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Multiplicity results for the two-vortex Chern-Simons
Higgs model on the two-sphere

Weiyue Ding, Jürgen Jost, Jiayu Li and Guofang Wang

Abstract. We consider a Ginzburg-Landau type functional on S2 with a 6th order potential and
the corresponding selfduahty equations We study the limiting behavior in the two vortex case
when a coupling parameter tends to zero This two vortex case is a limiting case for the Moser
inequality, and we correspondingly detect a rich and varied asymptotic behavior depending on
the position of the vortices We exploit analogies with the Nirenberg problem for the prescribed
Gauss curvature equation on S

Keywords. Ginzburg-Landau functional, (f>6 theory, Moser-Trudinger inequality, Nirenberg problem,

phase transition, Chern-Simons Higgs theory

1. Introduction

Functionals that exhibit a selfduahty phenomenon in the sense that the absolute
inmimizers satisfy a set of first order partial differential equations are important
in various areas of geometry and physics

In the present paper, we investigate a special class of such functionals, namely
Ginzburg-Landau type functionals with a 6th order potential Such functionals
arise in Chern-Simons Higgs theories, as will be explained in §2 We consider a
line bundle L over a compact Riemann surface S, and the Lagrangian density

Here, </> is a section of L, and A is a unitary connection on L with curvature F k is

a coupling parameter, and we are particularly interested in the limit analysis as k
tends to 0 This limit analysis reveals a geometrically interesting phase transition
that may also be relevant in superconductivity The selfduahty becomes manifest
by rewriting

J^ |\dA4>? + (^F + l\4>\(\4>\2 - I))2
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If S is compact, or, more generally, if one requires certain decay conditions at
infinity,

/ F 2nN

is a topologically quantity, where N is an integer, the so-called vortex number that
fixes the number of zeroes of </>, the vortices For N > 0, absolute inmimizers of L
then have to satisfy the selfduahty equations

dA<j> 0

As k —> 0, one expects that the minima of the potential

v(4>) H2(i - H2)2

at \(f>\ 1 and </> 0 dominate the behavior of inmimizers of L, except that the
topological constraint

F 2nN

fixes the number of zeroes of </> as well as the integral of F One thus expects
a solution </> with |</>| close to one except in the vicinity of N vortices In the
case were S is a torus, such a solution has been constructed by Caffarelli-Yang
[CaY] One also expects a solution that approaches 0 Such a solution was recently
obtained in an interesting paper of Tarantello [T] in case N 1, again for a torus
While the methods employed in the proofs of those results extend to the case of
an arbitrary compact Riemann surface S, the method of Tarantello only works for
N 1, because it depends on the Moser inequality (She does obtain a second
solution for arbitrary N but as we shall see in the present paper, the limiting
behavior will depend on N in general Here we consider the case N 2 on the
sphere S*2 This case is a limiting case for the Moser inequality, and consequently
the analysis and the results become more subtle than for N 1 In fact, one may
rewrite the selfduahty equations by putting

u(x) log|</>(x)|2

to obtain
4 N

Au ^eu(eu - I) + A

where Sp is the Dirac distribution concentrated at p, and p\, ppj are the
prescribed zeroes of </>, not necessarily all distinct As will be explained in section 3,
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in our case N 2 this equation can be related to the prescribed Gauss curvature
equation

Am -2Keu + 2

Thus, one expects that the methods developed for the Nirenberg problem, l e the
existence problem for that equation, become relevant (see section3 for references)
That is indeed the case, and in the present paper we shall obtain two families
of solutions depending on the coupling parameter k with a precise asymptotic
behavior different from the one of the Caffarelh-Yang solution The only exception
is the case of a single vortex with multiplicity two where the Kazdan-Warner
equation prevents the existence of a solution of the limiting equation and where
we only find one additional family Such a case distinction is not untypical for limit
cases of embedding theorems On the other hand, if the two vortices are antipodal,
then an easy symmetry argument produces one-parameter solution spaces, l e

infinitely many solutions for each sufficiently small value of k The case of the torus
has been investigated in our companion paper [DJLW] and by Nolasco-Tarantello
[NT] By their results, it may be possible that a solution with a blow-up of the
curvature at a non-vortex point also exists for certain conformai classes of ton

In conclusion, the asymptotic analysis of the Chern-Simons Higgs functional
considered here is much richer than the corresponding one for the Gmzburg-

Landau functional with a 4th order potential (|</>|2 — I)2 There, it was shown in
[HJS] that asymptotically, as k tends to 0, </> becomes a covanantly constant
section of L with |</>|=1, and the connection A becomes flat, except near the vortices
where all the topology concentrates Solutions of the type found by Tarantello and

in the present paper do not occur in that model This is somewhat similar to the
situation in the Seiberg-Witten functional that again has a Ath order nonlmeanty
where the limiting analysis was carried out by Taubes [T3] We expect that a
Seiberg-Witten type functional with a 6th order potential will exhibit very
interesting features, partly analogous to the ones found in the present paper We hope
to be able to study this more closely In fact, we consider the present analysis as

a model study for that problem

2. The Chern-Simons Higgs model

Let S*2 be the standard sphere in R3 with the standard metric go, and M R x S*2

with the Lorentzian metric g cIxq — go Consider the (trivial) principal bundle
M x U{1) -> M Let A -lA^dx», Aß(x) G R, x (xo,xi,x2) G M be a
connection on this principal bundle The curvature of A is given by

with Fa ß daAß — dßAa, a, ß 0,1,2 The vector bundle associated to
M x U(l) is M x C, where C is the complex plane Let </>(x) be a section of the
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vector bundle M x C, 1 e </>(x) is a Higgs field, in physical notation Let Da4>
denote D^dx0 with Dv<j> dri<f> — iAv<j>

In this paper, we are interested in the following Chern-Simons-Higgs Lagrangian
action density

C{A, 4>) Drt4>~D^> + -kea^FaßA1 - V{4>) (2 1)
4

where k > 0 is the coupling constant which determines the strength of the Chern-
Simons term eal3'yFctßA7, V(4>) is the potential and the Levi-Civita tensor ea|37,

a,/3,7 0,1,2 is fixed by e012 1 This Lagrange density was first introduced
by Hong-Kim-Pac in [HKP] and Jackiw-Weinberg in [JW]

The Euler-Lagrange equations for (2 1) are

(22)

where f is the conserved matter current density We are interested in static
solutions of (2 2) with V(<j>) prH2(l - H2)

The energy density corresponding to the Lagrange density (2 1) is

£ |A)</>|2 + l^l^l2 + \Di4\2 + ^2 l^|2(l - l^l2) (2 3)

supplemented by the Gauss law

F12 lj° -^((fDïï4>-^D°4>) (2 4)
K K

Let 3a4> D\4> + iD<2(j> We have

Therefore, the energy density (2 3) may be written as

\ (^ |£=\ (i^i^ia + |H(I^|2 " + l^l2 + *12 + Im {d3e3k<f>Dk<f>},

where eo]~ —£kj, J,k 1,2 and £12 1 Thus we obtain the following energy
functional

E(A,4>)= I £ I \\^Fl2 + l\4>\(\4>?-l)?+ I \dA4>?+ I F12 (2 5)
JS2 Jsi 4 101 k JS2 JS2
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The absolute minimizers of E under the homotopically invariant constraint

Fi2 N (2.6)
is2

satisfy the Bogomolny type self-dual equations

5.4* 0,
(2J>

with the Gauss law fcF'12 + 2j4o|</>|2 0 (see (2.4)). Here N is an integer. One

can easily check that a solution of (2.7) with the Gauss law satisfies (2.2). In this
paper, we are interested in finding such special solutions of (2.2).

As in [CaY] and [T], one can first obtain a maximal solution as follows

Theorem 2.1. ([CaY]). Let p\, ...,pm be given points (or vortices) on S2 and

ni,...,nm positive integers such that ^Y^=\n3 N > 0. There exists a kc G

(0, ^^\S2\/irN) such that (2.7) admits a solution {Ak,4>k) for which p\,...,pm
are the zeroes of (p with multiplicity n\, ...nm if and only if 0 < k < kc. Moreover

(i) The energy, magnetic flux and electric change of (Ak,4>k) are respectively

given by

E 2ttN, $ 2ttN, Q 2-rrkN (2.8)

(ii) The solution (Ak,4>k) is maximal in the sense thai if (A',(p') is another
solution of (2.7) with the same vortices as (A,(p), then \(p'\ < \(p\.

(iii) \(pk\ < 1 m S2 and \<f>k\ -> 1 as fc -> 0 a.e. in S2 and in HX^{S2), 1 <
q < 2.

N
p(fc) 1

p3 vn the sense of -measures as k —s- 0. (2-9)

where each Dirac distribution SPj occurs with multiplicity n^j 1, ...,m.

One can also obtain another solution by using the mountain pass Lemma as [T].
Here we are interested in solutions of (2.7) with a different asymptotic behavior
when k —> 0. Motivated by Caffarelli-Yang's variational method, when N 1,

Tarantello obtained in [T],

Theorem 2.2. There exists a solution (Ak,4>k) of (2.7) for small fc > 0 such that
(2.8) holds and \\4>k\\c'i(s2) ^ 0 as fc ^ 0 for any q > 0.

Although they did not consider (2.7) on S*2, the methods of Caffarelli-Yang
and Tarantello extend to this case.

Tarantello used the Moser inequality [Ml,2] to study this problem. Here we
consider the case N 2. As we already mentioned in the introduction, this case
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is a limiting case (a critical case). The main difficulty to find solutions of (2.7) is

the lack of a coercivity condition. A crucial observation is that our problem can
be seen as a perturbation of the well-known Nirenberg problem. Hence, methods
developed in the Nirenberg problem may be used to study (2.7). First we obtain
a solution of (2.7) which has a new asymptotic behavior as k —> 0.

Theorem 2.3. Let N 2 and P± two vortices. For small k > 0, there exists a

solution (Aj,,(f>j,) such that

(i) (2.8) holds,
(ii) |</>£ | —> 0 in C° uniformly,
(iii) l

where Q ^ P± is determined by P± (see section 3.). Moreover, if P-\- —P- there
exists a family of solutions (j42($), </>2($)) such that (i), (n) and (in) hold with
T$Q, where T$ is the rotation with angle â about the axis from P+ to P_.

This is a new interesting situation. We guess that such a solution exists in the
general case.

Theorem 2.4. Let N 2 and P± two vortices. If P+ =/= P-, then for small k
there exists another solution (Af,(f>f) of (2.7) such that

(i) (2.8) holds,
(ii) 4>l —>¦ 0 m Cq, as k —s- 0, for any q>0.

The potential H2(|</>|2 - I)2 has a minimum at \<f>\ 1 and at </> 0. The
solution of Theorem 2.1 corresponds to the minimum at |</>| 1, the one of
Theorem 2.3 to the one at </> 0, while the solution of Theorem 2.4 is a saddle point
solution for an associated functional. Of course, the vortices prevent that |</>| 1

or </> 0 are exact solutions, but in the limit k —> 0, the obstructions concentrate
at isolated points. According to the theorems, for N 2, we have 3 different cases
for small k.

(1) If P_|_ P_, (2.7) admits at least two solutions,
(2) If P_|_ — P_, (2.7) admits infinitely many solutions,
(3) If P_|_ =/= ±P_, (2.7) admits at least three solutions.

It is clear that case (3) is the generic case. Before we start to prove the
theorems, we first reduce (2.7) to a semilinear equation. Such a reduction was
first used by Taubes in [Tl], [T2].

It is clear that the first equation of (2.7) may be written as

2dcj)-iA(j) 0, (2.10)

where A A\ + iA% and 8 ^(d\ + id2) is the usual Cauchy-Riemann operator.
Hence </> can be considered as a holomorphic section of a line bundle, and it there-



124 W. Ding et al. CMH

fore admits a finite number of zeroes in S2 with integer multiplicities. Outside the
zero set of </>, Z{<f>), we have

A=-2id\og4>. (2.11)

Set u(x) log \4>{x)\2. From (2.7) and (2.11) u satisfies

Am pe"(e"-l) in S2\Z{4>) (2.12)

and
u{z) nk\og\z - Pk\2 as z^Pk. (2.13)

On the other hand, if we have a solution u of (2.12)-(2.13), set

N
4>(z) exp I —i

and A —2idlog(j>, then one can check that (A,(j>) satisfies (2.7). Therefore, we

only have to consider (2.12) and (2.13). Clearly (2.12)-(2.13) is equivalent to

4 "
Am —rre"(e" - 1) + 4tt > 5P (2.14)

k2
_¦,

where ôp is the Dirac distribution concentrated at P.

Proof of Theorem 2.3

Let P-\- and P_ be two vortices on S2. Let mo be the unique solution of

— 2 + 4tt((5p +Sp in

/S2 «0=0.

Let A 4/A;2 and K e"°. (2.12) is equivalent to

Am XKeu(Keu - 1) + 2 in S2. (3.2)

We first summarize some simple properties of K in three different cases.

Lemma 3.1. case (i): P-\- — P_. After a change of coordinates, we may
assume that P_|_ is the north pole. Then K is axially symmetric, i.e. invariant
under rotations about the axis between north and south pole, i.e. between P_|_ and
P—, as well as invariant under reflections about the equator of S i.e. K(x)
K{—x) for all x <E S2. K achieves its maximum for any point on the equator.
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case (ii): P-\- P—, i.e. P-\- is a double vortex. K is again axially symmetric
about the line between P_|_ and —P-\~. It achieves its unique maximum at —P-\~.

case (iii): P-\- ^ ±P_ the generic case). K has a unique maximum point
Q ^ P_|_, P_ and a unique saddle point Q —Q. D

Equation (3.2) is the Euler-Lagrange equation of the following functional

|VW|2 + 2u + ^(Keu - I)2,

where j-u is the average of u over S*2, i.e. j-u -^ Js2 u. As in [T], motivated
by the variational method used in [CaY], we consider the following functional

(3.3)

-
in

Ax= lue F1'2(S'2)| / e" 1 & (/ Keuf - | / K2e2u > 0 I (3.4)

where

p(u) log

The term —-| + log A ensures that J\ has a uniform lower bound (see Lemma 3.4

below). This value of p{u) is needed to satisfy the constraint that comes from
integrating (3.2). Alternatively, this value of p{u) is determined by minimizing J\
among functions of the form u + p w.r.t. p for given u satisfying -f e" 1.

Set H {ue Hl>2{S2)\ j-eu 1}.

o

Lemma 3.2. If u € A.\, the interior of A.\, is a critical point of J\, then v
u -\- p{u) is a solution of (3.2).

Proof. The proof is straightforward (cf. [T]). D

A crucial observation is that we may rewrite J\ in a suitable form as follows.
By the définition of p, we have

Keu
4 ^e" (3.5)

2 8 2Jl
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Consequently,

2 < Aep(") -I Keu < 4, for any u £ Ax (3 6)

Set Bx(u) Ae^") j-Keu Again, by definition, we have

A IK2e2(«+p(«)) _ a i Keu+pi^ -2

Thus, we can rewrite J\ as follows (deleting an irrelevant additive constant)

/ife + 21ogSA(W) BA(U)

Set aA mf«e^ J\(u) In this section, we shall prove that aA is achieved by
° -,

some ux G *4A For simplicity of notation, let /(£) 2 logt — ^t and f\ fo B\
Then JA is written as

¦h J + h,
where

J(u) f (-IV

The corresponding Euler-Lagrange equation of J is given by

Am -2Keu + 2, (3 7)

which is the so-called prescribed Gauss curvature equation The corresponding
problem of existence of solutions of (3 7) is called the Nirenberg problem This
problem has been studied by many mathematicians (See [M2], [A], [H], [CD],
[CY1,2] and [CkL] and references therein J\ can be considered as a perturbation
of J for large A So it is natural to apply methods developed for the Nirenberg
problem in our problem

Now let us first introduce the definition of the center of mass of a function
m G i/1 2(S'2) which was first used in [CD] in the Nirenberg problem For u G

H^ 2(S'2), the center of mass is defined as

Given q G S*2, we choose coordinates x (xi,X2,#3) G S*2 such that q (0,0,1)
The stereographic projection II S*2 —> C C U {oo} with respect to q is defined
by

x\ + 1X2
(xi,X2,X3j h^ z

1 X3
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For t > 0, let mt : C —s- C be the usual multiplication by t, i.e mt{z) tz for any
zgC. For any u G F1'2(S'2), there is (q,t) G S2 x [l,+oo) and

W MV(!jt := U O (fqj + î/;qt.

such that P(w) 0, where ipq<t II^1 o mt o II and V'q,* logdet(dy>qit). (Note
that our notation differs slightly from the one in [CY1] and [CkL]). In [CkL], (see
also [O], [CD] and [CY1]) the authors proved

Lemma 3.3. H is diffeomorphic to H° x _B3 by sending u G H to (w uLPq t,q,l —

t-2 logt;, where H {u G Hl^{S'2) : {¦ eu 1} and H° {u G H\P{u) 0}.

Now we can rewrite J\ by this decomposition. First, let S(u) j ^|Vm|2 + 2m.

It is important that S is invariant under conformai transformations, namely,

S(u) S(uVqt)

for any conformai transformations ipqtt of S*2. Let u (w, q,t) G H. We write J\
as

Jx JX(w,q,t) S(w) - 2 log/ if o ^tew + fx(w,q),

where

fx(u) foBx(w,q,t) (3.8)

and

21A/ / 8 -f if2
V A

For simplicity of notation, let
b{u) b(w,q,t) {K2ocpqtte2w(det(dcpqtt)-1)/(-fKocpqttewf. We need

Lemma 3.4. ([CY1]). If u G H°, then j- |Vm|2 < 2(1 -aoy1S(w) for a constant
a0 < 1.

The following asymptotic behavior for large t is crucial for the proofs of the
Theorems.

Lemma 3.5. For any &o > 0, we have for all w with S(w) < &o uniformly in t as

t —s- oo

(i) JKo vq,tew K{q) + O^-1 log l/2t),
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(u)

O(t),

m

Proof (1) was proved in [CY1]
(11) We use the plane coordinates induced from the stereographic projection

with respect to q (see above) By the Taylor expansion of K around q (0,0,1),
we have

K(x) K{q) + aixi + a2x2 + O(\x\)

in {x G C \x\ > M} for a fixed large M > 0 By a direct computation, we have

2 x 2

det(ckpqt)(z)=t<
1 +

Let ßt {z e C||z| > M/t} and R$ C\Rt We decompose the left hand side
of (n) as follows

where

— If+I U2(fa)^WH
47r \JRt

,2 A direct computation shows that

2\2j

K\tz)

and

(tz)(iz)
Rt

o



Vol. 74 (1999) Chern-Simons Higgs model on the two-sphere 129

4
:\>M. 1+\Z

8t

Similar

We also have

fit

fit

for z (x\ + ix2)/{l — x%). The preceding estimates prove (ii).
(iii) The proof is similar to that of (ii). D

Lemma 3.6. ([H],[CY2]) InfueHJ(u) — log(maxa,eS2 K{x)), and J does not
achieve its infimum, if K is not constant. D

Now we have

o

Proposition 3.7. For all sufficiently large X, there exists ux € A.\ with Jx(u\)
a\.

To prove the proposition, we need one more Lemma. We recall a\ inf„ey4A J\{u).

Lemma 3.8. (i) lim;>^+oo o.\ — log(max K) — 1 + 2 log 2

(ii) mîuedAx Jx(u) >-log(maxif)-2 + 21og4.

Proof. By Lemma 3.6, for any e > 0 there exists uq g H with

J(uo) < - log(maxif) + e/2

On the other hand, B\ := {u G *4a|&(w) < log A} converges to H as A —> +00.
Hence we can choose Aq such that mq G B\ for any A > Aq If we choose Aq large
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enough, we have

J\(uo) J(uo) + f\ (mo)

< - log(maxif + e/2 + /( —
1 +a/1-flog A

A

< - log(max if) - 1 + 2 log 2 + e.

Clearly, for any u G A\, Ja (m) > — log(max if) — 1 + 2 log 2. Hence liniA^oo «a

- log(max if) - 1 + 2 log 2.

(ii) If m G ct4.A, by définition, foB\{u) — 2+21og4. Hence J\{u) > — log (max If)-
2 + 21og4. D

Remark. By Lemma 3.8, limA^oo «a < '^uedAx J\{u) f°r anY

Proof of Proposition 3.7. Consider a minimizing sequence {ut} G *4a of J\.
According to Lemma 3.3, we rewrite it as ut (wt,qt,tt). First we claim that S(wt)
is bounded. This is easy to prove, for f\{u%) is bounded and — log -f K
— log(maxif By Lemma 3.4, the boundedness of S(wt) implies that

i| is bounded.

Second, we claim that {tt} is also bounded. Assume by contradiction that {tt} is

unbounded. There are two possibilities
(l)qt —s- q and q is one of the vortices,
(2) qt —s- q and q is not equal to P_|_ or P_.

Case (1). Since S(wt) is bounded, from (i) of Lemma 3.5 we have

4- log 4 if o ifq^u ew% —> +oo

as i -^ +oo. Since S(wt) > 0 and f\ is bounded, it follows that J\(ut) —> +oo, a
contradiction.
Case (2). Recalling (3.8), (3.9) and the boundedness of f\(ut), Lemma 3.5 implies
that

Recall that we have

_[ e2w% and 1
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This implies that

So

t2 < cX

is bounded.
Now it is clear that the boundedness of {tt} implies that of {||i*»||/j-1,2}. Hence

we may assume that there exists ux G iï1'2(S'2) such that ut converges to ux
weakly in i?1'2, and strongly in Lq for any q > 1 and almost everywhere in S*2. It
follows that

and

I
as i —> +oo. Therefore J\(u\) < a\ and ux E A\. Now, in view of Lemma 3.8,

Remark. We can prove the proposition in a different way which does not use
conformai transformations. Actually, we can prove proposition 3.7 for any compact
surface in [DJLW].

By Lemma 3.2, we know that ux + p(]àx) ls a solution of (3.2).
Now we consider the behavior of ux as A —> +oo. First, it is clear that ux

cannot converge in i?1'2. Otherwise, we can obtain a minimum of J in H, which
contradicts Lemma 3.6.

Proposition 3.9. Ifwe write ux as (w\,q\,t\) thenwx —s- 0 strongly in H^'2 ,tx —>

oo and qx -^ Q as A —s- +oo, where Q is one of the maximum points of K. Moreover,

wx —> 0 strongly in C as X —> +oo.

Proof. Since limA^oo «a -log(maxif) - 1 + 21og2, {S(wx)}, hence {|| wa||_h-i,2 }
is bounded. From the above discussion, we know that {tx} is unbounded. Assume

<lx —> Q and wx —> wo weakly in i?1'2 as A —> oo. By a direct computation we
have

lim ax lim Jx(ux) > S(w0) - log if (Q) - 1 + 2 log 2
A—>oo A—>oo

Consequently, S(wq) 0, hence wo 0. K(Q) max if and wx converges to
wo 0 strongly in i?1'2. Clearly, wx satisfies a suitable equation similar to (3.7),
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from which we can show that wx —> 0 strongly in C1 as A —> +00 by elliptic
estimates D

Corollary 3.10. When P+ —P_, i/iere are infinitely many solutions of (3 2)

Proof In this case, K is axially symmetric along the axis crossing P+ and P_
Denote by T$ the rotation along this axis with angle â It is clear that T$ux is
also a critical point of Jx for any ê G (0, 2A] From the previous proposition, we
know P(u\) —> Q as ^ —> °° Hence, for large A, P(u\) is not the origin of R3 On
the other hand, it is clear that T$(P(ux)) P(T$ux) and T# has no fixed points
except the origin Hence P(T$ux) =/= P(ux) f°r anY ^ € (0, 2tt], which implies

for any ¦& G (0, 2A]

Hence (3 2) admits infinitely many solutions D

Now we can prove Theorem 2 3

Proof of Theorem 2 3 From Propositions 3 8 and 3 9, all properties except (11) are

easy to check Now we prove (11) Recall that \4>x\ e«o+«A+p(«A) ^e«A+p(«A)
We claim

t1
-^ —s- 0 as A —s- 00,
A

where ux (w\, q\,t\) If the claim is true, by (3 5) and Lemma 3 5 we have

maxe-* < ct\

By Proposition 3 9, we can show that

max

for some constant c > 0 In fact, we have

and wx —> 0 strongly in C1 Hence, we have

< c\-lt2 -+ 0

again by the claim Therefore, we only have to prove the claim

Assume ^ —> ao as A —> 00 with ao G (0,00] By Lemma 3 5

b(wx,q,tx) —>¦ ao

which implies that

J\(u\)^ -\og(maxK) + f(a0) > - log(maxiT) - 1 + 2 log 2,

a contradiction This completes the proof of the Theorem
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Proof of Theorem 2.4.

We first consider a simple case

Proposition 4.1. If P-\- —P-, then for large A > 0, there exists a solution

v\ °f (3.2) with v\(x) v\(—x) (Vx G S such that v\ — 4- eVx converges to

«0 G i71>2(S) strongly for A —s- oo, where uq is the solution of (3.7) obtained, by
Moser [M2].

Proof. The proof of the existence of a solution is very similar to the one in [M2]
(see also [T]). If P+ -P_, Lemma 3.1 says that K(x) K(-x) for each x G S2.

Therefore, we consider a special subspace Hs {u G iî1'2 u(x) m(—x),Vx G

S*2}. For each m g i/s, there is the improved Moser inequality

u (4.1)

s2 s2 s2

for some constant c > 0. From this inequality, it is easy to show that J\ satisfies
the Palais-Smale condition and the coercivity in Hs n A\. The latter is

¦/J\(u) >c\j \Vu\z - c2 for ue HsnAx (4.2)

for some positive constant c\, c%. Actually, by (4.1) one can choose c 1/8.
Set asx mîueHsnA>, J\(u)- As in section 3, we have

lim asx «g - 1 + 2 log 2 (4.3)

and
inf Jx(u) > as0 -2 + 21og4, (4.4)

where «q mîueHs J(u) was studied by Moser in [M2]. By a standard method, we
o

show that asx is achieved by usx G A\ n Hs. The "symmetric variational principle"
o

[P] implies that usx is a critical point of J\ in A\. Hence v\ usx + p(ux) is a
solution of (3.2) by Lemma 3.2.

Moreover, (4.2) and (4.3) imply that
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for some constant c, provided that A is large enough. In view of the normalization
j-eu 1. This implies that ux is bounded in i?1'2.

Assume usx —s- u% e H1'2 weakly in H1'2 and strongly in LP(S2) for any 1 <
p < +oo. As in section 3, we have j- Keu>- —>¦ j- Keu* and j- K2e2u>- —>¦ j- K2e2u*.

Thus (4.3) implies that ux converges to u% strongly in H^<2. Clearly, u% satisfies
(3.7) and was obtained in [M2]. D

Proposition 4.2. If P+ P-, there is no solution v\ of (3.2) for large A such
that v\ — -f eVx converges strongly in i?1'2.

Proof. Assume that u\ v\ — j-eVx converges to ü strongly in H ' It is easy
to check that ù satisfies (3.7). However, in this case, i.e. P+ P_ the equation
(3.7) admits no solution by the Kazdan-Warner identity

(VK,Vxt)eu 0

that has to hold for any solution of (3.7), see [KW].
Now we consider the general and more difficult case P+ ^ ±P_. In this case, by

Lemma 3.1, we know that K has a unique saddle point Q and a unique maximum
point Q(= —Q). Moreover mina,ep K(x) K(Q), where F is the great circle
crossing Q and (Q). This F satisfies the condition (5.1) in [CY2], hence we can
define a minimax value of J\ as in [CY2] (see also [CkL] and [CD]).

Let 7 : dD -^Fbea parametrization of F, where D is the unit disc in R2 with
boundary dD.

Definition 4.3. ([CY2]) T>(T) {h : D —s- H is a continuous map with the

following asymptotic behavior for all zo € dD :

lim S{h{z)) 0 (4.5)

0 7(zo) € S2}. (4.6)

-j- ^({Here, P is the center of 'mass defined in section 3, and S{h) -j- ^(| V/i|2 + 2h)).

Set ßo mîheV maxzeD J{h{z)).

Lemma 4.4. ([CY2], [CkL]) ßo > — logK(Q) + cq for a constant cq > 0.

For our problem, we need to modify the definition of V.

Definition 4.5. V {h : D —s- H is a continuous map satisfying the following
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asymptotic conditions for all zq G dD

lim S(h(z)) < S

lim P(h(z)) G
Z^ZQ

for a fixed, small ö > 0}.
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(4.7)

(4.8)

We show that for small S, V and T> are essentially the same in the following
Lemma.

Lemma 4.6. There exists Sq > 0 such that for any S < Sq,

(i) maxz££) J(h(z)) is achieved, in the interior of D for any h G V,
(ii) /3q := MheT» m&xzeD J(h(t)) ß0.

Proof. For each h G V, we first construct an h G V such that
(1) S(h(t)) < Ö and P(h(t)) G SÄ(7(py)), if 1/2 < \z\ < 1

(2) ft(*) ft(2z), if |z| < 1/2.
As in section 3, we decompose h(z) as {wz,tz,qz) for z £ D, where gz

I%$j|. l-^2logtz |P(/i(z))| andwz /i(z)o^]t,+^,t,. By the definition

of 2?', ç(z0) G 5,5(7(^0)) and 5(wz) S(h(z)) < S for any z0 G 9L>. We extend h

to D2 {zeC \z\ < 2} by

h\z)
(wz,qz,tz) if z\ < 1,

where <fz and tz (1 < \z\ < 2) are defined by

-2.and 1 — tz log tz

and

Since P(/i(^)) G SÄ(7(^)), h' is well-defined. Now, let h{z) h'{2z) for z G D.

Clearly, h G T>. By Lemma 4.4. we have

max J(h(z)) > ßo > -\ogK(Q) + c0.

On the other hand, it is clear that for small S > 0 S(u) < S and P{u) G

for some zq g <9_D imply that

J[u) <-\ogK(Q) + e0
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for eo < cq/2. Hence, we have maxzED J(h{z)) maxzED J{h{z)). Now it is clear
that (i) and (ii) follow. D

Now we return to consider our functional Jx- Let T>x {h G V h(D) C Bx}.
Recall that Bx {u G H\b{u) < log A}. For a fixed 6q (for example 6q as in
Lemma 4.6) it is clear that T>\ ^ 0, if A is sufficiently large. Set

ßx inf m&xJx(h(z)).

Lemma 4.7. liiru^oo ßx ßo — 1 + 2 log 2.

Proof. In view of Lemma 4.6, for any e > 0 there exists ho G V such that

maxJ(ho(z)) - ßo\ < e/2.

Since Bx —? H as A -^ +oo, we can choose Ao > 0 such that ho{D) C Bx for any
A > Ao. Hence

max J\(ho(z)) < max J(ho(z)) + /(—

< /30 + e - 1 + 2 log 2

provided that Ao is large enough. On the other hand, for each h G T>\, we have

max J{h(t)) > ßo - l + 21og2.

This proves the Lemma. D

Lemma 4.8. J\ satisfies the Palais-Smale condition in A\.

In fact, this was proved in the argument of Proposition 3.7. D

Now we state our main result in this section.

o

Proposition 4.9. ß\ is achieved, by ü\ G B\, provided, thai A is large enough.

Proof. We divide the proof into several steps.

Step 1. We have

(i) For eo > 0 and large T\, there exist Mo > 0 and 70 > 0 such that any
u [w,q,t) with J\(u) < ßo — 1 + 2 log2 + eo an(i t >T\ satisfies that S(u) < Mo
and u (w,q,t) with q <^B10(P±).
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(h) There exist small S > 0 and large T<i > 0 such that, if u (w,q,t) with
S(u) <S,qe Bs(i) and t > T2, then Jx(u) < ßo - 1 + 2 log2 - co/2
Note that (n) was used in the proof of Lemma 4 6

Step 2 From [CkL, p51] there exist 6o,eo,ei,T3 and Nq,N\ > 0 such that if
u (w, q,t) with q (Ë B70(P±) and S(w) < Mo, then

(l) \\dwJ\\ > e0 - Not-1 log1/2t, if S(w) > b0 and t > T3,

(u) (dwJ,v) > eiS>1/2(w) - Ntt-1 log1/2t, if S(w) < b0 and for any v G TWHO

Here dwJ{u) is the derivative with respect to w Let To max{T, T\1Ti1
where T is determined in Lemma 3 5

Note that in steps 1 and 2, all constants are independent of A

Step 3 There exists Ao > 0 such that for any A > Ao

X {u G (w, q t) 11 < T0} C BX

u G X

Step 4 If m {w,q,t) G Bx with S(w) < Mo, q g B70(P±) and t > To, then

\\dwfx(w,q,t)\\ < c\— < c\te-C2t

\\dtfx{w,q,t)\\ <cxte-C2t2

and

\\dqfx{w,q,t)\\ < cij < ctte-^2

for some positive constant c\ and c%

It is enough to check that there exists a constant c such that

\{dwd{u),v)\ < ct\\v\\

for any v G TwHo

/a u \ 2jg2oygte2"' ^(det^t)-1)
(dwd{u)v) -^ -Ï—

2
(J K o <pqt ewy

2jK2olfqte2w(det(d.fqt)-1)jKolfqtew v
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< ct2{ / \v\2)1/2, by Lemma 3 5

Since u £ B\, we have, by Lemma 3 5

est2 < log A

This is equivalent to A^1 < e~ct Step 4 follows

Step 5 Extend Jx{x to Y {t < To} U {u G (w, q,t) \ S(w) < Mo q g B70(P±)}
Let m G Y define a functional H Y -s- R as in [CkL] by

H[w,q,t) S{w) - logK(q) -
One can check that

{Not-1
log1/2 t if S{w) >bt>T0

if 5(w) <bt>T0

see [CkL, p51] Extending J as in [CkL], we obtain j in y We define f\\x
smoothly to f\ Y —s- R such that

W A|X A|X)
(u) / satisfies Step 4,

(m) /a — 1 + 2 log 2, when t is sufficient large
Now we obtain a new functional J\ J + f\ defined in Y satisfying

(a) dJx(w) jàOiîu= (w,q,t) with t > To

(b) J\ satisfies the Palais-Smale conditions on (ß\ — eo,ß\ + eo) f°r a fixed
small constant eo > 0

(c) J\\x J\\x
(d) J\ satisfies Steps 1-4

(a) We can follow [CkL] to prove (a) Here we give a sketch

If S{w) > t^logt, then \\dwJ\\ > ATo*"1 log1/2t (see [CkL]) (u) and Step 4

implies that if t > To

\\dwf\\2 < cte-ct2 (4 9)

Hence \\dw J\\\ > ^f-t^1 log ' t, provided that To is sufficient large

If S(w) < t logt, it was shown in [CkL] that near Q or Q

(4 10,
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is controlled by c log~ t if t > To an(i away from Q and Q

is controlled by ct'1^ logt, if t > To Here 0 < /x < 1 By (n) and Step 4 it is
clear that (4 10) and (4 11) hold also for J\ Thus there are no critical points of
J\ if * > To

(b) If {ut} C Y is a Palais-Smale sequence for J^, the argument in (l) implies
that we may assume that {ut} C X Hence (b) follows from Lemma 4 8

(c) and (d) are clear

Step 6 Now we set ß\ miheV*x supzeD Jx(h(z)), where V\ {h G V'\h(D) C

Y} Using the above argument, we have

and

hm /?* /%- l + 21og2
A—>oo

Thus, for large A > 0, ß$ G (ßo - 1 + 2 log 2 - eo, ß ~ 1 + 2 log 2 + eo) Since JA
satisfies the Palais-Smale condition on (ßo — 1 + 2 log2 — eo,ß — 1 + 21og2 + eo), if
/?J is not a critical value of J\, we can find a deformation T( ,t) Y x [0,1] —s- y
ei > 0 such that

(u) T(u,l) C J/3*-ei, if « G Jß*x+£1

(m) T(u, t) u, if m G J/îj-fc! U (F \ J/îj+^J,
where J^ {u G Y|Ja(w) < 6} and ei < eo/4 The construction of such a
deformation is standard We refer to [Ck] We claim

T(u,t) u

if uedYU{u= (w,q,t)\S(w) <6,P(u) G-8,5(7)}
If u (w,q,t) with S(w) < ö and P(u) G -85(7), then by Step 1 Jx(u) <

ßo — 1 + 2 log 2 — -y By (111) in the construction of the deformation T, T(u, t) u
If m G dY, then u (w,q,t) satisfies either S(w) Mo, q G dB70(P±) and
t > To or S > Mo, q G B70(P±) and t Tq Again by Step 1, we have Jx{u) >
ßo - 1 + 2log2 + eo, hence T(u,t) u by (111) above

Hence T o h £ T>\ for any /i G T>\ Now it is clear that the existence of such a
deformation contradicts the definition of /3J Therefore /3J is a critical value and
there istij e 7 such that m^ is a critical point of Jx and Jx(ux) ß\ By the
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construction of J\, we know û\ G X and J\(u\) J\{u) ß\. This completes
the proof of the proposition. D

Proposition 4.10. By taking a subsequence, ü\ converges to ün strongly in Cq

for any q > 1, where ün ls a solution of (3.7) obtained in [CkL] and [CYj.

Proof. From the argument in the proof of the previous proposition, we have ü\ G X.
Therefore ü\ is bounded in i?1'2. Assume ü\ converges to ün weakly in i?1'2,
strongly in Lp forp > 1 and almost everywhere. As before, by Lebesgue's theorem,
we have

/ Ke"A -

Hence,

as A —> +oo.
Since v\ ü\ + p(ü\) satisfies (3.2), i.e.

l'(Vvx-V<p)+\ I Ke~x(Ke~x -l)<p + 2 f <p 0, (4.12)

we have

f - f "° f
J wo f J e if j if

which implies that «o is a solution of (3.7). Choosing y> u\ — un in (4.12) and
(4.13), we conclude

|Vma - VmoI2 -A f KeA^e^iKeA^e^ - l)(uA - u0)

+ 2 I K<?°{ux-uo)

-A

o(l) as A -^ +oo.

It follows that ü\ converges to «o m H1>2. Now it is easy to conclude that ü\ —s- un
in Cq(S2) for any q > 1 by the elliptic estimates. D

Proof of Theorem 2.4- It follows from Proposition 4.9 and 4.10. D

Remark. FA2 —> 4?r jr
° +^ as k —> 0, where un is a solution of (3.2) and U,n is

a solution of (3.7) with K e"°.
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