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Invariant measure and Lyapunov exponents for birational
maps of P2
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Abstract In this paper we construct and study a natural invariant measure for a birational
self-map of the complex projective plane Our main hypothesis|that the birational map be

\separating"|is a condition on the indeterminacy set of the map We prove that the measure
is mixing and that it has distinct Lyapunov exponents Under a further hypothesis on the

indeterminacy set we show that the measure is hyperbolic in the sense of Pesin theory In this
case we also prove that saddle periodic points are dense in the support of the measure
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1 Introduction

In this paper and its predecessors [Dil1 Dil2] we develop an account of the dy-
namics of a birational map f+ : P2 ª The general idea inspired by similar work
[BS] [Bri] [FS1] in multi-variable complex dynamics is to combine techniques

from pluripotential and smooth ergodic theory to construct and then study sev-
eral measure theoretic objects naturally associated with f+ The di±culty in our
context is the presence of the indeterminacy set I+ consisting of points at which

f+ is ill-de¯ned Points of indeterminacy make potential theoretic constructions

harder to accomplish and smooth ergodic theory more di±cult to apply
To proceed let £ be the Fubini{Study KÄahler form on P2 and d > 1 be

the algebraic degree of f+|i e the degree of the polynomials that de¯ne f in
homogeneous coordinates We showed in [Dil1] that there exist positive closed
1; 1 currents

¹+ lim
n 1

1

dn fn¤+ £; ¹¡ lim
n 1

1

dn fn¤¡ £
associated with a birational map f+ and its inverse f¡ provided that deg fn

+
dn

for all n ¸ 0 Here we consider the measure ¹ ¹+ ^ ¹¡ It is important
This research was partially supported by National Science Foundation grant #DMS98-96370
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to stress that the currents ¹+ and ¹¡ are quite singular especially at points of
indeterminacy In order to ¯nesse the \multiplication" of ¹+ by ¹¡ we require that
our birational maps be separating That is if I+

Sn¸0 fn

¡
I+ is the closure of

the backward orbit of the indeterminacy set of f+ and I¡ is the corresponding
set for f¡ then we insist that I+ \ I¡ ;The currents ¹+ and ¹¡ have the invariance properties f¤+¹+ d ¢¹+ f¤¡

¹¡
d ¢ ¹¡ We show here that

Theorem 1 1 The measure ¹ is f+-invariant

The proof of this theorem is less immediate than one might hope The key
point is to show that ¹ attaches no mass to points of indeterminacy and more

generally to the critical set of f+ After establishing invariance we adapt a proof
of Bedford and Smillie [BS] to show that

Theorem 1 2 ¹ is mixing with respect to f+
Since mixing implies ergodicity and the extended indeterminacy sets I+ and

I¡ are essentially invariant this theorem has the consequence that at least one of
the sets I+ or I¡ is ¹-negligible

The central results in this paper concern the Lyapunov exponents of f+ Sup-
pose for a moment that we are in the more general situation of a measurable
invertible and a e di®erentiable map h : X ª of a compact two dimensional man-
ifold and that º is a probability measure that is ergodic with respect to h Then
under the hypothesis that the the derivatives of h and h¡1 are log integrable with
respect to º Oseledec's Theorem guarantees the existence of two real numbers

Â¡; Â+ that describe the growth rates of typical vectors under backward and for-
ward iteration That is for º a e point p 2 X and a generic vector v 2 TpX we

have

lim
n 1

1

n
log khn

¤

vk Â+;

and similarly for h¡1 and Â¡ Oseledec's Theorem applies in particular if h is
an outright di®eomorphism Here we prove

Theorem 1 3 If f+ : P2 ª is birational and separating then log+
kDf+k is ¹

integrable In particular f+ satis¯es the hypothesis of Oseledec's Theorem

By log+
¢

we mean maxflog
¢ ; 0g An important ingredient in the proof of

Theorem 1 3 is a rather technical result Theorem 5 3 concerning regularity of
local potentials for ¹+ If f+ were holomorphic i e I+ ; instead of birational
the analogue for our regularity result would be that local potentials for ¹+ are

HÄolder continuous

Lyapunov exponents are most meaningful when they are non-zero The ¯nal
result of this paper gives a simple criterion su±cient to guarantee that Lyapunov
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exponents of a separating birational map are non-zero

Theorem 1 4 If f+ : P2 ª is a degree d > 1 separating birational map and

¹ I+ 0 then Â+ ¸ log d 4

Combined with the remark following Theorem 1 2 this implies that at least
one of the Lyapunov exponents of a separating birational map is non-zero Results

similar to Theorem 1 4 have been obtained by Bedford and Smillie [BS] for polyno-
mial di®eomorphisms of C2 and by Briend and Duval [Bri] [BD] for holomorphic
maps of Pn The nearest precedent for the proof of Theorem 1 4 that we give here

is Briend's thesis [Bri] In particular we appropriate his use of Lyapunov charts

and coverings by balls of small ¹ mass

If ¹ I+ ¹ I¡ 0 then Theorem 1 4 tells us that ¹ is non-uniformly
hyperbolic|i e neither Lyapunov exponent vanishes In this case we adapt a
standard proof of the closing lemma for uniformly hyperbolic maps to show

Theorem 1 5 If f : P2 ª is a degree d > 1 separating birational map such that
¹ I+ ¹ I¡ 0 then supp¹ lies in the closure of the saddle periodic points
of f

We remark that it is not di±cult to produce examples of separating birational
maps Any polynomial di®eomorphism of C2 extends to P2 as a birational map for
which I+ and I¡ are single distinct points Hence a polynomial di®eomorphism
of C2 is separating Such a map remains separating if one pre- or post-composes

with an automorphism of P2 close to the identity More generally if the f¡{orbit
of each point in I+ converges to an f¡{attracting cycle then f+ is separating
and ¹ I+ 0 We refer the reader to the ¯nal section of [Dil1] for more speci¯c
examples

This paper is organized as follows

² Section 2 provides the necessary background on birational maps and pluripo-
tential theory

² Section 3 introduces the measure ¹ and contains the proof of Theorem 1 1
Many thanks to Eric Bedford for helping us with the pluripotential theory
in this section

² Section 4 contains the proof Theorem 1 2

² Section 5 contains the proof of Theorem 1 3 including the regularity result
for local potentials for ¹+

² Section 6 reviews the pertinent facts about Lyapunov exponents and Lya-
punov charts In particular it states Oseledec's Theorem suitably tailored
to the present context

² Section 7 contains the proof of Theorem 1 4

² Section 8 contains the proof Theorem 1 5



Vol 76 2001 Invariant measure and Lyapunov exponents 757

2 Birational maps and pluripotential theory: background

Let ¼ : C3
n f0g P2 denote the usual projection sending lines through 0 to

points Where a metric is implied but not speci¯ed in what follows we assume

the Euclidean metric on C3 and the Fubini{Study metric on P2 Recall that any
homogeneous polynomial map ~f : C3 C3 naturally induces a map f : P2

P2 satisfying ¼ ±
~f f ± ¼ Suppose that the coordinates of ~f have no non-

constant common factors Then we refer to the induced map f as a rational map

of algebraic degree d
def deg ~f If ~f ~p 0 for some ~p

6

0 then f ¼ ~p cannot
be de¯ned continuously We refer to ¼ ~p as a point of indeterminacy for f and
denote the set of all such points by I It is not hard to show that I is always ¯nite

Throughout this paper we will let f+ : P2 ª denote a birational map of
algebraic degree d > 1 That f+ is birational means that there exists an algebraic
curve V and another rational map f¡ : P2 P2 such that f+ ±f¡ f¡ ±f+ id
on P2

n V It turns out that the degree of f¡ is also d
We will distinguish objects corresponding to f+ from those corresponding to

f¡ using + and ¡ sub/superscripts For instance we denote the critical set of f+
by C

+ and remark that this set is an algebraic curve of degree 3d ¡ 3 counting
multiplicity

Proposition 2 1 The following statements are true for any birational map f+ :
P2 P2

1 I+
½ C

+ and every irreducible component of C
+ contains a point of I+

2 Given any irreducible curve V ½ C
+ f+ V is a single point in I¡; likewise

given any p¡ 2 I¡ f¡1
+ p¡ is a component of C

+
3 f+ : P2

n C
+ P2

n C¡ is a biholomorphism

In particular our assumption that d > 1 implies that the critical sets
C

+; C¡
and indeterminacy sets I+; I¡ are always non-empty Proofs of Proposition 2 1 and
of several of the following results can be found in [Dil1] [Dil2] It is interesting to
note that the algebraic degrees of fn

+
do not necessarily grow as one would expect

them to i e one might guess that deg fn
+

dn deg ~fn
+

We require an extra
hypothesis on I+ and I¡ to guarantee predictable degree growth

Proposition 2 2 The following statements are equivalent for a birational map

f+ : P2 P2 with inverse f¡:
1 deg fn

+
dn for all n;

2 I+ \ fn
+ I¡ ; for all n

3 fn

¡
I+ \ fm

+ I¡ ; for all n; m ¸ 0;

Following Sibony [Sib] we call maps satisfying any of these equivalent con-
ditions algebraically stable We will assume throughout this paper that all our
birational maps belong to this category in fact shortly we require something
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stronger An important dynamical consequence of this assumption is the exis-
tence of a so-called Green's function ~G

+ for f+ The following theorem was proved
in [Dil1] and in a very di®erent fashion in [Fav] However Sibony [Sib] has given
a quite simple proof that holds for general rational maps

Theorem 2 3 Let ~f+ be a homogeneous representative for f+ Then the limit

~G
+ ~p lim

n 1
1

dn log

°°°

~fn
+

~p

°°°exists pointwise and in L1
loc The function ~G

+ is plurisubharmonic and satis¯es

1 ~G
+ ¸~p ~G

+ ~p + log j¸j for every ¸ 2 C;
2 ~G

+
±

~f+ d ¢
~f+

The Green's function ~G
+ is de¯ned on C3 rather than on P2 and determined

only up to an additive constant depending on the choice of ~f+ However ddc
~G

+
is a positive closed current independent of the additive constant and it induces a
positive closed current ¹+ on P2 as follows Let U ½ P2 be open and ¾ : U C3

be a section of ¼ Then ¹+jU ddc
~G
+

±¾ It is quite natural to de¯ne f¤+¹+jU
ddc

~G
+

±
~f+ ± ¾ in which case it follows immediately that f¤+¹+ d ¢ ¹+ An

additional fact about ¹+ see [FS1] that we will need is that ¹+ concentrates no
mass on any algebraic curve

We remark that any plurisubharmonic function ~u : C3 R[f¡1g satisfying
~u ¸~p ~u ~p + c log j¸j for some c > 0 induces a positive closed 1; 1 current º on
P2 in the same way that ~G

+ does It is not hard to see that hº; £i c where £
is the KÄahler form for the Fubini{Study metric on P2 appropriately normalized
Forn½ss and Sibony [FS1] showed that every positive closed 1; 1 current on P2

is induced by a homogeneous potential ~u In particular £ is induced by log k~pk
so the ¯rst conclusion in Theorem 2 3 translates to the statement that

¹+ lim
n 1

1

dn fn¤+ £:

In fact ¹+ attracts a great many positive closed 1; 1 currents under pullback

Theorem 2 4 Let T be a closed 1; 1 current on P2 Suppose that T has a
bounded local potential i e T ddcu where kuk1 < 1 on a neighborhood of
each superattracting periodic point if any of f+ Then

lim
n 1

1

dn fn¤+ T ¹+:

The convergence takes place in the weak topology and is uniform among all T
whose support excludes a ¯xed neighborhood of all superattracting cycles

We showed in [Dil2] that this theorem can be extended to certain `truncated'
currents In order to state the more general theorem we de¯ne the extended
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indeterminacy set of f+ to be the closure of the backward orbit of I+|that is

I+ 1[n 0
fn

¡
I+ :

We also recall the mass norm of a positive current T on an open set U :

MU [T ] supfhT ;'i : supp' ½ U; k'k1 · 1g:

Of course convergence in mass norm is much stronger than convergence in the

usual weak topology on currents A slightly weakened version of Theorem 3 4 in
[Dil2] goes as follows

Theorem 2 5 Let T be a positive closed 1; 1 current on P2 and Ã : P2 C
be a smooth function Suppose that local potentials for T are continuous on a
neighborhood of I+ [ supp Ã Then

lim
n 1

1

dn fn
¡¤

ÃT µZ
P2

Ã T ^ ¹¡¶¹+:

Convergence takes place in the weak topology and is consistent with di®erentiation
in that the sequences

1

dn
@fn

¡¤
ÃT ;

1

dn ddcfn
¡¤

ÃT

both tend to zero in the mass norm on P2

Two points in the statement of this theorem merit explanation The ¯rst is
that the right side of the ¯rst equation implies that we can reasonably de¯ne the

product T ^ ¹¡ as a measure This is not obvious but since the next section is
devoted to a similar issue we defer further discussion of wedge products of positive

currents until then The second point to explain is the use of fn
¡¤

rather than fn¤+
in both equations While these notations are interchangeable in the setting of
di®eomorphisms we do not intend them to be so here As we have already noted
it makes sense to pull back positive closed currents by pulling back their potentials
For present purposes it su±ces to take

fn
¡¤

ÃT lim
j 1fn

¡¤
ÂjÃT lim

j 1
Âj ± fn

+ fn
¡¤

ÃT

where Âj : P2 [0; 1] is any sequence of smooth functions satisfying

² Âj vanishes on a neighborhood of the critical set C
+
n of fn

¡
;

² Âj ´ 1 on a set Kj that increases to P2
n C

+
n as j goes to 1

More detailed discussion of the relationship between f¤+
and f¡¤

acting on positive

currents occurs in [Dil2] Su±ce it to note here that if Ã ´ 1 is trivial then

fn¤+ T ¸ fn
¡¤

T The case where T is the current of integration over C¡n provides an
example where the inequality is strict
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3 Invariant measure

A formal construction suggests that pluripotential theory ought to yield an in-
variant measure for algebraically stable birational maps Since f+ is algebraically
stable if and only if f¡ is we can apply Theorem 2 3 to construct currents ¹+ and

¹¡ associated with f+ and f¡ respectively Then we set ¹ ¹+ ^ ¹¡ It seems

reasonable to expect that

f+¤¹ f+¤¹+ ^ f+¤¹¡ ¹+

d ^ d¹¡ ¹+ ^ ¹¡ ¹: 1

However for the same reason that one cannot always multiply a pair of distri-
butions together it is not generally possible to form the wedge product of two
currents Furthermore even if one can make sense of the wedge product it re-
mains to determine whether pushforward by f+ will distribute across the product
as is assumed in 1 Our goal in this section is to address these di±culties and
show that with a stronger hypothesis on f+ the construction of an invariant mea-
sure from ¹+ and ¹¡ succeeds

Bedford and Taylor see [BT] originated an integration by parts method for
taking the wedge product of positive closed currents with locally bounded poten-
tials If W ½ C2 is open u : W R is locally bounded and plurisubharmonic
and T is a positive closed 1; 1 current on W then the action of ddcu ^ T on a

test function ' is given by

hddcu ^ T;'i hT ; u ddc'i:
It turns out that this de¯nes ddcu ^ T as a positive measure This can be seen
from the following theorem of Bedford and Taylor see [BT]

Theorem 3 1 Suppose that uj ; vj : W R are decreasing sequences of smooth
plurisubharmonic functions converging pointwise to locally bounded plurisubhar-
monic functions u; v Then

lim
j 1

ddcuj ^ ddcvj ddcu ^ ddcv

weakly

Though examples indicate that the integration by parts construction cannot
be used to de¯ned the wedge product of arbitrary positive closed currents one

need not restrict oneself to positive closed currents with locally bounded poten-
tials Indeed Forn½ss and Sibony [FS2] have shown that the integration by parts

construction and Theorem 3 1 succeed when the unboundedness loci of u and v
do not coincide too much The precise condition they discovered is as follows Let
Mu denote the smallest closed set such that p 2 Mu implies that uj is bounded
on a neighborhood of p Let Mv be the corresponding set for v Then the wedge

product ddcu^ddcv is admissible provided that Mu \Mv lies in the pseudoconvex
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envelope of its complement in W In particular things go well if at any point in
W at least one of the functions u or v is locally bounded

De¯nition 3 2 We say that a birational map f+ : P2 P2 is separating if
I+ \ I¡ ;

In particular f+ is algebraically stable if it is separating The following theorem
is proved in greater generality in [Dil1]

Theorem 3 3 The Green function ~G
+ for a separating birational map is contin-

uous on ¼¡1 P2
n I+

In particular local potentials for ¹+ are bounded near any point in P2
n I+

Clearly P2
nI+ [ P2

nI¡ P2 for a separating birational map so we see from
the discussion above that the wedge product ¹ ¹+ ^¹¡ is admissible for such a
map In order to show that ¹ is also invariant we will need a couple of preliminary
lemmas We thank Eric Bedford for pointing these out to us and explaining their
proofs

Lemma 3 4 Suppose that u and v are plurisubharmonic functions de¯ned on the

unit polydisk ¢2 and that u is continuous Then ddcu ^ ddcv has no atoms

Proof It is enough to show that ddcu ^ ddcv attaches no mass to the origin
After subtracting o® a constant we can assume that u 0; 0 0 and set r
sup

jxj;jyj<r ju x; y j We choose a smooth compactly supported function Ã : ¢2

[0; 1] such that Ã 1 on ¢2 2 and we set Ãr x; y Ã x r; y r for r > 0 Let
µ ddc

k x; y k
2 Then since ddcu ^ ddcv is positive we have

ddcu ^ ddcv 0 · lim inf
r 0

Z
¢2

Ãr ddcu ^ ddcv

lim inf
r 0

Z
¢2

u ddcÃr ^ ddcv

lim inf
r 0 ku ddcÃrk1

Mr¢2 [ddcv]

· lim inf
r 0

C r
r2 Z

r¢2
µ ^ ddcv

But the last line is bounded above by O r because of a consequence of Jensen's
formula that we will use repeatedly in this paper see e g [Dem] Consequence 4 4 :

Fact 3 5 Suppose that T is a positive closed 1; 1 current de¯ned on a neighbor-
hood of 0 2 C2 Then

1

r2 Z
B0 r

T ^ µ
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is an increasing function of r

Since r tends to 0 with r we are done ¤

Lemma 3 6 Suppose that u and v are plurisubharmonic functions on the unit
polydisk ¢2 fjxj; jyj < 1g Assume that u is continuous and that its restriction
to the x axis is harmonic Assume that the restriction of v to the x axis is locally
integrable i e not identically ¡1 Then ddcu ^ ddcv concentrates no mass on
the x axis

Proof Since the conclusion is true if and only if it holds for every open subset of
the x-axis we can assume without loss of generality that the restriction of v to
the x-axis is negative and globally integrable By subtracting o® u x; 0 we can
assume that u x; y vanishes on the x axis To prove the lemma it will su±ce to
show that ddcu ^ ddcv places no mass on the disk D f x; 0 : jxj < 1 4g

Let Ã : ¢ [0; 1] be a smooth compactly supported function such that
Ã z 1 if jzj · 1 2 Let Ãr z Ã z r and let

r supfu x; y : jxj <
1

2
; jyj < rg:

Then

Z
D

ddcu ^ ddcv lim
r 0

Z
jxj<1 4

jyj<r
ddcu ^ ddcv

· lim
r 0

Z
jxj<1 2

jyj<2r
Ã2r y Ã1 2 x ddcu ^ ddcv

lim
r 0

Z
jxj<1 2

jyj<2r
u ddc[Ã2r y Ã1 2 x ] ^ ddcv: 2

We shall have to deal separately with each of the integrals that arises from ex-
panding

ddc[Ã2r y Ã1 2 x ] Ã1 2 x ddcÃ2r y + Ã2r ddcÃ1 2 x
+ dÃ2r y ^ dcÃ1 2 x + dÃ1 2 x ^ dcÃ2r y : 3

Consider the part of the integral corresponding to the ¯rst term in equation 3
In the following computation we take advantage repeatedly of the fact that Ã
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appears as a function of only one of the variables x and y

lim
r 0

Z

jxj<1 2

jyj<2r

uÃ1 2 x ddcÃ2r y ^ ddcv

· lim
r 0

r
r2 kddcÃk1 Z

jxj<1 2

jyj<2r

ddcv ^
dy ^ d¹y

2i

· lim
r 0

C r
r2 Z

jxj<1

jyj<4r

Ã4r y Ã x ddcv ^
dy ^ d¹y

2i

lim
r 0

C r
r2 Z

jxj<1

jyj<4r

vÃ4r y ddcÃ x ^
dy ^ d¹y

2i

· lim
r 0

C r
r2 Z

jxj<1

Z

jyj<4r
jv x; y j

dy ^ d¹y
2i ^

dx ^ d¹x
2i : 4

But for almost every x 2 ¢ we have that

lim
r 0

1

16¼r2 Z
jyj<4r jv x; y j

dy ^ d¹y
2i & jv x; 0 j:

Therefore we can invoke the Lebesgue dominated convergence theorem and the

fact that r 0 with r to conclude that the limit in 4 is zero This takes

care of the contribution to 2 from the ¯rst term on the right side of 3 The

contribution from the second term can be handled in a similar fashion
We can apply Schwarz's inequality to the contribution from the third term on

the right side of 3

lim
r 0

¯
¯
¯
¯
¯
¯
¯
¯

Z

jxj<1 2

jyj<2r

u dÃ2r y ^ dcÃ1 2 x ^ ddcv¯
¯
¯
¯
¯
¯
¯
¯

· lim
r 0

0
BB@

Z

jxj<1 2

jyj<2r

juj dÃ2r y ^ dcÃ2r y ^ ddcv1
CCA

1 2

£0
BB
@

Z

jxj<1 2

jyj<2r

juj dÃ1 2 x ^ dcÃ1 2 x ^ ddcv1
CCA

1 2

:

By the same reasoning employed for the ¯rst term we can show that each of the

integrals in the last line behaves like O r as r tends to zero In particular the
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contribution to 2 from the third term in 3 vanishes An identical argument
shows that the contribution from the fourth term vanishes as well ¤

Theorem 3 7 The measure ¹ ¹¡ ^ ¹+ for a separating birational map has no
atoms and puts no mass on C

+ or C¡
Proof As we noted above we can ¯nd a neighborhood U U p of any given
point p 2 P2 such that either ~G

+ or ~G¡ is continuous on ¼¡1 U Switching to
local coordinates we can assume that U ¢2 is the unit polydisk p 0; 0 and
¾ : ¢2 C3 is a holomorphic section Since ¹§ ddc

~G§ ± ¾ Lemma 3 4 shows

that p is not an atom for ¹
In particular ¹ places no mass on I+ and no mass on any singular point of C¡

To ¯nish the proof we need only show that ¹ places no mass on a neighborhood
of each regular point of C

+
n I+ and C¡ n I¡ Take a regular point p 2 C

+
n I+

for instance Let V be the irreducible component of C
+ containing p Since ~G¡ is

continuous near ¼¡1 I+ we have from Proposition 2 1 that ~G¡ is not identically
equal to ¡1 on V That is local potentials for ¹¡ are locally integrable on V On
the other hand f+ V is a point p¡ 2 I¡ and ~G

+ is continuous in a neighborhood
of p¡ We apply the formula ~G

+
± f+ deg f+ ~G

+ to conclude that ~G
+ is

continuous on a neighborhood of ¼¡1 V n I+ Therefore local potentials for ¹+
are continuous on a neighborhood of p Moreover let ¾ : U C3 be a section
de¯ned on a neighborhood of p Then the local potential ~G

+
± ¾ for ¹+ satis¯es

~G
+

± ¾ q
1

deg f+
~G
+

±
~f+ ± ¾ q

1

deg f+ ~G
+ ~p¡ + log j¸ q j

for all q 2 V \U some holomorphic function ¸ : V \U C¤ and some ~p¡ 2 C3

independent of q such that ¼ ~p¡ p¡ It follows that local potentials for ¹+
are harmonic on U \ V We can take U to be a small polydisk about p such that
V \U is identi¯ed with the x-axis Lemma 3 6 now applies to ¯nish the proof ¤

Proof of Theorem 1 1 Recall from Proposition 2 1 that f+ : P2
n C

+ P2
n C¡

is a biholomorphism Therefore if E ½ P2
n C¡ equation 1 holds rigorously We

need only consider further the case where E ½ C¡ By the previous theorem we

have that ¹ E 0 Furthermore under any reasonable de¯nition f¡1
+ E will

be a subset of C
+ Hence ¹ f¡1

+ E 0 too ¤

4 Mixing

A birational mapping f+ : P2 P2 is said to be mixing with respect to an
invariant measure ¹ if for any measurable subsets A; B ½ P2 we have

lim
n 1¹ fn

+
A \B ¹ A \ ¹ B :
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Bedford and Smillie [BS] showed that polynomial di®eomorphisms of P2 are mixing
with respect to the measure ¹ ¹+ ^ ¹¡ We now generalize their result to
separating birational maps The main idea of the proof appears in [BS] It is
however somewhat more delicate to make this idea succeed at the present level of
generality As at the end of Section 2 we let C

+
n denote the critical set of fn

+
Proof of Theorem 1 2 Since ¹ is a Borel measure it is enough see [KH] to show
that for any two smooth functions Ã;' : P2 C we have

lim
n 1

Z
P2 ' ¢ Ã ± fn

+
d¹ µZ

P2 ' d¹¶µZ
P2

Ã d¹¶ :

Even though Ã±fn
+

might be discontinuous at points in I+
n the ¯rst integral makes

sense because ¹ does not charge
C

+
n ¾ I+

n
Clearly we lose no generality by assuming that Ã and ' take values only in the

interval [0; 1] and that ' is supported in a coordinate polydisk D We can also
assume that D \ I¡ ; To see this note that because f+ is separating we can
write ' '+ + '¡ where supp'+ \ I¡ and supp'¡ \ I+ are empty Then by
invariance of ¹ we can write

Z
P2 ' ¢ Ã ± fn

+
d¹ Z

P2 '+
¢ Ã ± fn

+
d¹ + Z

P2
Ã ¢ '¡ ± fn

¡
d¹:

and deal with the ¯rst and second integrals separately The arguments that fol-
low address only the ¯rst integral but those needed for the second integral are

completely analogous

We choose a local potential g¡ for ¹¡ on a neighborhood of D in such a way
that g¡ vanishes at every z 2 I+

n \D this can be arranged since I+
n is ¯nite by

adding on an appropriate pluriharmonic function We let
¡ r maxfjg¡ z j : z 2 BI+

n r g;

and note that lim
r 0 ¡ r 0 by Theorem 3 3

We choose smooth functions Âj : P2 [0; 1] such that Âj vanishes in a neigh-
borhood of C

+
n and that supp 1 ¡ Âj decreases to C

+
n as j increases For su±-

ciently small r we choose smooth compactly supported functions ½r : D [0; 1]
as follows Let ½ : B0 1 [0; 1] be a smooth compactly supported and radially
symmetric function satisfying ½ ´ 1 on B0 1 2 Using local coordinates on D we

then set
½r z X

w2D\I+n

½ µ
z ¡ w

r ¶ :

In what follows we will repeatedly use the fact that if T is a positive closed
1; 1 current on P2 and ´ is a continuous function with absolute value less than

one everywhere then

jhT ; ´ ddc½rij; jhT ;´ d½r ^ dc½rij ·
C

r2 jhT ; ½2r µij;
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where µ ddc
jjzjj

2 is the local Euclidean KÄahler form on D and C depends on
½ but not on ´ or r

To prove Theorem 4 we need to know that

Lemma 4 1

Z
P2 ' ¢ Ã ± fn

+
d¹ lim

r 0 h¹+; g¡ 1¡ ½r ddc[' ¢ Ã ± fn
+

]i: 5

In particular the limit on the right side exists and is independent of ½

Assuming this lemma holds the proof of the theorem proceeds as follows We

expand

ddc[' ¢ Ã ± fn
+

] 'ddc Ã ± fn+
+ d' ^ dc Ã ± fn

+

+d Ã ± fn
+ ^ dc'+ Ã ± fn+

ddc';
6

and deal with the right side of 5 after distributing with respect to this decom-
position Taking advantage of invariance and the fact that ¹+ does not charge

algebraic curves we rewrite and bound

jh¹+; g¡ 1 ¡ ½r ' ddc Ã ± fn+ ij
lim
j 1

1

dn jhfn
¡¤¹+; Âjg¡ 1 ¡ ½r ' ddc Ã ± fn+ ij

lim
j 1

1

dn jhddcfn
¡¤

Ã¹+ ; Âj 1 ¡ ½r g¡'ij
· lim

j 1
M ·

1

dn ddcfn
¡¤

Ã¹+ ¸
°°

Âj 1 ¡ ½r g¡'
°°
1

· CM · 1

dn ddcfn
¡¤

Ã¹+ ¸

which by Theorem 2 5 vanishes uniformly in r as n increases The parts of 5
corresponding to the second and third terms on the right side of equation 6
vanish for similar reasons Therefore the only relevant term is the fourth one

which can be rewritten as

lim
r 0 h¹+; g¡ 1 ¡ ½r Ã ± fn

+
ddc'i

lim
r 0

lim
j 1

1

dn hfn
+¤¹+; Âjg¡ 1 ¡ ½r Ã ± fn

+
ddc'i

lim
r 0

lim
j 1

1

dn hfn
+¤

Ã¹+ ; Âjg¡ 1 ¡ ½r ddc'i
1

dn hfn
+¤

Ã¹+ ; g¡ ddc'i;
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since fn
+¤

Ã¹+ does not charge
C

+
n or I+

n We conclude that

lim
n 1

Z
P2 ' ¢ Ã ± fn

+
d¹ lim

n 1
1

dn hfn
+¤

Ã¹+ ; g¡ ddc'i
h¹+ ^ ¹¡; Ãih¹+; g¡ ddc'i
h¹; Ãih¹+ ^ ddcg¡;'i
Z Ã d¹ ¢ Z 'd¹;

as desired The second equality follows from Theorem 2 5 ¤

Proof of Lemma 4 1 By de¯nition of ¹ and Theorem 3 7 we have

Z
P2 ' ¢ Ã ± fn

+
d¹ lim

r 0
Z

P2
1 ¡ ½r ¢ ' ¢ Ã ± fn

+
d¹

lim
r 0 h¹+; g¡ ddc[ 1¡ ½r ¢ ' ¢ Ã ± fn

+
]i

lim
r 0 h¹+; g¡ 1 ¡ ½r ddc[' ¢ Ã ± fn

+
]i

¡ h¹+; g¡' ¢ Ã ± fn+
ddc½r i

+ h¹+; g¡ dc[' ¢ Ã ± fn+
] ^ d½ri

+ h¹+; g¡ dc½r ^ d[' ¢ Ã ± fn+
]i:

7

Our task is to show that the last three terms vanish with r The second term is
most easily eliminated

lim
r 0 jh¹+; g¡' ¢ Ã ± fn+

ddc½r ij · lim
r 0

C ¡ r h¹+; ½2rµi
r2

· lim
r 0

C ¡ r 0:

The third and fourth terms in 7 are equal so we deal only with the third We

break this term up further

jh¹+; g¡ dc ' ¢ Ã ± fn+ ^ d½rij · jh¹+; g¡ Ã ± fn
+

dc' ^ d½rij
+ jh¹+; g¡' dc Ã ± fn+ ^ d½rij:

8

To deal with the ¯rst term in this new decomposition we apply Schwarz's inequal-
ity

jh¹+; g¡ Ã ± fn+
dc' ^ d½rij

· jh¹+; g¡ Ã ± fn+
2 d½r ^ dc½rij1 2

jh¹+; d' ^ dc'ij1 2

· C ¡ r µ h¹+; ½2rµi
r2 ¶

1 2

· C ¡ r

which tends to zero with r It remains only to address the second term on the

right side of 8 We apply Schwarz's inequality again and take advantage of the
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fact that ¹+ does not charge curves to compute

jh¹+; g¡' dc Ã ± fn+ ^ d½rij
· jh¹+; 1¡ ½r 2 d Ã ± fn

+ ^ dc Ã ± fn
+ ij

1 2
jh¹+; g¡' 2 d½r ^ dc½rij1 2

· C ¡ r limj 1 jh¹+; Âj 1 ¡ ½r 2 d Ã ± fn
+ ^ dc Ã ± fn

+ ij
1 2

C ¡ r
dn 2

lim
j 1 jh¹+; Âj ± fn

¡
1 ¡ ½r 2 ± fn

¡
dÃ ^ dcÃij1 2

· C ¡ r
dn 2 :

Since the last quantity vanishes with r we are done ¤

Corollary 4 2 If f+ : P2 P2 is a separating birational map then either
supp¹ ½ I+ or ¹ I+ 0 In particular either ¹ I+ 0 or ¹ I¡ 0

Proof By the previous theorem f+ is ergodic with respect to ¹ By de¯nition
of I+ we have f+ I+ I+ modulo I+ which has measure zero Therefore

¹ I+ is either zero or one In the latter case we conclude from the fact that I+
is closed that supp¹ ½ I+ Finally I+ \ I¡ ; by hypothesis so at least one of
the two sets must have measure zero ¤

5 Log integrability of the derivative

In what follows see the introduction to Section 6 it will be crucial to know
that log+

kDf+k and log+
kDf¡k are ¹ integrable functions In order to establish

integrability we will prove a strengthened continuity result for the Green's function

~G
+

Fix a homogeneous map ~f+ inducing f+ Given p 2 P2 and ~p 2 ¼¡1 p note
that the quantity ¡ p log k

~f+ ~p k
k~pk

d depends on p but not on ~p Multiplying ~f+
by a constant if necessary we can assume ¡ · 0 on all of P2 It is not di±cult to
verify that

~G
+ ~p log k~pk + 1

Xn 0

¡ ± fn
+

p

dn : 9

Further signi¯cance of ¡ stems from the following propositions proved in [Dil1]

Proposition 5 1 There is a constant C such that for any p; q 2 P2
n I+

dist f+ p ; f+ q · Cemaxf¡¡ p ;¡¡ q gdist p; q ;

Proposition 5 2 There are constants C1; C2 depending only on f+ such that
C1 + C2 log dist p; I+ · ¡ p ;
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In particular ¡ is bounded below on any compact subset of P2
n I+

It follows see Lemma 6 4 in [Dil1] from Proposition 5 1 that there exists C > 0
such that for any p 2 P2 we have dist fn

+
p ; I+ ¸ Cn dist p; I+ : It follows from

Proposition 5 2 that

kd¡ p k °°°°°

dkf ~p k

k~pk
d °°°°°

e¡¡ p · C dist p; I+ ¡k ; 10

where the ¯rst two d's denote exterior di®erentiation We will make use of both
these observations to prove the following upper bound on the modulus of continuity
of the Green's function

Theorem 5 3 Fix a compact set K ½½ P2
n I+ Then there exist constants

r;k > 0 such that

¯
¯
¯
¯

~G
+ µ

~p

k~pk
¶¡ ~G

+ µ
~q

k~qk
¶

¯
¯
¯
¯

· ekpj log dist ¼ ~p ;¼ ~q j;

for every ~p; ~q 2 ¼¡1 K such that dist ¼ ~p ; ¼ ~q · r

Remark 5 4 Note that if the square root were absent from the exponential in
this theorem then the conclusion would be that the Green's function is HÄolder
continuous

Proof Let p ¼ ~p and q ¼ ~q denote the corresponding points in P2 Set
rn dist fn

+
p ;fn+

q and Rn dist fn
+ K ; I+ By the ¯rst observation in the

preceding paragraph we see that

Rn ¸ CnR0 11

for some constant C C f+ > 0 By 9 we have

j ~G
+ ~p ¡ ~G

+ ~q j · 1
Xn 0

j¡ ± fn
+

p ¡ ¡ ± fn
+

q j
dn Sinit + Stail; 12

where Sinit and Stail denote the ¯rst n0 and remaining terms respectively in the

sum The value of n0 will be determined in the course of our estimates below
For terms in Stail we employ the crude upper bound

j¡ ± fn
+

p ¡ ¡ ± fn
+

q j · maxf¡¡ ± fn
+

p ;¡¡ ± fn
+

q g

· C1 + nC2;

where C1; C2 > 0 are constants depending on f+ and K The second inequality
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follows from Proposition 5 2 and equation 11 Hence

Stail · 1Xn n0

C1 + nC2

dn

· Xn0·n·10

C1 + nC2

dn + 1

Xn¸maxfn0;10g

C1 + nC2

dn

·
C

dn0
+ 1

Xn¸maxfn0;10g

C

¸n0
;

where ¸ 10
11

and d > 1 We conclude that

Stail ·
C

¸n0
Ce¡kn0 ; 13

where C; k > 0 are constants depending only on f+ and K

Lemma 5 5 Suppose that rj < Rj for all j < n Then

rn · Cn2

r0;

where C > 0 depends only on K and f+ Moreover there exists a constant A
A f+; K such that rj < Rj for all j < Apj log r0j

Proof According to Proposition 5 1 we have

rn · Crn¡1

Rkn¡1 · ¢ ¢ ¢ ·
Cnr0

Rn¡1 : : : R0 k :

But equation 11 then gives

rn · Cn
1 r0

Cn n+1 2
2 Rkn

0 · Cn2
r0;

as desired The last part of the lemma follows inductively from the ¯rst via the

estimate
rj · Cj2

r0 · BjR0 · Rj ;
where we assume without loss of generality that C > 1 > B ¤

We now return to the proof of Theorem 5 3 estimating Sinit under the as-
sumption that n0 is no larger than Apj log r0j We also assume that r0 < R0

It then follows from Lemma 5 5 that rn < Rn for all n < n0 In particular the

geodesic segment ` joining fn
+

p to fn+
q will avoid I+ by a distance of at least

Rn 2 Thus by Lemma 5 5 and equation 11

j¡ ± fn
+

p ¡ ¡ ± fn
+

q j · max
t2` kd¡ t k rn · Crn µ

2

Rn
¶

k

· Cn2+1r0;
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for some C > 1 and all n < n0 We conclude that

Sinit
n0¡1

Xn 0

j¡ ± fn
+

p ¡ ¡ ± fn
+

q j
dn ·

n0¡1

Xn 0

Cn2+1r0

dn · Cn2
0
+1r0:

Now suppose in addition that r0 < 1 2 After possibly shrinking the constant A
in Lemma 5 5 and taking n0 to be the least integer larger than Apj log r0j we will
have Sinit < Cr1 2

0 From equation 13 we will further have Stail < e¡Bpj log r0j
For small r0 the larger of these bounds is the one for Stail Since r0 dist p; q

we are done ¤

Remark 5 6 The constants k and r0 in Theorem 5 3 depend on K i e on the

distance R0 from K to I+ It is entirely possible though somewhat messier to
keep track of this dependence throughout the proof of the theorem and obtain
estimates that are completely explicit in terms of R0

We are now ready for the

Proof of Theorem 1 3 It is enough to know that log+
kDf¡k is locally integrable

near each point in P2 Near points p 2 I+ log+
kDf¡k is continuous Since ¹ is

a Borel measure local integrability near p is automatic
It remains to verify local integrability near each point p in the ¯nite set I+

Without loss of generality we work in local coordinates z such that p corresponds

to z 0 It follows from Proposition 5 1 that

log+
kDf¡ z k · A log

1

kzk
+ B:

Therefore we need only show that log kzk is ¹ integrable in a ball B0 1 of radius

one about 0 We estimate this integral by dividing the ball into shells

Z
B0 1

log
1

kzk
¹ 1

Xj 0

Z
1

2j+1 <kzk< 1
2j

log
1

kzk
¹

· 1

Xj 0
j + 1 log 2 ¹ B0 2¡j :

14

Let µ be the Euclidean KÄahler form on B0 2 and choose a cuto® function
Ã : B0 2 [0; 1] That is Ã is smooth radially symmetric and compactly
supported on B0 2 and Ã ´ 1 on B0 1 We let Ãj z Ã 2jz noting that the

C2 norm of Ãj is 4j times that of Ã Since µ is a strongly positive form see [Kli]
we have a constant C > 0 such that jhT ; ½ ddcÃj ij < C4j hT ; j½j µi for any positive

closed 1; 1 current T and any continuous function ½

The map f+ is separating so we lose no generality by assuming that I+\B0 2

is empty Theorem 3 3 then implies that ¹+ has a continuous local potential on
B0 2 That is we choose a section ¾ : B0 2 ½ P2 C3

n f0g of the canonical
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projection ¼ and de¯ne the local potential g+ z ~G
+

± ¾ z ¡ ~G
+

± ¾ 0 Again
without losing generality we assume that the C1 norm of log k¾k is uniformly
bounded This combined with Theorem 5 3 gives us for each kzk < r · 2 that

jg
+ z j j ~G

+
± ¾ z ¡ ~G

+
± ¾ 0 j

· ¯
¯
¯
¯

~G
+ µ

¾ z

k¾ z k
¶¡ ~G

+ µ
¾ 0

k¾ 0 k
¶

¯
¯
¯
¯

+
¯
¯
¯
¯

log k¾ z k
k¾ 0 k ¯

¯
¯
¯· e¡kpj log rj + Cr · e¡kpj log rj:

The ¯rst inequality follows from item 1 in Theorem 2 3 The integration by parts

de¯nition of ¹ allows us to compute

¹ B0 2¡j · Z
B0 1

Ãj ¹+ ^ ¹¡
Z

B0 1
g+ ddcÃj ^ ¹¡

· C kÃjkC2 sup
B0 2¡j+1 jg

+
j Z

B0 2¡j+1
µ ^ ¹¡

· Ce¡kpj 1

4¡j Z
B0 2¡j+1

µ ^ ¹¡:

· Ce¡kpj ;

for all j > 0 the last inequality comes from Fact 3 5 Inserting this estimate into
14 we obtain

Z
B0 1

log
1

kzk
¹ · 1

Xj 0

Cje¡kpj :

One can see that the last sum converges by comparing its terms with j¡2 for j
large This completes the proof ¤

Corollary 5 7 If f+ is separating then the functions log+

°°

Df¡1

§
°°

are also in-
tegrable

Proof Since ¹ is invariant and Df¡1
+ ±f+ Df¡ at ¹ almost every point we have

Z
P2

log+

°°

Df¡1
+

°°

¹ Z
P2

log+

°°

Df¡1
+ ± f+

°°

f¡¤¹ Z
P2

log+
kDf¡k ¹ < 1:

¤

6 Lyapunov exponents and Lyapunov charts

Since the quantities log+

°°

Df§1
+

°°

are ¹ integrable we can apply the well-known
see the supplemental section in [KH] multiplicative ergodic theorem of Oseledec
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Taking into account the fact that our invariant measure is mixing we immediately
deduce the following from Oseledec's Theorem

Theorem 6 1 Suppose that f+ : P2 P2 is a separating birational map There
exist numbers Â¡ · Â+ such that at ¹ almost every point p 2 P2

Â+ lim
n 1

1

n
log

°°

Dfn
+

p

°°

; Â¡ ¡ lim
n 1

1

n
log

°°

Dfn

¡
p

°°

:

If Â¡ Â+ then

Â+ Â¡ § lim
n 1

1

n
log

°°

Dfn
§

p ¢ v

°°for almost every point p 2 P2 and any non-zero vector v 2 TpP2 If Â+ > Â¡ then
there exists a measurably varying f+ invariant decomposition TpP2 Es

© Eu at
¹ almost every point of P2 Moreover if v 2 Es

n f0g then

Â¡ lim
n 1

1

n
log

°°

Dfn
+

p ¢ v

°°
¡ lim

n 1
1

n
log

°°

Dfn

¡
p ¢ v

°°

;

and similarly for v 2 Eu
n f0g and Â+ Finally the sine of the angle between Es

and Eu is \tempered" in the sense that

lim
n 1

1

n
log sin\ Es

fn
§

p ; Eu
fn
§

p 0

at almost every point p

The numbers Â+ and Â¡ are called the Lyapunov exponents of f+ with respect
to ¹ The theory of non-uniform hyperbolicity see [KH] for an introduction and
further references; I also learned a great deal from Briend's thesis [Bri] which con-
tains a nice general exposition of these topics in a context similar to ours was

developed by Pesin and others in order to explore the way in which Lyapunov
exponents in°uence the dynamics of a map This theory begins with [KH] Theo-
rem S 2 10 the fact that one can make a tempered measurably varying choice of
coordinates on tangent spaces Tp so that Dpf+ has Lyapunov block form That is
in these coordinates Dpf+ acts up to an error factor of e² like a diagonal matrix
with entries of absolute value eÂ+

; eÂ¡ Moreover in the sense speci¯ed by the

following result [KH] Theorem S 3 1 the in¯nitesimal choice of coordinates on
Tp can be used to select advantageous local coordinates on a neighborhood of p

Theorem 6 2 Suppose f+ : P2 P2 is a separating birational map and let
Â+; Â¡; Es; Eu be as above For any ² > 0 there exists a set ¤ ½ supp¹ of full
measure a tempered function ± : ¤ 0; 1] and a collection of holomorphic
embeddings Ãp : B0 ± p P2 such that

1 Ãp 0 p;
2 ± is ²-slowly varying{i e e¡² < ± f+ p ± p < e² for every p 2 ¤;
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3 There exists a constant K > 0 and a measurable ²-slowly varying function
A : ¤ R+ such that

K¡1dist Ãp x ; Ãp y < kx¡ yk < A p dist Ãp x ; Ãp y :

4 If fp Ã¡1
f+ p ± f+ ± Ãp then fp and D0fp are ² close in the C1 distance

on B0 ± p ;
5 D0fp has Lyapunov block form

We will call the maps Ãp Lyapunov charts and the points p 2 ¤ regular Since

¤ is of full measure we can and will assume that p 2 ¤ implies that fn p 2 ¤
for all n 2 Z The proof of Theorem 6 2 is given for C1+® di®eomorphisms in
[KH] and it applies almost directly to the case of separating birational maps

The only additional technicality in our setting is that the C2 norm of f+ becomes

unbounded near points of indeterminacy This a®ects the de¯nition of ± and in
particular the conclusion that we can choose a slowly varying ± However one

can show that the log of the C2 norm of f+ is integrable in the same way that
we proved integrability of log kDf+k in the previous section Further inspection
of the proof in [KH] reveals that this integrability su±ces to overcome the extra
di±culty

Corollary 6 3 The Lyapunov exponents for a separating birational map f+ sat-
isfy Â¡ · 0 · Â+:

Proof Suppose that both exponents are negative and apply Theorem 6 2 with
² << jÂ+j Consider a Lyapunov chart Ãp : B0 ± p P2 about a point p 2 ¤
Then fp maps B0 ± p into B0 ± f+ p contracting by a factor of at least
eÂ++² Likewise ff+ p ff2

+
p

etc will further contract images of the ball by the

same factor so that successive images will eventually decrease to f0g By item 3
of Theorem 6 2 we conclude that the radius of fn

+
ÃpB0 ± p tends to zero as n

increases In particular iterates of f+ form a normal family in a neighborhood of
p This implies see [Dil1] that p 2 supp¹+ and therefore that p 2 ¤ ½ supp¹

¤

7 Lower estimate for Lyapunov exponents

The goal of this section is to prove Theorem 1 4 Before we start we state an
immediate consequence of Theorem 1 4 and Corollary 4 2

Corollary 7 1 The measure ¹ associated with a separating birational map has at
least one non-zero Lyapunov exponent Moreover either ¹ is a hyperbolic measure
i e neither exponent vanishes or supp¹ ½ I+ [ I¡
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For purposes of this section and the next we ¯x some notation Given an
² > 0 we apply Theorem 6 2 to f+ Let t be a number between 0 and 1 Since the

resulting Lyapunov charts vary measurably we can ¯nd compact subsets ¤t ½ ¤
of measure 1¡t such that ¹ ¤t > 1¡t and the Lyapunov charts vary continuously
on ¤t in the C1 topology In particular the function ± admits a positive lower
bound ±t on ¤t and the function A admits an upper bound At

In proving Theorem 1 4 we take t 1 2 The set I+ is ¹ negligible by
hypothesis and closed by de¯nition so we can certainly assume that ¤1 2 is disjoint
from I+ By shrinking ± if necessary we can further arrange that dist ¤1 2; I+ >
2K±1 2 This and Theorem 6 2 guarantees that the image Ãp B0 ±1 2 of the

Pesin chart about each p 2 ¤1 2 avoids I+ by a positive distance independent of
p We proceed in a series of lemmas

Lemma 7 2 There exists a constant C and for each p 2 ¤1 2 a local potential g+
p

for ¹+ on Ãp B0 ±1 2 such that

°°

g+
p

°°
1 < C

Proof By construction of ¤1 2 and Theorem 3 3 the Green's function ~G
+ is uni-

formly continuous over the set
Sp2¤1 2

Ãp B0 ±1 2 Fix p 2 ¤1 2 and choose a

section ¾ : Ãp B0 ±1 2 C3
n f0g such that k¾ p k 1 and the image of ¾

is contained in the complex hyperplane tangent to the unit sphere at ¾ p |e g

if ¾ p 0; 0; 1 then the ¯rst two components of ¾ give a±ne coordinates on
Ãp B0 ±1 2 Because the images of the Lyapunov charts are uniformly small the

image of ¾ is also contained in a spherical shell f1 · k~pk · Cg for some constant
C independent of p The proof is concluded by taking g+

p ~G
+

± ¾ ¤

Since f+ can be conjugated near any point in ¤1 2 to within ² of a non-singular
matrix we see that fn

+ I¡ \ ¤1 2 ; for every n In particular the sets Sn
fn

¡
¤1 2 \ ¤1 2 are well-de¯ned and compact for every n 2 N

Lemma 7 3 There exist constants C; N > 0 such that for every n ¸ N :
1 ¹ Sn > 1 8;
2 for every r < ±1 2 and any n > N there exists points p1; : : : ; pk 2 Sn such

that k < C r4 and Sn ½ S
k
j 1 Ãpj B0 r

Proof The ¯rst assertion follows from the fact that ¹ is mixing for f¡ Given
r < ±1 2 consider the collection of open sets of the form Ãp B0 r where p is
any point in Sn By Theorem 6 2 each of these open sets contains a round ball
Bp r A1 2 Since Sn is compact we can choose ¯nitely many points p1; : : : ; pk
so that the balls Bp r 5A1 2 centered at these points cover Sn Moreover by
a well-known argument see the proof in 1 6 of [Ste] we can discard some of
these balls i e re-index and shrink k so that the remaining balls are mutually
disjoint but that when we expand their radii by a factor of ¯ve the expanded balls
Bpj r A1 2 again cover Sn The former disjointness property guarantees that
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k < C r4 for some absolute constant C determined by the volume of P2 The

latter property guarantees that Sn ½ S
k
j 1 Ãpj B0 r as desired ¤

To continue the proof of Theorem 1 4 we ¯x a point p 2 Sn and consider the

map fn
p : B0 ±1 2 B0 ±1 2 de¯ned as a composition

fn
p ffn¡1

+ p ± : : : fp

of maps speci¯ed in Theorem 6 2 This map is of course not de¯ned everywhere

on B0 ±1 2 However if Â+ is the largest Lyapunov exponent of f+ then Theorem

6 2 guarantees that fn
p z 2 B0 ±1 2 whenever jjzjj · rn

def 1¡² ne¡n Â++² ±1 2
Capitalizing on this observation we set

Bn;p Ãp B0 rn 2KA1 2

and try to estimate ¹ Bn;p

Lemma 7 4 There exists a constant C independent of p and n and a local poten-
tial g+ for ¹+ on Bp rn A1 2 such that kg+

k1 < C dn

Proof It follows from Theorem 6 2 that Bp rn A1 2 ½ Ãp B0 rn Hence from
the discussion above we have that fn

+
Bp rn A1 2 ½ Ãfn+ p B0 ±1 2 More-

over fn
+

p 2 Sn by de¯nition Thus we can use the potentials given by Lemma
7 2 to de¯ne a potential g+

fn+ p ± fn
+

for fn¤+ ¹+ dn¹+ on Bp rn A1 2 This
potential is uniformly bounded above independent of p and n so we can divide

by dn to obtain the desired potential g+ for ¹+ ¤

Lemma 7 5 Let £ be the Fubini{Study KÄahler form on P2 There is a constant
C such that for every p 2 P2 and r > 0

1

r2 Z
Bp r

£ ^ ¹¡ < C:

Proof If we work in a±ne coordinates centered at p 2 P2 and replace the Fubini{
Study KÄahler form with the Euclidean KÄahler form then the left side of the desired
inequality is an increasing function of r Fact 3 5 Moreover the Euclidean and
Fubini{Study KÄahler forms are strongly positive forms that are comparable near
the origin so if r0 > 0 is small enough there is a constant C C r0 independent
of p such that for all r < r0

1

r2 Z
Bp r

£ ^ ¹¡ ·
C

r2
0

Z
Bp r0

£ ^ ¹¡:

On the other hand we have the trivial bound

1

r2 Z
Bp r

£ ^ ¹¡ <
1

r2
0

Z
P2

£ ^ ¹¡
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for all r ¸ r0 ¤

Let ´n : B0 rn A [0; 1] be a sequence of smooth compactly supported
functions identically equal to one on B0 rn 2A1 2 From the de¯nition of Bn;p
and Theorem 6 2 we have that ´n ´ 1 on Bn;p Clearly we can arrange that
ddc´n · C£ r2

n
Let g+ be the local potential given by Lemma 7 4 We estimate

¹ Bn;p Z
Bn;p

¹+ ^ ¹¡ · Z
P2

´n ddcg+ ^ ¹¡

Z
P2

g+ ddc´n ^ ¹¡ ·
C kg+

k1r2
n

Z
Bp rn A1 2

£ ^ ¹¡

· C dn;

where the constant C is independent of p 2 Sn and n The second equality is
just the de¯nition of wedge product of positive closed 1; 1 currents The last
inequality follows from the previous two lemmas

To complete the proof of Theorem 1 4 we observe that Bn;p ¾ Bp rn 2KA21 2

Therefore we can apply Lemma 7 3 to choose points p1; : : : ; pk 2 ¤0
n with k < C r4nsuch that

¹µ
k

[j 1
Bn;pj¶ >

1

8
;

where C1 and C2 are independent of n From these last equations and our upper
bound for ¹ Bn;p we conclude that

1

8 < Xj ¹ Bn;pj ·
C

r4
n

dn

for every n Letting n 1 and expanding rn gives

Â+ ¸
log d

4 1¡ ² ¡ ²:

Since ² > 0 is arbitrary Theorem 1 4 is proved ¤

8 Periodic points

If ¹ I+ ¹ I¡ 0 then it follows from Theorem 1 4 that ¹ has one positive

and one negative Lyapunov exponent Under these conditions we will now show
that saddle periodic points are dense in supp¹ proving Theorem 1 5 We reuse

the notation ²; ¤; ¤t; ±t; At from the previous section
The ¯rst step of the proof consists in showing that any point in supp¹ can be

approximated by nearly periodic regular points
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Lemma 8 1 Given p 2 supp¹ and ²1 > 0 there exists t > 0 such that for any
²2 > 0 there exists q 2 ¤t and n 2 N such that

² dist p; q < ²1

² fn+
q 2 Ãq B0 ²2 \¤t

Proof If t is small enough the set Bp ²1 2 \ ¤t has positive measure That is
there exists p0 2 ¤t such that Bp0 r \ ¤t has positive ¹ mass and is contained
in Bp ²1 2 for all r > 0 small enough Since ¹ is mixing we can for any such

r ¯nd n 2 N and q 2 Bp0 r \ ¤t such that fn
+

q 2 Bp0 r \ ¤t as well Hence

if r satis¯es 2Atr < ±t we have fn
+

q 2 Bq 2r ½ Ãq B0 2A q r Taking

r minf²1 4; ²2 2; ±t 2Atg therefore ¯nishes the proof ¤

Now apply this lemma with ²2 << ²1; ² We will complete the proof of The-
orem 1 5 by exhibiting a saddle periodic point of period n whose orbit intersects

Ãq B0 C²2 The approach is similar to the proof of the closing lemma for hy-
perbolic maps Theorem 6 4 15 given in [KH] but there is an extra complication
due to the fact that the Lyapunov charts can degenerate along the orbit of q In
particular our method would not su±ce to prove a general closing lemma for f+;
it is important that the pseudo-orbit q; f+ q ;f2+

q ; : : : ; fn¡1
+ q ; q be an actual

orbit except at the last step
For each j 1; : : : ; n¡ 1 we set fj ffj¡1

+ q
wherever the righthand side is

de¯ned|in particular on Uj B0 e¡ Â++² ± f j¡1
+ q Similarly we take

fn Ã¡1
q ± f+ ± Ãfn¡1

+ q Ã¡1
q ± Ãfn+ q ± ffn¡1

+ q ;

which for ²2 small enough is de¯ned on an open subset of C2 containing Un
B0 e¡ Â++2² ± fj¡1

+ q : We have for 0 · j · n that
kfj ¡D0fjkC1 < 2²:

Additionally if j < n then fj 0 0 and in the remaining case it is at least true

that kfn 0 k < ²2

If U U1 £ ¢ ¢ ¢ £ Un then ¯xed points of the map

F x1; : : : ; xn
def fn xn ; f1 x1 ; : : : ; fn¡1 xn¡1

from U into C2n correspond to periodic orbits Ãq x1 ; : : : ; Ãfn¡1 q xn of f+ To

¯nd a ¯xed point we write F D0F + E where E 0 fn 0 ; 0; : : : ;0 and
in the product norm this is essential since we have no control on the size of n
on C2n C2 n we have jjEjjC1 < 2² Moreover the linear operator D0F is a
shifted product of the D0fj 's so

°°

D0F ¡ I ¡1

°°

is bounded above by a constant
depending only on the minimal distance from the Lyapunov exponents of ¹ to
zero

A point is ¯xed by F if and only if it is ¯xed by S def DF0 ¡ I ¡1
± E

Moreover the above observations show that S contracts the product metric by
a factor of 2C² where again C depends only on the Lyapunov exponents of
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¹ We claim that S U ½ U for ² and ²2 taken small enough to invoke the

proof of the contraction mapping theorem To see this let Sj denote the jth
component of S It is possible that the radius of Uj might decay as j increases

from 1 to n Nevertheless slow variation of ± ensures that the radius of Uj+1

is at least 1 ¡ ² times that of Uj Therefore since xj 2 Uj for j < n we see

that kSj+1 xj k kSj+1 xj ¡ Sj+1 0 k 2C² kxjk so that Sj+1 xj 2 Uj+1
Moreover continuity of ± on ¤t allows us to assume by shrinking ²2 that the radii of
Un and U1 are nearly equal Hence xn 2 Un implies that kfn xn k · ²2 +2C² kxnk
so that S1 xn 2 U1 too Our claim is therefore justi¯ed

Thus

kSn 0 k ·
n

Xj 1 °°

Sj 0 ¡ Sj¡1 0

°°
· kS 0 k

n¡1

Xj 0

2C² j · 2²2

for ² small enough In particular X limn 1 Sn 0 exists is a ¯xed point of
F and lies within distance 2²2 of the origin The image q0 Ã1 x1 of the ¯rst
coordinate of X is a periodic point of period dividing n close to q Since its orbit
is contained in the Lyapunov charts about q; : : : ; fn¡1 q we see easily that the

largest and smallest eigenvalues of Dq0fn have magnitudes approximately enÂ+

and enÂ¡ respectively so that q0 is also a saddle point This concludes the proof
of Theorem 1 5
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