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The Rost invariant has trivial kernel for quasi-split groups of
low rank

Ryan Skip Garibaldi

Abstract For G a simple simply connected algebraic group de¯ned over a ¯eld F Rost has

shown that there exists a canonical map RG : H1 F; G H3 F; Q Z 2 This includes the

Arason invariant for quadratic forms and Rost's mod 3 invariant for exceptional Jordan algebras

as special cases We show that RG has trivial kernel if G is quasi-split of type E6 or E7 A
case-by-case analysis shows that it has trivial kernel whenever G is quasi-split of low rank
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For G a simple simply connected algebraic group over a ¯eld F the set of all
natural transformations of functors

H1 ; G ¡ H3 ; Q Z 2

is a ¯nite cyclic group [KMRT98 x31] with a canonical generator Here Hi ;M
is the Galois cohomology functor which takes a ¯eld extension of the base ¯eld
F and returns a group if M is abelian and a pointed set otherwise When F has

characteristic 0 Q Z 2 is de¯ned to be lim¡ ¹2
n for ¹n the algebraic groups of nth

roots of unity; see [EKLV98 p 95] or [Gil00 I 1 b ] for a more complete de¯nition
This generator is called the Rost invariant of G and we denote it by RG In an
abuse of notation we also write RG for the map H1 F; G ¡ H1 F; Q Z 2

This map provides a useful invariant for algebraic structures classi¯ed by
H1 F; G and an important and typically di±cult question is to describe the

kernel of RG For example when G is split of type Dn RG is essentially the Ara-
son invariant I3F H3 F; Z 2 for quadratic forms where InF is as usual the

nth power of the ideal IF of even-dimensional quadratic forms in the Witt ring
of F That the kernel of the Arason invariant is precisely I4F is a quite di±cult
result due independently to Merkurjev{Suslin [MS91] and Rost The proof of the

main result of this paper somehow boils down to this one fact In general one

doesn't even know if the kernel of RG is trivial On the other hand the question
becomes tractable if we assume that G is quasi-split Generally RG has nontrivial
kernel; we give easy examples where G is split of type D8 in 1 9 and B7 in
1 6 and quasi-split of type 2A6 in 1 11 It should be mentioned that RG can
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have nontrivial kernel when G is split of type E8 as well; Gille [Gil Appendix] has

produced an example by applying his results from [Gil00] to reduce the question
to the same one for a split group of type D8

The principal result in this paper is to enlarge the list of quasi-split groups for
which the Rost invariant is known to have trivial kernel

Main Theorem 0 1 Suppose that G is a quasi-split simply connected group of
type E6 or E7 Then the Rost invariant RG has trivial kernel

0 2 There are some easy consequences of this theorem that may help the reader
place it in context The ¯rst is that as a vastly less powerful corollary we obtain
Serre's \Conjecture II" for quasi-split groups of type E6 and E7 in that if F has

p-cohomological dimension · 2 for p 2; 3 see [Ser94 I 3] for a de¯nition then
the main theorem implies that H1 F; G is trivial This conjecture appeared in
print back in 1962 [Ser62] and remained open for such groups until the 1990s

when Chernousov unpublished and Gille [Gil01] proved it amongst other cases

independently and by di®erent methods Here we get it for free from the Main
Theorem

0 3 Another consequence is the following: Suppose that L is a ¯eld extension of
F of degree relatively prime to 2 and 3 and that G is a group of type E6 or E7
Serre asked in [Ser95 p 233 Q 1] if the natural map H1 F; G H1 L; G is
injective Our Main Theorem gives the partial answer that it has trivial kernel in
the case where G is quasi-split This result was already known by experts in the

area using arguments special to groups of type E6 and E7 but as for Conjecture II
we get it for free here

0 4 There is also an application to ¯nite-dimensional algebras There is a

large family of nonassociative algebras with involution called structurable algebras

which includes central simple associative algebras with involution as studied in
[KMRT98] and Jordan algebras with involution the identity see [All94] for a
survey The simple structurable algebras have all been classi¯ed and they consist
roughly of the two families already mentioned plus four others The most poorly

understood of these four additional types consists of 56-dimensional algebras all of
which are isomorphic over a separably closed ¯eld and have automorphism group
which is simply connected of type E6 Call algebras belonging to this class Brown
algebras There is a natural equivalence relation de¯ned on the set of structurable
algebras called isotopy [AH81] which is weaker than isomorphism and in the case

of Jordan algebras is the same as the traditional notion of isotopy For Albert alge-
bras it is known that any algebra isotopic to the split one is actually split This is
equivalent to the cohomological statement that the map H1 F; F4 H1 F; E6

induced by the embedding F4 E6 described in 2 4 has trivial kernel The Main
Theorem here combined with [Gar01b 4 16 2 5 12] shows that an analogous con-
clusion holds for Brown algebras i e a Brown algebra isotopic to the split one is
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quasi-split This was previously unknown This has the cohomological interpreta-
tion that the map H1 F; EK

6 H1 F; E7 induced by the embedding EK
6 E7

described in 3 5 has trivial kernel

The material in [KMRT98] is su±cient to show that the kernel of the Rost
invariant is trivial for quasi-split groups of type G2 D4 including those of triali-
tarian type [KMRT98 40 16] and F4 at least away from the \bad primes" 2 and
3 As easy corollaries to results needed for the E6 and E7 cases we get analogous

results for groups of type 2An Bn and nontrialitarian groups of type Dn with
small n in Section 1 Since H1 F; G is always trivial for G split of type An or Cn
we get the following:

Theorem 0 5 Suppose that G is a simple simply connected algebraic group If
G is

² quasi-split of absolute rank · 5;

² quasi-split of type B6 D6 or E6; or
² split of type D7 or E7

then the Rost invariant RG has trivial kernel

The proofs of these theorems that we will give here and the material in
[KMRT98] rely on the ground ¯eld having \good" characteristic meaning for our
purposes

6

2; 3 However it is a consequence of Gille's main theorem in [Gil00]

that one only needs to prove that the Rost invariant has trivial kernel for ¯elds of
characteristic 0 Consequently all ¯elds considered here will be assumed to have

characteristic 6 2; 3 but our two theorems will still hold for all characteristics

Of course in prime characteristic the group Q Z 2 must be de¯ned somewhat
di®erently [Gil00] but this a®ects neither the statement of the theorems nor our
proofs

Section 1 dispenses with the classical groups Some of that material is useful
later Sections 2 and 3 contain the material necessary to reduce questions about
the Rost invariant for a larger group to a subgroup That material easily reduces

the proof of the main theorem to considering the quasi-split 2E6 case which is
treated in the remaining Sections 4 through 7 1

Remark 0 6 Noninjectivity for F4 We caution the reader that even when the

Rost invariant has trivial kernel it may be far from injective For example for F4

the split group of type F4 the set H1 F; F4 classi¯es Albert F -algebras From
known facts about Albert algebras it is easy to show that two classes ®1 ®2 cor-
responding to isotopic Jordan algebras J1 J2 have the same Rost invariant Since

there are many isotopic Albert algebras which are not isomorphic for example

1After this paper was released as a preprint Chernousov sent to me a di®erent proof of
the 2E6 case [Che00] which uses a completely di®erent argument His proof will be published
elsewhere
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over R there are 3 isomorphism classes of Albert algebras and two of these are iso-
topic [Jac71 p 119] the Rost invariant for F4 has trivial kernel but is typically
not injective

Notations and conventions

All algebraic groups considered here will be a±ne We say that an algebraic group
G is simple if it has ¯nite center and no noncentral closed normal subgroups de¯ned
over an algebraic closure When we say that a group is \of type Tn" we implicitly
mean that it is simple of that type We will use the standard notations Gm Ga
and ¹n for the algebraic groups with F -points F ¤ F and the nth roots of unity
in F and G± will always denote the identity component of an algebraic group G
For a variety X we write X F for its F -points

Our notation for quadratic forms will follow the standard reference [Lam73]
with two quirks: We use the P¯ster-approved notation for P¯ster forms so

¿a1; : : : ; an À : h1;¡a1i  ¢ ¢ ¢  h1;¡ani and we write H for the hyperbolic
plane

h1;¡1iThe standard reference for Galois cohomology is [Ser94 xI 5] and for algebras

with involution including the groups Spin A; ¾ O A; ¾ and SO A; ¾ it is
[KMRT98]

1 Quasi-split groups of type A B and D

As indicated in the introduction the Rost invariant \should" have trivial kernel
for quasi-split groups of small rank To prove this for E6 we will need a result
on groups of type D which also easily settles this question for groups of type A
and B For the results in this section our global hypothesis that our ¯elds have

characteristic 6 3 is not required; we need only assume characteristic 6 2 For q a
nondegenerate quadratic form over F there is a short exact sequence of algebraic
groups

1 ¡¡¡¡ C ¡¡¡¡ Spin q ¡¡¡¡ SO q ¡¡¡¡ 1 1 1

with C isomorphic to ¹2

Lemma 1 2 For q a d-dimensional nondegenerate quadratic form with anisotropic
part of dimension dan such that d ¸ 5 and d + dan < 16 the kernel of the Rost
invariant of Spin q is precisely the image of H1 F; C in H1 F; Spin q

The hypothesis d ¸ 5 ensures that Spin q is simple and simply connected so

that it makes sense to speak of the Rost invariant RSpin q

Proof The set H1 F; SO q classi¯es quadratic forms of the same dimension and
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discriminant as q [KMRT98 29 29] For ® 2 H1 F; Spin q we set q® to be the

quadratic form corresponding to the image of ® in H1 F; SO q Then q® ¡ q is
not only even-dimensional with trivial discriminant i e q® ¡ q 2 I2F but since

q® comes from H1 F; Spin q it has the same Cli®ord invariant as q [KMRT98
31 11] and so q® ¡ q 2 I3F by Merkurjev's Theorem As described in [KMRT98
p 437] the Rost invariant of ® is the Arason invariant e3 q® ¡ q 2 H3 F; Z 2
Since Z 2 ¹2

2 we can consider Z 2 to be a subgroup of Q Z 2 and hence

H3 F; Z 2 is a subgroup of H3 F; Q Z 2
Suppose ¯rst that ® is in the image of H1 F; C Sequence 1 1 induces an

exact sequence

SO q F ¡¡¡¡ H1 F; C ¡¡¡¡ H1 F; Spin q ¡¡¡¡ H1 F; SO q ;
1 3

and since the Rost invariant RSpin q \factors through" H1 F; SO q certainly
RSpin q ® is trivial

Conversely suppose that ® is in the kernel of the Rost invariant Then e3 q®¡q

is trivial but as mentioned in the introduction the kernel of e3 is precisely I4F
Since dim q® dim q d the hypotheses on q ensure that the dimension of the

anisotropic part of q®¡q is strictly less than 16 Since q®¡q 2 I4F it is hyperbolic
by the Arason{P¯ster Hauptsatz [Lam73 X 3 1] Thus q® is isomorphic to q and
® is in the kernel of the map H1 F; Spin q H1 F; SO q which is just the

image of H1 F; C ¤

The ¯rst map in 1 3 is the spinor norm which immediately produces the

following lemma

Corollary 1 4 Suppose that q is as in Lemma 1 2 Then the kernel of the Rost
invariant is isomorphic to F¤ SN q F¤2 where SN q is the image of the spinor
norm map SO q F F ¤ F ¤2 ¤

1 5 Quasi-split simply connected groups of type Bn are actually split so of the

form Spin q for q nH h1i In terms of the lemma d 2n + 1 and dan 1
So q satis¯es the hypotheses for 2 · n · 6 Since q is isotropic it has surjective

spinor norm so the Rost invariant for a split group of type Bn has trivial kernel
for 2 · n · 6

Example 1 6 B7 As just mentioned the split simply connected group of type

B7 is isomorphic to Spin q for q 7H h1i The Rost invariant RSpin q can
have nontrivial kernel Sequence 1 1 induces an exact sequence

H1 F; Spin q ¡¡¡¡ H1 F; SO q
@

¡¡¡¡ H2 F;¹2
1 7

where the set H1 F; SO q classi¯es nondegenerate quadratic forms with the same

dimension 15 and discriminant 1
¢ F ¤2 as q

Fix a base ¯eld F and a nonhyperbolic 4-fold P¯ster form ' over F e g F R
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' ¿¡1;¡1;¡1;¡1À Set q® ¡'0 for '0 such that ' h1i '0 Then
disc q® ¡1

15
2 det ¡'0 1

¢ F ¤2 so there is a unique element of H1 F; SO q

corresponding to q® The image of q® under the connecting homomorphism @ is
[C0 q® ¡ q ] which by [Lam73 V 2 10] is the same as [C q® ¡ q ] which is trivial
since q® ¡ q ¡' 2 I3F Thus q® is the image of some ® in H1 F; Spin q But
then RSpin q ® e3 q® ¡ q e3 ¡' which is trivial since ' 2 I4F

1 8 An analysis for groups of type Dn similar to the one in 1 5 for Bn shows

that the Rost invariant for a simply connected group is trivial for groups of type
1Dn with 3 · n · 7 and for groups of type 2Dn with 3 · n · 6 As in the B case

we show that one of these bounds is sharp

Example 1 9 1D8 The situation here is quite similar to the one in Example
1 6 except that q 8H Use the same base ¯eld F and nonsplit 4-fold P¯ster
form ' from before There is a unique element of H1 F; SO q corresponding to

' and since ' '¡ q 2 I4F the same reasoning shows that there is a nontrivial
class in H1 F; Spin q which is the inverse image of ' and which has trivial Rost
invariant

Lemma 1 2 easily deals with quasi-split groups of type 2An of low rank

Corollary 1 10 If G is a quasi-split simply connected group of type 2An with
n · 5 the kernel of the Rost invariant RG is trivial

Proof Set K to be the quadratic ¯eld extension of F which splits G and take

V; hd to be a \maximally split" n+1 -dimensional hermitian form over K See

below for a more explicit description Then G is SU V; hd the algebraic group
with F -points

SU V; hd F 8><
>:

g 2 GL V K j

h gv; gv0 h v; v0

for all v; v0 2 V and

det g 1 9>
>;

:

The trace form of hd is de¯ned to be the quadratic form qd on V considered as a
2 n + 1 -dimensional vector space over F given by qd v hd v; v Then

hd mH if n+1 2m
mH h1i if n+1 2m+1

and qd 2mH if n+1 2m
2mH ¿dÀ if n+1 2m+1

where K F pd if n 2m for some integer m and the H occurring in the

description of hd is the usual unitary hyperbolic plane as described in [Sch85
7 7 3]

The set H1 F; G classi¯es nonsingular hermitian forms h on V which have

the same dimension and discriminant as hd [KMRT98 p 403] The group G
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embeds in SO V; qd in an obvious manner The corresponding map H1 F; G
H1 F; SO V; qd sends h to its trace form q and this map is an injection by [Sch85
10 1 1 ii ] Moreover the Rost invariant RG h is just e3 q ¡ qd by [KMRT98
31 44] Since dim qd 2n + 2 < 13 and the anisotropic part of qd has dimension
0 if n + 1 is even and 2 if n + 1 is odd as in the proof of Lemma 1 2 if RG h
is trivial q » qd and so h » hd ¤

Example 1 11 2A6 Take F R K C and consider G SU V; hd for
hd the hermitian form 3H h1i over K so that G is simply connected quasi-
split of type 2A6 Then the hermitian form h h¡1;¡1;¡1;¡1;¡1;¡1;¡1i has

trace form q ¡7¿¡1À which is not hyperbolic so h corresponds to a unique

nontrivial class in H1 F; G However

q ¡ qd ¡7¿¡1À¡¿¡1À ¡¿¡1;¡1;¡1;¡1À 2 I4F ;

so RG h is trivial

2 Folded root systems

2 1 The Rost multiplier A loop in an arbitrary algebraic group G is a homo-
morphism Gm G Let G¤

be the set of loops in G As in [KMRT98 p 432] we

set Q G to be the abelian group of all integer-valued functions on G¤
such that

1 for gf the loop given by gf x gf x g¡1 q gf q f for all g 2 G and

f 2 G¤
; and

2 for any two loops f and h with commuting images the function Z£Z ¡ Z
given by k;m

7

q fkhm is a quadratic form

When G is a simple group Q G is cyclic with a canonical generator which is
positive de¯nite [KMRT98 31 27] hence is identi¯ed with Z Now suppose that
we have two simple simply connected groups H ½ G The inclusion gives a map
H¤ G¤

so we in turn have a map Z Q G Q H Z Because the

canonical generators are positive de¯nite this map must be multiplication by a
positive integer n which we de¯ne to be the Rost multiplier of the inclusion

The naturality of the Rost invariant implies that we have a commutative dia-
gram

H1 F;H ¡¡¡¡RH
H3 F; Q Z 2

y

n¢

y
H1 F; G RG¡¡¡¡ H3 F; Q Z 2 ;

where n is the Rost multiplier of the inclusion [KMRT98 31 34] This is the

motivation for our study of this invariant



Vol 76 2001 Rost invariant 691

2 2 Luckily it can be quite easy to compute such a \Rost multiplier" Suppose

that G and H are split and contain split maximal tori S and T respectively such
that the T lies in S Since G and H are simply connected the character groups

X T and X S are identi¯ed with the weight lattices but the character groups

are dual to the loop groups S¤
and T¤

[Bor91 8 6] and the weight lattices are

dual to the lattices generated by the coroots which we denote by ¤c;G and ¤c;H
respectively By a coroot we mean the roots of the dual root system which are

denoted by ·® in [Bou68 VI 1] for ® a root Putting these dualities together
we obtain identi¯cations S¤ ¤c;G and T¤ ¤c;H so the inclusion T ½ S
induces a map ¤c;H ¤c;G Now the dual root systems whose roots are the

coroots are indeed root systems [Bou68 VI 1 1 Prop 2] and so they each have

a unique minimal Weyl-group invariant positive-de¯nite integer-valued quadratic
form [Bou68 VI 1 2 Prop 7] say q and r for the forms for G and H respectively
Hence q induces such a form on ¤c;H which must be of the form nr for some natural
number n This n is the Rost multiplier of the inclusion

Criterion 2 in the de¯nition of Q G implies that its canonical generator
is identi¯ed with the positive-de¯nite Weyl-group invariant quadratic form on the

dual root system which takes the value 1 on short coroots Short roots correspond
to long roots where we adopt the convention that short long in the event that
all roots have the same length In that case the quadratic form is very easy to
identify in that its Gram matrix is simply the Cartan matrix of the root system
with all entries divided by 2 So one can simply compute the image of a short
coroot from H in the dual root system for G to ¯nd the Rost multiplier of the

inclusion

Example 2 3 SLn SL2n The block diagonal embedding SLn SL2n via
x 7 x

x has Rost multiplier 2 The map given by x 7 x
1 has Rost multi-

plier 1

Example 2 4 Folding The split simply connected group of type E6 can be

realized as the group Inv J of invertible linear maps of the split Albert algebra J
which preserve the cubic norm form The algebra J has a nondegenerate symmetric
bilinear trace form T given by setting T x; y to be the trace of the product x ¢ y
[Jac68 p 240 Thm 5] and for ' 2 Inv J F we de¯ne 'y 2 GL J F to
be the unique map satisfying T ' j ;'y j0 T j; j0 for all j; j0 2 J This
de¯nes an outer automorphism of E6 Inv J [Jac61 p 76 Prop 3] and the

subgroup of elements ¯xed by this automorphism is the split group F4 of F -algebra
automorphisms of J

We would like to compute the Rost multiplier of the inclusion F4 ½ E6 Fix
an F -split maximal torus S in G : E6 which is preserved by the automorphism
such as the one denoted by \S6" in [Gar01b pf of 7 2] and ¯x a set of simple

roots ¢ of G with respect to S We would like our outer automorphism to leave ¢
invariant although it probably does not do so However two things are apparent
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from the de¯nition of the Rost multiplier: it is not changed by scalar extension
nor by modifying the automorphism ' 7 'y by an inner automorphism of E6 So
we may assume that the base ¯eld is separably closed and so that the F -points of
the Weyl group of G with respect to S i e the F -points of NG S S is the full
Weyl group of the root system of G with respect to S Then we may modify our
outer automorphism by an element of the Weyl group so that F4 is described as

the subgroup of E6 ¯xed by the automorphism f induced by the automorphism of
¢ which is given by the unique nontrivial automorphism of the Dynkin diagram
That is we set H : F4 Gf the subgroup of G of elements ¯xed by f
and T : Sf ± the identity component of T \ Gf is a maximal torus in H
The restrictions of elements of ¢ to T give a root system of H with respect to
T [Sch69 p 108] and the ¯bers of this restriction map are the orbits of f in ¢
[Sch69 3 5]

Now ¤c;G is a free Z-module with basis ·¢ f·± j ± 2 ¢g which is permuted by

f and ¤c;H is the ¯xed sublattice So ¤c;H has a basis consisting of one element
for each orbit of f in ·¢ and this element is given by the sum of the elements in the

orbit in ·¢ There is a coroot ·± 2 ·¢ which is ¯xed by f hence ·± is a member of the

Z-basis for ¤c;H The form q on ¤c;G restricts to a positive-de¯nite Weyl-invariant
form on ¤c;H such that q ·± 1 consequently q restricts to be the minimal such
form r By the discussion in 2 2 the Rost multiplier of the inclusion F4 ½ E6 is 1

Remark 2 5 Presumably this same argument also works in the other instances

where one obtains a root system by \folding up" another root system all of whose

roots have the same length i e C`+1 ½ A2`+1 Bn¡1 ½ Dn and G2 ½ D4 The

other root system consisting of roots of the same length A2` folds up to give the

smaller root system BC` see [Hec84 Table I]

3 Small representations

We say a representation V of an algebraic group G is small if G has an open
orbit in P V We are interested in small representations in the case where G
is simple which have all been classi¯ed as a consequence of the more general
classi¯cation of prehomogeneous vector spaces see [Kim88] for a survey These

small representations also provide \standard relative sections" in the language of
[Pop94 1 7] and in that sense were classi¯ed in [µEla72 Table 1] Our motivation
for studying these representations comes from the following easy lemma which
was pointed out to me by Rost

Lemma 3 1 Suppose that G is an algebraic group over a ¯eld F such that G
has a small representation V and that F is in¯nite or G is connected Let H be

a subgroup of G consisting of the elements which stabilize some F -point in the open
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orbit in P V Then the natural map

H1 F; H H1 F; G

is surjective

Proof If the base ¯eld F is ¯nite then by hypothesis G is connected and by
Lang's Theorem H1 F; G is trivial so the lemma holds So we may assume that
F is in¯nite

Fix a 1-cocycle z 2 Z1 F; G It de¯nes a twisted version P V z of P V which
is the same as P V over the separable closure Fsep of F but has a di®erent Galois
action: For w 2 P V z Fsep and ¾ 2 Gal Fsep F ¾ acts by

¾ ¤ w z¾ ¾w

where juxtaposition denotes the usual action The twisted version Uz of U de¯ned
analogously is an open subset of P V z

Since the representation gives a map G GL V P V z is F -isomorphic to
P V In particular since F is in¯nite P V z F is dense in P V z Fsep Since

Uz Fsep is open in P V z Fsep the two sets Uz Fsep and P V z F must meet
nontrivially i e Uz has some F -point which we will denote by xz

Now let x 2 U F be the point with stabilizer subgroup H and ¯x some

g 2 G Fsep such that gx xz Then for all ¾ 2 Gal Fsep F the element
g¡1z¾ ¾g ¯xes x and so lies in H Fsep Thus z is cohomologous to something in
the image of Z1 F; H ¤

Example 3 2 On¡1 ½ On Write On for the orthogonal group of the dot product
on F n Then the subgroup of On which stabilizes [v] 2 P Fn where v has nonzero
length is just On¡1 £ ¹2 where On¡1 is the orthogonal group for the n ¡ 1 -
dimensional space of vectors in F n which are orthogonal to v Iterating this
process recovers the fact that all nondegenerate quadratic forms are diagonalizable
a k a the Spectral Theorem

Example 3 3 Spinn [Igu70] [GV78] [Pop80] For Spinn the spin group for an
n-dimensional maximally split quadratic form the spin representation if n is odd
or the half-spin representation if n is even is small for n · 12 and n 14 In
the n 14 case the stabilizer subgroup is isomorphic to G2 £ G2 o¹8 and this
leads to structural statements about 14-dimensional forms in I3F see [Ros99]

Example 3 4 F4 £¹3 ½ E6 We write E6 for the split group of type E6 which
can be realized as Inv J as described in 2 4 By [Jac61 p 71 Thm 7] E6 acts

transitively on the subset of J consisting of elements of norm 1 so certainly this
is a small representation

Take H to be the subgroup of E6 consisting of elements which ¯x the identity
element 1J of J projectively Since the norm form is cubic ¹3 is contained in
H and is central since it consists of scalar endomorphisms and any element
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of H di®ers by an element of ¹3 from something which ¯xes 1J absolutely This
subgroup of elements ¯xing 1J is well-known| it is the automorphism group F4 of
J [Jac59 p 186 Thm 4] which is split of type F4 So H is isomorphic to F4£¹3
and the resulting surjective map H1 F; F4 £ ¹3 H1 F; E6 is the statement
that H1 F; E6 classi¯es cubic forms of the form ¸N for N the norm form on some

Albert F -algebra and ¸ 2 F ¤ see [Spr62] This can also be interpreted in terms

of structurable algebras see [Gar01b 2 8 1 ]

Example 3 5 E6 o¹4 ½ E7 Write E7 for the split simply connected group of
type E7 over F It is the group of vector space automorphisms of V F J

J F which
preserve a quartic form q as given in [Bro69 p 87] Then E7 acts transitively on
the open subset of P V consisting of points [v] such that q v

6

0 by [Fer72 7 7]
We set H to be the subgroup of E7 which stabilizes the vector v 1 0

0 1
projectively This vector has q v

6

0 and so by [Fer72 3 7] there are two uniquely
determined up to scalar multiples \strictly regular" elements e1 and e2 such that
v lies in their span These are e1

1 0
0 0

and e2
0 0
0 1

Since E7 preserves the

property of being strictly regular every element of H must projectively stabilize

e1 and e2 as well and perhaps interchange them
Now the map de¯ned by

µ
® j
j0 ¯ ¶ µ

i¯ ij0

ij i® ¶
lies in H where i is some ¯xed square root of ¡1 in the separable closure of F We

would like to describe an arbitrary h 2 H which after modi¯cation by we may
assume projectively stabilizes each of e1 and e2 Then by [Bro69 p 96 Lem 12]

h must be of the form

h µ
® j
j0 ¯ ¶ µ ¹¡1® ' j'y j0 ¹¯ ¶

where ' is a similarity of the norm form on J with multiplier ¹ and 'y is as de¯ned
in 2 4 Since h also stabilizes v we must have that ¹ §1 In particular after
modifying h by 2 ¡1 we may assume that h has the form

h µ
® j
j0 ¯ ¶ µ

® ' j'y j0 ¯ ¶
where ' preserves the cubic norm on J and so lies in E6 We have shown that H
is isomorphic to E6 o ¹4

The surjection on Galois cohomology coming from this example will be more

useful if we can replace E6 o ¹4 with a simple group For K a quadratic ¶etale
F -algebra we write EK

6 for the simply connected quasi-split group of type E6 over
F which is split by an extension L of F if and only if LF K » L £ L

Proposition 3 6 Cf [Gar01b 4 14] For each ® 2 H1 F; E7 there is some

quadratic ¶etale F -algebra K such that EK
6 embeds in E7 with Rost multiplier 1

and ® is in the image of the induced map H1 F; EK
6 H1 F;E7



Vol 76 2001 Rost invariant 695

Proof Fix some a 2 Z1 F; E6 o ¹4 representing ® The natural projection E6 o
¹4 ¹4 has an obvious section given by sending i 7 ; set b to be the image of
a given by the map induced by the composition E6 o¹4 ¹4 E6 o¹4 Twist
E6 o¹4 by b to obtain a new group E6 o¹4 b with a twisted Galois action ¤ so

that
¾ ¤ g b¾

¾g b¡1
¾ ;

where ¾g denotes the usual action There is an isomorphism

H1 F; E6 o¹4 b »¡¡¡¡¿b
H1 F; E6 o¹4

where ¿¡1
b ® is the class of a 1-cocycle given by ¾

7

a¾b¡1
¾ with values in the

identity component of the twisted group E6 o ¹4 b This identity component is
just E6 twisted by b and we would like to show that it is isomorphic to EK

6 for
some quadratic ¶etale F -algebra K If ¾ in Gal Fsep F has b¾ §1 then ¾ acts

in the usual manner upon the twisted E6 On the other hand if b¾ § then
the twisted action is given by

¾ ¤ h µ
® j
j0 ¯ ¶ § ¾h¾¡1

§ ¡1
µ

® j
j0 ¯ ¶ µ

® ¾'y¾¡1 j0

¾'¾¡1 j ¯ ¶ :

This is precisely the description of the Galois action on EK
6 given in [Gar01b 2 4]

for K determined by the image of b under the composition H1 F;E6 o ¹4
H1 F;¹4 H1 F;¹2 F ¤ F ¤2 so E6 b is isomorphic to EK

6 To see that EK
6

embeds in E7 we observe that the 1-cocycle b is trivial in H1 F; E7 by [Gar01b
4 10 5 10] so we have a map

EK
6 ½ E6 o ¹4 b E7 b »¡¡¡¡f E7

where by a simple computation having nothing to do with E7 H1 f ¿b This
proves the proposition aside from the claim about the Rost multiplier

But that claim is easy in the split case where K F £F since the embedding
of E6 in E7 comes from the obvious embedding of root systems Since the Rost
multiplier is invariant under scalar extension the embeddings of quasi-split groups

of type EK
6 in E7 given above all have Rost multiplier 1 as well ¤

4 1D4 ½
2E6

For the remainder of the paper we will study the quasi-split group EK
6 of type 2E6

de¯ned in 3 5 In this section we introduce a particular subgroup G of EK
6 which is

reductive of semisimple type 1D4 De¯ning G will necessitate digging more deeply
in to the structure of Cayley and Albert algebras

De¯nition 4 1 Fix C to be the split Cayley algebra endowed with hyperbolic
norm form n and canonical involution ¹ For more information about Cayley
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algebras see [KMRT98 x33 C] or [Sch66 Ch III x4] If t 2 GL C F satis¯es

n t c mn c for some m 2 F ¤ and all c 2 C we say that m is a similarity of n
with multiplier ¹ t : m Note that if ¾n is the involution on EndF C which is
adjoint for n so that n tc; c0 n c; ¾n t c0 for all c; c0 2 C then ¹ t ¾n t t
Set GO± C; n to be the algebraic group with F -points

GO± C; n F : ½t 2 GL C F

¯
¯
¯
¯

t is a similarity of n with multiplier
¹ t such that det t ¹ t 4 ¾ :

We can also de¯ne a new seemingly uglier multiplication on C by setting x
y : ¹x¹y as in [KMRT98 x34 A] A related triple is a triple t0; t1; t2 in GO± C; n £3

such that
¹ ti ¡1ti x y ti+2 x ti+1 y

for all x; y 2 C and i 0; 1; 2 with subscripts taken modulo 3 Write Rel C; n
for the algebraic subgroup of GO± C; n £3 consisting of related triples and Spin n
for the subgroup of Rel C; n consisting of triples with multiplier one i e those

triples such that ¹ ti 1 for all i
4 2 The vector space underlying the split Albert F -algebra J is the subspace

of M3 C consisting of elements ¯xed by the conjugate transpose ¤ which applies

¹ to each entry and takes the transpose It is the algebra denoted by H C3 in
the notation of [Jac68 xI 5] and has multiplication a ¢ b : ab + ba 2 where

juxtaposition denotes the usual multiplication on M3 C When writing down
explicit elements of J we will use a \¢" to indicate entries whose values are forced
by this symmetry condition The reductive group Rel C; n embeds in the group
Inv J of norm isometries of J via the map t 7 gt given by

gt
0
@

"0 c2 ¢

¢ "1 c0

c1 ¢ "2 1
A

0
@

¹ t0 ¡1"0 t2 c2 ¢

¢ ¹ t1 ¡1"1 t0 c0

t1 c1 ¢ ¹ t2 ¡1"2 1
A

: 4 3

Let ei denote the element of J whose only nonzero entry is a 1 in the i+1; i+1 -
position Any element of Inv J K which ¯xes e1 e2 and e3 is of the form gt for
some t 2 Spin n by [Sod66 p 155 Thm 1] This implies that every element of
Inv J F which leaves each of subspaces F ei invariant is in the image of Rel C; n

4 4 De¯nition of G Since Rel C; n embeds in Inv J over F it embeds in
EK

6 over K However we can identify EK
6 with Inv J with a di®erent ¶-action

where ¶f : ¶f y¶ where ¶ is the nontrivial F -automorphism of K and juxtaposition
denotes the usual action; we ¯x this identi¯cation for the rest of the paper The

map Rel C; n EK
6 is not de¯ned over F : For t t0; t1; t2 2 Rel C; n K and

gt 2 EK
6 we have ¶gt g¶¾n t ¡1¶ which is typically not the same as g¶t¶ where

¾n t means to apply ¾n to each component of t De¯ne G to be the algebraic
group over F which is the same as Rel C; n over K but with a di®erent ¶-action:
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for t 2 G K set ¶t : ¶¾n t ¡1¶ Then G injects into EK
6 over F via the map g

from 4 3
This group G is reductive with absolute rank 6 and semisimple part Spin n of

type 1D4

4 5 The center P of G Set N1 to be the algebraic group with F -points the

elements of K¤ with norm 1 in F This group is the same as Gm over K but has a

di®erent ¶-action given by ¶¸ ¶ ¸ ¡1 It is sometimes denoted by R 1
K F Gm;K

The center of Rel C; n is the subgroup of G£3
m consisting of triples whose

product is one But we are concerned with G which has a di®erent ¶-action; its

center P is isomorphic to the subgroup of N£3
1 consisting of triples whose product

is 1 This rank 2 torus is F -anisotropic and K-split

The importance of G is given by the following lemma excavated from a paper
by Ferrar:

Ferrar's Lemma 4 6 [Fer69 p 65 Lem 3] The natural map H1 K F; G
H1 K F; EK

6 is surjective

Comments Ferrar proved this by explicit computations in the Jordan algebra
However this can also be seen with more algebraic group-theoretic methods as was

pointed out to me by Gille We must assume that our base ¯eld has characteristic
0 which as was observed in the introduction does not harm our main results in
any way

The group Spin8 is split simply connected of type D4 and so contains a subgroup
which is isogenous to SL£4

2 Each copy of the group SL2 contains a rank 1 torus

which is anisotropic over F and split over K and we set T4 to be the image in
Spin8 of these four tori Let T be the subtorus of G generated by T4 and the

center P It is a rank 6 F -anisotropic torus which is split over K Let B be a
Borel subgroup of EK

6 de¯ned over K and containing T Then ¶B \ B T so
by [PR94 p 369 Lem 6 28] the natural map H1 K F; T H1 K F; EK

6 is a
surjection ¤

Now imagine how the argument for proving the main theorem in the 2E6
case must proceed: We apply some simple argumentation and Ferrar's Lemma

to show that any class in H1 F; EK
6 with trivial Rost invariant must come from

H1 K F; G Then we apply some facts about Rost invariants on this smaller
group to obtain the theorem However G is reductive so we want to put our class

with trivial Rost invariant into a simple subgroup if we hope to apply our results

from Section 1 This requires further study of the center of G

4 7 The group H1 K F; P There is a short exact sequence over K
1 ¡¡¡¡ P ¡¡¡¡ N£3

1
¼

¡¡¡¡ N1 ¡¡¡¡ 1;
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where ¼ is the product map which induces an exact sequence

H1 K F; P ¡¡¡¡ H1 K F;N£3
1

H1 ¼

¡¡¡¡ H1 K F; N1 :

The ¯rst map is an injection because the product map ¼ is a surjection on F -
points Any 1-cocycle in Z1 K F; N1 is determined by its value at ¶ and the

condition that it is a 1-cocycle forces that this value lies in F ¤ The obvious check
shows that two such are cohomologous if and only if they di®er by a norm from K¤

So H1 K F; P is isomorphic to the subgroup of F ¤ NK F K¤ £3 consisting of
elements with product in NK F K¤

4 8 The map H1 K F; G H1 K F; P There is a short exact sequence

1 ¡¡¡¡ Spin n ¡¡¡¡ G ¡¡¡¡ P ¡¡¡¡ 1

where the map G P is given by sending each ti to its multiplier ¹ ti ¾n ti ti 2
N1 This sequence is even exact over K instead of just over a separable closure

of F because the map G P is surjective over K by [KMRT98 35 4] A 1-
cocycle ° 2 Z1 K F; G is determined by its value °¶ at ¶ and the image of ° in
H1 K F; P is the multiplier of °¶

A natural question is the following: Any 1-cocycle in Z1 K F; EK
6 comes from

H1 K F; G by Ferrar's Lemma and so has an image in H1 K F; P Is that image

an invariant of the original class in H1 K F;EK
6 The answer is no as is shown

in the following lemma Explicit situations where the hypotheses are satis¯ed
nontrivially will be given in 6 6 and 7 10

Moving Lemma 4 9 Let ´ be a 1-cocycle in Z1 K F; G whose image in
Z1 K F; P takes the value a at ¶ Suppose that there is some j 2 e0 £ JK such
that

j# 0 and T j; ´¶¶j r 2 F¤:

Then ´ is cohomologous in H1 K F; EK
6 to a 1-cocycle coming from Z1 K F; G

whose image in Z1 K F; P takes the value r¡1; a0; a¡1
0 r at ¶

The hypotheses in the lemma make use of the Freudenthal cross product £ :
J £ J J which is a commutative bilinear map de¯ned by the relation 6N j
T j; j £ j for all j 2 J The map # : J J is de¯ned by 2j# : j £ j

The proof is an adaptation of an argument in [Fer80 p 277]

Proof First observe that the three elements j e0 and e0 £ j0 for j0 : ´¶¶j all
have \rank one" i e are sent to zero by the map x 7 x#

For x and y in J we have the identity [McC69 19 ]:

x £ x# £ y N x y + T x; y x#: 4 10

Setting x w +z we have x# w# +w £z +z# The term of N x N w +z
which has degree 1 in w and degree 2 in z is T w; z# y Substituting x w + z
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into 4 10 and taking the terms on both sides with this degree we obtain the

identity

w £ z# £ y + z £ y £ z £ w

T w; z# y + T z; y w £ z + T w; y z#: 4 11

Since the vector space e0 £ J is preserved by ¶ and G K we have j0 e0 £ w for
some w Applying 4 11 we obtain

e0 £ e0 £ j0 T e0; e0 e0 £ y j0: 4 12

For N trilinearized so that N x; x; x N x we have

6N e0; j; e0 £ j0 T e0 £ j; e0 £ j0 T j; e0 £ e0 £ j0 T j; j0 r 6 0:

The triple e0 j e0 £ j0 is said to be \in general position" By [SV68 3 11] this
implies that there exist some f 2 Inv J K and ½i 2 K¤ such that

f j ½0e0; f e0 ½1e1; and f e0 £ j0 ½2e2:

Since n is hyperbolic there is some g gt 2 Inv J K such that g e0 ½¡1
0 e0

g e1 ½¡1
1 e1 and g e2 ½0½1e2 By replacing f with gf we may assume that

½0 ½1 1 Moreover f preserves N and so ½2 6N e0; e1; ½2e2 r
Set ´0 2 Z1 K F; EK

6 to be the cocycle cohomologous to ´ given by ´0¶f y´¶
¶ f y ¡1 It is standard that the maps y and inverse commute on Inv J

hence ¶ f y ¡1 ¶ f¡1 y ¶f¡1¶ where the action of ¶ on EK
6 is as in 4 4 Thus

we have

´0¶ f y´¶ ¶f¡1¶:

Keeping in mind the facts that ei £ ei+1 ei+2; fy u £ v f u £ f v
for all u; v 2 JK ; equation 4 12 ; and j £ e0 £ j0 re0 as can be veri¯ed by
examining the explicit formula for £ given in [Jac68 p 358 4 ] although the

reader should be cautioned that our de¯nition of £ | which agrees with the one

in [KMRT98] and [McC69] | di®ers from Jacobson's by a factor of 2 one can
now easily calculate that f y e0 e1 and f y j0 re0 It follows that

´0¶
e0 re0; and ´0¶

e1 a¡1
0 e1:

Since ´ is a 1-cocycle we have ´¶¶ u£ v ¶´¡1
¶ u £ ¶´¡1

¶ v Thus ´¶¶ e0 £ j0

a0e0 £ j and we have

´0¶
e2 a0 r e2:

Since ´0¶
preserves the linear subspaces Kei for all i it belongs to G K and we

are done ¤

5 2D5 ½
2E6

For the purpose of making computations we will need to make use of another
subgroup of EK

6 which we de¯ne to be the subgroup consisting of elements h such
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that h and hy both ¯x the element e0 2 J Since the map h hy is a group
homomorphism on Inv J it is clear that H is indeed a subgroup of EK

6 over K
and it is preserved by the ¶-action so it is even de¯ned over F Our ¯rst task is to
describe it explicitly

5 1 Fix a particular basis u1; u2; : : : ; u8 for the split Cayley algebra C as given
in [Gar98 p 388] One important thing for us to know about this basis is that
when we bilinearize the norm form n so that n x;x 2n x we have

n ui; uj
1 if i + j 9

0 otherwise;

so that the Gram matrix of the symmetric bilinear form with respect to this basis is
a matrix we will denote by S8 It is the 8 £ 8 matrix which has zeroes everywhere

except for a line of ones connecting the 1; 8 and the 8; 1 entries Also the

canonical involution ¹ is given by

ui 8><
>:
¡ui if i 6 4; 5

u5 if i 4

u4 if i 5:

5 2 Over K H is isomorphic to Spin10 o¹2 Let A denote the 10-dimensional
subspace e0 £ J of J which is A ³

0 0 ¢

¢ F C
0 ¢ F ´ For f in Inv J K we have

f e0 £ j fy e0 £ f y j so for f 2 H we have f A A The multiplication
on J restricts to give A the structure of a central simple Jordan algebra as well
albeit with a di®erent unit element It has norm form NA given by

NA ³
0 0 ¢

¢ ® c
0 ¢ ¯ ´ ®¯ ¡ n c :

Extend scalars to K t and ¯x f in H K Then N te0 + j N f te0 + j
N te0 + f j The coe±cient of t in this expression is T e0; j# T e0; f j #
For j actually lying in A T e0; j# NA j so f restricts to preserve the norm
on A Write O A for the algebraic subgroup of GL A consisting of maps which
preserve the norm NA i e the orthogonal group of the 10-dimensional quadratic
form NA We have proven that restriction provides a map H O A which is
de¯ned over K

The map H O A has kernel of order 2: Anything in H which maps to the

identity in O A ¯xes all of the idempotents ei and so is of the form gt for some

t 2 Spin n However t0 must also be the identity so t 1; 1; 1 or 1;¡1;¡1

by [Gar98 1 5 2 ]
We would like to show that the map H O A is surjective Note that O A

is generated by
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² the special orthogonal group SO B for B the codimension 1 subspace of A
spanned by C and e1¡e2 endowed with the quadratic form given by restricting

NA;

² anything in O A with determinant ¡1; and

² anything in O A which does not leave B invariant
Since for f 2 Aut J f y f the subgroup Aut J e0 of elements of Aut J which
¯x e0 is a subgroup of H As described in [Jac68 p 376 Thm 4] Aut J e0 »
Spin B and the restriction to B gives the surjection onto SO B The map

³
"0 c2 ¢

¢ "1 c0
c1 ¢ "2 ´ 7 ³

"0 c1 ¢

¢ "2 c0
c2 ¢ "1 ´

lies in H K and restricts to have determinant ¡1 on A Finally we consider
Freudenthal's maps from [Jac61 p 74] For Eij 2 M3 C the matrix whose only
nonzero entry is a 1 in the i; j -position 13 the 3 £ 3 identity matrix x 2 C and
a 2 J he de¯nes a map Ãij x 2 Inv J given by

Ãij x a 13 + xEij a 13 + xEij ¤;

where juxtaposition denotes the usual multiplication in M3 C not the Jordan
multiplication So Ãij x 2 H K if i; j 6 1 In particular Ã32 u5 jA is given by

Ã32 u5 jA
"1 c0

¢ "2 ³
"1 c0+"1u4

¢ "2+n c0;u4 ´ ;

which does not leave B invariant
Finally we observe that H± is isomorphic to Spin A The inverse image call

it H 0 of SO A maps onto SO A with a kernel which is central and of order 2
Consequently H 0 is simple and hence must be isomorphic to Spin A Since H 0 is
connected and [H : H 0] 2 H± H 0

5 3 Over F H is isomorphic to Spin 4H h¡1; ki o ¹2 To compute the

isomorphism class of H over F we observe that the map h 7 hy restricts to the

identity on the kernel of the K-map H O A so the ¶-action on H induces one

on O A which we will calculate explicitly
Fix the basis u1; u2; u3; u4; e1; e2; u5; : : : ; u8 for A so that the Gram matrix

for the symmetric bilinear form associated with NA becomes

µ ¡S4
S2

¡S4 ¶ ;

for S2 and S4 de¯ned analogously to how S8 was in 5 1 Then SO A is generated
by

² a torus T consisting of diagonal matrices with diagonal entries d1; d2 : : :
d5; d¡1

5 d¡1
4 : : : d¡1

1 ;

² root groups Uij : Ga SO A given by

Uij r 110 + rEij ¡ rEj¤i¤
for 110 the 10 £ 10 identity matrix i¤ : 11 ¡ i and i; j i; i + 1 for
i 1; 2; 3 and their transposes; and
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² root groups Vij : Ga SO A given by

Vij r 110 + r Eij + Ej¤i¤
for i; j 4; 5 and 4; 6 and their transposes Note that V45 r
Ã32 ru5 jA and V46 r Ã23 ru4 jA for r 2 F Ga F

Since the torus lies in the image of Rel C; n and gyt g¾n t ¡1 the action on
T and on the ¯rst kind of root groups is the usual ¶-action However

V45 r y Ã32 ru5 y Ã23 ¡ru4 V46 ¡r :

So the map h 7 hy induces on SO A the map f 7 MfM¡1 for

M ³
14

¡S2
14 ´ :

Write ´ for the 1-cocycle in Z1 K F; O A given by ´¶ M The K-map
H O A descends to a map over F from H onto the twisted group O A ´ so
we wish to describe the group O A ´

But this is now just a problem of explicitly computing a quadratic form given
by descending down a quadratic extension So we need to ¯nd a K-basis of AK
consisting of elements ¯xed by the map a  · 7 M a  ¶ · Then O A ´ is
isomorphic to O q where q is the restriction of NA to the F -span of those ¯xed
vectors Such a K-basis is given by ui for 1 · i · 8 e1 ¡ e2 and pke1 + pke2
These vectors give an orthogonal basis for a quadratic form 4H h¡1; ki which
proves the claim

Following is a little lemma which foreshadows the way we will prove the Main
Theorem for quasi-split groups of type 2E6

Lemma 5 4 The Rost multiplier of the inclusion H± ½ EK
6 is 1 The restriction

of the Rost invariant on H1 F; EK
6 to the image of H1 F; H± has trivial kernel

Proof Since the Rost multiplier is invariant under scalar extension we may work
over K where this embedding is described in 5 2 Then some of the coroots

identi¯ed with copies of Gm lying in the maximal torus T from 5 3 for H± are

the same as those for Spin n considered as a subgroup of Inv J via the map g
Since the inclusion Spin n Inv J has Rost multiplier 1 so does H± ½ EK

6
Since the quadratic form q 4H h¡1; ki is isotropic the spinor norm map

SO q F F ¤ F ¤2 is surjective The Rost invariant RH± has trivial kernel by
1 4 and the second claim follows ¤

6 Special cocycles

De¯nition 6 1 For a a0; a1; a2 2 F ¤ £3 with product 1 we de¯ne a \spe-
cial" cocycle z : zK;a in H1 K F; G Set z¶ z0; z1; z2 where zj mj a dP
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for P the permutation matrix giving the map uk 7 u¼ k for ¼ the permutation
1 2 3 6 4 5 7 8 mj a the diagonal matrix

mj a : diag 1; aj ; aj ; a¡1
j+2; a¡1

j+1; 1; 1; aj 6 2

with subscripts taken modulo 3 and

d : diag 1; 1;¡1; 1; 1;¡1; 1; 1 :

The zj form a related triple by [Gar98 1 6 1 7 1 5 3 ] so z¶ 2 G K Note that
¾n mj a P mj a P and since P is an isometry of n ¾n P P¡1 P We

have
¶zj ¾n mj a dP ¡1 P mj a ¡1P dP z¡1

j
and so z is indeed in Z1 K F; G

The image of zK;a in H1 K F; P is the class of a

6 3 Freedom in the de¯nition Of course some of these special cocycles are

cohomologically equivalent in H1 K F; G If a and a0 are two triples in F ¤ £3

such that a¡1
j a0j 2 NK F K¤ for all j ¯x ¸j 2 K¤ such that a¡1

j a0j ¸j¶ ¸j
Then for ` `0; `1; `2 with `j Pmj ¸ P ` is a related triple by [Gar98] so

` 2 G K We have ¶` zK;a0 ¶ `¡1 zK;a ¶ i e the two cocycles zK;a and zK;a0

are cohomologous

6 4 We will twist by these cocycles to move a cocycle in H1 F; G so that it
takes values in a semisimple group For now we just observe that the semisimple
group we get from one of them Spin n z is described in [Gar98 pp 403 404]:
Let k 2 F ¤ be such that K F pk and let Qi denote the quaternion algebra

k; ai F generated by elements x; y such that x2 k y2 ai and xy ¡yx The

group Spin n z is isomorphic to Spin Ai; ¾i where Ai is isomorphic to M4 Qi ¾i
is an isotropic orthogonal involution with trivial discriminant and

C0 Ai; ¾i ; ¾i » Ai+1; ¾i+1 £ Ai+2; ¾i+2 ; 6 5

where the subscripts are taken modulo 3 These properties specify the ¾i up to
isomorphism [Gar01a 2 3]

The Moving Lemma lets us say something useful about the Rost invariant of
our special cocycles

Corollary 6 6 The Rost invariant REK6 zK;a is trivial if and only if zK;a is
cohomologically trivial in H1 F; EK

6

Proof Consider the element j ³
0 0 ¢

¢ 0 c
0 ¢ 0´ in e0 £ JK for c u2 2 + u8 Then

n c 0 and consulting the explicit formula for j# in [Jac68 p 358] we see that
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j# 0 Moreover for z : zK;a we have z¶¶j ³
0 0 ¢

¢ 0 c0

0 ¢ 0 ´ for c0 u1 2+u7 Then

T j; j0 cc0 + cc0 n c; c0 1:

Applying the Moving Lemma shows that z is equivalent in H1 K F; EK
6 to some

z0 2 Z1 K F; G whose image in H1 K F; P is 1; a0; a¡1
0 In particular the

0-component of the triple z
0¶
in GO± C; n £3 belongs to SO C; n and the 1- and

2-components have multipliers a0 and a¡1
0 respectively Thus the restriction of z

0¶to the 10-dimensional subalgebra A de¯ned in 5 2 has determinant 1 and so lies

in H± If the Rost invariant REK6 z is trivial then zK;a is trivial in H1 F; EK
6

by Lemma 5 4 ¤

In a special case the value of the Rost invariant of our special cocycles can be

computed explicitly

Lemma 6 7 For a; k 2 F ¤ such that K F pk the Rost invariant of the

1-cocycle zK; 1;a;a¡1 is a [ k [ ¡1 in H3 F; Z 2 ½ H3 F; Q Z 2

Proof The cocycle z : zK; 1;a;a¡1 takes values in H and restricts to have de-
terminant 1 on the subalgebra A de¯ned in 5 2 so z 2 Z1 K F; H± Since the

inclusion H± ½ EK
6 has Rost multiplier 1 to compute the Rost invariant of z

we may compute the Rost invariant of z in H1 F; H± But recall that H± is
isomorphic to Spin q for q 4H h¡1; ki and that H1 F; SO q classi¯es non-
degenerate quadratic forms of the same dimension and discriminant as q So we

can compute the Rost invariant of z by computing the quadratic form qz corre-
sponding to the image of z in H1 F; SO q which is just the restriction of qK
to the vector subspace ¯xed by the action a · 7 z¶M a  ¶ · for M as in 5 3

We perform the Galois descent calculation by decomposing A  K into 2-
dimensional subspaces and calculating the Galois action on those subspaces

subspace restriction of F -basis for contribution
basis z¶M ¯xed subspace to qz

u1; u2 S2 totally
u7; u8 S2 isotropic
u3; u6 ¡S2 u3 ¡ u6;pku3 + pku6 h1;¡ki
u4; u5

a
a¡1 au4 + u5;¡apku4 + pku5 h¡a; aki

e1; e2 ³ ¡a¡1

¡a ´ ¡e1 + ae2;pke1 + apke2 h¡a; aki
The ¯rst two subspaces form a complementary pair of totally isotropic subspaces

so they contribute two hyperbolic planes to qz Thus the image of z is qz
2H h1;¡k;¡a; ak;¡a; aki and the Rost invariant of z is the Arason invariant
of qz ¡ q ¿a; k;¡1À: ¤
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7 Quasi-split groups of type E6 and E7

This section consists solely of a proof of the main theorem beginning with a nearly
trivial lemma

Lemma 7 1 Suppose that C is a central subgroup in a simple simply connected
group ¡ Then H1 F; C acts on H1 F;¡ and for ³ 2 H1 F; C and ° 2 H1 F;¡
we have

R¡ ³ ¢ ° R¡ ³ + R¡ ° ;

where R¡ ³ denotes the image of ³ under the composition H1 F; C ¡ H1 F;¡
R¡¡¡ H3 F; Q Z 2

Proof Pick a 1-cocycle z 2 Z1 F; C which represents ³ We have a diagram

H1 F;¡ H1 F;¡z »¡¡¡¡¿z
H1 F;¡

R¡

y

R¡z

y y

R¡

H3 F; Q Z 2 H3 F; Q Z 2 ¢+R¡ ³¡¡¡¡¡ H3 F; Q Z 2 :
Here the group ¡z is the usual twist of ¡ by the cocycle z; it is just the group ¡ with
a di®erent Galois action so that a member ¾ of Gal Fsep F maps g

7

z¾
¾gz¡1

¾

In our case z¾ is central so in fact ¡z is identical to ¡ The map ¿z is the usual
twisting map [Ser94 I 5 5] de¯ned by sending a 2 Z1 F;¡z to the 1-cocycle
¾

7

a¾z¾ The composition of the two maps on the top row is then the action
of ³

The left-hand box commutes because the Rost invariant is canonical The right-
hand box commutes by [Gil00 p 76 Lem 7] The desired equality is equivalent
to the commutativity of the outer rectangle ¤

This result has the obvious corollary that the induced map H1 F; C ¡H3 F; Q Z 2 is a group homomorphism

7 2 Groups of type 1E6 Suppose ¯rst that our simply connected quasi-
split group of type E6 is split and denote it simply by E6 From Example 3 4
we have an embedding F4 £ ¹3 E6 which induces a surjection on H1 terms

So for " 2 H1 F;E6 we can ¯nd Á 2 H1 F; F4 and ³ 2 H1 F;¹3
such that

Á © ³ 7 " Since E6 is split and the image of ¹3 is the center of E6 the image of
H1 F;¹3 H1 F; E6 is trivial If " is in the kernel of the Rost invariant RE6

by Lemma 7 1 Á must be killed by the composition

H1 F; F4 H1 F; E6
RE6¡¡¡ H3 F; Q Z 2 :

As described in 2 4 the Rost multiplier of the embedding F4 ½ E6 is 1 so Á lies

in the kernel of the Rost invariant RF4 which is known to be trivial Thus " is
the image of ³ which we have already observed is trivial
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Remark 7 3 Noninjectivity for 1E6 The Rost invariant is typically noninjective

for the group E6 To see this we can not simply apply Remark 0 6 and the fact
that the embedding F4 E6 has Rost multiplier 1 since two isotopic Albert
algebras have the same image in H1 F; E6

Instead ¯x a ground ¯eld F which supports a division nonreduced Albert
F -algebra J Over the ¯eld F t the norm N of J does not represent t as can
be seen by elementary valuation theory [Jac68 p 417 Lem 1] Consequently
N is not isomorphic to tN over F t so the images of the two classes J © 1
and J © t under the map H1 F; F4 £ H1 F;¹3 H1 F;E6 are distinct by
[Gar01b 2 8 2 ] However since the image of H1 F;¹3 H1 F; E6 is trivial
by Lemma 7 1 the two classes in H1 F;E6 have the same Rost invariant

7 4 Groups of type 2E6 Suppose now that our quasi-split simply connected
group of type E6 is not actually split so that it only becomes split over some

quadratic ¯eld extension K of F Write EK
6 for this group as we have since

Section 4 By the split case any ® 2 H1 F; EK
6 which is in the kernel of the Rost

invariant must become trivial over K and so belongs to H1 K F; EK
6 Applying

Ferrar's Lemma 4 6 we have that ® is the image of some ¯ 2 H1 K F; G

7 4 Twisting Fix a triple a a0; a1; a2 2 F ¤ £3 such that a0a1a2 1
which represents the image of ¯ in H1 K F; P This makes sense thanks to the

description of H1 K F; P in 4 7 Then we set z : zK;a as de¯ned in 6 1 and
we can twist EK

6 by z to obtain a diagram

H1 F; Gz ¡¡¡¡ H1 F; EK
6 z

R EK6 z

¡¡¡¡¡ H3 F; Q Z 2

¿z

y

¿z

y y

¢+REK6 z

H1 F; G ¡¡¡¡ H1 F; EK
6

REK6¡¡¡¡ H3 F; Q Z 2 ;
where the right vertical arrow has the speci¯ed value by [Gil00 p 76 Lem 7]

7 6 The image of ¿¡1
z ¯ in H1 F; SO A; ¾ We want to say something about

what kind of class ¯0 : ¿¡1
z ¯ can be In particular its image in H1 K F; Pz

is trivial so ¯0 comes from the semisimple part of Gz which is isomorphic to
Spin A; ¾ for A; ¾ one of the three algebras Ai described in 6 4

We may think of ¯0 as lying in H1 K F; Spin A; ¾ and consider its image in
H1 K F; SO A; ¾ Let L be a generic splitting ¯eld of A e g a function ¯eld of
its Severi{Brauer variety and consider the image of ¯0 in H1 L; SO A; ¾ Since

A is split by L ¾ becomes adjoint to the quadratic form ¿k; ai+1À 2H [Gar01a
2 3] The image of ¯0 determines an 8-dimensional quadratic form q over L and
the Rost invariant of ¯0 is just the class of q¡¿k; ai+1 À in I3L I4L However by
the twisting argument above the Rost invariant of ¯0 over F is ¡REK6 z Since

A is split over L ai 2 L¤ is a norm from KL so by 6 3 and Lemma 6 7 the Rost
invariant becomes k [ ai+1 [ ¡1 over L
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For Á ¿k; ai+1À we have that q ¡ Á lies in I3L and q ¡ Á ´ Á¿¡1À
mod I4L But then

q + Á q ¡ Á + 2Á ´ 4Á ´ 0 mod I4L:

So q + Á is in I4L However dim q Á 12 < 16 so by the Arason{P¯ster
Hauptsatz q Á is hyperbolic and we have q » h¡1iÁ 2H

Consequently the image of ¯0 in H1 L; SO A; ¾ is the same as the image of

¡1 2 F ¤ F ¤2 H1 F; Z SO A; ¾ Since A is Brauer-equivalent to a quater-
nion algebra it follows from the material in [Sch85 Ch 10] that the canonical map
H1 F; SO A; ¾ H1 L; SO A; ¾ is injective This was shown independently
in [PSS] and [Dej01] Thus the image of ¯0 in H1 F; SO A; ¾ must also be ¡1

7 7 More generally any simply connected group ¡ of type 1D4 is isomorphic
to Spin Ai; ¾i for three central simple algebras Ai of degree 8 with i 0; 1; 2
endowed with an orthogonal involution ¾i with trivial discriminant and related as

in 6 5
Each of the three descriptions of ¡ comes paired with natural maps ¡

SO Ai; ¾i P¡ for P¡ the adjoint group associated to ¡ The kernel of the

second map is Z SO Ai; ¾i » ¹2 and the kernel of the composition is Z ¡
which is isomorphic to the subgroup of ¹£3

2 of elements with product 1 The

group H1 F; Z ¡ can be identi¯ed with the set of triples b b0; b1; b2 2
F¤ F ¤2 with product 1 [KMRT98 44 14] and where the map H1 F;Z ¡
H1 F; Z SO Ai; ¾i is given by b

7

bi

Lemma 7 8 Notation as in the preceding paragraph Suppose an element
´ 2 H1 F;¡ has the same image in H1 F; SO Ai; ¾i as ci 2 F ¤ F ¤2

H1 F; Z SO Ai; ¾i for i 1; 2 Then ´ is the image of c1c2 ¡1; c1; c2 coming

from H1 F; Z ¡
Proof The short exact sequence 1 Z SO Ai; ¾i SO Ai; ¾i P¡
1 gives that ´ is killed by the composition H1 F;¡ H1 F; SO Ai; ¾i
H1 F; P¡ for i 1 Thus ´ is the image of some class n0; n1; n2 in H1 F; Z ¡

For general Galois-cohomological reasons the map H1 F; Z ¡ H1 F;¡ is
a group homomorphism Although the second set doesn't have a group structure

the image of the ¯rst set does The kernel of this map can be described fully by
suitably applying [KMRT98 35 4] but for our purposes it is enough to observe that
it contains all elements of the form s; s¡1; 1 for s a spinor norm of an element in
SO A2; ¾2 F and symmetrically Let G Ai; ¾i ± be the algebraic group of proper
similarity factors i e the group with F -points

G Ai; ¾i ± F
©

m 2 F ¤ j 9 f 2 A¤i such that m ¾i f f and NrdAi f m4

ª
:

For every m0 2 G A0; ¾0 ± F the kernel contains an element of the form
m0; m1; m2 and symmetrically Conversely if b0; b1; b2 is in the kernel then
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bi 2 G Ai; ¾i ± F for all i
It is also the case that the natural map F ¤ F ¤2 H1 F; Z SO Ai; ¾i

H1 F; SO Ai; ¾i is a group homomorphism and its kernel is precisely
G Ai; ¾i ± F Thus we may modify n2 by an element of G A2; ¾2 ± F and so
assume that n2 c2

Now consider the middle component of the triple n0; n1; n2 By hypothesis
n1 m1c1 for some m1 2 G A1; ¾1 ± F By [Mer96 p 262 Prop ] the group
SN A2; ¾2 F of spinor norms from SO A2; ¾2 F is the group generated by F ¤2

and the norms from ¯nite ¯eld extensions E which split A2 and make ¾2 isotropic
By [Mer96 p 263 Prop ] G A1; ¾1 ± F is equal to the group generated by the

norms from every extension ¯eld E which splits A1 and makes ¾1 hyperbolic
Since the Ai; ¾i are related by 6 5 any extension which splits A1 and makes

¾1 hyperbolic certainly splits A2 and makes ¾2 isotropic so SN A2; ¾2 F ¶
G A1; ¾1 ± F Consequently the element m1; m¡1

1 ; 1 belongs to the kernel of
H1 F; Z ¡ H1 F;¡

Thus ´ is the image of

n0; n1; n2 m1; m¡1
1 ; 1 m1c1c2 ¡1;m1c1; c2 m1; m¡1

1 ; 1 c1c2 ¡1; c1; c2

as desired ¤

7 9 ¯0 is in the image of H1 K F; Z Spin A; ¾ Let A; ¾ A0; ¾0
for Ai; ¾i as in 6 4 Combining the result from 7 6 with Lemma 7 8 we have

that ¯0 2 H1 F; Spin A; ¾ is the image of 1;¡1;¡1 2 H1 F; Z Spin A; ¾

However for k 2 F ¤ such that K F pk since K certainly splits A and
makes ¾ hyperbolic and ¡k NK F

pk by Merkurjev's norm principle [Mer96
p 262 Prop ] there is some element of SO A; ¾ F with spinor norm ¡k Then
as described in the proof of Lemma 7 8 ¯0 is also the image of 1; k; k¡1

2
H1 F; Z Spin A; ¾ which itself is in the image of H1 K F; Z Spin A; ¾

7 10 Consider the 1-cocycle b ¿z b0 2 Z1 K F; G for b0 the image of 1; k; k¡1

as above Note that b represents the class of ¯ and is the 1-cocycle which takes

the value g 1;¡1;¡1 zK;a at ¶ For j and c as in the proof of 6 6 we set j0 : b¶¶j
so that j0

³
0 0 ¢

¢ 0 c0

0 ¢ 0 ´ for c0 u1 2 + u7 and T j; j0 n c; c0 1 By the Moving

Lemma 4 9 we may replace ¯ by a di®erent inverse image of ® in H1 K F; G
and so assume that a 1; a0; a¡1

0
Any element of G with multiplier 1; ¢; ¢ lies in H and since such an element

restricts to have determinant 1 on the subspace A de¯ned in 5 2 it in fact lies in
H± Thus ® is in the image of H1 F; H± Since the Rost invariant of ® is trivial
® must be the trivial class by Lemma 5 4

7 11 Groups of type E7 We are left with proving that the Rost invariant
has trivial kernel for G split of type E7 but this follows directly from the same

conclusion for quasi-split groups of type E6 thanks to Proposition 3 6
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