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Multiplicity results for the two-vortex Chern-Simons
Higgs model on the two-sphere

Weiyue Ding, Jiirgen Jost, Jiayu Li and Guofang Wang

Abstract. We consider a Ginzburg-Landau type functional on S2 with a 6" order potential and
the corresponding selfduality equations. We study the limiting behavior in the two vortex case
when a coupling parameter tends to zero. This two vortex case is a limiting case for the Moser
inequality, and we correspondingly detect a rich and varied asymptotic behavior depending on
the position of the vortices. We exploit analogies with the Nirenberg problem for the prescribed
Gauss curvature equation on S2.

Keywords. Ginzburg-Landau functional, ¢® theory, Moser-Trudinger inequality, Nirenberg prob-
lem, phase transition, Chern-Simons Higgs theory.

1. Introduction

Functionals that exhibit a selfduality phenomenon in the sense that the absolute
minimizers satisfy a set of first order partial differential equations are important
in various areas of geometry and physics.

In the present paper, we investigate a special class of such functionals, namely
Ginzburg-Landau type functionals with a 6% order potential. Such functionals
arise in Chern-Simons Higgs theories, as will be explained in §2. We consider a
line bundle L over a compact Riemann surface 3, and the Lagrangian density

2, K2IFP? 1 9 212
L(A,¢) = [Vadl* + = + 5 l° (1 — |4]*)*.

PR
Here, ¢ is a section of L, and A is a unitary connection on L with curvature F'. k is
a coupling parameter, and we are particularly interested in the limit analysis as &
tends to 0. This limit analysis reveals a geometrically interesting phase transition
that may also be relevant in superconductivity. The selfduality becomes manifest

by rewriting

v = [ oo = [ {iawol +Ere 2eliep -2} + [ 7
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If ¥ is compact, or, more generally, if one requires certain decay conditions at

infinity,
/ F=2xN
2

is a topologically quantity, where N is an integer, the so-called vortex number that
fixes the number of zeroes of ¢, the vortices. For N > 0, absolute minimizers of L
then have to satisfy the selfduality equations

Oad =0
2
F =5l (1 = o).

As k — 0, one expects that the minima of the potential

V(g) = 6] (1 - |¢*)?

at |¢| = 1 and ¢ = 0 dominate the behavior of minimizers of L, except that the
topological constraint
/ F=2nN
3

fixes the number of zeroes of ¢ as well as the integral of F'. One thus expects
a solution ¢ with |¢| close to one except in the vicinity of N vortices. In the
case were Y, is a torus, such a solution has been constructed by Caffarelli-Yang
[CaY]. One also expects a solution that approaches 0. Such a solution was recently
obtained in an interesting paper of Tarantello [T] in case N = 1, again for a torus.
While the methods employed in the proofs of those results extend to the case of
an arbitrary compact Riemann surface 3., the method of Tarantello only works for
N =1, because it depends on the Moser inequality. (She does obtain a second
solution for arbitrary N , but as we shall see in the present paper, the limiting
behavior will depend on N in general.) Here we consider the case N = 2 on the
sphere S 2| This case is a limiting case for the Moser inequality, and consequently
the analysis and the results become more subtle than for N = 1. In fact, one may
rewrite the selfduality equations by putting

u(z) = log|¢(x)|”

to obtain
4 N
Au = ﬁeu(eu -1)+ 47rZ§p].
=1
where ¢, is the Dirac distribution concentrated at p, and pq, ..., py are the pre-

scribed zeroes of ¢, not necessarily all distinct. As will be explained in section 3,
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in our case N = 2 this equation can be related to the prescribed Gauss curvature
equation
Au = —2Ke"* + 2.

Thus, one expects that the methods developed for the Nirenberg problem, i.e. the
existence problem for that equation, become relevant (see section3 for references).
That is indeed the case, and in the present paper we shall obtain two families
of solutions depending on the coupling parameter k& with a precise asymptotic
behavior different from the one of the Caffarelli-Yang solution. The only exception
is the case of a single vortex with multiplicity two where the Kazdan-Warner
equation prevents the existence of a solution of the limiting equation and where
we only find one additional family. Such a case distinction is not untypical for limit
cases of embedding theorems. On the other hand, if the two vortices are antipodal,
then an easy symmetry argument produces one-parameter solution spaces, i.e.
infinitely many solutions for each sufficiently small value of k. The case of the torus
has been investigated in our companion paper [DJLW] and by Nolasco-Tarantello
[NT]. By their results, it may be possible that a solution with a blow-up of the
curvature at a non-vortex point also exists for certain conformal classes of tori.

In conclusion, the asymptotic analysis of the Chern-Simons Higgs function-
al considered here is much richer than the corresponding one for the Ginzburg-
Landau functional with a 4" order potential (|¢|*> — 1)2. There, it was shown in
[HJS] that asymptotically, as k tends to 0, ¢ becomes a covariantly constant sec-
tion of L with |¢|=1, and the connection A becomes flat, except near the vortices
where all the topology concentrates. Solutions of the type found by Tarantello and
in the present paper do not occur in that model. This is somewhat similar to the
situation in the Seiberg-Witten functional that again has a 4** order nonlinearity
where the limiting analysis was carried out by Taubes [T3]. We expect that a
Seiberg-Witten type functional with a 6% order potential will exhibit very inter-
esting features, partly analogous to the ones found in the present paper. We hope
to be able to study this more closely. In fact, we consider the present analysis as
a model study for that problem.

2. The Chern-Simons Higgs model

Let S? be the standard sphere in R? with the standard metric gg, and M = R x 52
with the Lorentzian metric g = dx% — go. Consider the (trivial) principal bundle
MxU1) - M. Let A =—iA,da", Au(z) € R, 2 = (x0,z1,22) € M be a
connection on this principal bundle. The curvature of A is given by

Fa= %’Fa,ﬁ dz® A da

with £, 3 = 0,4 — 0sAs, o, B = 0,1,2. The vector bundle associated to

’

M x U(1) is M x C, where C is the complex plane. Let ¢(x) be a section of the
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vector bundle M x C, i.e. ¢(x) is a Higgs field, in physical notation. Let D ¢
denote D, ¢ dx" with D,¢ = 0,¢ —iA,¢.

In this paper, we are interested in the following Chern-Simons-Higgs Lagrangian
action density

L(A,9) = Dyd D+ The* Fa Ay — V(9) (2.1)

where k > 0 is the coupling constant which determines the strength of the Chern-
Simons term 50‘5717'0ng77 V() is the potential and the Levi-Civita tensor £°7,
o, B,v =0,1,2 is fixed by 012 — 1 This Lagrange density was first introduced
by Hong-Kim-Pac in [HKP] and Jackiw-Weinberg in [JW].

The Euler-Lagrange equations for (2.1) are

N L i o)
8V(¢v) (2.2)
A¢ - a¢ ?

where ;7 is the conserved matter current density. We are interested in static
solutions of (2.2) with V(¢) = & [¢|*(1 — |¢]?).
The energy density corresponding to the Lagrange density (2.1) is

1

€ = [Dogl + D19 + |D2df + 516 (1 — |4I°) (23)

supplemented by the Gauss law
2 20, —— -
Fiy = 7J° = ~(6D% — $D°9). (24)
Let Oa¢p = D1¢ + iDo¢. We have
_ 1.,

D16l + | Dagl* = 049 + Fialgl — 5™ B,

Therefore, the energy density (2.3) may be written as
1 2 .
e =1 (Pt ZWI067 - 1) 41007 1 Fia 4 Im (008D9),

where €, = —£15, j,k = 1,2 and €12 = 1. Thus we obtain the following energy
functional

- 2 5 412
B = [ = [ Gl plollol ~DE + [ 10aeP+ [ P 25)
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The absolute minimizers of E' under the homotopically invariant constraint

1
— | Fa=N 2.6
27T S2 12 ( )

satisfy the Bogomolny type self-dual equations

{ Dad =0,
Fia+ 5162112 —1) =0,

with the Gauss law kFys + 24g|#|?> = 0 (see (2.4)). Here N is an integer. One
can easily check that a solution of (2.7) with the Gauss law satisfies (2.2). In this
paper, we are interested in finding such special solutions of (2.2).

As in [CaY] and [T], one can first obtain a maximal solution as follows

(2.7)

Theorem 2.1. ([CaY]). Let p1,...,pm be given points (or vortices) on S% and
N1, ..., Ny posilive integers such that Z?;l nj = N > 0. There exists a k., €

(07%\/|82|/7TN) such that (2.7) admits a solution (Ay,dr) for which p1,...,pm
are the zeroes of ¢ with multiplicity nq,..ny, if and only if 0 < k < k.. Moreover
(i) The energy, magnetic flur and electric change of (A, ¢r) are respectively

given by
E=27N,®=27N,Q = 2nkN (2.8)

(i1) The solution (Ay,¢r) is mazimal in the sense that if (A',¢') is another
solution of (2.7) with the same vortices as (A, ), then |¢'| < |4|.

(iii) |px| < 1 in S% and |¢pp| — 1 as k — 0 a.e. in S? and in HH4(S?), 1 <
q<?2.

N
Fl(;) — 272(5%. in the sense of measures as k — 0. (2.9)
=1
where each Dirac distribution 6, occurs with multiplicity nj,j = 1,...,m.

One can also obtain another solution by using the mountain pass Lemma as [T].
Here we are interested in solutions of (2.7) with a different asymptotic behavior
when k& — 0. Motivated by Caffarelli-Yang’s variational method, when N = 1,
Tarantello obtained in [T,

Theorem 2.2. There exists a solution (Ar,dr) of (2.7) for small k > 0 such that
(2.8) holds and ||¢k||cq(sz) — 0 as k— 0 for any g > 0.

Although they did not consider (2.7) on SQ, the methods of Caffarelli-Yang
and Tarantello extend to this case.

Tarantello used the Moser inequality [M1,2] to study this problem. Here we
consider the case N = 2. As we already mentioned in the introduction, this case
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is a limiting case (a critical case). The main difficulty to find solutions of (2.7) is
the lack of a coercivity condition. A crucial observation is that our problem can
be seen as a perturbation of the well-known Nirenberg problem. Hence, methods
developed in the Nirenberg problem may be used to study (2.7). First we obtain
a solution of (2.7) which has a new asymptotic behavior as k — 0.

Theorem 2.3. Let N =2 and Py two vortices. For small k > 0, there exists a
solution (A?,$2) such that

(i) (2.8) holds,
(ii) |¢Z] — 0 in CO uniformly,
(iit) F12(A7) — 47dg,

where QQ # Py is determined by Py (see section 3.). Moreover, if Py = —P_ there
exists a family of solutions (A2(9),$2(9)) such that (i), (i) and (i) hold with
TyQ, where Ty is the rotation with angle O about the axis from Py to P_.

This is a new interesting situation. We guess that such a solution exists in the
general case.

Theorem 2.4. Let N = 2 and Py two vortices. If Py # P_, then for small k
there exists another solution (A3, ¢3) of (2.7) such that

(i) (2.8) holds,

(ii) d)% —0inCY as k — 0, for any q > 0.

The potential |¢|2(|¢|*> — 1) has a minimum at |¢| = 1 and at ¢ = 0. The
solution of Theorem 2.1 corresponds to the minimum at |¢| = 1, the one of The-
orem 2.3 to the one at ¢ = 0, while the solution of Theorem 2.4 is a saddle point
solution for an associated functional. Of course, the vortices prevent that |¢| = 1
or ¢ = 0 are exact solutions, but in the limit £ — 0, the obstructions concentrate
at isolated points. According to the theorems, for N = 2, we have 3 different cases
for small k.

1 If P — P,, 21 adml(s at leaSl two S()lu(l()ns7
+
2 IfP == —P7 27 ad l'[S i 1 .te Y lany so ul‘() 1S
+ ? ?
3 lf P :l:P7 27 ad] ll. ts at 1east tll ee S()lllt i()]ls.
+ ?

It is clear that case (3) is the generic case. Before we start to prove the

theorems, we first reduce (2.7) to a semilinear equation. Such a reduction was
first used by Taubes in [T1], [T2].
It is clear that the first equation of (2.7) may be written as

20¢ — iAd = 0, (2.10)

where A = Ay +iA9 and 0 = %(81 +i09) is the usual Cauchy-Riemann operator.
Hence ¢ can be considered as a holomorphic section of a line bundle, and it there-
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fore admits a finite number of zeroes in 52 with integer multiplicities. Outside the
zero set of ¢, Z(¢), we have -
A= —2i0log ¢. (2.11)

Set u(z) = log|¢(x)|?. From (2.7) and (2.11) u satisfies

Au = ki;eu(eu —1)in 8%\ Z(¢) (2.12)

and
? as z — P;. (2.13)

On the other hand, if we have a solution u of (2.12)—(2.13), set

u(z) = ny log |z — Py

1

N
¢(z) = exp §u(z) +1 Zarg(z - P;)
j=1

and A = —2idlog ¢, then one can check that (A, ¢) satisfies (2.7). Therefore, we
only have to consider (2.12) and (2.13). Clearly (2.12)—(2.13) is equivalent to

N

4 u u

Au:ﬁe (e —1)~|»47TZ5PJ., (2.14)
=1

where dp is the Dirac distribution concentrated at P.

Proof of Theorem 2.3

Let Py and P_ be two vortices on S2. Let ug be the unique solution of

{ Aug = =2+ 47(Sp, + 6p_), in S? 3.1)
f52 ug = 0.
Let A = 4/k% and K = e%. (2.12) is equivalent to

Au=AKe*(Ke* —1)+2in 52, (3.2)
We first summarize some simple properties of K in three different cases.
Lemma 3.1. case (i): P+ = —P_. After a change of coordinates, we may

assume that Py is the north pole. Then K is axially symmetric, i.e. invariant
under rotations about the axis between north and south pole, i.e. between Py and
P_, as well as invariant under reflections about the equator of S2, i.e. K(z) =
K(—z) for all z € 52. K achieves its mazimum for any point on the equator.
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case (ii): Py = P_, i.e. Py is a double vorter. K is again azially symmetric
about the line between Py and —Py. It achieves ils unique mazximum at —Py.

case (iii): Py # £P_ ( the generic case). K has a unique maximum point
Q # Py, P_ and a unique saddle point Q = —Q. (|

Equation (3.2) is the Euler-Lagrange equation of the following functional

1 A
Filad) :][§|Vu|2 20+ S(Ket — 1)

where ;}lu is the average of u over S2, i.e. qu = 41; fsg u. As in [T], motivated
by the variational method used in [CaY], we consider the following functional

Tx(u) = 3E(%WUP T 2u+ %(Ke<“+p(“)) -1)? (3.3)
A
+ 2p(u) — ) + 2log A
in
Arv={ue H172(52)|][ =1& (][ Ke*)? - 2][1(2@% >0, (3.4)

where

B fKe“~\/(fKe“)2~§fK262“
plu) = log TR

The term —% + log A ensures that .Jy has a uniform lower bound (see Lemma 3.4
below). This value of p(u) is needed to satisfy the constraint that comes from
integrating (3.2). Alternatively, this value of p(u) is determined by minimizing J
among functions of the form u + p w.r.t. p for given u satisfying f e* = 1.

Set H = {u € HM2(S?)| fe* = 1}.

Lemma 3.2. If u € Ay, the interior of Ax, is a critical point of Jx, then v =
u+ p(u) is a solution of (3.2).

Proof. The proof is straightforward (cf. [T7]). O

A crucial observation is that we may rewrite .J) in a suitable form as follows.
By the definition of p, we have

4fKe*
)\e”(“>][Ke“: .
fKeu + \/(JC Keu)Q _ % )CK?CQu

(3.5)
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Consequently,
2< )\ep(“)][Ke“ <4, for any u € A,. (3.6)

Set By(u) = Aer(w) f Ke*. Again, by definition, we have
)\][KQCQ(MW(M)) _ )\][ Kevtelw) — _o
Thus, we can rewrite .J as follows (deleting an irrelevant additive constant)
1 9 w il
a(u) = (§|Vu| +2u) — 2log + Ke* + 2log B (u) — EBA(u)

Set oy = infye 4, Ja(u). In this section, we shall prove that «y is achieved by

some uy € Ay. For simplicity of notation, let f(t) = 2logt — %t and fy = f o B,.
Then J, is written as
In=J+ fx,

where

Tha) — ][(%WUP +2u) — ZIOgJ[Ke“.

The corresponding Euler-Lagrange equation of J is given by
Au= —2Ke" +2, (3.7)

which is the so-called prescribed Gauss curvature equation. The corresponding
problem of existence of solutions of (3.7) is called the Nirenberg problem. This
problem has been studied by many mathematicians. (See [M2], [A], [H], [CD],
[CY1,2] and [CKL] and references therein.) .Jy can be considered as a perturbation
of J for large A. So it is natural to apply methods developed for the Nirenberg
problem in our problem.

Now let us first introduce the definition of the center of mass of a function
u € H12(S?) which was first used in [CD] in the Nirenberg problem. For u €
Hb2(52), the center of mass is defined as

Pl - 27

a JCSQ o

Given ¢q € S?, we choose coordinates = = (1, z9,23) € S such that ¢ = (0,0, 1).
The stereographic projection IT : §2 — C = CU {oo} with respect to ¢ is defined
by

z1 + 129

r1,x9,x =z = :
(z1,22,23) T
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For ¢ > 0, let m; : C — C be the usual multiplication by ¢, i.e m(z) = tz for any
z € C. For any u € HY2(S?), there is (¢,t) € 5% x [1,+00) and

W= Uy, , = U0 Pyt + 1/}q7t.
such that P(w) = 0, where ¢, ; = 1 omy; oIl and g, = logdet(dpg:). (Note

that our notation differs slightly from the one in [CY1] and [CkL]). In [CKL], (see
also [O], [CD] and [CY1]) the authors proved

Lemma 3.3. H is diffeomorphic to H9% B3 by sendingu € H to (w = uy, ,,q,1—
t=2logt), where H = {u € HY2(S?) : fe* =1} and H° = {u € H|P(u) = 0}.

Now we can rewrite Jy by this decomposition. First, let S(u) = f%|Vu|2 + 2u.
It is important that S is invariant under conformal transformations, namely,

S(u) - S(utpq,t)

for any conformal transformations ¢4 ; of 52 Let u = (w,q,t) € H. We write .Jy
as

Iy = Ia(w,q,t) = S(w) — 2log f K 0 pgre” + fa(w,q),

where
falu) = f o Ba(w,q,t) (3.8)

and

1
8 f K2 0 pg,ee® (det(dipge)) !
Bx(w,q7t)4(1+\/l—x F K opqe™)? > (3.9)

For simplicity of notation, let
b(u) = b(w, q,t) = § K2 0 @y 12 (det(dpg,) 1)/ (F K 0 pg.:6¥)%. We need

Lemma 3.4. ([CY1]). Ifu e H°, then F |Vu|? < 2(1—ag)~1S(w) for a constant
ap < 1.

The following asymptotic behavior for large ¢ is crucial for the proofs of the
Theorems.

Lemma 3.5. For any by > 0, we have for all w with S(w) < by uniformly int as
t— oo

() f K ogue = K@)+ 0 log1/20)
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(i)

2
w — 2w 1+$
K20 puuetaentap, ) =20 f 2 (L2 0w,

(iii)

w — w 1+$3
F Ko et entdpy )2 =K ) () 0

Proof. (i) was proved in [CY1].

(ii)) We use the plane coordinates induced from the stereographic projection
with respect to ¢ (see above). By the Taylor expansion of K around ¢ = (0,0, 1),
we have

K(z) = K(q) + a1z1 + agza + O(|z|)

in {z e (C| |z| > M7} for a fixed large M > 0. By a direct computation, we have

1422\
_ 42
det(dpg,)(z) =1t <1+t2|z|2>

Let Ry = {z € (CHz] > M/t} and Rf = C\ R;. We decompose the left hand side
of (ii) as follows

2(12) 20(2) o (1+12]21%)? ;
4%(/& /C>Kt TR dA(z)

where dA(z) = % A direct computation shows that

K2(t) 202 )2 + %123

’ —9
s T PP e =9

and

2w(z) 1 —2 (1+t2|z| )
/Rt ea(tz) 20 2 LR aat
tzl  2u(z) 42 (1+ 8222
<2 [ T e A

1 tQ 2
:2/ +—|22|t*1|z|ef’*w<2> dA(2)
R, 1+]7
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1 tQ 2
4/ + |Z2| tfl |Z|62w(z) |Z| 55 d|Z|
pa T CENEE)

<8t/ =" d|z|
T z
= e (1223

<O().

Similar

/ wo(tz) 22 ¢ QMdA(z):O(t).
R, (14 =%

We also have

][K2 (tz) Qw(Z)t—QMdA(z)
(1+]2]%)?

4
__ 42 2 Qw(z |2’|
. ][K T 4A) + 0

=42 ][ K?(q) 2 () (”—2”“”) dA(z) + O(t).

for z = (z1 +4z2)/(1 — z3). The preceding estimates prove (ii).
(iif) The proof is similar to that of (ii). O

Lemma 3.6. ([H],[CY2]) Inf, ;J(u) = —log(max, g2 K(x)), and J does not

achieve its infimum, if K is not constant. O

Now we have

e}
Proposition 3.7. For all sufficiently large A, there exists u, € Ay with Jy(u,) =
Q.

To prove the proposition, we need one more Lemma. We recall ay = infye 4, Ja(u).

Lemma 3.8. (i) limy_, 4o ay = —log(max K) — 1+ 2log?2
(ii) infyecoa, Ja(u) > —log(max K) — 2+ 2log4.

Proof. By Lemma 3.6, for any £ > 0 there exists ug € H with
J(ug) < —log(max K) + ¢/2

On the other hand, By = {u € Ax‘b(u) <logA} converges to H as A — +o0.
Hence we can choose A\g such that ug € By for any A > A\g. If we choose A\g large
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enough, we have

Ixn(ug) = J(uo) + faluo)

< —log(max K) +¢/2 + f( L

—)
144/ —§log>\

< —log(max K) — 14 2log2 +e¢.

Clearly, for any v € Ay, Jx(u) > —log(max K) — 1 + 2log 2. Hence limy_,00 ax =
—log(max K) — 1 + 2log 2.

(ii) If u € Ay, by definition, foBy(u) = —2+42log4. Hence Jy(u) > — log(max K )—
2+ 2log4. O

Remark. By Lemma 3.8, limy oo ax < infyecpa, Ja(u) for any A.

Proof of Proposition 3.7. Consider a minimizing sequence {u;} € Ay of Jy. Ac-
cording to Lemma 3.3, we rewrite it as u; = (w;, g;,t;). First we claim that S(w;)
is bounded. This is easy to prove, for fx(u;) is bounded and — log f Kowpy, 1, €% >
—log(max K). By Lemma 3.4, the boundedness of S(w;) implies that

][|Vwi|2 is bounded.

Second, we claim that {t;} is also bounded. Assume by contradiction that {¢;} is
unbounded. There are two possibilities

(1)g; — ¢ and ¢ is one of the vortices,

(2) ¢; — q and ¢ is not equal to Py or P_.
Case (1). Since S(w;) is bounded, from (i) of Lemma 3.5 we have

- lOg][ Ko Pas,ts e’ — +oo

as ¢ — +o0o. Since S(w;) > 0 and f is bounded, it follows that Jy(u;) — 400, a
contradiction.

Case (2). Recalling (3.8), (3.9) and the boundedness of f(u;), Lemma 3.5 implies
that

t?][e%“ (1+2z3)% < e

t?][eQwi =1 and ][6““ z3 =0.

Recall that we have
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This implies that
][62““(1 + 23)? chwi(l +x3) = 1.
So
t? < cA

is bounded.

Now it is clear that the boundedness of {¢;} implies that of {||u;|| g1.2}. Hence
we may assume that there exists u, € H12(S?) such that u; converges to uy
weakly in H12, and strongly in L9 for any ¢ > 1 and almost everywhere in S2. Tt

follows that
][ Ke¥% — ][ Ke¥a

][KQGQ% —>][K262ﬁ%

as ¢ — 4o0. Therefore Jy(uy) < ay and u, € Ay. Now, in view of Lemma 3.8,

and

o
Uy € AA.

Remark. We can prove the proposition in a different way which does not use
conformal transformations. Actually, we can prove proposition 3.7 for any compact
surface in [DJLW].

By Lemma 3.2, we know that u, + p(u,) is a solution of (3.2).

Now we consider the behavior of uy, as A — 4o00. First, it is clear that u,
cannot converge in H%2. Otherwise, we can obtain a minimum of J in H, which
contradicts Lemma 3.6.

Proposition 3.9. If we write uy as (wx, qx,tx) thenwy — 0 strongly in HY2 5 —
oo and gx — Q as X — +o0, where Q is one of the mazrimum points of K. More-
over, wy — 0 strongly in C1 as A — 4o0.

Proof. Since limy_,0c arx = —log(max K) — 1+ 2log 2, {S(wx)}, hence {||wa| 1.2}
is bounded. From the above discussion, we know that {5} is unbounded. Assume
g — Q and wy — wg weakly in H2 as A — oco0. By a direct computation we
have

lim ay = lim Jy(uy) > S(wg) —log K(Q) — 1+ 2log2

A—00 A—00
Consequently, S(wg) = 0, hence wg = 0. K(Q) = max K and wy converges to
wg = 0 strongly in H12, Clearly, wy satisfies a suitable equation similar to (3.7),
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from which we can show that wy — 0 strongly in Cl as A — +o0 by elliptic
estimates. O

Corollary 3.10. When Py = —P_, there are infinitely many solutions of (3.2).

Proof. In this case, K is axially symmetric along the axis crossing Py and P_.
Denote by Ty the rotation along this axis with angle 9. It is clear that Tyu, is
also a critical point of Jy for any ¢ € (0,2A]. From the previous proposition, we
know P(u,) — Q as A — oo. Hence, for large A\, P(uy,) is not the origin of R3. On

the other hand, it is clear that Ty(P(u,)) = P(Tyuy) and Ty has no fixed points
except the origin. Hence P(Tyu,) # P(uy) for any 9 € (0, 27|, which implies

uy # Tyuy for any 9 € (0,2)].

Hence (3.2) admits infinitely many solutions. O
Now we can prove Theorem 2.3.
Proof of Theorem 2.3. From Propositions 3.8 and 3.9, all properties except (ii) are

easy to check. Now we prove (ii). Recall that |¢y| = e“otutrlun) — Keutole,),
We claim

t2
f‘ —0 as A — o0,
where uy = (wx, ga,tx). If the claim is true, by (3.5) and Lemma 3.5 we have
2
)\ep<uA — ———  as A — +oo.
@)

By Proposition 3.9, we can show that
max e < ctg\
for some constant ¢ > 0. In fact, we have
e¥rcPat — e¥x(det dcpq’t)*l
and wy — 0 strongly in ¢, Hence, we have
ENE K eiateluy)
< A2 5o
again by the claim. Therefore, we only have to prove the claim.
Assume %2% — ap as A — oo with ag € (0,00]. By Lemma 3.5
b(wx,q,tx) — ag
which implies that
Sa(uy) — —log(max K) + f(ag) > — log(max K) — 1+ 2log 2,

a contradiction. This completes the proof of the Theorem.
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Proof of Theorem 2.4.

We first consider a simple case

Proposition 4.1. If Py = —P_, then for large X > 0, there exists a solution
vs of (3.2) with vx(z) = va(—z) (Vz € S?) such that v —][e”A converges to

ug € HY2(X) strongly for X\ — oo, where ug is the solution of (3.7) obtained by
Moser [M2].

Proof. The proof of the existence of a solution is very similar to the one in [M2]
(see also [T]). If Py = —P_, Lemma 3.1 says that K (z) = K(—=z) for each z € S2.
Therefore, we consider a special subspace H* = {u € H1? ‘u(:ﬂ) = u(—2x),Vz €
SQ}‘ For each u € H?®, there is the improved Moser inequality

log][e“ §é][|Vu|2+c][u (4.1)
52 S2? 52

for some constant ¢ > 0. From this inequality, it is easy to show that .J, satisfies
the Palais-Smale condition and the coercivity in H® N .Ay. The latter is

Ta(u) > 01][ Vul2—cy forue H N Ay (4.2)

for some positive constant cg, ca. Actually, by (4.1) one can choose ¢ = 1/8.
Set o3 = infuemsna, Ja(u). As in section 3, we have

Allr{:O oy =aj—1+2log2 (4.3)
and
i > o — s
uea}gmes Ia(u) > af — 2+ 2log4, (4.4)

where o = infyc g+ J(u) was studied by Moser in [M2]. By a standard method, we
show that of is achieved by u§ € Ay N H?®. The “symmetric variational principle”

[P] implies that 3 is a critical point of Jy in Ax. Hence vy = uf + p(uf) is a
solution of (3.2) by Lemma 3.2.
Moreover, (4.2) and (4.3) imply that

][Wum? <o
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for some constant ¢, provided that A is large enough. In view of the normalization
fe* = 1. This implies that u3 is bounded in H12,

Assume uf — uj € H2 weakly in H'? and strongly in L?(52) for any 1 <
p < +oo. As in section 3, we have £ Ke*a — f Ke¥s and £ K223 — f K22,
Thus (4.3) implies that u$ converges to u$ strongly in HL2, Clearly, u$ satisfies
(3.7) and was obtained in [M2]. O

Proposition 4.2. If P = P_, there is no solution vy of (3.2) for large \ such
that vy — f €"* converges strongly in HLZ,

Proof. Assume that uy = vy — f €”> converges to @ strongly in HY2Z 1t is easy
to check that @ satisfies (3.7). However, in this case, i.e. P4 = P_ the equation
(3.7) admits no solution by the Kazdan-Warner identity

/(VK7 Ve =0

that has to hold for any solution of (3.7), see [KW].

Now we consider the general and more difficult case P # +P_. In this case, by
Lemma 3.1, we know that K has a unique saddle point @) and a unique maximum
point Q(= —@Q). Moreover min, . K(z) = K(Q), where I' is the great circle
crossing @ and (Q). This I satisfies the condition (5.1) in [CY2], hence we can
define a minimax value of Jy as in [CY2] (see also [CkL] and [CD]).

Let v : 8D — T be a parametrization of I', where D is the unit disc in R? with

boundary 9D.

Definition 4.3. ([CY2]) D(I') = {h : D — H is a continuous map with the
Jollowing asymptotic behavior for all 29 € 0D :

lim S(h(z)) =0 (4.5)
lim P(h(z)) = y(z0) € S2}. (4.6)

zZ—ZzQ

(Here, P is the center of mass defined in section 3, and S(h) = ][ %(|Vh|2 +2h)).

Set g = infrep max,ep J(h(2)).
Lemma 4.4. ([CY2], [CKL]) 8o > —log K(Q) + co for a constant co > 0.
For our problem, we need to modify the definition of D.

Definition 4.5. D' = {h : D — H is a continuous map satisfying the following
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asymptotic conditions for all zg € 0D

Jim S(h(=)) <0 (47)
lim P(h(z)) € Bs(7(20)) (4.8)

Z—zZ0

for a fixred small 6 > 0}.

We show that for small §,D' and D are essentially the same in the following
Lemma.

Lemma 4.6. There exists 6g > 0 such that for any § < dp,
(i) max,ep J(h(2)) is achieved in the interior of D for any h € D',
(ii) By = infrepr maxqep J(h(t)) = fo.

Proof. For each h € D', we first construct an h € D such that

(1) S(h(t)) < 5 and P(h(1)) € Bs(y(£)), if 1/2 < |2] < 1

(2) h(z) = h(22), if |2| < 1/2.
As in section 3, we decompose h(z) as (w,,t,,q,) for z € D, where q, =

;EZE;;;‘ ,1—t2logt, = |P(h(2))] and w, = h(2)ow,. 1.+ +.. By the definition

of D, ¢q(z0) € Bs(v(20)) and S(w.) = S(h(z)) < J for any zg € dD. We extend h
to Dy ={z¢€ (CHz| <2} by

(wz7q,27tz) if |z| <, 17

h'(z) = _—
((2 - |Z|)wﬁ7q.27tz) S |Z| S 27

where ¢, and ¢, (1 < |z| < 2) are defined by

JCE
* el

and 1— t;72 logt, = Q,

and

Q: = (2= EDP((T) + (12l = Uy

Since P(h(t5)) € Bs(y(t5)), B’ is well-defined. Now, let h(z) = W(2z) for z € D.
Clearly, heD. By Lemma 4.4. we have

meagj(ﬁ(z)) > fo > —log K(Q) + co.
On the other hand, it is clear that for small § > 0 S(u) < ¢ and P(u) € Bs(v(20))
for some zg € 0D imply that

J(u) < ~log K(Q) + €0
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for eg < co/2. Hence, we have max.cp J(h(z)) = max.cp J(h(z)). Now it is clear
that (i) and (ii) follow. O

Now we return to consider our functional Jy. Let Dy = {h € D'|h(D) C Byx}.
Recall that By = {u € H‘b(u) < logA}. For a fixed dy (for example dy as in
Lemma 4.6) it is clear that Dy £ 0, if X is sufficiently large. Set

B = hlean; I,?eagjk(h(z))'

Lemma 4.7. limy_ oo O = Gg — 1+ 2log 2.
Proof. In view of Lemma 4.6, for any & > 0 there exists hg € D’ such that

| max J(ho(2)) — fo| <e/2.

Since By — H as A\ — 400, we can choose Ag > 0 such that ho(D) C By for any
A > Ag. Hence

max Jy(ho(2)) < max J(ho(z)) + f( L

— )
&b 144/ —glog)\

<fByp+e—1+2log?2
provided that Ag is large enough. On the other hand, for each h € Dy, we have

max.J(h(t)) > By — 1+ 2log 2.

zeD

This proves the Lemma. O
Lemma 4.8. J, satisfies the Palais-Smale condition in Ay.
In fact, this was proved in the argument of Proposition 3.7. O

Now we state our main result in this section.

Proposition 4.9. 3, is achieved by uy € By, provided that X is large enough.
Proof. We divide the proof into several steps.

Step 1. We have

(i) For gg > 0 and large T4, there exist My > 0 and vg > 0 such that any
u=(w,q,t) with Jx(u) < By —1+2log2+eg and t > T} satisfies that S(u) < My
and u = (w, q,t) with ¢ & B, (Py).
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(ii) There exist small § > 0 and large T5 > 0 such that, if u = (w,q,t) with
S(u) <6, g € Bs(vy) and ¢t > Ty, then Jy(u) < Fy — 1+ 2log2 — cp/2.
Note that (ii) was used in the proof of Lemma 4.6.

Step 2. From [CKL, p51] there exist bg,ep,e1,73 and Ng, N1 > 0 such that if
v = (w,q,t) with ¢ & B,,(P+) and S(w) < My, then

(i) 10w > e0 — Not L logt? ¢, if S(w) > by and t > Ts,

(i) (D, ) > €182 (w) — Nyt—Llog!/? ¢, if S(w) < by and for any & € Ty, Ho.
Here dy,.J(u) is the derivative with respect to w. Let Ty = max{T,Ty,Ts, T3},
where T is determined in Lemma 3.5.

Note that in steps 1 and 2, all constants are independent of A.

Step 3. There exists Ag > 0 such that for any A > Xg
X ={u e (w,qt)|t <To} C BA
ueX.

Step 4. If u = (w,q,t) € By with S(w) < My, ¢ € By, (P+) and t > Tp, then

t _
| 0w fa(w, q,8)|| < c15 < erte ar
18:fx(w, g, )| < exte="

and .
2
19 fx(w, 0, 1) < e1 < exte

for some positive constant ¢; and cs.
It is enough to check that there exists a constant ¢ such that

[(Owd(u),v)| < ct|v]|
for any v € T,, Hp.

2] K2o Pt 2w ~v(det(d<pq7t)*1)
B (J K o pgiev)?
2fK2 0 Qg t 62w(d€t(d(pq7t)7]‘)fK gt v
B (JKowpgrew)d
" 2{K* 0 g0 1 (det(dipg,e) 2H2([ |0]?) /2
- ([ Kopgrer)?
J K2 0 g €2 (det(dipg,e) (] K2 0 g ) 2([ [0]?)
(K opgrev)?

{Owd(u)v)

+
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< ctQ(/ [v]>)1/2, by Lemma 3.5.

Since u € By, we have, by Lemma 3.5
ct? < logA.

7ct2

This is equivalent to A1 < e . Step 4 follows.

Step 5. Extend Jy x toY 1= {t <Tp} U{u € (w,q,t) ‘ S(w) < Moy q & By (P1)}.
Let w € Y define a functional H : Y — R as in [CkL] by

H(w,q,t) = S(w) — log K(q) — ZAK—[(((](;])VQ logt.

One can check that

Not—L log'/? ¢ if S(w) > bt > Tp
|7 —H| <{ Ni(|[VK(q)|t ! logt? ¢ 5(w)

if S(w) < bt > 1Ty
+t72 4 52 (w))

see [CKL, p51]. Bxtending J as in [CkL|, we obtain J in V. We define Fax
smoothly to fA =Y — R such that

1) fax = fx,

(ii) f satisfies Step 4,

(iii) fr = —14 2log2, when ¢ is sufficient large.
Now we obtain a new functional Jy = J + f>\ defined in Y satisfying

(a) 8\ (w) 20 if u = (w,q,t) with ¢t > T

(b) J satisfies the Palais-Smale conditions on (3x — €0, 3x + £0) for a fixed
small constant eg > 0

(e) Jax = Jax-

(d) J,, satisfies Steps 1-4.

(a) We can follow [CKL] to prove (a). Here we give a sketch.
If S(w) >t Llogt, then ||8,.J|| > Not log!/?t (see [CKL]). (ii) and Step 4
implies that if ¢ > Ty
18w flI2 < cte’. (4.9)
Hence |8y || > LVTOtfl log'/2 ¢, provided that Ty is sufficient large.
If S(w) < t~logt, it was shown in [CKL] that near Q or Q

. 2AK(Q)|

97w = =575

(4.10)
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is controlled by clog71 t if t > Ty and away from Q and Q

|0g T (u) + %{KTq()q” (4.11)

is controlled by ¢t —1T#1logt, if t > Ty. Here 0 < p < 1. By (ii) and Step 4 it is
clear that (4.10) and (4.11) hold also for .Jy. Thus there are no critical points of
Jyift > Tp.

(b) If {u;} C Y is a Palais-Smale sequence for .Jy, the argument in (i) implies
that we may assume that {u;} C X. Hence (b) follows from Lemma 4.8.

(c) and (d) are clear.

Step 6. Now we set 35 = infrepg sup,cp Ja(h(2)), where D} = {h € D'|h(D) C
Y}. Using the above argument, we have

NED

and
)\lim 8% =0 — 1+ 2log2.

Thus, for large A > 0, 55 € (o — 1 +2log2 — 0,5 — 1+ 2log2 + £¢). Since Jy
satisfies the Palais-Smale condition on (8y — 1+ 2log2 — &g, 5 — 1+ 2log2+eg), if
B% is not a critical value of Jy, we can find a deformation T(-,¢) : ¥V x [0,1] — Y
g1 > 0 such that

(i) T(u,0) = u, i
(ii) T(u, 1) c Jgifgl, if~u S Jl@§\+€1 .
(111) T(u7t) =u, ifue Jﬁ;_QEl U (Y \ J[@;+251)7

where J, == {u € Y|Jia(u) < b} and ¢; < ¢p/4. The construction of such a
deformation is standard. We refer to [Ck]. We claim

T(u,t) =u

if u € Y U{u = (w,q,t)|S(w) <4, P(u) € Bs(7)}.

If w = (w,q,t) with S(w) < § and P(u) € Bs(v), then by Step 1 Jy(u) <
Bo—1+2log2—<¢. By (iii) in the construction of the deformation 7', T'(u,t) = u
If w e 9Y, then v = (w,q,t) satisfies either S(w) = Mp, ¢ € 0B,,(P+) and
t>1TyorS> My, ge By (Py) and ¢t =Tp. Again by Step 1, we have Jy(u) >
Bo — 1+ 2log2+ e, hence T'(u,t) = u by (iii) above.

Hence T'o h € D for any h € Di. Now it is clear that the existence of such a
deformation contradicts the definition of 3§. Therefore 35 is a critical value and
there is wy € Y such that @, is a critical point of Jy and jA(EA) = B%. By the
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construction of j)\, we know uwy € X and jA(ﬂA) = Ja(u) = Bx. This completes
the proof of the proposition. O

Proposition 4.10. By taking a subsequence, Ty converges to g strongly in C4
for any q > 1, where Ty is a solution of (3.7) obtained in [CEL] and [CY].

Proof. From the argument in the proof of the previous proposition, we havewy € X.
Therefore uy is bounded in HY2. Assume 7y converges to uwg weakly in H 172,
strongly in L? for p > 1 and almost everywhere. As before, by Lebesgue’s theorem,

we have
/ Ke™ — / Ke™ and / K27 / K270,
Hence,
— 2
p(Tx)
Ae - f Ke®
as A — 4o0.
Since Ty = Ty + p(w)) satisfies (3.2), i.e.
/(vm V) + )\/Kem([{em — e+ 2/¢ =0, (4.12)

we have

/Vﬂo~V<p—2/KeE°g0+2/<p:07 (4.13)

which implies that @ is a solution of (3.7). Choosing ¢ = uy —ug in (4.12) and
(4.13), we conclude

/|Vﬂ>\ —Vag|? = —)\/Ke"(m)em (Keﬂ(m)eaA — 1)(ux — up)
+2/Keao(uk—uo)
= —)\/Kep(m)em(uk — ugp)

+2/Keao(uk—uo)+o(1)
=o(l) asA— +oo.

It follows that wy converges to wg in HL2 Now it is easy to conclude that @y — @y

in C(S?) for any ¢ > 1 by the elliptic estimates. O

Proof of Theorem 2.4. It follows from Proposition 4.9 and 4.10. |

Remark. I — 47 Euﬁfg as k — 0, where ug is a solution of (3.2) and @ is
k e*0Tuo

a solution of (3.7) with K = e%0.
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