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Riemannian submersions of open manifolds which are flat
at infinity

Valéry Marenich

To my wife

Abstract. We prove that a base Bn~k of a Riemannian submersion it Mn —> Bn~k is flat,
if Mn is flat at infinity and Bn~k is compact As a corollary we obtain a topological gap-
phenomenon for open manifolds of nonnegative sectional curvature (Eschenburg-Schroeder-Strake
conjecture)
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0. Introduction

We say that an open (complete noncompact) Riemannian manifold Mn is flat at
infinity if its sectional curvatures Ka at a point tend to zero as this point tends
to infinity More precisely, let o be some fixed point in Mn and

x(p) sup{ \Ka\\aC TqMn, p{o,q) p}

be the function which measures the absolute value of the curvature of Mn as

p —> oo Then Mn is flat at infinity if x{p) —> 0 as p —> oo
Riemannian submersion it Mn —> Bn~k, is a map of constant rank such that
1 On Mn is defined a smooth horizontal distribution TL of subspaces which are

orthogonal to the distribution V of subspaces tangent to fibers Wp ir~^(b),b G

Bn~k, which we call vertical ones
2 In every point q the restriction of the differential tt* of the map tt to a

horizontal space Hq is an isometry
A union of vertical fibers of a Riemannian submersion gives a metric foliation

on Mn, îe a smooth partition into lower dimensional submamfolds which are
locally everywhere equidistant, see [GG]

The purpose of this paper is to prove the following result
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Theorem A. If the space Mn of a Riemannian submersion ir : Mn —> ßn-k ls

flat at infinity, and the base Bn is compact, then the manifold Bn is flat.

We would like to stress, that in Theorem A we do not assume any restriction
on the sign of the curvature or any estimate on the injectivity radius. In fact,
as follows from the proof it is sufficient to suppose that only sectional curvatures
in two-dimensional directions containing some horizontal vector tend to zero at
infinity. It is also easy to see that our Theorem A does not include unnecessary
conditions.

According to [CG] every open Riemannian manifold Vn of nonnegative
sectional curvature is diffeomorphic to the space of a normal bundle of some closed

totally geodesic submanifold S of Vn (S is called a soul of Vn), and due to [P]
there exists a Riemannian submersion it : Vn —s- S. Therefore, Theorem A yields
the following corollary for manifolds of nonnegative sectional curvature.

Theorem B (Eschenburg-Schroeder-Strake conjecture). // an open
Riemannian manifold Vn of nonnegative sectional curvature is flat at infinity, then
the soul S of this manifold is flat, and the universal cover Vn of Vn is diffeomorphic

to the Euclidean space Rn.

The last theorem means that if Vn is simply connected and x{p) —> 0 as p —> oo,
then V is diffeomorphic to the euclidean space; i.e., Theorem B may be considered
as the topological counterpart ("topological gap-phenomenon") of a well known
metric gap-phenomenon asserting that if the manifold Vn has a pole, sectional
curvature of Vn is non-negative or non-positive and p^x(p) —> 0 as p —> oo, then
Vn is isometric to the euclidean space Rn, see [KS]. Theorem B was conjectured in
[ESS] and proved there for the case codimS < 3 (see also announcement in [Ml]).

The proof of Theorem A is based on a uniform length estimate for some special
curves in Grassmanians and ergodic arguments first introduced in [M2] (see also

[Ml, M3]). Here we present shortly the idea of the proof. Taking a long geodesic
7(t) on the base Bn~k and some parallel vector field Y(t) along 7 we construct
their horizontal lifts sufficiently close to infinity in Mn, i.e., a geodesic l{t) and a
horizontal vector field Y(t) along / such that the curvature of Mn along / is small.
Due to the O'Neill fundamental equation for submersions we know that

where Kb and Km are sectional curvatures of the base Bn~k and Mn correspondingly

and A is the O'Neill fundamental tensor of submersion, see [O'Nl]. Then we

note, that
IIA-(t)0O(*)H < II^WII.

where Vi{t) is a curve in a Grassmann manifold Gkt of fc-dimensional subspaces
consisting of parallel transports of vertical subspaces of a submersion along / to
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some fixed point Because subspaces Vj(£) are generated by Jacobi fields along /

where the curvature of Mn is small, we see that every such curve tends in C^-norm
to a curve in G* of some special kind - we call such curves linear curves in Gkt

We prove that length of linear curves are uniformly bounded (our mam technical
result, see Lemma 3), and that compactness of the base Bn~k of the submersion
yields a uniform boundedness of ||V;(0)|| This leads to our principal estimates

/ \\Vi{t)\\dt and I \\Al{t){Y){t)fdt
JO Jo y '

are uniformly bounded for some T depending on / and tending to infinity as /

tends to infinity in Mn, see Lemma 7 Due to O'Neill formula this implies that
ergodic means of the sectional curvature of the base tend to zero

/1 Jo

which due to Birkhoff-Khmtchm theorem yields the vanishing of the sectional
curvature, l e proving that the base Bn~k is flat and completing the proof of
Theorem A

A formula (8 1) below for the derivative of the trace A\(t) of second forms II(t)
of fibers along a horizontal geodesic l(t) in Mn from [M2], [M3]

where A^it) denotes the sum of squares of eigenvalues of II(t) and K^(l(t), l(t))
- "partial (or vertical)" Ricci curvature of Mn, implies in addition that normal
curvatures of fibers tend to zero at infinity

Another corollary of our Theorem A is the following already known result (see

[W])

Theorem C. All flat spaces of riemannian submersions over compact hases are
locally direct products

Indeed, due to O'Neill this statement is true if all fibers of the submersion
TV Mn —> Bn~k are totally geodesic ones, and O'Neill's fundamental tensor A of
the submersion tt is zero To prove this when Mn is flat it is sufficient to apply
our ergodic arguments to the last equality The reader may find these arguments
in [M2, M3]

The organization of the paper is as follows First we consider linear curves
in Grassmamans We prove that length of such curves are uniformly bounded
by some constant Then we define curves of vertical subspaces for a submersion
tt Mn —> Bn~k, prove that these curves converge in C^-norm to linear curves
and obtain our principal estimates To complete the proof of Theorem A we use

ergodic arguments from our previous articles [Ml - M3]
The author express his sincere gratitude to the referee for the extraordinarily

careful reading and very useful criticism
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1. Linear curves of subspaces

Denote by G* the Grassmann manifold of all fc-dimensional subspaces of the eu-
clidean n-dimensional space Rn. G* is considered with a natural Riemannian
metric g such that the factorization II : O(n) —s- O{n)/O{k) x O(n - k) Gkn,

where O(n) is provided with the Lipcshitz-Killing metric, is a riemannian submersion.

We say that a curve V(t),0 < t < T in G* of A;-subspaces is linear if the
subspaces V(t) are generated by some vectors r)t(t),i 1,..., k linearly depending
on t, i.e., such that

rh(t)=rh(O)+tDrit(p). (1.1)

Vectors f]t(t) are defined for all t, but the vector space generated by them may
have dimension less than k for some values of the parameter t. If it is not stated
otherwise, we assume that [0, T) is the maximal interval where this vector space
has constant dimension k. Obviously, the choice of a linear base (1.1) of V(t) is

not unique. Among different possibilities we always can choose some orthonormal
base {ei,..., e^, e^+i,..., en} of Rn such that vectors {e\,..., e^} generate V(0) and

V(t) is generated by {e\ -\-td\,...,ek + td/.} for some vectors dt dfej which we
call derivatives of et. Continuing by linearity the map et —> dt we define some
linear map A : V(0) -> Rn.

In Lemmas 1 and 2 below we assume one more condition on V(t). Further (see

section 2) we consider the curve Vi(t) of vector spaces which are parallel transports
along some horizontal geodesic /(£) of vertical subspaces of a submersion tt to a
fixed point q 1(0). Thus Vi(t) is generated by all horizontal variations of /,

i.e., by some Jacobi fields f]t(t) along /. In this case vectors Di]t(0) are covariant
derivatives of these Jacobi fields, and for two arbitrary vectors v and w of V; (0) the
bilinear form (Av, w) is the second fundamental form of the fiber corresponding
to the normal 1(0), see section 2 below. Because of this below in Lemmas 1

and 2 the form (Av,w) is symmetric at t 0. Therefore, we can choose the base

{et,i 1, ...k} of V(0) consisting of eigenvectors of this form. Thus, the tangent
to V(0) component of the derivative dt of the base vector et is parallel to it and

K)JeJ; (1.2)

,n

where A^ are eigenvalues of the form (Av,w). We say that the linear curve V(t) is

determined by {et, dt;i 1, ...k}.
Call vectors of V(0) vertical and normal to V(0) — horizontal ones. Summing

up what we said above we see that every linear curve V(t) is the image of
the subspace generated by first k coordinate vectors of some orthonormal base

{ei, ...,efc,efc_|_i,..., en} in Rn under the map with the following matrix:

t(VD) t(HD)\
0 I )' [L6)
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where VD and HD are matrices of vertical and horizontal components of the
derivatives dt correspondingly: VD (d,)3,i l,...,k; j l,...,k and HD
(dty ,i 1,..., k; j k + 1, ...,n, and the matrix VD is diagonal. To define an
orthogonal transformation of Rn mapping V(0) into V(t) we use an orthogonal-
ization process as follows. Denote by A} (2max{Aj|i 1,..., k})~^. Then for
t < A} the vectors

also generate V(t). If j k + 1, ...,n we set

An easy calculation shows

2f22 (1.4)

where
2 5] (K)J)2 (1.5)

and A2 some constant depending only on A} and dimensions of considered spaces.
Because due to (1.4) the base ët,i 1,..., n is already almost orthonormal, another
easy calculation shows that for the orthonormal base {et(t),i 1, ...n} of Rn which
is obtained by an orthogonalization from {ët(t),i 1, ...ri} we have

P,(t)-e,(t)||<(l+t2A?)t2||WZ)||2 (1.6)

where the constant A^ again depends only on A2 and dimension n. By construction
{et(t),i l,...n} is the orthonormal base of Rn such that the first k vectors
generate V(t), or V(t) is the image of V(0) under the orthogonal transformation
with a matrix:

where for the norm of the matrix G the following is true:

G\\<(l+t2Ai)\\HD\\\ (1.8)

for some constant Af depending on A^. Finally note that the curve V(t) in G\
is the image under submersion II : O{n) —> G^ of the curve O(t) in O{n) so that
the vector V(0) is the image of O(0) under the differential II*. From (1.7) we see
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that the tangent vector of the curve of the orthogonal transformations O(t) at the
moment t 0 is

«").
By définition of the Lipschitz-Killing metric the length of this vector equals
Note also that this vector is the horizontal one for the riemannian submersion
II : O{n) -> O(n)/O(k) x O{n - k) G£, so that it has the same length as its
image V(0) under the differential II*. Therefore, the length of the vector V(0)
in G1^ equals the length of O(0) in the Lipschitz-Killing metric on O(n), i.e., is

exactly ||7Y_D||; and we arrive at the following statement.

Lemma 1.

Remark 1. Note that if we consider another curve V(t) of A;-subspaces of Rn
generated by some other fields {/jt(t),i l,...,k} such that /x4(0) ?ft(0) and

(djjt(t)/dt)\t=Q Di]t(0) in (1.1), but dependence of/x4(t) on t is not linear, then

still V(0) V(0), so that the speed of the curve V(0) depends only on the initial
values r)t(0) and Drjt(O). Thus, the formula of Lemma 1 is true for an arbitrary
curve of A;-subspaces in G*.

Now we show that a geodesic curvature Kg{V{t)) of the linear curve V(t)
determined by {e%, dt; i 1, ...k} can be estimated at initial point t 0 in terms
of {e%, d,/,i 1, ...k}.

Lemma 2. Let V(t) be the linear curve determined by {et,dt;i 1, ...k}, where

{et;i l,...k} is the orthonormal base of V(0). Then for some constant A2
depending only on dimension n

\Kg(V(0))\<A2,

where Kg(V(t)) is the geodesic curvature ofV(t) at the moment t.

Proof. To prove this we use a well-known equality between a geodesic curvature
of some curve in a Riemannian manifold and a distance from this curve to the
geodesic, issuing from the same initial point with the same velocity vector: the
geodesic curvature Kg(V(0)) of the curve V(t) and the norm of its vector of velocity
are related by the following equality:

distGk{V{t),V{t))
Kq(v(°)) I™ 2 • (2-1)9{ y " tO ||l/(0)||2t2

V '
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where V(t) is the geodesic in G* issuing from V(0) with the same velocity vector

V(0) V(0) Every geodesic V(t) in the base G* of the nemanman submersion
n O{n) -> O(n)/O(k) x O{n - k) Gkn is the image under the map II of
some horizontal geodesic in O{n), l e some 1-parameter subgroup of orthogonal
transformations of Rn Consider the 1-parameter subgroup O(t) of O{n) generated
by the vector O(0) above

o(o)
° nD)[ > \-HD 0

Because the vector 0(0) is horizontal the geodesic O(t) in O{n) is a horizontal
geodesic and goes under submersion II onto some geodesic in G^ Because, as

we verified above, the vector 0(0) has the image under the differential II* which
is equal to V(0), this geodesic has the same velocity vector at initial point when
t 0, l e we conclude V(t) II(O(t)) A direct calculation shows that

O(t) exp(tO(0)) / + tO(0) + t2G + (2 2)

stant Ar, we have ||

(1 7)-(l 8) above this gives inequality
where for some constant Ar, we have ||G|| < A^H^-DH2 Because of the estimates

||O(t)-O(t)||<t2A2||?lD||2/2 (2 3)

for some constant A2 depending on Ar, and dimension n Because (as every rie-
manman submersion) II does not increase distances the last formula yields an
inequality

\\V(t)-V(t)\\<t2A2\\HDf/2 (2 4)

implying the claim of the lemma Lemma 2 is proved

Remark 2. Obviously, as in Remark 1 above, the geodesic curvature of the curve
V(t) at t 0 depends only on the initial values of the fields, generating V(t)
and their first and second derivatives at t 0 If some other curve V(t) of k-
subspaces of Rn is generated by some fields {/jt(t),t 1, ,k} such that /x4(0)

»7,(0), (dM.(*)M)|t=0 DVl(0), and \\(d2^(t)/dt\=0\\ < A2||l/(0)||2, then its
curvature at t 0 is bounded by some constant A^C) depending on Kg(V(0))
and the constant A|

Next Lemma is the mam technical point of our arguments

Lemma 3. Let V(£),0 < t < T be some linear curve in G^ such that its geodesic
curvature Kg(V(t)) is bounded, by some constant A2 for all 0 < t < T Than the

length ofV(t) is bounded, by some constant A3 which depends on A2, but does not
depend, on T
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Proof. Proof of the lemma follows from simple compactness arguments. In addition
to the Riemannian metric g on G^ defined above and coming from the Lipschitz -

Killing metric on O(n) under the submersion II, the grassmanian G^ admits also
the following non-riemannian metric Z (" angle" : for two subspaces V and W in
Rn the angle between them is

Z(V,W) sup inf Z(v,w). (3.1)

Clearly, we always have 0 < Z{V,W) < tt/2 and Z{V,W) tt/2 if and only if
some vector w of W is orthogonal to V. Let V(t) be our linear curve determined
by {et,dt;i l,...,k} as in (1.2), and also, as before, A : V(0) —> Rn be the
linear map continuing by linearity the map e% —> dt. Continue arbitrarily this map
to some linear map A : Rn —> Rn in a self-adjoint way (i.e., take an arbitrary
extension A' and then change to (A' + (A')*)/2). Then the space V(t) is the
image of V(0) under the map / + tA, and for some vector ry(O) of V(0) we have

(v(0),v(t)) 0 for r)(t) (/ + tÄ)r)(O) from V(t) if and only if

(r7(O),(/ + tI)r7(O))=O, (3.2)

Denote by {E%, i 1,..., n} the orthonormal base of Rn consisting of eigenvectors
of A and by \,i l,...,n corresponding eigenvalues. If we take a partition
—oo <t\ < < tm < oo for tj — (Aj)^1,« 1, ...,m, where Xt,i l,...,m are
all nonzero eigenvalues, then easy to see, that for arbitrary tt <t' < t" < t%+\ we
have

where rj(t) (I + tA)r)(0). Last condition implies that the angle between some
fixed vector ry(t') and ??(£") is a monotonely increasing function on t" when t' < t"
are from (tt,tt^i). The same condition implies, that the angle between ??(£") and

V(t') is also a monotonely increasing function on t" under the same restriction.
Indeed, by définition for all t we have i](t) ry(O) +td for some ry(O) from V(0).
Let d v + w, where v belongs to the subspace V(t'), and w is normal to it. Let
also rj{t') a + b, where the vector a Aw is parallel to v, and b is normal to v.
Then ?y(f' b + (A + (t" - t'))v + (f - t')w, and (3.3) means that

(v(t'),v(t')) + (tn-t')(ri(t'),v)>0 (3.4)

The component of r)(t") normal to V(t') equals (t" —t')w while the tangent
component of 77(t") to V(t') is ri{t') + (f - t')v. So for the angle </>(£") between ??(£")

and the subspace V(t') we have
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and by a direct calculation we see, that due to (3.4) the derivative of </>(£") is

positive. Because this is true for an arbitrary ??(£") we conclude that the angle
between V(t") and V(t') is also a monotonely increasing function on t" when
t' < t" are from (t,^t%^\). To prove this it is sufficient to note that the derivative
of the angle between V(t') and V(t") on t" equals the maximum of derivatives
of angles between V(t') and those vectors r)(t") of V(t") which have a maximum
angle with V(t').

Thus, every linear curve V(t) we can divide in not more than n + 1 intervals
{V(t)\U < t < V|_i} such that the "angle"-function 4>s(t) Z(V(s),V(s + t))
is monotonely increasing for 0 < t < tt^\ — s and monotonely decreasing for
tt — s < t < 0; and the claim of the lemma will follow if we prove it for every such
interval. In order to do this we note that this monotonicity of the angle means
that the curve {V(£)|£j < t < t^+i}, leaving at some moment e-neighborhood of
V(s) in the metric Z never come back, or that every ball in Z-metric with the
center V(s) contains only one connected arc of the considered interval of the curve
V(t). Denote by U(V, e) an e-neighborhood in the metric Z of the point V of G^.

For a given number A2 there exists some to depending on A2 such that in every
w-ball in the Riemannian metric g a length of every connected arc of an arbitrary
curve with geodesic curvature bounded by A2 is bounded by some constant L,
which depends on lu and A2 and has order 2io as lu —s- 0.

Because topologies generated by two metrics Z and g coincide, there exists a
function w(e) (where w(e) —> 0 as e —> 0) such that every e-ball in the metric Z
is contained in w(e)-ball in the metric g. Find some e such that w(e) < to. Using
compactness of G* find some finite covering G^ UtU(Vt, e/2). If some point V(t')
belongs to some U(Vt,e/2), then because of the triangle inequality the intersection
of the considered interval V(t),tt <t< tl+\ with this U(Vt,e/2) lies in U(V(t'),e),
and by the arguments above has length less than L, which obviously means that
the length of the whole interval is bounded by LN, where N is the number of all
U{Vt,e/2) in the finite covering of G\. As was said above, the number of intervals
V{t),t% < t < tj_|_i with described behavior of the "angle"-function <j>s{t) is not
bigger than the dimension n, so that the length of V(t), —00 < t < 00 is bounded
by nLN i.e.,

A3 (3.5)

for some constant A3 depending only on A2. Lemma 3 is proved.

Remark 3. Note that the length estimate of the last Lemma is easily generalized

for arbitrary family of subspaces V(t) generated by some fc-vectors linearly
depending on t, even if for some parameters dimV(t) =/= k, or V(t) (Ë G^. Indeed,
let V(t) be generated by r)t(t) r]l(O)+tdl,i 1, ...,k. Then dimV"(t) ^ k if and
only if ||?7i(t) A A ??fc(t)|| 0. The last function being polynomial of degree k
has at most k zeros tt,i 1, ...k',k' < k, so that Vt{t) {V{t),t% <t< t^+i} is

a linear curve in G^. Therefore, if geodesic curvatures of Vt are bounded by A2
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the sum of length of all curves Vt(t) {V(t)\tt < t < tt^\}, which we denote by
L(V), is not bigger than (k + 1)A3

oo

in/ (t)\\dt < (k + 1)A3,

where ||V(t)|| is given by the formula of Lemma 1

This remark will be essential in the next section when we shall consider V(t)
defined as above (1 e generated by vectors linearly depending on t) and such that
probably dim V(£) ^ k, 1 e may be dimV(t) < k for some t (see Lemmas 6 and 7

below) We call such V(t) a linear family of subspaces

2. Curves of vertical subspaces

The principal objects we consider are curves of vertical subspaces along horizontal
geodesies in Mn We define them as follows For every point q in the space Mn
of the riemanman submersion tt Mn —> Bn~k and every geodesic 7 issuing from
the point p Tr(q) in the base Bn~k of this submersion there exists a unique
horizontal lift of 7, 1 e a geodesic / issuing from q such that tt(/(£)) j(t), where
t is a natural parameter both on / and 7, see [O'N2] Such geodesies are called
horizontal ones In every point l(t) the horizontal "Hua an(i vertical subspaces Vua
of a submersion tt are defined Denote by G^ the Grassmaman of all fc-dimensional
subspaces of the euchdean n-dimensional space TqMn which we denote below by
Rn Then the curve Vi(t) of vertical subspaces along / is the curve in G^ defined
as follows

where It is the parallel transport from q to l(t) along / The obtained Vi(t) is
a family of vector A;-subspaces of a fixed euchdean space Rn (the tangent space
TqMn) Generally, only the first element of this family V;(0) equals the vertical
subspace Vq (If e g all Vi(t) coincide with Vq and Mn has nonnegative sectional
curvature, then due to the splitting theorem, see [M2,M3], it follows that Mn is

locally a direct product
In this section we prove that norms of velocity vectors of curves V; of vertical

subspaces are uniformly bounded, see Lemmas 4 and 5 below, and that these

curves converge in C^-norm to linear curves on longer and longer intervals as the
curvature along / tends to zero, when the point q goes to infinity, see Lemma 6

First we estimate the velocity vector Vi(t) of the curve Vi(t) through normal
curvatures of the fiber Wp By the normal curvature of the fiber Wp at the point
q in direction 77 tangent to Wp and corresponding to the unit normal e, where the
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vector e is horizontal (i.e., normal to Wp) we denote

Knorm(f],e) (^-e(s)is=0,?7) (V He(s),Vr)),
ös ö{Vf])

where q(s) be some curve in the fiber Wp issuing from q with velocity vector r\ and
e(s) some unit horizontal vector field along q(s) such that e(0) e. Note that this
definition is common, e.g., it equals

where T is O'Neill's tensor on pairs of vertical and horizontal vectors, see [O'Nl].
Because the second fundamental form of the fiber Wp corresponding to the normal

is a symmetric one, the estimate on normal curvatures leads to an estimate on the
norm of the second form:

sup{\II(r,',r,n,e) \ \\r,'\\, \\r," \\, \\e\\ 1} sup{\Knorm(v,e)\ \ \\r,\\,\\e\\ 1}.
(4.1)

In the next lemma we prove that the compact ness1 of the base Bn~k yields
uniform boundedness of normal curvatures of fibers and due to (4.1) their second
fundamental forms.

Lemma 4. Letq(s), —s'<s<s'be some curve in the fiber Wp such that q q(0),
e(s) be some horizontal unit vector field along q(s) and l(t) expq(te(0)). Then

for some constant A4, which depends only of the mjectwity radius rm3{B) of a
base B and the curvature of a space Mn of a submersion tt along I the following
is true

sup{\Knorm(r],e)\ | ||?y||, ||e|| 1} < A4.

Proof. Because every riemannian submersion does not increase distances, the
following general statement is true: let q\ and qi be two points in Mn such that
the distance r between them equals the distance between their images p\ and pi
correspondingly under the submersion tt : Mn —> Bn~k. Then all points from the
fiber over p\ have distance not less than r to q%, i.e., the fiber WP1 lies outside
the metric ball B{q<2,r) with the center qi and radius r (and an easy geometric
arguments show then that the normal curvatures of the fiber corresponding to the
normal q\q% are less or equal to the corresponding curvatures of the ball B(q2,r)

In fact, we need only to assume that rrn:i(Bn k) > 0.
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at the point q\) Thus our estimate on normal curvatures is the corollary of a
second variation formula due to the following arguments

Denote by q' l(r') for r' rmj(5"-fc)/3, q" /(r") for r" 2rmj(5"-fc)/3,
and by /' /(£), 0 < t < r' and /" l(t),r' <t < r" two intervals of / connecting q'
with q and q" with q' correspondingly First we note that both /' and /" are minimal
geodesies Indeed, their images under submersion it are geodesies in Bn~k of length
less than mjectivity radius rlnj(Bn~k), îe are minimal geodesies Because /',/"
are horizontal their length equal to the corresponding distances in Bn~k between

images p' Tr(q') and p ir{q) and p" tt(</") and p' Tr(q') correspondingly,
l e equal to r' As was said above, tt does not increase distances, so we see that
length of /' and /" are not bigger than distances between q' and q and q" and q'
correspondingly, which means that /', /" are minimal In the same way we conclude
that the geodesic / l(t),0 < t < 2r' < rmj(Bn~k) connecting q" and q is also
minimal 2

Now we take arbitrarily a family of minimal geodesies ls (£) connecting the point
q' with q(s) Then /s tends to the interval Z(i),0 < t < r' of /' when s -> 0 Indeed,
if we suppose on the contrary the existence of some converging subsequence lSj

tending to some minimal geodesic /' connecting points q' and q and different from
/', then /' would be minimal, and /" U/' would be a broken-geodesic path connecting
q" and q and having length 2r' which equals the distance between q" and q But
the path /" U /' being broken at the point q' could be shortened, implying that
dist(q",q) < 2r' and / is not minimal This contradiction yields that /' /', or
that /s is a family of geodesies tending to /' as s -^ 0 Therefore, ls defines a Jacobi
vector field on /'

By definition /x(0) q(0) r\ and we are assuming that r\ is a unit vector,
||a*(0)|| 1 If L(s) denotes the length of ls(t),0 < t < r', then from arguments
above we see that L(s) attains a minimum at s 0 Hence, due to the second

variation formula

0 < i"(s)|s=0 Knorm(r,,e) j ^
(4 2)

where Rm denotes a curvature tensor of Mn Changing if necessary e to — e we
assume that Knorm(rj, e) < 0 Therefore, the claim of the lemma will follow if we

prove that the integral part of (4 2) is uniformly bounded from above By standard
compactness arguments this is true for all points q from an arbitrary fixed compact
in Mn If the point q tends to infinity (this is exactly the case which we shall need
and consider below, see the proof of Theorem A), then the sectional curvature of
Mn tends to zero due to our condition, and uniform boundedness is also clear

Here we repeated some arguments from [M4]
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Indeed, consider q such that dist(o, q) > po where po is such that for all p > po
we have x(p) < xq (7r/2r')2, l e the sectional curvature of Mn along /' by an
absolute value is not bigger than hq Because of our choice and due to the Rauch

comparison theorem (see [CE, Rauch I and Rauch II theorems 1 28 and 1 29]) we
see that the Jacobi field /x(£),0 < t < r' has no conjugate points Applying the
same theorem to the field v(t) /x(r' —t),0<t<r' such that z/(0) 0 we deduce
also that

< \\v(t)\\ < Dsmh(^t), (4 3)

where D ||(L>j//<9t)(0)|| Because \\v(r')\\ 1 we find from (4 3) that D < 1 and

smh(|) (4 4)

Note also that our condition on the sectional curvature

-x\\v Aw\\2 < (RM(v,l)l,v) < x\\v Aw\\2 (4 5)

implies that all eigenvalues of the symmetric bilinear form {v,w} —> (Rm{v,1)1,w)
belongs to an interval [— x, x] so that for an arbitrary vector v we have

\\RM(v,l)l\\ < x\\v\\ (4 6)

Hence, from the Jacobi equation

it is not difficult to deduce

II^WII <1 + Jjsmh(V2) (4 7)

yielding a uniform estimate on the integral part of (4 2) and completing the proof
of Lemma Lemma 4 is proved

Due to (4 1) the last Lemma gives also a uniform estimate of second
fundamental forms of fibers of our submersion tt Mn —> Bn~k implying in particular
the following result

Lemma 5. Let q(s) be some curve in the fibre Wp and e(s) be a unit horizontal
vector field along q(s) obtained, by lifting the same vector e from the base, i e

7r*(e(s)) 7r*(e(0)) Then for some constant A5 depending only on rmj(Bn~k)
the following is true
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Proof For r rmj(B) consider a family of horizontal geodesies ls(t) expqis\te{s),
0 <t < r issuing from q(s) m directions e(s) By definition of the horizontal field
e(s), all /s have the same image under the submersion tt Mn —> Bn~k, which is

a minimal geodesic j(t) exppte, 0 < t < r on Bn~k Thus the length L(s) of all
/s are equal, L(s) r According to the second variation formula

L"(s)]a=Q Knorm(r](r),l(r)) - Knorm(r](0),l(0))

where r){t) J^s(i)|s=0 1S the variation Jacobi field along /(£) lo(t), and by

Knorm(rj(t), /(£)) we denote the normal curvature of the fiber W7^ in direction

i](t) according to the normal /(£) Because of

2)

the claim of the Lemma is equivalent to the estimate

ll§»?(*)|t=o||<A5||»7(O)||, (5 3)

which we are deducing in a same way as above in Lemma 4 from the second
variation formula (5 2), Lemma 4 uniform estimate on normal curvatures and Rauch

comparison theorem Clearly, we can assume ||?y(0)|| 1 Due to Lemma 4 we
have \Knorm(r)(t),l(t))\ < A4||?y(£)||, and again by standard compactness
arguments (5 3) follows for an arbitrary q from every fixed compact domain in Mn
If the point q tends to infinity (which is again the only what we need below, see

the proof of Theorem A), then the sectional curvature of Mn tends to zero due

to our condition on Mn For q with dist(o,q) > po, where po is such that for
all p > po we have x(p) < xq (7r/2r)2, the sectional curvature of Mn along /

by an absolute value is not bigger than xq Now we decompose the Jacobi field
r)(t) fj,(t) + i/(t) into two Jacobi fields such that /z(0) 77(0), (D/j,/dt)(0) 0 and
/z(0) 0, (Di//dt)(0) (Drj/dt)(O) Because of our choice of hq the Jacobi fields
/x(t) has no focal points and v(t) has no conjugate points for 0 < t < r Therefore,
by the Rauch comparison theorem (see [CE, Rauch I and Rauch II theorems 1 28
and 1 29]) we obtain the following estimates

(5 4)

and

L>sm(v/^t) < \\i/(t)\\ < L>smh(v/^t), (5 5)

where D ||(_D?7/<9£)(0)|| is the number we are estimating These gives us for
0 <t <r

\\ri{t)\\ < Dsmh(r)+B
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where B equals cosh(7r/2) Thus from the Jacobi equation

433

with the help of (4 6) it is not difficult to deduce

(5 6)

§-tv(t)\\ ~ II^(0)||| < "or(Dsinh(r) + B)

which under the conditions

leads to

and

< f and xqB < 1 (5 7)

Rr,(t)\\-D\<rD + r, and wJ^WIII < (1 + r)D + r, (5 8)

]~)
„2co

Due to (5 2) the last inequality gives us

rD2 < r2(2 + r)D2 + 2r2(f + r)D + r3 + A4(l + {Dr + B))

Thus, finding some p\ > po such that for p > p\ we have x(p) < sinh~1(r),S~1
to satisfy (5 7) and finally obtain

D < A5

for some constant A5 depending only on r rmj(B) proving the claim of the
Lemma Lemma 5 is proved

Remark 4. Note that in Lemmas 4 and 5 we do not have to assume that fibers of
our submersion are smooth submamfolds the corresponding definitions of normal
curvatures and second fundamental form could be given in a barrier sense, see for
instance [C] or [M5] Our Lemmas 4, 5 in this case prove that fibers have uniformly
bounded normal curvatures in barrier sense (Lemma 4), and that derivatives of
Jacobi fields generated by horizontal variations of horizontal geodesies are also
bounded (Lemma 5) In particular, Lemma 5 estimate is true in a case of open
manifolds of nonnegative sectional curvature, where it was proved only that the
corresponding riemanman submersion is of C1 ^-class (e g due to our arguments
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in Lemmas 4 and 5). This allows us to apply Theorem A for open manifolds of
nonnegative curvature proving topological gap Theorem B.

Now we take arbitrarily some point p and a geodesic j(t) expp(te) in a base

Bn~k, and consider their horizontal lifts in Mn, i.e., a point q of a fiber Wp over p
and a horizontal geodesic lq{t) expq(te). In the next lemma we prove that when
q goes to infinity the curve of vertical subspaces V\q tends in C^-norm to some
linear family of subspaces.

Lemma 6. For T arbitrary big and e arbitrary small there exists p(e, T) such that
for all q with dist(p,q) > p(e,T) the curve of vertical subspaces Viq(t),0 < t < T
along lq is e close in C1-norm to some linear family V(t),0 <t <T.

Proof. Let qt(s),i 1, ...,k be some curves in the fiber Wp issuing from the point
q in directions of vectors r]t which form a base of a vertical space Vq. Denote by
lq,s,i(t) horizontal lifts of 7 to q,,(s), i.e., such that

n(lqtstt(t))=j(t). (6.1)

Because of (6.1) variation fields

are vertical ones and such that for any given t vectors {r)t(t),i 1, ...,k} generate
V; uy By définition the curve of vertical subspaces Vi(t) If Viq is generated by
parallel transports et(t) of these vectors {r)t(t),i l,...,k} along lq to the point
q, i.e.,

V(t)=<el(t),i l,...,k> where et{t)=If1{rh{t)), (6.2)

and Jt is a parallel transport along geodesic lq from the point lq(t) to q. To

simplify notations, we denote our curve Viq{t) by V(t) and lq by /. Clearly

e[{t) I-\RVt(t)) and e\(t) If1 (jL^t)),

and from the Jacobi equation (5.6) we see that vector fields et(t) in the euclidean

space Rn TqMn are solutions of the corresponding equation

(6.3)

: operator Rt is defined by Rt(v) If RM(It(v)
l(t). As above due to (4.6)
where the linear self-adjoint operator Rt is defined by Rt(v) It RM(It(v),i(t))

\\Rt\\ < x(pi), (6.4)
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where pi inf{dist(o,l(t))\0 <t< T}. From the triangle inequality easy to see

that pi > p — T, where by p we denote dist(o, q). Because x(p) —> 0 as p —> oo we
are able to prove that our curve V(t) tends to the linear family V(t) generated by

e,(t) e,(0)+te;(0). (6.5)

Here, as above in Remark 3, we have to repeat that for some t3,j 1,..., m,m < n
a dimension of V(t) could be less than k, so that only open intervals V(t),t3 <t <
tj-l-1 of V(t) are linear curves. Thus we consider below t =/= t3 and verify that our
curve V(t) converges on intervals (tj, ij+i) to linear curves V(t),t3 <t < tj+i-

Take some t3 < t' < t3^\ and find arbitrarily an orthonormal base {et(t'),i
1, ...,k} of V(t'). Without loss of generality we can assume that these vectors are
values of Jacobi fields ri% along /, i.e., et(t') Jt~ (i]t(t')). Compare et(t') with
ëj(t'), where e%{t) ^(0) +tDr]t(0) is the vector from V(t'). The claim of the
lemma will follow if we prove that e(t') and e(t') and their derivatives e'(t') and
e'(t') are e-close.

First, let us show that the norm of every rjt(t) is bounded by some function
depending only on x(pi) and T. Indeed, by définition ||r7j(t')ll 1) so t>y Lemma 5

and due to (5.2) we have ||_D77j(£')|| < A5 for some constant A5. Therefore,
representing as above in Lemma 5 the field f]t(t) as a sum of two Jacobi fields vt{t)
and /Xj(t) such that ||_Dz/j(£')|| 0 and ||/x^(*')|| 0 by the Rauch's Comparison
Theorem (comparing Mn with the hyperbolic plane of constant curvature x, see

(5.4) and (5.5) above) we see that

\Jx{pi)T < ir/2 (6.6)

implies for the Jacobi fields the following: \i% has no focal points, and v% has no
conjugate points for 0 < t < T, and the following estimates are true:

(6-7)

and
|| 1/,(t) || < A5sinh(V^)t). (6.8)

Because ||ej(t)|| ||?7î(t)|| the last two inequalities give

(6-9)

Thus from (6.3), (6.4) and (6.6) we easily have

\\et(t) - (et(0) +te:it))\\ < A6x(Pi)T2 (6.10)

and
\\e[(t) - e[(t)\\ < A6x(Pl)T, (6.11)
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where
Aß cosh(7r/2) + A5sinh(7r/2).

If in addition
X(pi)T2<eA^ (6.12)

we deduce

||e,(t)-ë,(t)||<e and \\e[{t) - e[(t)\\ < e. (6.13)

As we already note, due to the triangle inequality pi > p — T. Therefore, to
complete the proof note that to satisfy (6.6) and (6.12) it is sufficient for given e

and T choose first some 0 < x < eT~2 and 0 < x < eT~2Ag~ and then find po
such that x(p) < x for all p > po. Then estimates of the lemma (6.13) will be
satisfied for all points q such that p(q) > po + T.

We end this section with a statement similar to the main result of the section 1:

proving that the length of a curve of vertical subspaces V;(t),0 < t < T stays
bounded when T —> oo for some suitable choice of e and corresponding p{e, T) —>

oo.

Lemma 7. Let e T~ and p p(e, T) he a number defined in the previous
Lemma 6. Then

f\\vm\dt f
O JO

for some uniform constant A7 and every horizontal geodesic I issuing from the

point q, if only e is sufficiently small and dist(o,q) > p(e,T).

Proof. To prove the claim of the lemma we compare the length of the curve of
vertical subspaces Vi(t),0 < t < T with the length of the corresponding V(t),0 <
t < T constructed in the proof of Lemma 6. Here again (see Remark 3 and
Lemma 6 above) we consider only t^t3 such that intervals V{t),t0 <t< tj+i of
V(t) are linear curves, and verify that the length of our curve Vi(t) converges to
the sum of length of linear curves V(t),t3 <t< tj+i-

Divide the interval [0,T] into two subsets I\ {t|||Vi(t)|| < T^1} and I2
{t\\\Vi(t)\\ yT-1}. Obviously,

f ^ (7.1)

To estimate the length of {Vi{t),t G 1%} we note that due to Lemma 6 Vi{t) and

V(t) are e-close where e T~2 an inequality ||V;(t)|| > T^1 means that directions

of the vectors Vi(t) and V(t) are T~1-close:

(7.2)
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Because of this the length of Vi(t),t G 1% is close to the length of V(t),t G 1% by the
following standard arguments Consider sufficiently small r-tubular neighborhood
U of V(t) in Gkt for some r < rlnj(G^) and such that 1) the projection pr U —>

V(t) sending a point V to the nearest to it point on the curve V(t) is well defined in
this neighborhood, and 2) has bounded differential The existence of such r follows
from the uniform boundedness of the geodesic curvature of V(t), see Lemma 2

Then every curve Vi(t) in U having directions Vi(t) sufficiently close to V(t) will
be transversal to the fibers of pr Thus we conclude that

a) for r and e sufficiently small the mappr {Vt(t),t G h} -? {V(t),t G [0,T]}
is mjective to its image, and

b) the length of {Vi{t),t G 1%} is bounded in terms of the length of its image

pr({Vi(t),t G I2}), the angle between V(t) and V(t) and r (we omit this standard
estimate It involves first and second variation formulas, and could be found in
almost all manuals on riemanman geometry)

Therefore, (7 2) for small e yields

/ < (k + 1)A3AÊ, (7 3)

for some uniform constant A7 (where, of course, A7 —> 1 as e —> 0) Due to
Lemma 5 we have ||V;(t)|| < A5, hence the last inequality gives also

(7 4)
h

which together with (7 1) completes the proof of the lemma Lemma 7 is proved

Now we are ready to prove Theorem A

3. Proof of Theorem A

Let 7T Mn —> Bn~k be a Riemanman submersion with Mn flat at infinity, and

p be some point in Bn~k, X and Y some unit vectors of TpBn~k and q be some

point in Mn such that ir{q) p, and X, Y be horizontal lifts of X and Y in q, î e

horizontal unit vectors from TqMn such that 7r*(X) X and 7r*(Y) y Then,
according to [O'Nl] for the sectional curvatures Km of Mn and Kb of Bn~k in
two-dimensional directions {X, Y} and {X, Y} correspondingly, the following is
true

mil2, (1)

where Ax(Y) is the O'Neill tensor of the horizontal distribution equals Wx{Y)
Let f] be a vertical unit vector at g parallel to Ax{Y) Then if ?y(£) is the Jacobi
vertical vector field with 77(0) 77 as before along the horizontal geodesic l(t)
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issuing from the point q in direction X, and Y(t) - any horizontal field along /

such that y(0) Y, then from (r)(t),Y(t)) 0 we have

\\AX(Y)\\ \(ri,Ax(Y))\ \(Y,Dv(p))\ \(Y,7Wri(0))\ <
(2)

see Lemma 1 equality
Because Mn is open, it is easy to see, that all fibers Wp are unbounded

(otherwise Mn would be compact), and for every point p of Bn~k and p there exists
q from Wp with p(o, q) > p Chose x > 0 arbitrary small and let p' is the number
such that k(p) < x for all p > p' For arbitrary T find another p" according to
Lemma 7 Then from O'Neill formula (1), estimate (2), Lemma 7 estimates and

\KM(l(t),l(t),Y(t))\ <xwe have

^ I |A7, (3)

for p > p',p" Consider a map 4>t sending (p,X,Y) to (j(t),j(t),Y(t)) Like
a geodesic flow, îe the map sending (p,X) to (7(i),7(i)), this map preserves
the volume form of the bundle S^Bn~k of the pairs of unit normal vectors in
ßn-k Therefore, according to the Birkhoff-Khintchine theorem the left hand side
of (3) under the constraint T —> oo tends almost everywhere to the mean value
function K* of the function \Kb(p,X,Y)\ on S^Bn~k and equals zero according
to (3) Thus the integral of K* over S^Bn~k equals zero According to the same
Birkhoff-Khintchine theorem this integral of K* over S^Bn~k equals the integral
of \KB{p,X,Y)\ over S2Bn~k, implying that KB(p,X,Y) 0, or Bn-k is flat
Theorem A is proved

4. Mean normal curvatures of fibers

We conclude this paper with a note, that Lemma 7 uniform estimate allows us to
prove not only that the base Bn~k is flat, but also that mean integral values of
normal curvatures of fibers along any interval / {/(£), 0 > t > T} of length T of
an arbitrary horizontal geodesic in Mn tend to zero as T —> oo and this interval /

tends to infinity Namely, let /(£) be some horizontal geodesic going through some

arbitrary chosen point q in a horizontal direction e of Hq Consider the function
Knorm(i],e) - the normal curvature of the fiber containing the point q in some
vertical direction r\ corresponding to the normal e of this fiber Denote by N(t)
the maximum of all \Knorm(r](t),l(t))\ over all vertical vectors i](t) at the point
l(t), and by pt mf{dist(o, l(t) | 0 < t < T} Then the following is true

Lemma 8.
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for some universal constant As

Proof Let as before rj(t) be the Jacobi variation field along l(t) generated by the
family ls(t),lo(t) l(t) of horizontal geodesies, ri{t) -§^ls(t)\s=0 an(i e(s)

Zs(0) Then £e(s)|s=0 §v(t)\t=O and for K(t) Knorm(ri(t),l(t)) by a direct
calculation we have

os at

If we assume that at the moment t 0 our vector rj(O) is the eigenvector of
the second fundamental form 11(0) of the fiber Wp in the considered point q

corresponding to the normal e 1(0), then the last formula and the Jacobi equation
for f](t) give

2
WJ/ (Q)\\

K'(0) + K2(0) "
„ dl ,/" + KM(l(0), 1(0),v(0))

Obviously, the same formula for the derivative of the normal curvature of the fiber
is true for any t if rj(t) is a unit eigenvector of the second form corresponding to
the normal l(t) For arbitrary t taking in the last formula sum over all eigenvectors
rjt(t) of the second form II(t) of the fiber W7u\ (where j(t) ir(l(t))) corresponding

to the normal e(t) l(t) we obtain the following formula for the trace A\(t)
of the second form II(t) of the fiber W7^ according to the normal l(t), see [M2],
[M3]

where by ||j42(t)|| we denote the sum of squares of eigenvalues of the form II(t)
and by

k

jykKkM(l(t),l(t))

the "partial (or vertical) Ricci curvature" in direction l(t) According to Lemma 1

which leads to the formula

A 2k (8
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From our condition on the curvature we have \K^(l(t),l(t))\ < kx(pi) As follows
from Lemma 5 ||V;(t)|| < A5, hence

Taking the integral of the above inequality over an interval [0,T] and using the
estimate |.Ai(t)| < kAz, following from Lemma 5 we get

i J \\A2(t)\\dt < ^ + ^ J \\Vi(t)\\dt + kx{Pl
0 0

which due to Lemma 7 gives us the following estimate

T
± J \\A2(t)\\dt < ^ + kxipfi (8 2)

0

for some uniform constant Ag By definition |./V(£)| < ^/||j42(t)||, thus the claim
of the lemma easily follows from Cauchi-Bunyakowsky inequality Lemma 8 is

proved
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