
A character formula for a family of simple
modular representations of GLn

Autor(en): Mathieu, Olivier / Papadopoulo, Georges

Objekttyp: Article

Zeitschrift: Commentarii Mathematici Helvetici

Band (Jahr): 74 (1999)

Persistenter Link: https://doi.org/10.5169/seals-55786

PDF erstellt am: 27.05.2024

Nutzungsbedingungen
Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an
den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern.
Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in
Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder
Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den
korrekten Herkunftsbezeichnungen weitergegeben werden.
Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung
der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots
auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.

Haftungsausschluss
Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung
übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder
durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot
zugänglich sind.

Ein Dienst der ETH-Bibliothek
ETH Zürich, Rämistrasse 101, 8092 Zürich, Schweiz, www.library.ethz.ch

http://www.e-periodica.ch

https://doi.org/10.5169/seals-55786


© 1999 Birkhauser Verlag, Basel
Comment Math Helv 74 (1999) 280-296
0010-2571/99/020280-17 $ 1 50+0 20/0 I Commentarii Mathematici Helvetici

A character formula for a family of simple modular
representations of GLn

Olivier Mathieu and Georges Papadopoulo

Abstract. Let K be an algebraically closed field of finite characteristic p, and let to > 1 be

an integer In the paper, we give a character formula for all simple rational representations of
GLn(K) with highest weight any multiple of any fundamental weight Our formula is slightly
more general say that a dominant weight A is special if there are integers i < j such that
A Y"* o-k^k and Y"* ^, ^ «fc < inf(p — {j — i),p — 1) Indeed, we compute the character
of any simple module whose highest weight A can be written as A Ao +pAi + +prAr with
all Aj are special By stabilization, we get a character formula for a family of irreducible rational
GLoo (X)-modules

Mathematics Subject Classification (1991). 20C20, 17 Bxx

Keywords. Tilting modules, modular representations, character formula, polynomial functors,
Verhnde's formula

Introduction

In the paper, we will prove a character formula for a stable family of simple
polynomial representations of GLn(K) Unfortunately, the mam result of the paper
requires some preparatory explanations Therefore, the introduction is organized
as follows We first define the basic notions about polynomial weights and we
describe some combinatorics involving Young diagrams Next, we recall the usual
correspondence between dominant polynomial weights and Young diagrams and
we compare the corresponding definitions After the statement of the mam
result, we explain the meaning of a stable family in terms of polynomial functors
Then, we briefly compare our result with the mam result of [AJS] about Lusztig's
Conjecture At the end of the introduction, we describe the mam ingredients of
the proof which uses tilting modules [D2] [R] and the modular Verlmde formula
[GM1][GM2]

The research of the two authors was supported by UMR 7501 du CNRS The second author
was also supported by UA 748 du CNRS
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Let us start with definitions involving weights. From now on, fix a positive
integer n and an algebraically closed field K of characteristic p > 0. Let H be
the Cartan subgroup of GLn(K) consisting of diagonal matrices and let P be the

group of characters of H. An element of P will be called a weight and the group
structure of P will be denoted additively. Denote by ei,e2,... the natural basis

P, i.e. et(h) is the ith diagonal entry of the matrix h G H. Therefore any weight
fj, can be written as /x J2i<t<n r* e*' where r% € Z. Its degree is |/x| Xa<»<n r*-
The weight /x is called polynomial if rt > 0 for all i. It is called dominant if
rl > r2 ^ •••• By definition, the kth-fundamental weight is 0;^ X^i<j<fcefci
for any A; with 1 < k < n. Therefore a weight A is polynomial and dominant if
and only if A Xll<fc<n ak ^k where au > 0 for any k. The main definition of
the paper is the definition of special weights. A dominant polynomial weight A is

special if and only if there exist integers i < j such that:
(i) ^ T,l<k<]ak^k,
(ii) m(A) < p - (j -i) and m(A) < p, where m(A) J2t<k<3 ak-

Note that the last inequality m(A) < p is automatically satisfied whenever i ^ j.
We will also use the notion of the p-adic expansion of a polynomial weight. Recall
that any integer / > 0 admits a unique p-adic expansion / Xlj>o KÏÏP3 ¦> wnere
0 < l(j) < p for all j > 0 (this expansion is finite since l(j) 0 for j >> 0).
Similarly, any polynomial weight \i admits a unique finite p-adic expansion \i
^ZiX)^7A*(•?')> which is defined by jj(j) Xll<j<n r»(i) e»- Also set Cn the set of all
dominant polynomial weights A of the form A ~52i.>oPk^k, where all weights A^

are special and A^ 0 for k >> 0. Indeed, it is easy to see that X!fc>0-Pfc^fc is the
p-adic expansion of A, i.e. we have A^ \(k) for all k > 0 (see Lemma 5.1 (i)).

Now, we will define a few notions involving Young diagrams. The degree of a

Young diagram Y, denoted by |Y|, is the total number of boxes and its height is

the number of rows. A tableau of shape Y is a labeling of the boxes of Y by the
integers 1, 2,..., n. It is convenient to draw Young diagrams and tableaux and the
convention used in the paper is better explained by giving one example of a Young
diagram Y of degree 8 and height 3 and one example of a tableau T of shape Y:

T : 2

1

2

3

3

4

3

5

3

As usual, a tableau is called semi-standard if the filling is non decreasing from
left to right and increasing from top to bottom, e.g. the tableau in the previous
example is semi-standard. For a tableau T, denote by T[i] the subset of boxes with
labels < i. Therefore, when T is semi-standard, T[i] is again a Young diagram.
The weight of T is w(T) Xa<»<n ViiT)^,, where f]t(T) equals the number of
times the label i occurs in T (i.e. f]t(T) is the cardinality of T[i] \ T[i — 1]). For
a Young diagram Y, we denote by ct(Y) the number of boxes on the ith column
and by ro{Y) the number of boxes on the jth row. In the previous example,
ci(Y) 3, n(Y) 4, c2(Y) 2, r2(Y) 3 and so on Let m < p be a
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positive integer. We say that Y is m-special if the number of columns is < m and
if c\(Y) — cm(Y) < p — m. By définition, a semi-standard tableau T is m-semi-
standard if all Young diagrams T[i] are m-special.

There is a one-to-one correspondence A i—> Y(X) between dominant polynomial
weights A and Young diagrams of height < n. Indeed, Y(X) is defined by the
requirement: A Xll<j<n ri(Y)ei- This correspondence preserves the degree.
Moreover a polynomial dominant weight A is special if and only if Y(X) is m(A)-
special, see Lemma 4.1 (i). Let A be a special weight, let /ibea polynomial weight.
Set N(X,fï) the number of m(A)-semi-standard tableaux of shape Y(X) and weight
/x. By definition, we have jV(0,0) 1 and N(X,fï) 0 if the degrees of A and /x

are distinct.
For any dominant weight A, set V Kn and let Ly{X) be the simple GL{V)-

module with highest weight A (this simple GLn(Ä')-module is usually denoted by
L(X)). For /x G P, its weight space corresponding to the weight /x is denoted by
Lv(X)n- The main result of the paper is the following:

Theorem 5.3. Let A G Cn. Any weight of Ly(X) is polynomial, and for any
polynomial weight \i, we have:

In the theorem, we stated the obvious fact that any weight /x of Ly{X) is

polynomial because this property is necessary to define its p-adic expansion. Also,
the infinite product is well defined because N(X(k),^i(k)) N(0,0) 1 for k >>
0.

It remains to explain what means a stable family of simple modules. The
definition of special weights is indeed independent of n, i.e. if A is a special weight
for GLn(K) its natural extension to GL^(K) is again special for any N > n.
Otherwise stated, the family (Cn)n>i is stable, i.e. Cn C Cn+i. Thus the previous
theorem gives rise to a character formula for any simple GL00(Ä')-module with
highest weight A G Cœ, where GL^K) Un>tGLn(K), Cœ Un>iCn. The
stability notion can be better explained in terms of polynomial functors. Let Y
be a Young diagram and let A be the corresponding polynomial dominant weight.
It will be convenient to extend the notation Ly{X) by requiring Ly{X) 0 if A is

not a dominant weight for GLn(K), i.e. if the height of Y is > n. Then there is a

polynomial functor Sy such that Sy '¦ V \-^ Ly(X) for all n > 0 (our définition of
the functor Sy is not complete, because we only describe the values of the functor
on objects). Therefore, the previous theorem is indeed a character formula for any
simple polynomial functor Sy, where Y Y(X) for some A G Coo-

Example. For any s with 0 < s < p — 1, the weight so), is special. Therefore,
N Wj G Cn for any N > 0, and the theorem gives a character formula for any simple
module whose highest weight is a multiple of a fundamental weight.
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There is a general conjecture, due to Lusztig [Lul,Lu2], about the character of
a simple rational GLn{K)-moâu\e The experts believe that this conjecture holds
for p > n (see e g the introduction of [So] and it has been proved for p > > n by
Andersen, Jantzen and Soergel [AJS] In contrast, our character formulas apply
only to some peculiar highest weights, but they hold for any n and are therefore
outside the validity domain of Lusztig's Conjecture Indeed Lusztig's Conjecture
does not seem adapted to the investigation of simple polynomial functors Using
Weyl's polarizations, the simple polynomial functor Sy is entirely determined by
the GLn(K)-modu\e Sy{Kn), where n \Y\ Therefore, Lusztig's Conjecture
only applies to polynomial functors of degree < p and simple polynomial functors
of degree < p can be easily determined by elementary computations or by Theorem
53

The proof is based on the following three ingredients
(l) First, one uses Steinberg's tensor product formula [St] to reduce the statement

to the case where A is special It turns out that Steinberg's formula is
especially simple in our setting, because any weight of Ly(A) is a unique combination
of weights of the modules Ly{pk A(fc)) (Lemma 5 2)

(u) We strongly use an idea of Donkm [D2] Donkm proved that M /\(V<g)W)
is a dual pair under GL(V) x GL(W) (here W is another vector space) This
dual pair is called Howe's skew dual pair, because it has been found by Howe in
the context of fields of characteristic zero [H] Donkm showed that the character
of all simple modules can be deduced from the character of all tilting modules,
and conversely However, we do not have such an information This is why we
need to modify a bit Donkm's approach Using the same dual pair, we show
that the character of simple GL(V)-modules can be also deduced from the tensor
product inutiphcity of a given tilting GL(l/l/)-module (Corollary 2 3) in some direct
summands of the GL(l/l/)-module M

(m) Similarly, the general tensor product multiplicities of tilting modules are
unknown However the mam result of [GM1,GM2] (Verlmde's formula for algebraic
groups) describes some of them More precisely, we use Verlmde's formula for
GL(W) with W of dimension 1,2, ,p — 1, and then the computable tilting
multiplicities in M correspond exactly to the special weights (see e g Lemma 3 4)

Remark. It follows from the character formula that the restriction to GL(n — 1)
of representations considered here are semi-simple (Theorem 6 2) This result has
been obtained independently and simultaneously by J Brundan, A Kleshchev
and I Suprunenko [BKS] by very different methods Indeed, the result of [BKS] is

more precise, because it characterizes all simple representations of GL{n) whose

restrictions to GL(n — 1) are semi-simple Later, these three authors have been
able to recover the mam result of our paper (Theorem 5 3) by using their semi-
simplicity theorem (thus providing a very different proof)



284 O. Mathieu and G. Papadopoulo CMH

1. General results about tilting modules

Let K be an algebraically closed field of characteristic p, let G be a reductive
group over K, let B be a Borel subgroup, and let H C B be a Cartan subgroup.
We will set by U the unipotent radical of B and by U~ the unipotent radical of
the opposed Borel subgroup. Denote by P+ the set of dominant weights relative
to B. For A G P+, denote by L{\) (respectively A(A), V(A)) the simple module
(respectively the Weyl module, the dual of the Weyl module) with highest weight
A.

By G-module, we mean rational G-module of finite dimension. A good filtration
of a G-module M is a filtration whose subquotients are dual of Weyl modules. A
G-module M is tilting if M and M* have a good filtration. Recall the following
known result:

Theorem 1.1.
(i) For each A € P~^~, there exists a unique indecomposable tilting module T(A)

which admits A as highest weight. Moreover, dimT{X)\ 1.

(n) Any tilting module is the direct sum of indecomposable tilting modules of
type T{X). The tilting modules T(A) and T(/x) are isomorphic if and only if A \i.

(in) The tensor product of two tilting modules is a tilting module.

References for the Theorem are as follows: the general notion of tilting modules
for any quasi-hereditary algebra is due to Ringel [R]. In the context of algebraic
groups, the assertions (i), (ii) are due to Donkin [D2] (Theorem 1.1). Assertion
(iii) follows from the fact that the tensor product of two G-modules with a good
filtration has a good filtration: for groups of type A (which are indeed the only
groups used here), it has been established in [W], for the general case see [Dl],
[Ml].

Let M be a G-module. Denote by TG{M) the image of the composite map
Mu —s- M —s- Mjj- where Mu is the space of [/-invariants of M and Mv-
Hq(U~, M) is the space of £/~-coinvariants of M. Since TG{M) is an iï-module,
there is a weight decomposition TG{M) ®\eP+TG{M).

Lemma 1.2. Let M be an indecomposable tilting module.

(i) TG(M) has dimension one.

(n) Let A be the unique weight ofTG{M). Then we have M ~ T{\).

Proof. It is clear that TG{N) ^ 0 for any non-zero G-module N, because any
maximal weight of N is a weight of TG(N). Let A be any weight of TG(M)
and choose v G M^ such that its image in TG(M) is not zero. Denote by the
same notation v\ a highest weight vector in A(A), in V(A) and in T(A). By the
universal property of Weyl modules, there is a map i^\ : A(A) —s- M sending v\ to
v. Similarly, there is a map ipy : M —s- V(A) sending u to ^-
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Now, there is a canonical injection A(A) ^-s- T{\) (sending v\ to v\) whose

quotient has a filtration by Weyl modules. We have Ext^(A(fj,), V(/x')) 0,
for any /x,/x' G P+ ([CPSV], corollary 3.3). Since M has a good filtration, we
have ExtlG{T{\)/A{\),M) 0. Thus, the map Vl can be extended to a map
4>\ : T(A) —> M. In the same way, there is a canonical surjection T(A) -» V(A)
(sending v\ to u>), and the map ipy can be lifted to a map </>2 : M —s- T(X). So we

get the following commutative diagram:

T(A)

<hS I

A(A) -^ M -^ V(A)

T(A)

By définition, we have ipy o ipi(v\) v\. Therefore, </>2 o ^ is a non nilpotent
endomorphism of the indecomposable module M. By Fitting's Lemma, <f>2 ° 4>l lii
an invertible map. Thus, T(X) is a direct factor of M and so we have M ~ T\A).

If i/ is another weight of TG{M), we get T{v) ~ M ~ T(A). Therefore by
Theorem 1.1 (ii), A is the unique weight of TG(M). As T(X)\ has dimension 1

(Theorem 1.1 (i)), it follows that TG{M) has dimension one. D

Corollary 1.3. Let M he a tilting G-module and let C he its commutant.
(i) We have M ~ ®xeP+Tx(M) ® T(A) as « G-module.
(n) For any A € -P^, i/ie C-'module TG(M) is zero or simple.

Proof. By Theorem 1.1, there exists an isomorphism of G-modules
M ~ ®\ep+T{X)9jN^. By Lemma 1.2 we have JVA dimT^(M) and Assertion
(i) follows. For AT > 0, denote by MatN{K) be the if-algebra ofiVxJV matrices.
Clearly, C contains a subalgebra C° ~ (BXeP+Mat^^{K) and we have M ~

M) <g) T(A) as C° x G-modules. Hence Assertion (ii) follows from the fact
that for any A, TG{M) is zero or is a simple C -module. D

Lemma 1.4. Let M,N he two G-modules. If M is indecomposable of dimension
divisible by p, then the dimension of any direct summand of M <g> N is divisible by

p.

Proof. This follows easily from Theorem 2.1 of [BC], see also [GM1] (Lemma 2.7.).
D
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2. Howe's skew duality for the pair {GL{V),GL{W))

From now on, fix an integer n > 1 and set V Kn. We need to modify some
notations of the introduction. The Cartan subgroup of GL(V) will be denoted by
Hy (instead of H), the group of characters of Hy by Py (instead of P), the basis
elements of Py by e( (instead of et) and the fundamental weights by lo\ (instead
of LVk). We will also modify some notations of Section 1. The set of dominant
weights will be denoted by Py and for a A G Py we will denote by Ly(A),
Vy(A) and Ty(X) the simple module, the dual of the Weyl module and the tilting
module with highest weight A. We will use the following additional notations.
Let (wj)i<j<n be the natural basis of V Kn. Let Uy (respectively Uy) be
the subgroup of unipotent upper diagonal (respectively lower diagonal) matrices.
Indeed Py ®i<KnNwiy © Z^f, an(i the dominant weights are relative to the
Borel subgroup Hy.Uy.

In what follows, we will use another vector space W of dimension m, with basis

(wj)l<j<m. Notations relative to GL(W) will be similar to those for GL(V).
For any Young diagram Y contained in the n x m rectangle (i.e. such that

ci(Y) < n and n(Y) < m), we set X(Y) £!<,<„ r,(Y)e,v and XT(Y)

El<»<m C*(Y) eY- By definition, \{Y) belongs to P+ and XT(Y) belongs to P+.
The map Y \-+ X(Y) is the inverse of the map A \-+ Y(X) defined in the introduction.
Set M /\(V <g) W), let K[GL(V)] be the group algebra of GL(V) and let py :

K[GL(V)] -> EndK(M) the map induced by the action of GL(V) on M.

Theorem 2.1. (Donkin)
(i) We have pv{K[GL{V)\) EndGL{w)(M).
(n) As a GL(W)-module, M is tilting.

Proof. Theorem 2.1 (i) is proved in [D2], proposition (3.11) (see also [AR] for a

generalization to other classical groups). As a GL(l/l/)-modules, /\ W is titling (see

[D2] or Lemma 3.2) and M is isomorphic to (/\ Wfjn. Therefore, by Theorem 1.1

(iii) the GL{W)-moà\ûe M is tilting (see also [D2]). D

Indeed, we obtain dual statements by exchanging V and W. However, it should
be noted that usually M is not tilting as a GL{V) x GL{W)-module. In Howe's
terminology, (GL(V), GL{W)) is a dual pair in GL{M). Indeed, for fields of
characteristic zero, this duality is due to Howe [H]. In this setting, Howe showed that
the GL(V) x GL(W)-module M is isomorphic to ®YLV(X(Y)) <g> LW(XT(Y)),
where Y runs over all Young diagrams contained in the nxm rectangle. A certain
generalization of this property in finite characteristics is stated in the next lemma:

Lemma 2.2. Let Y be a Young diagram of degree d contained in the n X m
rectangle.

(i) As GL(V)-module, T^L(£f}(M) is isomorphic to LV{X{Y)).
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(n) Let y« X^l<fc<n ^i-eY be a polynomial weight of degree d. We have

\k' W®/\k*W®...).

Proof. For 1 < i < n and 1 < j < m, let bhJ the box of the nxm rectangle located
at the intersection of the ith row and the jth column and set xhJ vt <g w3. In
the case d > 0, we place the Young diagram Y inside the rectangle in a such way
that it contains the upper left box 6i i. For example:

Let X (respectively X be the subspace of V <g VF generated by all xhJ with
bhJ G Y (respectively with bhJ £ Y). Note that X is a d-dimensional Uy x U\y-
submodule olV<S>W and X~ is a (nm — d)-dimensional Uy x t/^-submodule of
V (g) W. Choose non zero vectors x G /\ X and x~ G /\nm X~.

We claim that TXT,y\ (M) contains a non-zero t/y-invariant vector of

weight \(Y). The vector x is Uy x C/v^-invariant of weight (X(Y),XT(Y)). Hence

it defines a t/y-invariant element x G T\T^s (M). For y G M, set r(y) J y A

x~, where / : M —s- /\mn(V (g) VF) is the projection over the top component of
/\(V (g) W). Since x~ is t/^-invariant and /\nm(V (g VF) is a trivial C/^-module,
the map t : M -^- f\mn(V <g VF) is t/^-equivariant and therefore factors trough
M.JJ- By définition, x A x~ ^0 therefore t(x) 7^ 0. As the image of x in M^-
is not zero, we have ï^O. Hence TXT,y<. (M) contains a non-zero t/y-invariant
vector of weight X(Y), namely x.

However, by Corollary 1.3 and Theorem 2.1 (ii), the non-zero GL(V)-modu\e
T T,y,'(M) is simple. The previous claim and the classification of the simple

GL(\/)-modules by the weight of their £/y-invariant vectors [St] implies that

f^^M) ~ LV(X(Y)). Thus Assertion (i) is proved.
{

Identify yigVF^VFeVF©..., where the it7l-factor VF is vt (g VF. Accordingly,
we get M~/\VF(g/\VF... (n times). Thus the eigenspace of weight \i of the

GL(V>module Tgl(-w\M) is TGL(-w\/\kl W <g f\k2 W <g and Assertion (ii)
follows. D

Corollary 2.3. Let Y be a Young diagram of degree d contained in the n X m
rectangle, and let \i Xll<fc<n ^i <^f be a polynomial weight of degree d. The
dimension of Ly(A(Y))M is the multiplicity (as a direct summand) of the indecomposable

GL(W)-module TW(XT(Y)) m f\kl W <g f\k2 W <g

Proof. The assertion follows from Corollary 1.3 and Lemma 2.2. D
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Remark. By Corollary 2.3, the knowledge of tensor product multiplicities of
tilting modules determines the character formula of simple modules. This formula
can be compared with Donkin's formula for decomposition numbers. The formula
is (see [D2], Lemma 3.1):

PV(A(Y)) : Vy(A(Y'))] [VW(\T(Y')) : LW(XT(Y))}.

Therefore, each of the following computations (for all GL{n))
(i) all decomposition numbers [Vy(/x) : Ly(A)],
(ii) the character formula of all the simple modules Ly(A),
(iii) the character formula of all the tilting modules TV (A),
(iv) the tensor product multiplicities of all the tensor products of two tilting

modules,
are equivalent with each other (see [D2] for further details). It should be noted
that the determination of the character of all tilting modules is a very difficult
problem: e.g. there is no conjecture for them, even for the small group GL%(K)
(in contrast, the character formulas for simple GZ^i^-modules can be obtained

very easily). The main observation of the paper is based on the fact that a partial
information about tensor product multiplicities (namely, the modular Verlinde
formula [GM1], [GM2]) is enough to determine the character formula of a certain
class of simple modules.

3. Some multiplicities of tilting GL(M/)-modules in f\(V <g> W)

Let If be a vector space of dimension m < p. We will use the notations of
Section 2 together with the following notations. Set hw (e^)* — (e^)*, where
((<^v)*)l<t<m is the dual basis of iTom(iV,Z) (i.e. hw is the highest coroot of
GL(W)). Denote by Q^ the set of all weights of the form e^ + e^ H \- e^
with k\ < k% < ¦ ¦ ¦ < kj. Thus Q^ lii the set of weights of [\3 W and lo^ is its

highest weight. Set Cw {A G Pw\\(hff) < p — m}. Usually, Cw is called the
interior of the fundamental alcove.

Lemma 3.1. Let A G Pw. Then p divides dimTw(^) if and only if A ^ Cw-

Lemma 3.2. Let j be an integer with 0 < j < m. We have Tw{^Y) — A"* ^'•
In particular, the set of weights ofTw{^>Y) %s ^Y an<^ eac^ weight appears with
•multiplicity one.

Lemma 3.3. Let A G Cw and let j with 0 < j < m. We have Tw(ty®Tw(w^)
©i/Tv^(A + v), where the sum runs over all v G i^Y suc-h that (A + v) G Pw-

References for the previous three lemmas are as follows: Lemma 3.2 follows
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from the fact that [\° W is simple (see [D2] for details). Lemma 3.1 and Lemma
3.3 follow from the main result of [GM1], [GM2] (the modular Verlinde formula).
For the peculiar case considered here, there is a quick proof of both lemmas see

Proposition 10 of [M2] and Lemma 12 of [M2] (m — 1 is the value of p{hff) of loc.

cit.). This quick proof is based on Andersen's linkage principle [A] and on Lemma
1.4..

Lemma 3.4. Let k\,.. ,kn be integers with 0 < kt < m.

where T is a sum of indecomposable tilting modules of dimension divisible by p
and where the sum runs over all n-tuples {y\, ...,vn) & tfj^ X • • • X Q^ such that

v\ + V2 + ••• + v% belongs to C\y, for any i with 1 < i < n.

Proof. Let A G Pw and let k be an integer with 0 < k < m. Assume first that
A G Cw- It follows from lemmas 3.1, 3.2 and 3.3 that we have:

k

Tw(\)®l\W~T@[@vTw(\ + v)\, (3.4.1)

where T is a sum of indecomposable tilting modules of dimension divisible by p
and where the sum runs over all v G Qj^ such that A + v belongs to Cw- Next,
assume that A ^ Cw- From lemmas 1.4 and 3.1, we get:

k

Tw{\)®f\W~T, (3.4.2)

where T is a sum of indecomposable tilting modules of dimension divisible by p.
Note that for n 1, the assertion of Lemma 3.4 is obvious: indeed the conditions

v\ G Cw and v\ G Qj^ simply mean v\ lu^ Thus, Lemma 3.4 follows, by
induction over n, from the assertions (3.4.1) and (3.4.2). D

Example 3.5. For this example, we will consider the case m p — 1. For any
k G Z, set 0Y ^>Y + b.uj^, where k a + rnb and 0 < a < m. It is clear that
Cw {9Y\k € ^i and Lemma 3.4 can be stated as follows:

k1 kn

/\W®...®/\W T®Tw(ôZ+ +fcJ,

where T is a sum of indecomposable tilting modules of dimension divisible by p.
Using Corollary 2.3, we get that for any special weight A with m(A) p — 1, the
module Ly(A) is multiplicity free. Indeed, we recover a well-known fact: for such

a weight, we have A au,v + ftw^, for some integers a, b, i with a + b p — 1.

Set N ai + b(i + 1). As Ly(A) is the degree N restricted symmetric power of
V (see [Do]), it is multiplicity free.
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4. Character of LV(X), A being a special weight

We will use the notations of the previous two sections. In particular, the dimensions

of V and W are n and m. We will always assume that m < p. Also denote
by C^ the set of all polynomial weights in Cw • A polynomial weight A G Py is

called m-special if there are integers i, j with A Xlj<fc<i ak ^X\ ~^2t<k<i ak < m
and j — i <p — m. To compare the notion of m-special weights with the notion of
special weights given in the introduction, we need the following two observations:

(i) A is special if and only if m(A) < p and A is m(A)-special,
(ii) if A is m-special for some m < p, then m(A) < m and A is special,

for any dominant polynomial weight A. In particular, any m-special weight is

m(A)-special and special. Let Young(n, m) be the set of all m-special Young
diagrams of height < n.

Lemma 4.1. (i) The map Y i—» X(Y) is a Injection from the set Yov,ng(n,m) to
the set of all m-special weights of Py

(n) The 'map Y i—s- XT' (Y) is a bijection from the set Young(n,m) to C^

Proof of Assertion (i). The map Y i—> X(Y) is a bijection between the set of all
Young diagrams of height < n and the set of all dominant polynomial weights
of GL{V). More explicitly, this map is given by: Y i—> 5Zfc>l w,T(rV ^e nave

m(A(Y)) r\(Y), hence Young diagrams with at most m columns correspond with
weights A with m(A) < m. Moreover if r\(Y) < m, we have \{Y) ~^2t<k<i Q-k^X¦*

where i cm(Y), j c\(Y). Thus \{Y) is m-special if and only if Y is m-special.

Proof of Assertion (n). The map Y \-^ AT(Y) is a bijection between the set of
all Young diagrams of height < m and the set of all dominant polynomial weights
of GL{W). We have XT{Y) ]Tfc>1 cfc(Y)eJf, therefore we have XT{Y){h^)

ci(Y) - cm(Y). Hence Y is m-special, if and only if XT(Y) belongs to C^1. D

Lemma 4.2. Let Y G Young(n,m) and let \i 5Zi<»<n ^* ^ ^e a polynomial
weight such that \Y\ |/x|. There is a natural Injection ^m from

(i) the set of all m-semi-standard tableaux of shape Y and weight \i, to

(n) the set of all n-tuples {y\,..., vn) G itf^ X • • • X Qj^ such that 5Zl<«<n Vl

XT(Y) and such that v\ + v<i + + v% belongs to Cw, for any i with 1 < i < n.

Proof. Let T be a tableau of shape Y and weight /x. Define n weights v\,..., vn G

Pw by the requirement:

v\^ Yv% XT(T\i\), for all i with 1 < i < n.

Note that T[i] \T[i — 1] contains exactly kt boxes. Assume that T is semi-standard.
Then any two boxes of T[i] \T[i — 1] are located on different columns. Denote
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by il < • • • < jkz the numbering of the non empty columns of T[i] \ T[i — 1]. We
have z/j e^" + e^ + hence v% belongs to Q^f. Thus it is clear that the map
ty : T i—s- {y\, ...,vn) is a bijection from

(i) the set of all semi-standard tableaux of shape Y and weight /x, to
(ii) the set of all n-tuples {y\,..., vn) G Qj^ x • • • x Q^ such that Xll<j<n ^

XT{Y) and such that v\+v% + + v% belongs to Pw, for any i with 1 < i < n.
Indeed, this bijection ^ is equivalent to the rule of Richardson and Littlewood
[LR], see also [Li] Denote by ^m the restriction of ty to the set of all m-semi-

standard tableaux of shape Y and weight /x. As the weights v\ + v<i + + v% are
polynomial, it follows from Lemma 4.1 (ii) that ^m is the bijection required by
Lemma 4.2. D

Theorem 4.3. Let X be a special weight. Any weight of Ly(A) is polynomial and

for any polynomial weight \i, the dimension of Ly(A)M is the number of m(A)-
semi-standard tableaux of shape Y(X) and of weight \i.

Proof. It is well known that the weights of Ly(X) are polynomial ([G]). Set

Y Y(X) and m m(A) and let /x Xli<j<n ^* eT be a polynomial weight.
By Corollary 2.3, the dimension of Lv{X(Y))ß is the multiplicity of the indecomposable

GL(W)-modu\e TW(XT(Y)) in /\kl W <g) /\k2 W ® By Lemma 4.1

(i), Y belongs to Young(n,m) and by Lemma 4.1 (ii), XT(Y) belongs to Cw-
By Lemma 3.1, the dimension of the tilting GL(W)-module Tw{XT(Y)) is not
divisible by p. Hence by Lemma 3.4, dim Ly(A(Y))M is the number of all n-
tuples (v\, ...,vn) e Q]^ x • • • x Q^ such that J2l<i<n ^ ^T(X) an(i sucn tnat;

^1 + V1 + ••• + vi belongs to Cw, for any i with 1 < i < n. Hence by Lemma 4.2,
dim Lv{X(Y))ß is also the number of m-semi-standard tableaux of shape Y(X)
and of weight /x. D

Example 4.4. Consider the polynomial dominant weight A 2uj\ + lo^ and set

Y Y(X). The Young diagram Y is the hook:

The notion of m-special Young diagrams depends on the characteristic p of the
ground field K. In our example, Y is 3-special if and only if p > 5. Therefore,
Theorem 4.3 determines the character formula of the simple GL(V)-modu\e Ly{X)
for any p > 5. As the height of Y is 3, we need to require n > 3, but to find an
interesting weight multiplicity, we will assume n > 4.

Set /x e\ + e^ + e^ + 2e^\ There are three semi-standard tableaux T, T" and
T" of shape y and weight /x, namely:
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T :

2 4

T':
3 4

T"
4 4

It is clear that for any p > 7, these three tableaux are 3-semi-standard. Therefore
dim Ly {typ 3 if p > 7 (or if the characteristic is zero). If if is a field of
characteristic 5, the semi-standard Young tableau T" is not 3-semi-standard, because

T" [3] is not 3-special. Since the other two tabeaux are 3-semi-standard, we have
dim Ly{X)p 2.

Using only Theorem 4.3, one can get the full character formula of Ly{ty for
all p > 5, but not for p 2 or p 3. However, it is also possible to compute
the character formula for Ly{ty in characteric 2 using Theorem 5.3: in such case

we get d,imLv{X)fÀ 1- Of course, the Young diagram Y is so small that it is

also possible to determine the character formula of Ly{ty in all characteristics
by an explicit computations, but this is not the goal of the example. Using only
theorems 4.3 and 5.3, it is not possible to compute the character formula of Ly (A)
in characteristic 3.

5. Proof of the Main Theorem

Say that a polynomial weight /x 5Zi
any polynomial weight /x, the weights
are reduced.

eY ls reduced if all kt are < p — 1. For

occurring in its p-adic decomposition

Lemma 5.1. (i) Any special weight is reduced.

(n) Let y« X]fc>0-Pfc A*fc ^e a V°lynomlal weight where all ^j. are reduced and

Mfc 0 for k >> 0. Then /ai- fj,(k) for all k > 0.

(m) Let X be a reduced dominant polynomial weight. Then any weight o/Ly(A)
is reduced.

Proof. Let A be a special weight. We have A eY¦> with k\ m(A) < p.
As A is dominant, we have kt < k\, and A is reduced. Thus Assertion (i) holds.
Assertion (ii) is obvious. Let A be a reduced dominant polynomial weight. Let X
be the set of all linear combinations Xll<j<n x* eY¦> where the xt are real numbers
with 0 < xt < p — 1. Then A G X and X is a convex set which is stable by Sn

(the Weyl group of GLn{K)). Hence any weight /x of Ly(A) belongs to X, and /x
is reduced. Thus Assertion (iii) holds. D

Lemma 5.2. Let X be a polynomial dominant weight of the form X
~

where are all X/~ are reduced and dominant. Let \i be a polynomial weight.
all weights X(k) are dominant and we have:

Then



Vol. 74 (1999) A character formula for a family of simple modular representations of GLn 293

Lv(A)M ~ MA(0))M(0) <8> L

Proof. The weights X(k) are dominant, because X(k) Xu (Lemma 5.1 (ii)). We

only stated this obvious fact to explain the notation Lv{X{k)). Moreover the
infinite tensor product is indeed finite, because X(k) n(k) 0 and Ly(A(A;))M/fc\
K for k » 0.

For g (ft,j)i<»,j<n G GLn(K), set Fr(g) {glj)i<x,3<n- The map Fr :

GLn(K) —> GLn(K), called the Frobenius map, is a morphism of groups. Note
that any reduced dominant polynomial weight is restricted (as it is defined by
Steinberg [St]). Therefore, by Steinberg's product formula (see [St], Theorem
41), there is an isomorphism L(X) c; L(A(0)) <g> L(A(l)) <g> where the
action of GLn(K) on the fc^-factor is shifted by Frk. Thus we have £(A)M

®(mo,mi, )L(M°))no ® L(Ml))ßi <&¦¦¦, where the sum runs over all tuples (pk)k>0
such that \i '^2i:yoPkl^k and each \i]~ is a weight of L(X(k)). By Assertion (iii)
of Lemma 5.1, the weights \i]~ are reduced. Then, by Assertion (ii) of Lemma 5.1,
we have \i]~ jj(k). Thus Lemma 5.2 holds. D

In the introduction, we have already noticed that Cn and the GLn(Ä')-module
Lv(X) (A being a polynomial and dominant weight) are well defined also for n oo.

Theorem 5.3. Let X G Cn where n is finite or infinite. Any weight of the

GLn(K)-module Ly{X) is polynomial, and for any polynomial weight \i, we have
dim Lv(A)M Uk>0

Proof. First assume that n is finite. By Assertion (i) of Lemma 5.1, any special
weight is reduced. Hence Theorem 5.3 follows from Lemma 5.2 and Theorem 4.3.
The case n infinité follows by inductive limit. D

6. Semi-simplicity of restrictions to Young subgroups

Let us consider GLn_\(K) as the subgroup of GLn(K) as usual. For any GLn_\(K)-
module L, denotes by ch{L) its character. Set V' Kn Therefore the simple
GLn_i(if)-modules will be denoted by Lv>{\'), with A' G P$,.

Lemma 6.1. Let X G Py and let A be a finite subset of Py,. Assume that

ch(Lv(X)\GLni{K)) J2\>eAch(Lv>(X))- Then we have Lv(X)\GLni{K)
©A'eAiv'(A'). In particular Lv(X)\GL -.(k) is semi-simple.

Proof. As the characters of simple GLn_i(Ä')-modules are linearly independent,
the module Lv(X)\GL _1(x) has a composition series in which each Lv'(X'), for
all A' G A, occurs exactly once. Note that Ly{X) carries a non degenerate con-
travariant form. Let S be a simple GLn_i(Ä')-submodule of Lvr(A)|GL 1(k)-
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Thus iv(A)|GL 1(k)/^ ls isomorphic to S. As S does not occur as a quotient
of Lv(X)\GL 1(k)/^j we have S n S^ 0. Hence S is a direct summand and

^v(A)|GL _1(K) is semi-simple. Thus, we have £y(A)|GL _l(-K) ©A'eA-kv'(A')-
D

Let m < p. For any Young diagram y G Young{n,m), let V(Y) be the set of
all Young diagrams Y' such that:

(i) ck(Y') < ck(Y) < ck(Y') + 1, for all k > 1,

(ii) F' G Young(n- l,m).
These conditions are indeed equivalent to the fact that there is a m-semi-standard
tableau T of shape Y such that T[n - 1] Y', T[n] Y. Also the définition of
V(Y) is independent of m. Namely if Y is m-special and also m'-special for some
m! ^ m, then condition (ii) is automatically satisfied.

Theorem 6.2. For A G Cn, set Yk Y(X(k)) for all k>0. Then we have:

where the direct sum runs over all tuples (Yq, Y{,. G V(Yq) X V(Y\) X In
particular, Lv(X)\GL (K\ is semi-simple. Moreover each simple direct summand
occurs with multiplicity one, and its highest weight is in Cn—\.

Proof. Let Y G Young{n,m). There is a natural bijection from
(i) the set of all m-semi-standard tableaux T of shape Y with labels < n, to
(ii) the set of all pairs (Y',T'), where Y' G V(Y) and T" is a m-semi-standard
tableaux of shape Y' with labels < n — 1.

Explicitly, Y' T[n - 1] and T' is the tableau induced by T. It follows from
Theorem 5.3 that we have:

where the sum runs over all tuples (Y0/,Y1/,...) G V{Yq) x V{Y\) x Let
{Yq,Y{, be such a tuple and set A' J2k>oPk A(Yfc'). It follows from the
assertions (i) and (ii) of Lemma 5.1 that (A(Yfc'))j;>o are the terms of thep-adic expansion

of the polynomial weight A'. Hence the decomposition A' ~^2k>o(pkX(Yk'))
with (Y^,Y(,... G V(Y0) x V{Yi) x is unique. Thus Lv>(\') occurs exactly

once in the composition series of L(X)\GL 1?K\ and the theorem follows from
Lemma 6.1. D

Lemma 6.3. Let G\ ,Gk be k groups and let L be a finite dimensional G\ X

• • • X Gk-module. Assume that L is semi-simple as Gt-module for all 1 < i < k.
Then L is semi-simple as G\ X • • • X Gk-module.
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A proof of this lemma can be found in [K] (lemma 16) D

For any fc-tuple (a\, a,k) of non-negative integers with n a\ + ay +
there is a natural embedding of GLai(K) x x GLak(K) inside GLn(K)

Corollary 6.4. Let A G Cn As a GLai{K) x x GLak{K)-module, Lv{\) is

semi-simple

Proof Using Theorem 6 2, we prove by induction over b that Ly(A)|GL -b(K) ls

semi-simple for all b < n Thus the corollary follows from Lemma 6 3 D

Remark. Let A be a special weight of degree n The weight space
Ly(A)ev_|_ +ev is the simple representation of the symmetric group Sn associated

with the Young diagram transposed of Y(X) (see [J]) Its dimension is
computed by Theorem 4 3, and its restriction to the subgroup Sai x x Sak is

semi-simple by Corollary 6 4 These two results for the symmetric groups were
already established we recover respectively the mam results of [M2] (dimension
formula) and of [K] (semi-simplicity) Indeed the proof of the semi-simplicity of
Lv(A)|GLai (K)x xGLak (K) is similar to the proof of [K]
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