, Neumann, Strebel, and Renz. Among other things, the E-
invariants of a group G determine the FP and T properties of normal subgroups
above the commutator of G. Necessary background on these invariants will be
outlined in the next section.

Partial computations of the E-invariants of graph groups have already
appeared. Let x map a graph group GQ to the reals. A vertex v is living if xiv) ¥" 0

and otherwise it is dead. In [17] it was shown that the full subgraph generated by
the living vertices, denoted Cx, encodes whether or not a character is in T}{GQ):
A character x represents a point in T}{GQ) if and only if Cx is a connected and

dominating subgraph of Q. Recall that a subgraph C Ç Q is dominating if each

vertex v G Q — C is adjacent to some vertex in C. This result was extended by the
second author to graph products of groups [20].

The second homotopy invariant Y?(GQ) was computed in [18]. Explicit
presentations of kernels of maps GQ —> Z (in certain special cases) were given in [13].

Also, the structure of all the E-invariants was known in the case when GQ is a
direct product of finitely generated free groups [19]. The work in [18] leads naturally

to the statement of our Main Theorem, and the arguments there have been

directly extended by the first and third authors to establish this characterization
using the 'En-criterion'. (See Appendix B of [7] or §4 of [6] for criteria establishing
that a map represents a point in En(G) or En(G, Z).) Here we present a shorter
proof using the concept of 'n-generating subgroup sets' introduced in [1].

The flag complex Q induced by a simple graph Q is the simplicial complex
formed by filling in each complete subgraph of Q by a simplex; its n-skeleton is

denoted Q^n>. The flag subcomplex induced by the living graph Cx is denoted Cx.
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The topology of Cx Ç Ç determines whether or not [x] G Y7l(GQ), £n(G£,Z), or
Y.n(GQ,R).
Note: We will usually work over an arbitrary commutative ring R with 1^0; the
reader primarily interested in the FP properties of a group may freely substitute
Z for R throughout this paper. Because we are working over R, it would be more
accurate to refer to a complex as being "n-acylic over i?" and a subcomplex as being
"n-acyclic-dominating over i?" in the définitions below. However, this terminology
becomes quite awkward. Hence in this paper the term acyclic will always implicitly
mean "acyclic over R," where R is the commutative ring in which the reader is

interested. For the cases in which we need to work with integral homology, we
emphasize this by writing Z-acychc.

Similar to being n-connected, a complex is n-acyclic if its reduced homology
groups (over R), up to and including dimension n, are trivial.

Definition. A subcomplex L of a simplicial complex K is — Vj-acyclic-dommating
if it is non-empty, or equwalently, (-l)-acyclic. For n > 0, L is an n-acychc-
dommating subcomplex of K, if for any vertex v € K — L, the 'restricted, link'
lki(w) \k(v)P\L is {n — 1)-acyclic and an (n — 1)-acyclic-dominating subcomplex
of the 'entire link' lk(-u) of v in K.

When L Cx Ç Q K is the living subcomplex induced, by a map \ '¦ GQ —> R,
lki(w) is refered, to as the 'living link' ofv, written as ]kc(v).

Main Theorem. Let Ç be a simplicial graph, let Q be the induced flag complex
based on Q, and let \ '¦ GQ —s- M be a non-zero character. Then:

i) [x] & Yju(GÇ) if and only if the subcomplex Cx of Q is (n — 1)-connected
and, (n — Vj-TL-acyclic-dominatmg.

n) [x] & T<n(GÇ,R) if and only if the subcomplex Cx of Q is (n — 1)-acyclic and
(n — 1)-acyclic-dominating.

By Theorem 2.1, we immediately have the following result.

Corollary A. Let Q be a simplicial graph, let Q be the induced flag complex based

on Q, and let \ '¦ GQ —> Z be a rational character of the graph group GQ. Then
the kernel of \ %s

i) J~n if and only if Cx Ç Q is (n — 1)-connected and, (n — l)-Z-acychc-
dommating;

n) FPn(i?) if and only if Cx Ç Q is (n — 1)-acyclic and (n — l)-acyclic-
dommating.

Our Main Theorem was announced in [16], which contains additional examples
beyond those presented here.

Throughout this paper, V(K) will denote the set of vertices of the simplicial
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complex K, and, if V Ç V{K), then K — V is the subcomplex of K formed by
removing the vertices in V as well as the open stars of these vertices.

Recall that graph theorists call a graph Q 'm-connected' if Q — {v\,... ,v/.} is

connected for any collection of k < to vertices. We will be using a more general
(and slightly altered) notion of connectivity in the context of simplicial complexes.
A simplicial complex K is m-n-connected if for any k vertices {v\,... ,v/.} with
0 < k < to and k < \V(K)\, the complex K — {v\,... ,v/.} is n-connected. For
example, the graph theorists' notion of being 'm-connected' is equivalent to our
'(to — l)-0-connected' property. The m-n-acychc property for simplicial complexes
is defined in an analogous fashion. Because we allow the possibility that k 0,
to-n-connected [resp. TO-n-acyclic] for any to implies n-connected [resp. n-acyclic].

Corollary B'. A graph group GQ has an abelian quotient of integral rank to with
i) Tn kernel if and only if Q is (to — l)-(n — 1)-connected,;

n) FPn(I?) kernel if and only if Q is (to — l)-(n — l)-acyclic.

The proof of this Corollary is exactly like the proof of Theorem 6.3 in [17]; we
do not include the details here, since the result will follow from Corollary B below.

Let £,m(G) denote the space of all normal subgroups N in G with G/N free
abelian of integral rank to. Let £™(G) be the subspace of S,m(G) where N is

additionally required to be Tn\ similarly £™(G, R) is the subspace of S,m(G) where
N is additionally required to be FPn(i2).

Corollary B. For any graph Q, and for any choice of m and n:
i) The space £,™{GQ) is dense in t;m(GQ) if Q is (to — l)-(n — 1)-connected,,

and, is empty otherwise;
n) The space (J^{GQ,R) is dense in t;m(GQ) if Q is (to — l)-(n — l)-acyclic,

and is empty otherwise.

We thank Ken Brown and Joshua Levy for their helpful comments and advice
during the development of this work.

2. Sn(G) and Sn(G,ß)

The reader is directed to [5], [6] and [7] for background on the E-invariants; in
this section we merely establish terminology and quote results relevant to our
discussion.

The set of all characters of a group G is the complement of the zero map in
the real vector space Hom(G,R). For any character \ let [x] {rX | 0 < r G R}
be a ray in Hom(G, R) — {0}; the set of all such rays is denoted S(G) and should
be thought of as a 'sphere' inside the real vector space Hom(G,R). Since any
character of a graph group GQ must factor through the abelianization of GQ,

^1
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Any character x whose corresponding ray [x] intersects an integral point of
Hom(G,R) is a rational character It is easy to check that the image of a rational
character is an infinite cyclic group and that the set of rational characters [x] is
dense in S(G)

Given a group G, there are two sequences of Bieri-Neumann-Strebel-Renz
invariants The homotopical invariants

S(G) E°(G) D E^G) D £2(G) D

and the homological invariants

S(G) T,°{G,R) D ^{G,R) D Y?{G,R) D

The first invariants in these sequences, E-'-(G) and E1(G, iî), are the same, and
were introduced in a paper by Bien, Neumann, and Strebel [5] The higher invariants

were introduced by Bien and Renz [6] who noted that, just as any Tn group
is FPn, En(G) Ç En(G,Z) for any n and G However, the third Corollary to our
Mam Theorem indicates that T<n(GQ) can be empty while En(GC?,Z) is dense in
S{GQ)

These E-invariants have fairly geometric descriptions which are quite concrete
in the case of graph groups Let KQ denote the finite K(GÇ,1) constructed in
[17], and denote its universal cover by KQ Since the complex KQ contains a

single vertex, there is a one-to-one correspondence between vertices in KQ and
elements in GQ Thus corresponding to any character \ GQ —s- R one can
define a map \ KQ —> R, the map \ ls defined on the vertices of KQ by
x(v) x(g) if v b g for some fixed base vertex b, and is extended linearly
and GC?-equivanantly from the vertices to the entire universal cover Let KQX
denote the maximal subcomplex in KQC\x~^~[a, oo) For any non-negative constant

d, the inclusion KQX ^-> KQX °° induces a map between reduced homology

groups Ht {KQX °° R) —> Ht {KQX °° R) and a map between homotopy groups
00^) -^ ^t(KQ\doo)) A character X represents a point in T,n(GQ,R)

[resp Yjn(GQ)\ if and only if there exists a non-negative constant d such that the
induced map on the reduced homology groups [resp homotopy groups] is trivial
for i < n We remark that in the case of graph groups one can establish that a

map is in T,n(GQ) or En(G(/, R) with d 0 Since the details using this approach
are daunting, we do not establish this condition directly

The general definition of the homotopical invariant En(G) is similar so we
restrict ourselves to a sketch As En(G) is defined only for Tn groups, we let K
denote a K{G, l)-complex with finite n-skeleton We think of a character x G —s-

R as an action of G on the real line, and consider a G-equivanant map \ K ^-M.

on the universal cover (such a map always exists) Let Kx °°' be the maximal
subcomplex in K l~l x~1([a, oo)) Then [x] G En(G) if and only if there is a d > 0
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such that the inclusion-induced maps irt(Kx'°° —> irt(Kx '°° are trivial for
i < n.

If G is jFn, the homological invariant T<n(G,R) can be defined as above,
replacing homotopy by reduced homology. However, the définition can be given in
a more general context, in the sense that one can associate to each i?G-module
M purely algebraic invariants S^(G,M). Given a character x : G ^ R, the sub-
monoid x-1([0, oo)) will be denoted Gx. Then Y,%(G,M) consists of all [x] G S {G)
such that M is FPn over the monoid ring RGX, i.e. admits a projective resolution
over RGX with finitely generated n-skeleton.

When G is Tn and R is regarded as a trivial i?G-module, then the algebraically
defined invariant S^(G,iî) coincides with the homological invariant T,n(G,R)

defined above. Therefore we always denote £#(G, R) by £n(G, R).
Given any normal subgroup N, with A G/N abelian, one can look at the

subsphere

0}

corresponding to N, in S(G). One particularly convincing reason to study the £-
invariants of a group is the following result due to Bieri and Renz, building from
work of Bieri, Neumann and Strebel.

Theorem 2.1. Let N be a normal subgroup of a group G with finitely generated,
abelian quotient. Then:

i) N is Tn if and only if S(G,N) Ç Sn(G);
n) N is ¥Vn{R) if and only if S(G,N) Ç £n(G,fl).

The following is immediate by comments in [17] and the theorem above; we
note that such a result is relatively rare for arbitrary groups, and it follows in this
case because graph groups have very symmetric presentations.

Corollary 2.1. Let GQ be a graph group and let x ¦ GQ -> Z. Then [x] G £"(<?£)
[resp. T,n(GÇ,R)] if and only if the kernel of x « Tn [resp. FPn(R)].

We will also need the following results:

Theorem 2.2. ([5], [6]) For any group G and any natural number n, Sn(G), and
Yin{G,R) are open subsets of S{G).

Theorem 2.3. ([23]) Let G be a group of type Tn.
i) Ifn=\ then Y>(G) Y>{G,T) Y>(G,R).

n) Ifn>2 then Sn(G) S2(G) n Sn(G,Z).

The reader who is puzzled or curious about ^-invariants should see [7] for a

complete introduction; for more widely accessible sources, see [5] and [6].
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3. S-invariants and generation by subgroups

In this section we prove a sufficient condition for a character of a group G to belong
to £n(G) if G admits a 'nice' generating set of subgroups in the sense of Abels
and Holz [1]. Recall that a set TL of subgroups of a group G is n-generating (for
G) if the nerve N(H) of the covering of G by all (left) cosets in \JHeH G/H is

(n — l)-connected. If N(TL) is n-connected for all n, then TL is infinitely generating.

Definition 3.1. Given a set TL of subgroups of a group G, let C(TL) be the sim-
plicial complex with k-simphces the finite, non-empty flags Hq C H\ C • • • C Hi-
of non-trivial subgroups Ht G TL.

Example. Let Q be a simplicial graph. Then the collection A of all free abelian
subgroups of GQ based on cliques in Q, together with the trivial subgroup G0

{1}, forms an infinitely generating set of subgroups. (An analogous statement is

true in the more general context of graph products of groups [12].)
Moreover, there is a natural action of GQ on a cubical complex where the

stabilizers of faces of the fundamental domain correspond to the subgroups in
A. We quickly outline this construction; for details, see [14]. Let D(A) be the
simplicial complex with fc-simplices the non-empty flags GAo C GAi C • • • C GA/.
where the A^ are cliques in Q and Ao can be empty. Notice that the complex D{A)
is the cone over C(A), and that C(A) is the barycentric subdivision of Q. If A is

a non-empty clique in Q, then the barycentric subdivision of A naturally embeds
in C(A). Corresponding to the subgroup GA there is a 'panel' PA C C(A)
consisting of the simplices in C(A) whose vertices contain the barycenter of A and
barycenters of simplices A' D A. (If A 0 then PA D(A).) On the other
hand, if p is a point in C(A), then there is a corresponding group Gp GA where

p G PA, and GA is maximal with respect to this property. (If p G D(A) — C(A)
then Gp {1}.)

Let XQ be the cubical complex formed by D{A) x GQ where (p,g) ~ (q, h) if
and only if p q and ghr^ G Gp. There is a natural action of GQ on XQ given
by g ¦ (p, h) (p,gh). This complex can be given a piecewise Euclidean cubical
metric structure making it a CAT(O) space. Since simply connected CAT(O) spaces
are contractible, it follows that A is an infinitely generating subgroup set for GQ.
Notice that the isotropy groups of cells in XQ under the action of GQ are the
conjugates of the GA C A, and the fundamental domain for the GC?-action is

D{A) x {1}.

Theorem 3.1. Assume that TL is a non-empty, finite, intersection-closed, and

n-generating set of subgroups of a group G, and that \ : G —> R is a non-zero
homomorphism with x\h 7^ 0 for each non-trivial subgroup H G TL.

1) If either the trivial group does not belong to TL or the simplicial complex
C(TL) is (n- 1) -connected, and if [x\h] & £"(#) for all non-trivial H eTL,
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then [x] G S"(G).
n) If either the trivial group does not belong to TL or the simplicial complex

C{TL) is (n - l)-acychc, and if [x\h] G £"(#, R) for all non-trivial H eTL,
then [x] G Sn(G,ß).

This general result is our key technical tool for establishing that a given character

is contained in a given S-invariant of a graph group GQ. Further applications
(for example, to graph products of groups, or to Artin groups) seem possible, and
we hope to come back to them later.

The proof of Theorem 3.1 is based upon the following result. The homo logical
version of this Theorem was originally obtained by Schmitt [24]. Proofs can be
found in [21] for the homological case, and [22] in the homotopical case.

Theorem 3.2. Suppose a group G acts on a CW-complex X by cell-permuting
homeomorphisms such that the n-skeleton of X is finite modulo the action of G.
Let x '¦ G ^ M. be a character whose restriction to the stabilizer Ga of any p-cell
a C X with p < n is non-zero.

i) If X is (n — \)-connected and if [x|gJ G YT'~v{Ga) for each p-cell a with

p<n then [x] G S"(G).
n) If X is (n — l)-acychc, and if [x\g„] G Yjn~'p{Ga, R) for each p-cell a with

p<n then [X] G Sn(G,ß).

Proof. (Theorem 3.1.) Let F F(TL) be the flag complex associated with the
covering of G by all cosets determined by TL. In other words, the fc-simplices of
F are the finite, non-empty flags gHo C gH\ C • • • C gHk with Ht G TL and

g G G. As TL is intersection-closed and n-generating, it follows from [1] that F is

(n — l)-connected.
By acting on the cosets, the group G also acts on F. The stabilizer of a simplex

gHo C gH\ C • • • C gHk is gHog~^ which fixes this simplex pointwise. Moreover,
the subcomplex D D{TL) consisting of all flags of the form Hq C H\ C • • • C Hk
is a strong fundamental domain for the action, in the sense that each simplex in
F is equivalent modulo G to a unique simplex in D.

If TL does not contain the trivial subgroup, then the stabilizers of the cells of F
are conjugates of the non-trivial groups H <sTL. By hypothesis, [x\h] G £n(i7) Ç
T,n~P{H) [resp. [X\H] G Sn(ff,ß) Ç ^n~P(H,R)] hence the result follows from
Theorem 3.2.

If {1} G TL, then any cell of the form {1} C gH\ C • • • C gHk in F has

a trivial isotropy group, hence it might be difficult to apply Theorem 3.2. We
circumvent this difficulty by having G act on the subcomplex composed of cells
with non-trivial stabilizers. In what follows we identify the vertex g{l} G F with
the group element g G G. We denote the full subcomplex of F whose simplices
have non-trivial stabilizer by E E{TL). Clearly, G acts on E with C C{TL) as

a strong fundamental domain. As in the example above, D is the cone of C, with
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cone point the vertex 1 G D. More generally, if g G G then the link lk(g) of the
vertex g G F is gC and the closed star st{g) is the cone on gC with cone point g.

For a finite subset S of G, let E(S) E{H, S) be the full subcomplex of F
generated by E together with the vertices in S. We claim that

(a) if C is 1-connected then ir\{E) ir\{E{S)), and

(b) if C is (n - l)-acyclic then Rt(E, R) ^ HÎ(S(S>), R) for i < n.

To see this, let g G S and put S" S \ {g}. Then

E(S) E(Sr) U st(g) and E{S')

To establish (a) simply note that

by Van Kampen's Theorem. However, -K\{gC) {1} 7ri(st(<?)); hence -k\{E{S))
7ri(i?(S'/)) which by the induction hypothesis is isomorphic to ir\{E). A similar

argument using the Mayer-Vietoris sequence establishes (b).
The complex F is the union of the subcomplexes E(S) as S ranges over the

finite subsets of G. Using the fact that F is (n — l)-connected together with the
claims above, we see that E is (n— l)-connected in situation (i) and (n— l)-acyclic
in situation (ii). Using the action of G on E, Theorem 3.2 now gives the desired
result even when {1} G H. D

4. A special case of the Main Theorem

Here we generalize the Bestvina-Brady result [2] from rational characters to all
characters; that is, we prove:

Theorem 4.1. Let Q be a svmphcial graph with induced, flag complex Q, and let

X '¦ GQ —s- R be a character such that x(v) ¥" 0 for a^ vertices v G G- Then:

i) [x] € Yin{GG) if and only if G is (n — 1)-connected,.

n) [x] € T<n(GG,R) if and only if Q is (n — l)-acyclic.

Bestvina and Brady established flniteness properties of kernels of maps x :

GQ —s- Z where each generator is taken to 1 G Z [2]. Essentially the same proof
works when 0 ^ x{v) € Z for each generator v. That is, Bestvina and Brady's
result holds for any rational character x with Cx Q. In particular:

Theorem 4.2. ([2]) Assume, in addition to the assumptions above, that the
character x is rational.

i) If the kernel of x ls Fn then Q is (n — 1)-connected,.
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n) If the kernel of x %s FPn(i?) then Q is (n — 1)-acyclic.

Proof. (Theorem 4.1) First let Q be (n — l)-connected [resp. (n — l)-acyclic]. Let

A be the set of subgroups of GQ consisting of all GA, where A is a simplex in Q,

and the trivial group. As was mentioned in the previous section, A is infinitely
generating for GQ [12].

As GA is a finitely generated free abelian group, we have

\x\ga\ e En(GA) En(GA,Ä) S (GA)

for any n (see Theorem 2.1). Further, the simplicial complex C{A) is isomorphic
to the barycentric subdivision of Q. It follows from Theorem 3.1 that [x] € Y,n(GQ)
[resp. \x]€En(GÇ,R)].

To prove the converse, note that the set of rational characters with xiv) ¥" 0

for all vertices v G Q is dense in the set of all characters of GQ. Assuming that
Q is not (n — l)-connected [resp. not (n — l)-acyclic], the Bestvina-Brady result
implies that the kernels of all such characters are not Tn [resp. FPn(i?)], and
hence by Corollary 2.1, all such characters are not in Y7l(GQ) [resp. Y7l(GQ,R)].
Theorem 2.2 implies that the complement of any given S-invariant is closed. The
comments above indicate Y,n(GQ)c [resp. T,n(GQ,R)c] contains a set of characters
which is dense in S{GQ); hence Y,n{GQ)c S{GQ) [resp. Y,n{GQ,R)c S{GQ)}
which implies Zn(GQ) 0 [resp. Zn(GQ,R) 0]. D

We highlight the fact established at the end of the proof:

Corollary 4.1. If Q is not (n - 1)-connected, then Vn(GQ) 0; if Q is (n - 1)-
connected, then Y,n(GQ) is dense in S(GQ). Similarly, if Q is not (n — 1)-acyclic,
then T,n(GQ,R) 0; if Q is (n - l)-acychc, then Zn(GQ,R) is dense m S(GQ).

This is a theme we will return to in S8.

5. The invariants of graph groups

Throughout this section we will discuss the links of vertices. If v is a vertex of a

simplicial graph Q, we let Qv denote the 1-skeleton of the entire link lk(-u) in Q.

Thus Qv is a graph, and Qv lk(-u) G Q. As a first step in establishing our Main
Theorem we prove:

Theorem 5.1. Let Q be a simplicial graph, let x '¦ GQ —> R be a character, and
let C Cx be the living subgraph. Ifn~>l, then [x] € Yin{GQ) if and only if:

'0 [x\gc] € En(G£); and
n) for each v G Q - C, x\ag- + 0 and [x\gqA € Zn-\GQV,Z).
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Similarly, [x] £ Yin{GQ,R) if and only if:
'0 [x\Gc}eZn(GC,R);and

n) for each v £ Q - C, x\ag- + 0 and [x\gqA € E^G^fl).
In the proof we'll need the following two theorems, the first of which follows

from Theorem 3.2 and Theorem 9.1 using the action of an HNN-extension on its
Bass-Serre tree. Its homological parts (ii) and (iii) are due to Schmitt [24].

Theorem 5.2. Let G (B,t | t~^Ct D) be an HNN-extension with base group
B, stable letter t, and associated, subgroups C D. Suppose that x '¦ G —> M is a

character such that x\c 7^ 0, and that n > 1.

'0 // \x\b] € E"(B) and if [X\c] € E^-^C) then [X] £ E"(G).
n) If [x\b\ e Zn(B,R) and if [X\c] € Zn-\C,R) then [X] G T,n(G,R).
m) If lx] € T,n(G,R) and if [X\b] € ^-\B,R) then [X\c\ € Zn-\C,R).

Theorem 5.3. (Meinert [21], [22]) Assume that G N x H is a semi-direct
product, and that x '¦ G —s- M is a character of G such that x(N) {0}. Then:

1) [x] e En(G) implies [X\h] € En(ff), and
n) [x] € En(G,Ä) implies [X\h] € En(ff,Ä).

Proof. (Theorem 5.1) (<=) We induct on the number of vertices in Q — C. The
base case, when Q C, was established in Theorem 4.1. For the inductive step,
choose a vertex w G Q — C, and let Qw be the full subgraph on all vertices of Q

except w. For all vertices v £ Çw — C, the vertex sets of Qv and Q^ are either equal
or differ by w. As w ^ £, the character x vanishes on the kernel of the natural
split projection GQV —s- GÇ^, sending w to the identity (if w G Qv). By (ii),
\x\gqA € Sn-1(G^,Z) [or Sn-1(G^,ß)]. Applying Theorem 5.3 we find that
Mgs»] e E^^G^.Z) [or S"-1(G^,ß)] for all vertices v £ Çw - £. Because
£¦ Cx £x\Gg Q Qw C ö, the induction hypothesis yields [x|sra] € En(G^tu)[()]To complete the induction step, notice that GQ (GÇw,w \ w~^GÇww
GQW) is an HNN-extension with base GQW, stable element w, and associated

subgroups GQW GQW. When working with the homological invariants T,n(GQ,R)
the result follows from Theorem 5.2 (ii). To establish the result for the homo-
topical invariant Y?{GÇ) note that Y)-{GÇ) Y}{GÇ,Z), hence the result
follows from Theorem 5.2 (i). Because Sn(Gg) Y?{GÇ) n Sn(Gg,Z) by
Theorem 2.3, in order for [x] to be in T<n(GÇ), it suffices that [xl&c] belongs to
S2(G£) n Sn(G£,Z) Sn(G£) and that for each v G Q - C,

\x\ gg

(=>) Notice that x factors through the natural split projection GQ —s- GC, where
all vertices in Q — C are sent to the identity. If [x] G Yin{GQ) then by Theorem 5.3,

Mac] € Sn(G£). It therefore suffices to show that [x] G T<n(GÇ) implies [x\ggA €
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Y,n-l{GQv,Z) for all vertices v £ Q - £. Similarly, if [x] G T<n(GÇ,R) then
[xl&c] G Yin{GC,R), so to establish the homological case it suffices to show that
[x] € En(G0,i?) implies [X\ggA € Y^~l{GQv,R) for all vertices v £ Q - £.

It follows from [17] or [20] that x|gS" ± ° for all vertices v £ Q - £. So let
v £ Q — £, and let Qv be the full subgraph on all vertices of Q except v. We

first establish the homological case. From Theorem 5.3 we infer that [x|gsJ G

T,n(GÇv,R). Again, GQ (GÇv,v \ v-xGÇvv GÇV) is an HNN-extension with
base GQV, stable element v, and associated subgroups GQV GQV. Theorem 5.2

(iii) gives the desired result: [xIgö11] € Yin~x(GÇv, R). On the other hand, assume
[x] G Y?{GÇ). In this case, since Y?{GÇ) Ç S2(Gg,Z), we see that Theorem 5.2

(iii) implies [x\agA G Y}{GÇV,Z). Intersecting this description of Y?(GÇ) with
the description of Sn(GÇ?,Z) above completes the proof. D

We restate our Main Theorem in a form that more closely follows our line of
proof.

Main Theorem. Let Q be a simphcial graph, let Q be the induced, flag complex
based on Ç, and let x ¦ GÇ -^Rbea character. Ifn>l then [x] £ Sn(GÇ7) if and
only if:

i) The subcomplex Cx is (n — 1)-connected,; and,

n) the subcomplex Cx is an (n — Vf-'L-acyclic-dominating subcomplex of Q.

Similarly, [x] G Yin{GQ,R) if and only if:
i) The subcomplex Cx is (n — 1)-acyclic; and

n) the subcomplex Cx is an (n — 1)-acyclic-dominating subcomplex of Q.

Proof. We first give the proof in the homological case. Let £ denote Cx. Appealing
to Theorem 4.1 and Theorem 5.1, we see that the assertion [x] G T<n(GÇ,R) is

equivalent to

i) the subcomplex C is (n — \)-acyclic, and
('<¦'<¦) x\agv 7^ 0, and [x\agA G T1n~1{GQv,R) for all vertices v £ Ç - C.

It suffices therefore to show that condition (ii') is equivalent to C being an (n — 1)-

acyclic-dominating subcomplex of Q. We proceed by induction on n. If n 1 then
(ii') is equivalent to the condition that xIgö" ¥" 0 f°r aU vertices v £ Q — C, which
is the définition of C being a O-acyclic-dominating subgraph of Q.

Assume our characterization of S*( — ,R) for graph groups holds through
dimension n — 1 (where n > 1): for any character x of anY graph group GÇ,
[x] G Yin~^{GÇ, R) if and only if (i) and (ii) hold. In particular, when working

with Sn( — ,R), the induction hypothesis implies that condition (ii') holds if
and only if for each vertex v £ Q — £, Qv C\ C \kc(v) is (n — 2)-acyclic and is

(n — 2)-acyclic-dominating as a subcomplex of Qv. But this is the definition of
£ being an (n — ^-acyclic-dominating subcomplex of Q. Thus the proof in the
homological setting is complete.
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In order to establish the homotopical portion of the Mam Theorem we make
use of Theorem 5 1 and Theorem 4 1 once again It follows that [x] € Y7l{GQ)
if and only if £ is (n — l)-connected and for all vertices v £ Ç — C, xIgö" ¥" 0

and [xIgö11] € Y,n~^(GGv, Z) But the equivalence of this second condition with
condition (n) of the theorem was already established in the homological case D

6. Some examples

In this section we use our Mam Theorem to construct counterexamples to one
conjecture, and to establish another First we construct the counterexamples If
G\ and G% are both of type jFn, then the following formula was conjectured in
[19]

£"(<?! xG2)c= (J (7rî£P(Gi)c + 7r2£«(G2)c)
p+q=n

This means that a map x € Hom(Gi x G2,R) is n°t in Yin{G\ x G2) if and only
if the restriction of x to G\ is not in Yip{G\) and the restriction of x to G<i is not
in S9(G2) for some p and q with p + q n The conjecture has been proven when

n 1 or 2 (see [7] and [11]) but it is false for n > 2

Let Q be the 1-skeleton of an acyclic flag complex K, which has non-trivial
fundamental group It follows from the Mam Theorem, or Corollary 4 1, that
Y?{GÇ) 0 Let Ç' be the 1-skeleton of the suspension oîK, hence GQ' GÇxF2
Since T}{F2) 0, if the above conjecture were true, Y?{GÇ') would be empty
However, since K is acyclic, its suspension is contractible, and therefore T<n(GÇ')
is dense in S(GÇ') for all n

We see no immediate counterexamples to the homological version of this
conjecture, and we hope to pursue this question further

On the other hand, our Mam Theorem implies a conjecture stated in [17], which
was previously proven by the second author in a private communication In [10]
Droms showed that chordal graph groups are coherent, this corollary is another
example of the 'stability' of subgroups of chordal graph groups Recall that a

graph is chordal if every circuit of length greater than three has a chord (an edge

connecting 2 nonadjacent vertices in the cycle)

Corollary 6.1. IfÇ ts a chordal graph, then T}{GQ) Sfc(Gg) T,k(Gg,R) for

Proof We claim that if £ is any connected and dominating full subgraph of a
chordal graph Q then, for each vertex v G Q — C, C" Qv n C is a connected and
dominating subgraph of Qv Suppose to the contrary that C" is not connected
Since £ is connected, any two vertices of C" which are not connected within C" can
be joined by a path in £ Among all those pairs we choose one, say w\,W2 € C",
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where the joining path, say p, is of minimal length (which is at least 2) This
implies that, except for its end points, p runs entirely in £ — C" Hence the circuit
of length > 4, composed of the edge {v, w\}, the path p, and the edge {w%, v}, has

no chord - a contradiction Suppose now that Cv is not dominating in Gv Since
£ is dominating, any vertex w G Gv — £v which is not adjacent to a vertex in Cv

must be adjacent to some vertex x G £ — Cv This latter vertex can be joined by
a path p in £ with some vertex w G Cv Among all possible choices of w, x, and p
we choose one where the path p is of minimal length As above we can construct
a circuit of length greater then three which has no chord it is the composition of
the edge {v, w}, the edge {w,x\, the path p, and the edge {wJ, v}

A quick induction argument shows that if G is a connected chordal graph then
G is contractible The base case, where G has one vertex, is trivial For the
induction step, choose a vertex v £ G such that the dominating subgraph G — {v}
is connected The claim above implies that Gv is connected Since Gv is a full
subgraph of G, it is also chordal Thus the induction hypothesis yields that the
link, lk(-u) Gv, of v G G is contractible By Van Kampen's Theorem and the

Mayer-Vietons Theorem, G is contractible
From the claims above one then concludes that the flag complex £ associated

with a connected and dominating full subgraph £ of a chordal graph G is
contractible and fc-Z-acychc-dominating for all k (The proof is left to the reader

Finally, because [x] G T}(GG) if and only if Cx C G is connected and dominating,
the discussion above shows that when [x] G Y}{GG), then Cx is a contractible
and fc-Z-acychc-dominating subcomplex of G for all k By our Mam Theorem,
[x] € Zk(GG) Ç Y:k{GG, R) for all k > 1 D

The converse of Corollary 6 1 is not true Consider the following graph G

VQ

w\

Let G1 be the full subgraph generated by the vertices vq, ,«4 Then [x] G

T}(GG) if and only if G' Ç Cx In this situation Cx is contractible, and the link of
any dead vertex wt is the corresponding living vertex vt By our Mam Theorem
T}{GG) Xk(GG) Xk(GG,R) for all k > 2, but the graph G is not chordal



36 J. Meier, H. Meinert and L. VanWyk CMH

7. The simplicial structure

It follows from our Main Theorem that Sn(Gg)c and T,n(Gg,R)c are rational
polyhedral for any n. As a matter of fact, these complements are simplicial
complexes contained in the 'natural' simplicial decomposition of S{GQ). The n-sphere
can be described as an iterated join of (n + 1) copies of the 0-sphere: the l-sphere
is S° *S°, S2 is then S° * S1 S° * (S° * S°) and so on. For a graph group,
S{GQ) ~S\v^\-l,soS{GQ) is the |V(£)|-fold join of copies of S°. Each copy of
S° in S(GQ) is simply two vertices in this simplicial decomposition; one of these
vertices is associated with a generator v G Ç, and the other is associated to -u^1.

Each simplex in this decomposition is determined by its vertices; hence it can be
described by a list of generators, or their inverses, {v±,... ,v^}, where v% and

v~ are not both present. Thus a character [x] G S{GQ) belongs to the closed

simplex corresponding to {v^1,... w^fc } if and only if xivl*) > 0 for 1 < i < A; and

X is trivial on all other vertices of Q; a character [x] G S(GQ) belongs to the open
simplex corresponding to {w^1,... ^fc} if and only if x{vl%) > 0 for 1 < i < A;

and x is trivial on all other vertices of Q.

The subcomplex Cx is determined by the living vertices in Q corresponding to
X- All other characters x' in the smallest open simplex of S{GQ) containing x will
induce exactly the same living subcomplex. By our Main Theorem, all characters
in this open simplex are in £n(G£) [resp. Xn(G£, R)] or they are all not in Xn(G£)
[resp. T<n(GÇ,R)]. This discussion essentially establishes the following result.

Proposition 7.1. An open simplex a defined by {v£^,.. w^fc} is contained, in
Yin(GQ) if and only if the full subcomplex ofQ induced by the vertices {v\,.. v/.} is

an (n — l)-connected and (n— Vj-TL-acyclic-dominatmg subcomplex of Q. Similarly,
a is contained in T<n(GÇ,R) if and only if the full subcomplex of Q induced by the
vertices {v\,.. v/.} is an (n-l)-acychc and (n—1)-acyclic- dominating subcomplex

ofG-

The following corollary generalizes Proposition 6.4 of [17].

Corollary 7.1. One can determine if the kernel of a map \ '¦ GQ —s- Z" is Tn
or FPn(i?) by examining the induced maps 4> ° X '¦ GQ —s- Z for finitely many
homomorphisms </> G Hom(Zn,Z).

Proof. Recall that, by Theorem 2.1, we need to determine whether or not the
(n - l)-sphere S(G£,ker(x)) is contained in ^{GQ) or Sn(GÖ,ß). However, by
Proposition 7.1, a point x G S{GQ) is contained in Y>n{GQ) or Y>n{GQ,R) if and
only if the minimal open simplex in S{GQ) containing x is contained in T,n(GQ)
or Tjn(GQ,R). Thus one simply needs to check a single representative point —
and hence a single </> G Hom(Zn,Z) — in each of the simplices of S{GQ) which
S(GÇ,keY(x)) passes through. D
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Examples indicating that one can indeed carry out useful computations along
these lines are presented in [16].

Notice that a simplex a ~ {v^1,... ,v^k} determines a great subsphere S (a) Ç

S(GQ) which is the closure of all simplices corresponding to fc-tuples {vf vf }.
By Theorem 2.2 the complements of the £-invariants are closed in S{GQ), so

Proposition 7.1 yields the following corollary which will be used in the next
section.

Corollary 7.2. // an open simplex a ~ {v^1,.. ,v£kk} is in Y>n{GQ,R)c [resp.
?.n{GÇ)c], then S (a) Ç Y,n(GQ,R)c [resp. S (a) Ç Y,n(GQ)c].

The main result of this section is the following computation of the dimensions
of the simplicial complexes determined by the complements of the geometric
invariants.

Theorem 7.1. Let GQ he a graph group based on a simphcial graph Q and let
0 < d < |V((/)| be an integer. If the character sphere S{GQ) is equipped with its
natural svmplicial decomposition, then the dimension of the subcomplex Yin{GQ)c

[resp. T<n(GÇ,R)c] is less then d if and only if Q is (m — 1)-(n — 1)-connected, [resp.
(m — l)-(n — l)-acychc] where m \V(Ç)\ — d.

Recall that a simplicial complex K is m-n-connected [resp. m-n-acyclic] if for

any set V of A; vertices of K, where 0 < k < m and k < \V(K)\, the full subcomplex
K — V of K generated by all vertices in V{K) — V, is n-connected [resp. n-acyclic].

Lemma 7.1. If a simplicial complex K is m-n-acyclic then the entire link lk(-u) C

K of any vertex v G K is (m — l)-(n — 1)-acyclic. In particular, if K is m-n-
connected, then the entire link lk(-u) C K of any vertex v G K is (m — l)-(n — 1)-
TL-acyclic.

Proof. If K is n-connected, then it is n-Z-acyclic, so we only need to prove the
assertion in the homological setting. Given a vertex v, let V be a set of 0 < k <
m — 1 vertices of lk(-u). Then the link of v with respect to the subcomplex K — V
is \kK-V{v) lk(v) n {K - V) lk(u) - V. Putting V+ V U {v} yields

K-V (K-V+)U8tK-V(v) and (K-V+)nstK-V(v) 1kK-V(v),

where stK-v(v) st(v) D (K — V) st(-u) — V is the closed star of v in the
subcomplex K — V. Since V and V+ both have less than or equal to m vertices,
K—V and K—V+ are n-acyclic. Certainly st^-v{v) is n-acyclic, hence lk^-v{v)
lk(-u) — V is (n — l)-acyclic by the Mayer-Vietoris Theorem. D

Proof. (Theorem 7.1) We only give the proof in the homological case; the homo-
topical case follows similarly.
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If Q is not (m — l)-(n — l)-acyclic then there is a set V of k < m — 1 vertices
where Ç — V is not (n —l)-acyclic. One can easily construct a character \ '¦ GQ —> M

whose living subcomplex Cx equals Q — V. Since m |V(Ç7)| — d, x has at least

d+1 living vertices, and [x] G Yin{GQ, R)c by our Main Theorem, so the d-simplex
determined by the vertices in V belongs to T<n(GÇ, R)c.

The proof of the converse is by induction on the number of vertices of Q, the
case of one vertex being trivial. In the induction step we'll show that any character

X ¦ GQ -s- R with less then \V(G)\ - d dead vertices belongs to Xn(G£, R). Notice
that Cx is (n — l)-acyclic because Q is (|y(Ç?)| — d— l)-(n — l)-acyclic. Also notice
that x\gqv is non-zero for each vertex v G Q — Cx (as in §5, Qv denotes the 1-

skeleton of the entire link lk(-u) C G)', for otherwise one would get a disconnected

complex G — V{GV) by removing |V(^)| — d — 1 or fewer (dead) vertices.
By Lemma 7.1 we know that lk(-u) is (m — 2)-(n — 2)-acyclic for any vertex

v G G — £x. We then apply the induction hypothesis; if m — 2 > 1^(^)1 — 1 then
T1n-1{GQV,R)C is empty; ifm-1 < \V{QV)\ then the dimension of Y,n-1{GQV ,R)C
is less then |V(^)|-(m-1) \V{QV)\ - \V{Q)\+d+l. Summarizing we find that
any character of GQV with less than \V{G)\-d-\ dead vertices is in S"-1(G'^, R).

We finish the proof by an appeal to Theorem 5.1. From the discussion above

we infer that [x\acx] € T,n(GCx,R) and that [x\ggA € ^n~1(GÇv,R) for each

vertex v G G - Cx, hence [x] G T,n(GG, R).

8. The space of kernels

We now turn to the proof of Corollary B from the introduction.
Let £,m(G) denote the space of all normal subgroups N in G with G/N free

abelian of integral rank m. Let £™(G) be the subspace of £,m(G) where N is

additionally required to be jFn; similarly £™(G, R) is the subspace of ^m(G) where
N is additionally required to be FPn(i2).

The space ^m(G) is topologized as follows. Each normal subgroup N with
G/N Zm induces a great (m — l)-dimensional subsphere S(G, N) of the character
sphere S(G). Thus there is an actual distance between these normal subgroups
given by taking the Hausdorff distance between these subspheres.

Corollary B. For any graph Q, and for any choice of m and n:
i) The space £,™{GG) is dense in Çm(GÇ) if Ç is {m - l)-(n - I)-connected,,

and is empty otherwise;
n) The space (J^{GQ,R) is dense in t;m(GG) if G is (m — l)-(n — 1)-acyclic,

and is empty otherwise.

A normal subgroup N G £,m(GG) is in general position if for any character
[x]eS{GG,N),\V{Cx)\>\V{G)\-m.
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Lemma 8.1. The set of all general position subgroups N G S,m(GQ) is dense in

Proof. Given the kernel N of any epimorphism </> : GQ —> Zm we will find an
N G £,m(GQ) which is arbitrarily close to TV" G £,m(GQ) and is in general position.
In the following it will be convenient to endow the various R*'s with the 1-norm.

First, order the vertices in Q such that {4>{v\),..., ^(%)} is a basis for Rm, and
define a homomorphism (p : GQ —> Rm as follows. Start by having (p(vt) 4>{v%)

for 1 < i < m. Because {<f>{v\),..., 4>{vm)} is a basis for Rm, each 4>(vk) can be

expressed as a linear combination

4>{vk) Cki\4>{v\) + Ck^4>{vi) H 1- Ck,m4>{vm)

for k > m. Note: Since the image of </> is Zm, each of these coefficients is rational.
We define our associated map (p to be

V{vk) (Cfc,l + £k,l)<t>(vl) + (cfc,2 + £k,2)<t>(v2) -\ \- {Ck,m + £k,m)4>{vm)

where the ekyl are small, rational, and chosen so that <f(vk) is not a linear combination

of any collection of m — 1 vectors from {<p(vi),..., y(t>fc_i)}. This can be
achieved because removing a finite number of (m — l)-dimensional linear subspaces
from Rm leaves a dense subset of Rm.

Let N be the kernel of (p. As (p agrees with <f> on the first m generators, the
image of if, and hence GQ/N, is isomorphic to Zm.

Assume for the moment that there is a character \ '¦ GQ —> R that vanishes on
N and has at least m dead vertices. Clearly, x splits as ip o ip for some homomorphism

if; : Zm —s- R. As the image under y> of any m vertices forms a basis of Rm,
ip must be trivial. This contradicts our assumptions that \ is non-zero; hence N
is a general position subgroup. ^Finally it remains to prove that N can be chosen arbitrarily close to TV in
im{GQ). We shall identify S{GQ) with the unit sphere in Rlv(e)l, the identification

being induced by mapping a homomorphism \ '¦ GQ —> R onto the vector
(x(vi),... ,x{v\v(g)\)) GR|V(e)l. Now note that each x with [x] eS{GQ,N) [resp.

S{GQ, N)] factors as if;o<p [resp. ^>o</>] for some non-zero homomorphism ^ : Zm ^
R. Consequently, it suffices to show that for each ip G Hom(Zm,R) the points on
the unit sphere of Rl^^-1 represented by the vectors (ipoip(vi),... ,ripocp(v>v/g\>

and (ipo (p(v\),... V;o</)('y|v(e)|)) can be chosen to be arbitrarily close. Assuming
these vectors are rescaled so that their associated points are actually on the unit
sphere, we see that the Hausdorff distance between N and N is bounded by

\v(g)\ \v(g)\ m \v(g)\ m

-1>o4>(vk)\ <
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But because the e^ can be chosen to be arbitrarily small, the normal subgroup
N can be made arbitrarily close to N in £,m(GÇ). D

Proof. (Corollary B) We only give the proof in the homotopic setting, the homo-

logical one is similar. If Q is not (m — l)-(n — l)-connected then the dimension of
Yim(GQ)c is greater than or equal to | V(^)| — m by Theorem 7.1. However, Corollary

7.2 shows that Y7n{GQ)c not only contains a simplex of dimension |V(^)| — m
but, in fact, a great subsphere of this dimension. Because S{GQ) is a sphere of
dimension | V(^) | — 1 we see that each great subsphere of dimension m — 1 must
intersect £n(G£)c. Thus £,™{GQ) 0 by Theorem 2.1.

If Q is (m — l)-(n — l)-connected then the dimension of Yjn(GQ)c is less than
|^(ö)| — to. Consequently any general position subgroup N with G/N Zm must
be of type Tn. These normal subgroups form a dense subset of S,m(GÇ). D

9. Appendix: On the invariants of groups acting on trees

This appendix contains work of Susanne Schmitt which was used in our proof of
Theorem 5.1. As her thesis [24] is not widely accessible, we sketch the proof of
her theorem. We have divided these results into several parts which seem to be of
independent interest.

Throughout this appendix G will denote a group, M an i?G-module, and x '¦

G^la non-trivial homomorphism.

Theorem 9.1. (Schmitt [24]) Suppose that G acts on a tree T such that T is

finite modulo the action of G. Suppose further thai the restriction Xa '¦ Ga —s- R

°f X t° the stabilizer Ga of a vertex or an edge a ofTis non-zero.
i) If n > 1, if [xv] G YiR{GVlM) for all vertices v of T, and if [xe\ €

Y,nnl{Ge,M) for all edges e of T, then [X] G Y,nR{G,M).
n) Ifn>0, if [x] £ T,%{G,M), and if [Xe] G T,%{Ge,M) for all edges e of T,

then [xv] G Y,%{GV,M) for all vertices v of T.
in) Ifn > I, if[x] G T,%(G,M), and if [Xv] G Y1nRl{Gv,M) for all vertices v of

T, then [xe] G ^^(G^M) for all edges e of T.

Remark 9.1. Replacing the short exact sequence of a tree with the cellular
chain complex, the proof of (i) generalizes easily to CW-complexes of arbitrary
dimension. This provides a proof of Theorem 3.2 (ii).

Lemma 9.1. Suppose that H < G is a subgroup, that N is an RH-module, and
that x restricts to a non-zero character, also denoted, by x> of H.

i) The monoid ring RGX is flat as (left or right) RHx-module.
n) The embeddmgs Gx ^ G and Hx ^ H induce an isomorphism RGX <S)rhx
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N RG (g>RH N of left RGx-modules.

Proof, (i) We only prove that RGX is flat as left I?i7x-module, the right hand case
follows similarly. Choose a transversal T for the cosets in H\G. Then RGX is the
direct sum of the I?i7x-submodules R(HtC\Gx) with t G T, and it suffices to show
that the latter are RHX-Ü&t. As x(Ht D Gx) is bounded from below, there is a

sequence {gl)l>\ of elements in HtC\Gx such that x(<7») > xiOt+l) an(i x(HtP\Gx)
is contained in the union of the intervals [x(g,),oo). Hence Hxgl Ç Hxg%+\,
and the sequence {Hxgt)%y\ exhausts Ht n Gx. Consequently R(Ht n Gx) is the
ascending union of the free I?i7x-submodules R(Hxg,). It follows that R{HtC\Gx)
is flat over RHX.

(ii) To verify this assertion one shows that the inverse (p of the obvious ho-

momorphism RGX <S)rhx N —s- RG <S)rh N can be defined as follows: Given
A G RG and n G N, choose an element h G Hx such that A/i G RGX, and

put y>(A (g) n) A/i (g) h~^n. D

Theorem 9.2. Lei H < G be a subgroup, and N an RH-module. If x\h ¥" 0 then
[X\h] € E£(ff, N) if and only if [X] G E^(G, ÄG (g.^ JV).

Proof. By the lemma above, applying the functor RGx<S>rhx to an RHx-îiee
resolution of ./V with finitely generated n-skeleton produces an i?Gx-free resolution of
RG <%>rh N with finitely generated n-skeleton.

The proof of the converse relies on the Bieri-Eckmann criterion (see [3]): A
A-module A is of type FPn if and only if, for any index set I, the natural map
T°rfc (III A, A) ^ Ylx Tor^(A, A) is an isomorphism for k < n and an epimorphism
for k n.

So for any index set I the natural map

°x (Q N) -^ f] TorfGx (RGX,RG ®RH N)

is an isomorphism for k < n and an epimorphism for k n. As i?Gx is flat

over RHX, it follows that Toif°x (B, RG (g)RH N) TorfGx(S, RGX ®RHx N) is

isomorphic to Torfc X(B,N) for each iîGx-module B. Consequently the natural
map

n

is an isomorphism for k < n and an epimorphism for k n.
Since the embedding i : RHX —s- iîGx of iîiïx-modules splits, with split projection

g : RGX —> RHX say, we have a commutative diagram with monomorphisms
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/.*, tj and epimorphisms g*, gf

TorfHx (Hj- RHX,N) —> fix TorfH% (ßffx, N)

From the criterion above one now concludes that N is of type FPn over RHX. D

The following finite index result was first obtained by Bieri and Strebel (1987,
unpublished). The presentation here is taken from [24].

Theorem 9.3. Suppose that H < G is a subgroup of finite index, and thai \
restricts to a non-zero homomorphism of H. Then [x\h] & ^r(H,M) if and only
*/[*]€ ££(G,M).

Proof. All we have to show is that M is of type FPn over RGX if and only if the
module R(G/H) <%>r M, with diagonal i?Gx-action, is FPn. This follows from the
theorem above together with the fact that RG <S)rh M R{G/H) ®r M where
RG acts on the left hand side of the first module and diagonally on the second.

So assume first that M admits a free resolution F —» M over RGX with finitely
generated n-skeleton. Tensoring yields an exact chain complex

R(G/H) (g)R F —> R(G/H) <g>RM —> 0

where RGX acts diagonally. Hence it suffices to show that R(G/H)<S)rF has finitely
generated n-skeleton over RGX. As H has finite index in G, this follows from the
observation that R(G/H) <%>r RGx with diagonal i?Gx-action is isomorphic to
R(G/H) <S>rRGx with single i?Gx-action on the right hand side: the isomorphism
can be defined by A <g> g h^ g~^\ <8) g for A G R(G/H) and g G Gx.

To prove the converse, we may assume that H is normal in G since every
subgroup of finite index, in fact, contains a normal one of finite index. Then we
take a free resolution F, with finitely generated modules in all dimensions, of the
trivial i?(G/iï)-module R and tensor it, over R, with the i?G-module M. As
F splits over R this produces an iîG-resolution E —» M, the modules Et being
finite direct sums of R(G/H) <S)r M with diagonal i?G-action. Our assumption
now implies that there is an i?Gx-free resolution with finitely generated n-skeleton
for each of the modules Et (see Lemma 9.2 (ii) below). Finally the mapping cone
construction yields an i?Gx-free resolution of M with finitely generated n-skeleton.

D

Beside these results all we need to prove Theorem 9.1 is the following general
observation (see Proposition 1.4 of [3]):
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Lemma 9.2. Suppose that 0 —> M" —> M' —> M —> 0 is a short exact sequence
of RG-modules

i) If n > 1, if [X] G E£(G,M'), and if [X] G Y^l{G,M"), then [X] G

S« (G, M)
n) Ifn > 0, if[X] G X%(G,M), and if[x] G E^(G,M"), ^en [x] G S^,(G,M')
m; If n > 1, if [x] G T,%(G,M), and if [X] G E^^M'), i/iera [x] G

Proo/ (Theorem 9 1) The cellular chain complex C(T,R) of the tree T with R-
coefBcients gives an iîG-resolution of the trivial module R A careful study shows
that after tensoring this free iî-complex with M over R we obtain a short exact

sequence

0 —> ®ees(RG(E)RGe Me) —> ®vev(RG(E)RGv Mv) —> M —> 0

of RG-modules (see, eg, [8]) Here £ is a finite set of representatives for the edges
of T, and V is a finite G-transversal for the vertices Moreover, for e G £, Me is
the !?Ge-inodule M with !?Ge-action twisted by a homomorphism re Ge —> {±1}
which takes into account whether an element preserves the orientation of the edge
e or not The modules Mv are defined similarly

We only prove (l), the assertions (u) and (m) follow similarly Given a vertex
or an edge a G V U £, there is a subgroup of finite index in Ga which maps onto
the identity under Ta Using the above theorem, our assumptions now imply that
[Xv] G Y,%{GV,MV) for all v G V and [Xe] G T^l{Ge,Me) for all e G £ Referring
to Theorem 9 2 along with Lemma 9 2 we see that [x] G £#(G, M) D

Note added in proof: Bux and Gonzalez have recently written an alternate
proof of our Mam Theorem, more along the lines of the Bestvma-Brady Morse

theory approach [9]
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