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Geometric lattice actions entropy and fundamental groups

David Fisher1 and Robert J Zimmer2

Abstract Let ¡ be a lattice in a noncompact simple Lie Group G where R ¡ rank G ¸ 2
Suppose ¡ acts analytically and ergodically on a compact manifold M preserving a unimodular
rigid geometric structure e g a connection and a volume We show that either the ¡ action is
isometric or there exists a \large image" linear representation ¾ of ¼1 M Under an additional
assumption on the dynamics of the action we associate to ¾ a virtual arithmetic quotient of full
entropy
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1 Introduction

Suppose G is a noncompact simple Lie group and G acts analytically on a com-
pact manifold M preserving a unimodular rigid geometric structure for example
either a connection and a volume form or a pseudo-Riemannian metric As-
suming the action is ergodic Gromov [G] constructed a linear representation
¾ : ¼1 M GLn R such that the Zariski closure of ¾

¡¼1 M
¢

contains a group
locally isomorphic to G One cannot hope for an analogous result for lattices in all
semi-simple groups since lattices in rank 1 groups often admit homomorphisms to
Z and many counterexamples can be constructed for Z actions In addition even
for lattices in higher rank simple groups there exist isometric actions on mani-
folds with ¯nite fundamental group Here we prove a form of Gromov's theorem
for lattices which shows that for actions of higher rank lattices either the action
is isometric or there exists a representation like Gromov's More precisely:

Theorem 1 1 Let ¡ < G be a lattice where G is a simple group and R ¡rank G ¸ 2 Suppose ¡ acts analytically and ergodically on a compact manifold
M preserving a unimodular rigid geometric structure Then either

1Partially supported by NSF grant DMS-9902411
2Partially supported by NSF grant
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i the action is isometric and M K C where K is a compact Lie group and
the action is by right translation via ½ : ¡ K a dense image homomorphism or

ii there exists an in¯nite image linear representation ¾ : ¼1 M GLnR
such that the algebraic automorphism group of the Zariski closure of ¾

¡
¼1 M

¢
contains a group locally isomorphic to G

To prove the theorem one ¯rst applies Gromov's result to the induced G action
on G£M ¡ to obtain a linear representation ¾ of ¤ ¼1¡ G£M ¡¢

However
¼1 M is a normal subgroup of ¤ and in fact if ¼1 G is trivial we have a short
exact sequence:

1 ¡ ¼1 M ¡ ¤ ¡ ¡ ¡ 1:

To show that the restriction of ¾ to ¼1 M is trivial only when the ¡ action is
isometric we use the techniques of [Z5] to compare the entropy of the G action on
G £ M ¡ with the image ¾ ¤ If G is not simply connected let ¼ : ~G G be

the universal cover and ~¡ ¡ the pre-image of ¡ under the covering map ¼ The

exact sequence above now holds with ~¡ in place of ¡ By viewing the ¡ action as

a ~¡ action via the homomorphism ~¡ ¡ we can always assume that our lattice

¡ is a lattice in a simply connected group G ~G We will make this assumption
throughout this paper

There is one earlier result along these lines for lattice actions In [Z3] the

second author shows that under the assumptions of Theorem 1 1 if we assume

¼1 M is trivial then the action is isometric As a corollary we obtain the follow-
ing generalization of this fact:

Corollary 1 2 Let ¡ act on M as in Theorem 1 1 Further assume there are
no in¯nite image linear representation of ¼1 M Then the ¡ action on M is
isometric and ¼1 M is ¯nite

An ergodic action of G on M is said to be engaging if any lift of the action
to a ¯nite cover of M is still ergodic In [LZ] given an engaging action on M of
a simple group G R ¡ rank G ¸ 2 the authors associate a virtual arithmetic
quotient to any linear representation of ¼1 M Using the explicit construction
of Gromov's representation ¾ the second author has shown that for G actions

which are analytic and preserve a rigid geometric structure the associated virtual
arithmetic quotient has the same entropy as the original G action [Z5] Using the

results of [F] we prove the following analogous result here:

Theorem 1 3 Assume ¡ acts on M as in Theorem 1 1 Further assume the

action is engaging Then either
i The ¡ action is isometric and is described as in Theorem 1 1 or
ii For some ¯nite index subgroup ¡0 < ¡ and some ¯nite cover M 0 of M

there is a measurable ¡0 equivariant map ' : M 0 KnL LZ: If h¡ is the entropy
function of the relevant ¡ action we have hM ° hKnL LZ ° for all ° 2 ¡0
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Here the ¡0 action on KnL LZ is a generalized a±ne action

We recall that an a±ne di®eomorphism f of a homogeneous space A B is
simply one that is covered by a di®eomorphism ~f of A where ~f is the composition
of a group automorphism L and left translation by an element of A For this to
make sense it is clear that L B B A group action on a homogeneous space is
said to be a±ne if every element in the group acts by an a±ne di®eomorphism The

generalized a±ne action of Theorem 1 3 refers to the fact that we are not acting
on a homogeneous space Instead the action is on a quotient of the homogeneous

space by a compact group of a±ne di®eomorphisms via di®eomorphisms covered
by a±ne di®eomorphisms of the homogeneous space More precisely:

De¯nition 1 4 Let A B be a homogeneous space and D and F two commuting
groups of a±ne di®eomorphisms of A B with D compact The we call the F
action on DnA B a generalized a±ne action

The proof of Theorem 1 3 gives a more detailed description of the action The

action is shown to be arithmetic in the sense of De¯nition 3 2 of [F] That any
generalized a±ne action of a lattice in a higher rank simple group is arithmetic
is also a straightforward exercise from Margulis' superrigidity theorem and the

structure theory of algebraic groups

Note that two frequently studied examples of generalized a±ne actions of higher
rank lattices are actions by left translations on homogeneous spaces and a±ne

actions on nilmanifolds In the latter case the a±ne di®eomorphisms considered
generally have no translational part at least on a subgroup of ¯nite index In
general one can construct actions that fall into neither of these two categories i e

a±ne actions where group elements act by compositions of non-trivial translations

and non-trivial automorphisms

We now sketch the proof of Theorem 1:1 For ease of exposition we assume

that ¤ ¼1¡ G £ M ¡¢ ¡n¼1 M i e that the extension above is split In
order to apply Gromov's result to the G action on G£M ¡ we need to produce

a rigid geometric structure invariant under this action This will be locally a
product of the given structure on M with the natural pseudo-Riemannian structure

along the G orbits given by the Killing form on g In fact there does not seem to
be a de¯nition in the literature of a product of geometric structures in the sense

of Gromov or a proof that a product of rigid structures is rigid In the case of
Cartan's geometric structures of ¯nite type this is classical and we will give the

analogous de¯nitions and proofs for the more general setting in Section 3

An important property of this particular geometric structure on G£M ¡
is that we can explicitly identify a Lie algebra g of local Killing ¯elds of the

structure commuting with the G action These come from lifting the structure

to a structure ~ on the universal cover G£ ~M
and then di®erentiating the right G

action on G which preserves the structure by construction
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Gromov's representation ¾ is constructed on all Killing ¯elds V of ~ commuting
with the lift of the G action Ideally one would like to be able to say that V splits

as the sum of g above and a collection of Killing ¯elds W tangent to the M
¯bers in G£M ¡ This would immediately give a representation of ¼1 M on
W Regrettably it is not clear how to construct such Killing ¯elds in a natural
way that would allow one to show that this representation is non-trivial and
one must approach the problem indirectly It follows from the structure of the

¼1¡ G£M ¡¢
action on G£ ~M

as described in [F] that ¾ ¼1 M acts trivially
on the Lie algebra g of Killing ¯elds constructed above and that ¾ ¡ acts via the

adjoint representation of G What remains to be shown is that if ¾ ¼1 M is not
in¯nite then the action is isometric

To do this we compare the entropies of various actions and representations

First in Section 2 we observe that the entropy of the induced action is the sum
of the entropy of the ¡ action on M and the entropy of the G action on G ¡
This is precisely true if we induce and then restrict to the ¡ action A stronger

statement will be made precise in Section 2

From this it follows that if the entropy of the induced action equals the entropy
of the G action on G ¡ the ¡ action must have zero entropy An adaptation of
standard arguments then shows that actions preserving a rigid geometric structure

and having zero entropy are isometric
To complete the proof we show that unless the ¾ ¼1 M has large Zariski

closure the entropy of the induced action is indeed equal to the entropy of the

G action on G ¡ This is done using an estimate from [Z5] Gromov has shown
that the Lie algebra l of the Zariski closure of ¾ ¼1¡ G £ M ¡¢

has a natural
structure as a G module In [Z5] the second author shows that the entropy of this
module is an upper bound on the entropy of the G action The notion of entropy
of a module is made precise in Section 4 The Lie algebra of the Zariski closure

of ¾ ¼1 M is a G submodule of l If the entropy of this submodule is zero then
the entire entropy of l comes from the Lie algebra of the Zariski closure of ¾ ¡
An explicit analysis of the construction of Gromov's representation shows that the

entropy of this module is equal to the entropy of the G action on G ¡ This analysis
uses the existence of our explicitly constructed Lie algebra g of Killing ¯elds along

the G orbits in G£M ¡ This shows that the Lie algebra of the Zariski closure

of ¾ ¼1 M is a non-trivial G module unless the ¡ action is isometric and we are

done

To prove Theorem 1:3 we use a similar analysis of Gromov's representation
for induced actions to adapt the arguments of [F] and [Z5] to the present setting
We ¯rst show that the induced action has a full entropy quotient and then use

techniques of [F] to show that this quotient has the structure of an induced action
The techniques of [F] produce an arithmetic quotient Y of the ¡ action and show
that the quotient for the induced action on G£M ¡ is actually the induced
action on G£Y ¡ Theorem 2 3 then tells us that the ¡ entropy on Y must
equal the ¡ entropy on M
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2 Computing entropy

In this section we discuss the computation of entropy for actions of lattices and
the relation to the entropy of the induced action The basic tool is the use of
superrigidity to linearize the derivative cocycle Let P M be a principal H
bundle where H is a connected real algebraic group Assume a group G acts on
P by automorphisms preserving a ¯nite measure on M Let ¾ : G H be a
homomorphism We say that a measurable section s : M P is ¾-simple if there

exists a cocycle c : M £ G K where K < ZH ¾ G is compact and

s gm gs m ¾ g ¡1c m; g

for all g 2 G and almost all m 2 M Let G be a simple Lie group R¡ rank G ¸2 let M be a compact space and assume the G action on M is ergodic and
continuous Superrigidity for cocycles implies that there exists a ¯nite ergodic
extension X M so that for the action on P 0 the pullback of P to X there

exists a representation ¾ : G H and a ¾-simple section s In fact we need not
assume that M is compact but only that the cocycle de¯ned by the G action on P is
quasi-integrable a boundedness condition that will hold in all situations of interest
here see [Z6] for details We will refer to ¾ as the superrigidity representation If
¡ < G is a lattice and we have an action of ¡ on P which is ergodic on M with no

G action then we have a very similar conclusion Either for some ¯nite ergodic
extension there is a linear representation ¾ : G H and a ¾-simple section or the

algebraic hull of the ¡ action on P is compact Here again we require either M
compact or the cocycle de¯ned by the ¡ action quasi-integrable

Applying superrigidity to the derivative action on the frame bundle we can
compute the entropy directly via Pesin's formula as in the following two theorems

from [Z1]:

Theorem 2 1 Suppose G is a simple Lie group with R¡rank G ¸ 2 Suppose G
acts ergodically on a manifold M by di®eomorphisms preserving a C2 volume form
such that the volume of M is ¯nite Further assume that the derivative cocycle is
quasi-integrable For each g 2 G let h g be the entropy Let ¾ : G SLnR be the

superrigidity representation for the action on the frame bundle of M n dim M
Then h g § log+

k¸k where ¸ runs over all eigenvalues of ¾ g

Theorem 2 2 Suppose ¡ < G is a lattice G as above Suppose ¡ acts ergodically
by di®eomorphisms on a compact manifold M preserving a C2 volume form For
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each ° 2 ¡ let h ° be the entropy Let ¾ : G SLnR be the superrigidity
representation for the action on the frame bundle of M n dim M Then h °
§ log+

k¸k where ¸ runs over all eigenvalues of ¾ ° or the algebraic hull of the

derivative cocycle is compact and h ° 0 for all ° 2 ¡
The proof of this is essentially in [Z1] though there M is always assumed to

be compact in Theorem 2 1 Compactness is used to be able to apply Pesin's
formula which is often only stated for actions on compact manifolds but which
holds whenever the action preserves a ¯nite volume and the derivative cocycle
is quasi-integrable [P1 P2] We apply Theorem 2 1 to the derivative cocycle of
the G action on G £ M ¡ Though G £ M ¡ is not compact when ¡ is not
cocompact the derivative cocycle is still quasi-integrable by the results in [L] if G
is algebraic and by results in Section 7 of [F] if G is not algebraic

Suppose ¡ acts on M by C2 di®eomorphisms preserving volume The induced
G action on G £ M ¡ is also C2 and volume preserving and the G action
clearly preserves the decomposition T ¡ G £ M ¡¢

T G £ TM where T G is
the tangent space to the G orbits and the direct product is given by the fact that
G £ M ¡ is a °at ¯ber bundle over G ¡ with ¯ber M i e locally a product

of G ¡ with M Let hM hG ¡ and h G£M ¡ be the entropy functions for the

actions of ¡ on M and G on G ¡ and G £ M ¡ respectively Note that since

hM is given as in Theorem 2 2 hM is de¯ned for all g 2 G even though we only
have an action of ¡ By showing that the superrigidity representation preserves

the direct sum decomposition of T ¡ G £ M ¡¢
we prove the following formula:

Theorem 2 3 h G£M ¡ ° hG ¡ ° + hM °

Proof Since the G action preserves the splitting T ¡ G £ M ¡¢
T G £ TM

we can view the derivative cocycle as taking values in the bundle P G £ P M
of frames respecting this decomposition The cocycle into P G is given by the

adjoint action of G exactly as in the case of G acting on G ¡ We are therefore

reduced to studying the G action on the bundle ¡G £ P M
¢ ¡ G £ M ¡

Applying superrigidity for cocycles as described above we see that possibly
after passing to a ¯nite ergodic extension of G £ M ¡ there is a measurable
section s : G£M ¡ ¡G£P M ¢ ¡ and a linear representation ¼ : G SLnR
where n dim M such that

s gx gs x ¼ g ¡1c x; g

for all g 2 G and almost every x 2 G £ M ¡ where c is a cocycle taking values

in a compact group which commutes with ¼ G Note that ¼ being trivial is
equivalent to the algebraic hull of the cocycle being compact This shows us that
to compute the entropy of the G action on G £ M ¡ we can take ¾ Ad © ¼

and compute as in Theorem 2 1 To complete the proof we need only see that ¼

can also be used via Theorem 2 2 to compute the entropy of the ¡ action on M
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Let [g] 2 G ¡ then g¡g¡1 acts on the M ¯ber over [g] in G £ M ¡ via
translation to the ¯ber over the identity the given ¡ action on M and then
translation back Since s is de¯ned for almost all x 2 G£M ¡ writing x [g;m]
and applying Fubini's theorem we see that for almost all [g0] 2 G ¡ s is de¯ned
for almost every [g0; m] in the M ¯ber over [g0] Possibly after conjugating the

action by g¡1
0 we can therefore assume that s is de¯ned for almost every m 2 M

in the ¯ber over [e] Restricting s to [e; m] and looking only at ° 2 ¡ the formula
above implies that

s¡°
[e; m]

¢ °s¡
[e; m]

¢
¼¡1 ° c¡

[e; m]
¢
; °¢

for all ° 2 ¡ and almost every m 2 M This shows that if we use the restriction
of s to trivialize P M M we can compute the Lyapunov exponents of the

derivative cocycle via those of ¼¡1 ° c m; ° and since the image of c is compact
we can compute the entropy of the ¡ action on M via the eigenvalues of the

representation ¼ ¤

Remark We have actually proved more than just the formula We have shown
that for the derivative cocycle the superrigidity representation for the induced
action is cohomologous to the direct sum of the superrigidity representation for
the ¡ action and the representation AdG

Corollary 2 4 Suppose ¡ acts on a compact manifold M preserving a unimod-
ular rigid geometric structure Assume further that the action is ergodic and that
h G£M ¡ g hG ¡ g for all g 2 G Then the action is Riemannian isometric

Proof By Theorem 2 3 this implies that hM ° 0 for all ° 2 ¡ Either by
looking at the proof of that theorem or via Theorem 2 2 this implies the algebraic
hull of the derivative cocycle is compact By the proof of Theorem 4 5 from [Z4]

this implies that there is a ¡ invariant ¯nite measure on P k M the kth order
frame bundle for any k In fact this measure is the volume on a measurable K
bundle over M where K is a compact subgroup of the higher order frame group
However Gromov has observed that any closed subgroup of the isometry group
of a rigid geometric structure is proper and free on P k M for k large enough [G
Section 0 4] Since the closure of ¡ acts properly on a ¯nite measure space the

closure of ¡ in the automorphism group of the structure is compact see [Z4] proof
of Theorem 5 2 for more details and therefore the action is isometric ¤

3 Products of geometric structures

In this section we will develop the ideas we need concerning geometric structures

particularly products of structures on local products of manifolds Throughout
Ds

n
will denote the group of s-jets of di®eomorphisms of Rn ¯xing 0 and P s M
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will be the sth order frame bundle of the manifold M This is a Ds
n

principal
bundle where n dim M

De¯nition 3 1 A geometric structure on a manifold M with dim M n
consists of:

a an algebraic variety V on which Ds
n

acts for some s
b a map : P s M V which is Ds

n
equivariant

The structure is said to be of order s and is Cr C when the map w is Cr C
The structure is called unimodular if it de¯nes a volume form on M

If V Ds
n

H where H < Dsn
is an algebraic subgroup this reduces to the

notion of a H structure Note that Gromov calls as above a rigid A-structure

and de¯nes a more general notion of rigid geometric structure

Given let Isor x be the set of r-jets of di®eomorphisms of M ¯xing the

point x and ¯xing up to order r at x

De¯nition 3 2 A geometric structure is called rigid of order r + 1 if the natural
map Isor+1 x Isor x is injective for all x 2 M If we are not concerned with
the order we simply call the structure rigid

Example 3 3 a A pseudo-Riemannian metric is rigid of order 1 since it deter-
mines a total framing of P1 M

b Let G be a simple Lie group ¡ < G a lattice Since the G action on G ¡
preserves the Killing form on T G ¡ it preserves a rigid geometric structure: the

pseudo-Riemannian metric de¯ned by the Killing form

Let V be a smooth manifold of dimension n and let P s
nV be the space of s-jets

of di®eomorphisms of Rn; 0 into V If Drnacts on V then Dr+s
n acts on P s

nV
Furthermore if V is an algebraic variety then so is Ps

nV and the Dr+s
n action

is algebraic if the Dr
n

action is Given a geometric structure : P r M V
we have a naturally de¯ned map s : P r+s M P s

n V which we call the sth
prolongation of the geometric structure It is easy to verify that s is a geometric
structure and if is rigid so is s See [Fe] or [G] for details

Let M and N be di®erentiable manifolds of dimension m and n respectively
Suppose a : P r1 M V1 and b : P r2 N V2 are geometric structures By
passing to a prolongation of the structure of lower order we may assume r1 r2
To produce a geometric structure on M £ N we begin with the map

a £ b : P r M £ P r N V1 £ V2

and using the inclusion Dr
m £ Dr

n
< Drm+n induce this to a map

a£ b 0 : Drn+m £P r M £P r N Dr
n £Dr

m
Drn+m £V1 £V2 Dr

n £Dr
m

:

Given an action of a closed subgroup H < L on a space X we can de¯ne the

induced action of L The space acted upon is L£X H where the H action we
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divide by is given by l; x h lh; h¡1x The L action on the space is de¯ned by
the left L action on the ¯rst factor which is well-de¯ned on the quotient since it
commutes with the H action de¯ned above Note that this de¯nition only works

for left actions of H on X analogous de¯nitions allow us to induce right actions to
right actions If the action of H on X is algebraic and H is an algebraic subgroup
of an algebraic group L then the induced action is an algebraic action on an
algebraic variety Also note that Drn+m £ P r M £ P r N Dr

n £Dr
m

with the

induced action is canonically isomorphic to P r M £ N Therefore a £ b 0 is in
fact a map

a £ b 0 : P r M £ N V

where V Drn+m £V1 £V2 Drn£Drm is an algebraic variety with an algebraic
action of Drn+m for which a £ b 0 is equivariant

Proposition 3 4 If a : P r M V1 and b : P s M V2 are rigid geometric
structures then the product structure a £ b 0 : P max r;s M £ N V is also
rigid

Proof By passing to a prolongation of one structure it su±ces to consider r
s A k-jet of a di®eomorphism ¯xing a point x leaves a £ b 0 invariant if and
only if it leaves a £ b 0 j P r M £ P r N invariant This restriction is exactly
a £ b : Pr M £ P r N V1 £ V2 Direct computation of derivatives shows that
Isor

a£b Isor
a£Isor

b
where we view an r-jet jr f resp jr g of a di®eomorphism

of N at x2 resp M at x1 as an r-jet of M £ N at x1; x2 x as jr Id £ f
resp jr g £ Id

If a structure is rigid of order r it follows that Isor+j Isor is injective

for all j ¸ 1 see [G remark on page 68] or [Fe Proposition 3 1] Therefore it
follows that a £ b 0 is rigid and that it is rigid of the same order as whichever of
a and b has the higher order of rigidity ¤

Corollary 3 5 Let G be a semisimple Lie group ¡ < G a lattice Suppose ¡ acts
on M preserving a rigid geometric structure Ã Then the G action on G £M ¡
also preserves a rigid geometric structure

Proof The pseudo-Riemannian metric de¯ned by the Killing form on G is bi-
invariant and so de¯nes a G £ G invariant structure a : P 1 G V By the

proposition above a £ Ã 0 is a rigid geometric structure on G £ M which is
invariant under the right and left G actions and the ¡ action on M Therefore it
descends to a G invariant geometric structure ' on G £ M ¡ Since a £ Ã 0 is
rigid so is ' since rigidity is a local property ¤
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4 Proofs

The proof of Theorem 1 1 now follows from Corollary 2 4 and an estimate of
the \entropy" of Gromov's representation computed in [Z5] Given any ¯nite

dimensional G module D we can de¯ne the entropy of the G action by hD g
§ log+

k¸k where the sum is taken over eigenvalues for the action of g on D
Assume G is a simple non-compact Lie group and G acts on a compact manifold

X preserving a volume form and a rigid geometric structure Let ~G
be the

universal cover of G The action on X lifts to a ~G
action on ~X the universal cover

of X Let ~ be the lift to ~X
of the geometric structure Then ~G

clearly preserves ~

In [G] Gromov constructs a linear representation ¾ of ¼1 X on the set of Killing

¯elds V of ~ centralizing the ~G
action i e a representation ¾ : ¼1 X Aut V

Let H be the Zariski closure of ¾ ¼1 X Gromov proves that H contains a group
G0 locally isomorphic to G making h Lie H into a G0 module via the restriction
of AdH to G0 For an accessible presentation of the proof see [Z3] In this context
Lemma 5 1 of [Z5] shows that:

hh g ¸ hX g 8g 2 G: ¤

Proof of Theorem 1 1 As discussed in the introduction we apply Gromov's result
discussed above to the G action on G £ M ¡ assuming G is simply connected
The rigid structure on G £ M ¡ is as described in Corollary 3 5 Let ¤
¼1 G £ M ¡ and recall that

1 ¼1 M ¤ p

¡ ¡ 1:

By Proposition 6 1 of [F] ¤ is isomorphic to the group of lifts of the ¡ action on M
to ~M

and the action on G £ ~M is given by g; m ¸ gp ¸ ¡1;¸m We will also
need one obvious fact about the lift of our rigid structure to G£ ~M

Since here it
is G bi-invariant by construction the Lie algebra of vector ¯elds g generating the

right G action on G i e the left invariant vector ¯elds are Killing ¯elds of ~ that
centralize the lift of our G action from G £ M ¡ These vector ¯elds are clearly
invariant under the ¼1 M action on G £ ~M In Gromov's construction of ¾ the

group G0 < H is described quite explicitly It's Lie algebra g0 is a Lie algebra of
Killing ¯elds of ~ commuting with the action of G Even more is true Let n be

the algebra of Killing ¯elds of ~ normalizing the G action Then n g © V where

V is the algebra of Killing ¯elds commuting with the G action and g is the algebra
of Killing ¯elds which are derivatives of the G action For a point x0 2 X Gromov
proves that there exists a Lie algebra g¢ < n such that 1 elements of g¢ ¯x x0
and 2 g¢ is isomorphic to g and is in fact the graph of a isomorphism ¿ : g V

Then g0 is the image ¿ g < V Conditions 1 and 2 above canonically de¯ne g¢
and g0 In our situation we can realize g¢ as those Killing ¯elds at x0 [g0];m
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generated by the action of g0 ± AdG ± g¡1
0

and g0 as the vector ¯elds generating

the right G action on G £ M

The representation ¾ of ¤ is de¯ned on all Killing ¯elds of ~ commuting with
the left G action and so contains as a subrepresentation the representation ¾0 on
the Lie algebra g0 of left invariant vector ¯elds on G Since ¼1 M acts trivially
on these vector ¯elds it is easy to see that this representation is just AdG

¯
¯

¡ ±p
In particular the Zariski closure of ¾0 ¤ is a group locally isomorphic to G

Let H be the Zariski closure of ¾ ¤ and L C H be the Zariski closure of
¾ ¼1 M Recall that H and L are subgroups of Aut V where V is the Lie
algebra of Killing ¯elds of commuting with the G action on G £ ~MLet h Lie H ; ` Lie L Then ` < h is an ideal and is also a G0 submodule
for the G0 action on h given by AdH

¯
¯
G0

To prove Theorem 1 1 it su±ces to
see that if ` is a trivial G module then the ¡ action is isometric

If ` is a trivial G0 module then hh g hh ` g 8g 2 G0 Let ¼ : H H L
be the natural projection Then ¼ ± ¾ is a homomorphism of ¡ into an algebraic
group which has Zariski dense image since H is the Zariski closure of ¾ ¤ Now
¼ ± ¾ contains ¼ ± ¾0 as a subhomomorphism Clearly ¼1 M acts trivially on the

subspace g0 of Killing ¯elds on which ¾0 is de¯ned so L acts trivially there as well
Acting trivially is an algebraic condition This means that ¾0 ¤ \ L is trivial

so the Zariski closure of ¼ ± ¾0 ¤ is also a group locally isomorphic to G
Now ¼ ± ¾ factors through a homomorphism of ¡ a lattice in simple Lie group

with R ¡ rank G ¸ 2 so the Zariski closure of ¼ ± ¾ ¤ is by Margulis' Super-
rigidity Theorem locally isomorphic to a product of G with a compact semi-simple
group Therefore it is a compact extension of the Zariski closure of ¼ ± ¾0 ¤ So
h ` as a G0-module is just g © k where k is a compact semi-simple Lie algebra that
is necessarily trivial as a G0 module Therefore hh ` g hg©k g hg g and
furthermore hh g hg g ; 8g 2 G But by ¤ above and Theorem 2 3

hh g ¸ h G£M ¡ g hG ¡ g + hM g hg g + hM g

for all g 2 G Since hh g hg g ; 8g 2 G we see that h G£M ¡ g hG ¡ g

8g 2 G so by Corollary 2 4 the ¡ action on M is isometric
In the equation above we refer to hM g where only ¡ and not G acts on

M However the equation still makes sense since the entropy of the ¡ action
on M is really computed as described in Theorem 2 2 via the eigenvalues of a

linear representation of G So by hM g here we really mean the entropy of this
linear representation or 0 if the representation is trivial The equation is formally
justi¯ed by the remark following Theorem 2 3 ¤

In [Z5] the second author proves:

Theorem 4 1 Let X be a compact real analytic manifold with a real analytic
unimodular rigid geometric structure Let G be a connected simple Lie group with
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R¡ rank G ¸ 2 and suppose G acts analytically and ergodically on X preserving

the structure Further assume the action is engaging Then there is a ¯nite ergodic
extension X 0 of X and a measurable G equivariant map ' : X0 KnH ¤ where
G < ZK H and K is compact Furthermore hX g hKnH ¤ g for all g 2 G

The quotient ' : X0 KnH ¤ is constructed using the techniques of [LZ]
from Gromov's representation of ¼1 X Our Theorem 1 3 follows by combining

the theorem above the entropy results for induced actions of Section 2 and results

of [F] on constructing quotients of lattice actions and induced actions

First we recall some of the ideas used to prove Theorem 4 1 Let ¾ : ¼1 X
GLn R be Gromov's representation discussed above Let A be the ¯nitely gen-
erated Q algebra such that ¾ ° 2 GL n; A for all ° 2 ¼1 X Let ¹Q denote the

algebraic integers In [LZ] a specialization Ã : A ¹Q is constructed such that the

map induced by Ã on GLn A is an isomorphism when restricted to ¾ ¼1 X and
Ã ± ¾ ¼1 X is an s-arithmetic subgroup of a perfect Q-group H Furthermore

Ã ± ¾ ¼1 X \ HZ ¤ is of ¯nite index in HZ and is a lattice in H Lubotzky
and Zimmer also show that there is a ¯nite ergodic extension X0 of X such that
there is a measurable map ' : X0 KnH ¤ The key idea of [Z5] is to use the

way in which ¾ and Ã are constructed to see that the entropies are equal

Proof of Theorem 1 3 We apply Theorem 4 1 to the action of G on G£M ¡ We

can do this despite the fact that G£M ¡ is not compact since this is only used
to show that certain cocycles are quasi-integrable See the discussion following

Theorem 2 2 for entropy considerations and the derivative cocycle and Section 7 of
[F] for cocycles coming from representations of the fundamental group Letting
¾̂ Ã ± ¾ as discussed above the proof of the main theorem of [LZ] implies

that ¾̂ ¼1 G £ M ¡ is s-arithmetic in an algebraic Q-group H and if ¤
¾̂ ¼1 G£M ¡ \HZ that we have a map from a ¯nite extension X of G£M ¡
to KnH HZ that is G equivariant

As in the proof of Theorem 1 1 let L0 be the Zariski closure of ¾ ¼1 M and let
H 0 be the Zariski closure of ¾ ¼1 G£M ¡ As above let ¾0 be the subrepresen-
tation of ¾ de¯ned on the vector ¯elds g given by di®erentiating the right action of
G on G£ ~M Recall that ¾0 ¼1 G£M ¡ \L0 ; and since ¾0 ¼1 G£M ¡
is virtually isomorphic to ¡ it follows that [¾ ¼1 M : ¾ ¼1 G £ M ¡ ] 1unless ¾ ¼1 M is ¯nite and the ¡ action on M is isometric Since the specializa-
tion Ã is an isomorphism on ¾ ¼1 G £ M ¡ it is immediate that [¾̂ ¼1 M :
¾̂ ¼1 G£M ¡ ] 1 as well It is clear from the discussion above of the proof
of Theorem 4 1 that H is the Zariski closure of ¾̂ ¼1 G £M ¡ Let L C H be

the Zariski closure of ¾̂ ¼1 M
By Theorem 8 1 of [F] we see that H G£C nL and ¾ ¼1 G £M ¡

¡n¢ up to ¯nite index where ¢ L\¾ ¼1 G£M ¡ and C is compact We

have a measurable map ' : X KnH ¤ and X as a ¯nite extension of G£M ¡
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is G £ M 0 ¡0 where M 0 is ¯nite possibly disconnected cover of M and ¡0 < ¡
is of ¯nite index See [F] proof of Lemma 4 3 for details Let ¢1 ¢ \ LZ
Then by Theorem 8 5 of [F] we see that KnH ¤ Kn G £ C nL ¡0 n¢1 and
that ' takes almost every M 0 ¯ber of X to a KnC £ L ¢1 ¯ber in KnH ¤

The G action on Kn G £ C n L ¡0 n ¢1 is isomorphic to the G action
induced from the ¡0 action on KnC £ L ¢1 So by Theorem 2 3 above the

entropy function for the ¡0 action on M 0 and for the ¡0 action on KnC £ L ¢1must be equal since by Theorem 4 1 the entropy functions for the induced actions

are equal ¤
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