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Ergodicity of mapping class group actions on
representation varieties I Closed surfaces

Doug Pickrell and Eugene Z Xia

Abstract We prove that the mapping class group of a closed surface acts ergodically on con-
nected components of the representation variety corresponding to a connected compact Lie group
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0 Introduction

Throughout this paper we ¯x a connected compact Lie group K and we let dg
denote the unique normalized Haar measure on K

Let § denote a closed oriented surface with a ¯xed basepoint and let ¡§
¼0 Aut § the mapping class group The representation variety Hom ¼1§; K
has a canonical ¡§-invariant measure class the Lebesgue class of the set of non-
singular points Our aim is to prove the following

Theorem 0 1 The group ¡§ acts ergodically on the Lebesgue class of each
connected component of Hom ¼1§; K

Let H1 §;K denote the moduli space of representations i e the quotient of
Hom ¼1§;K by the conjugation action of K It is well-known that this moduli
space has a ¡§-invariant symplectic structure [AB] [Go1] The following was

proven by Goldman for K locally isomorphic to a product of SU 2 's and a torus

in [Go2]

Corollary 0 2 The group ¡§ acts ergodically on the Lebesgue class of each
connected component of H1 §;K Thus the Lebesgue class of each component
has an essentially unique ¡§-invariant representative the canonical symplectic
volume element
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In broad outline our basic idea is to prove an analogue of 0:1 for one and
two-holed tori for a e boundary condition; this is easier than dealing with every
boundary condition because we can use harmonic analysis for K When we sew
to obtain more complicated surfaces because we integrate the measure-theoretic
ambiguity is washed away For the special cases that we consider the question of
ergodicity for the discrete mapping class group is in fact equivalent to ergodicity
for a much larger group This observation is useful in a number of contexts and to
display the idea as clearly as possible we have chosen to concentrate on the closed
surface case in this paper

Our Theorem is of interest for a number of reasons some of which are discussed
in [Go2] Our own original motivations involved quantum ¯eld theory which
incidentally explains the nature of our methods A ¯rst point of contact with
QFT is the 2-dimensional Yang{Mills measure dºT¡1Y M2

on the space of gauge

equivalence classes of all generalized K-connections see [Pi] and the references

there Corollary 0:2 a priori determines the form of the classical T # 0 limit
which is determined by direct calculation in [Fo] Elsewhere we will prove that the

Yang{Mills measures are ergodic with respect to their symmetry group the group
of area-preserving di®eomorphisms essentially using the methods established in
this paper

A second point of contact involves Chern{Simons gauge theory for which the

moduli space H1 §; K is the classical phase space It is known that the action of

¡§ on the quantum state space is reducible for arbitrarily high levels see x17 1 3
of [DMS] Thus we have interesting examples of a group acting ergodically on a
compact phase space and reducibly on the corresponding quantization even in the

classical limit
For results on the topological dynamics of ¡§ acting on the moduli space see

[PX]

Notation 0 2 Given a Lie group G we will always use left translation to
trivialize the tangent bundle:

T G G £ g : vjg Lg¡1 ¤ vjg : 0 3

In this frame the commutator of two vector ¯elds x; y : G g is given by

[x; y]jg dy x jg ¡ dx y jg + [x g ; y g ]: 0 4

The adjoint action Ad : G £ g g is abbreviated to Ad g x xg If G acts

on a space X then Xg denotes the ¯xed point set

Acknowledgment During the course of this research Eugene Z Xia was with
the University of Arizona
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1 Basic notions and sewing

For the purposes of this paper we will need to consider a somewhat nonstandard
kind of boundary condition for surfaces with boundary

Consider a connected compact oriented surface § equipped with a basepoint
and the following additional structure: each boundary component is linked to the

basepoint by a path and each boundary component c is labelled with a + or ¡and a group element kc of K We interpret the sign to mean that the boundary
component c has an intrinsic orientation that agrees or disagrees with the induced
orientation from §; the intrinsic orientation of the boundary component c gives

us a preferred generator for ¼1 c ½ ¼1 § which by slight abuse of notation we

will also denote by c We de¯ne

Hom §;K fg 2 Hom ¼1 § ; K : gjc kc; 8c 2 ¼0 @§ g: 1 1

This space only depends upon the basepoint and paths to the boundary compo-
nents up to homotopy The pure mapping class group ¡§ does not in general act
on this space; only the subgroup generated by Dehn twists along curves which do
not cross the paths from the basepoint to the boundary components will act; we

denote this group by ¼0 Aut §
If § is a closed surface then we can form the quotient of Hom §; K by the

global gauge action of K by conjugation; the quotient is denoted by H1 §; K In
this case ¼0 Aut § ¡§ the mapping class group

Let s denote a separating oriented simple closed curve on § We suppose that
the basepoint is on s and we suppose also that s does not cut any of the paths

from the basepoint to the boundary components Let ·§k §¡k F
§+

k denote the

disconnected object obtained by cutting along s and attaching one ¡ and one +
and same group element k to the new boundary components The Seifert-Van
Kampen Theorem implies that the projection p : ·§ § induces an exact sequence

0 hsi ¼1 §¡ ¤ ¼1 §+ p¤¡ ¼1 § 0: 1 2

where
hsi denotes the normal subgroup generated by the element s¡1

¤ s Hence

we have the following elementary

Sewing Lemma 1 3 Assume § has a group element boundary condition Then
there is a bijective correspondence

Hom §; K Gk2K
Hom §¡k ; K £ Hom §+

k ; K ;

where g $ g¡; g+ g¡ s g+ s k g§ gj¼1 §§ This correspondence is
equivariant with respect to ¼0 Aut ·§ the group generated by Dehn twists along

curves which cross neither s nor the paths from basepoint to boundary components
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2 Initial cases

The basic insight of this paper is that in all cases involving boundary ¡-ergodicity
is equivalent to G-ergodicity where G is a continuous group of volume-preserving

transformations for a e boundary condition The latter problem reduces to a
calculation concerning in¯nitesimal transitivity
2 1 The one-holed torus with group element boundary condition

bb

a

a

c

s
2

s 1

Base point

Figure 1

In this subsection we let § denote the one-holed torus with boundary compo-
nent c which we view as in Figure 1

Given k 2 K we write §k to indicate that we impose the boundary condition
k so that §k is an object of the type considered in Section 1 We have

Hom ¼1§; K $ K £ K g $ g®; g¯
# p

K0 [K; K]
2 1 2

where p is the commutator map p g; h ghg¡1h¡1: With respect to this identi-
¯cation the ¯bers of p are precisely the representation spaces Hom §k ; K : De¯ne

¡ to be the group generated by the transformations Tj :K£K K£K given by

T1 g; h gh¡1; h ; T2 g; h g; hg¡1 : 2 1 3

These transformations arise from twists along the curves s1 and s2 indicated in Fig-
ure 1; they are volume-preserving with respect to Haar measure hence naturally
induce unitary transformations of L2 K £K they commute with conjugation by
K and they ¯x the map p The action of ¡ restricts to the action of ¼0 Aut §k
on the ¯ber p¡1 k Hom §k;K
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In this subsection we prove the following result which is of independent interest

Theorem 2 1 4 Suppose that F 2 L2 K £ K is ¡-invariant Then F is a e

constant on components of p¡1 k for a e k [d½] where d½ p¤ dg £ dh

We refer to [Bt] for the general theory of representations of compact Lie groups

Remarks 2 1 5 a The measure d½ is in the Lebesgue class of K 0 and

d½ k ³X¹
d¡1
¹ Â¹ k ´dk; 2 1 6

where the sum is over all irreducible characters of K0 and d¹ Â¹ 1 To see

this ¯rst note that because p is a conj K -equivariant map and dg £ dh is conju-
gation invariant d½ is conjugation invariant Secondly if f P

c¹Â¹ is a central
function then

Z fd½ Z
K0

Z
K0

f ghg¡1h¡1 dgdh X¹
c¹ Z ½ Z Â¹ ghg¡1h¡1 dh¾dg

X c¹ Z
jÂ¹ g j

2

Â¹ 1
dg Z ³X cºÂº g ´³X d¡1

¹ Â¹ g¡1

´dg;

which heuristically explains 2 1 6 The third equality uses the well-known in-
tegration formula

R
Â xhyh¡1 dh Â x Â y Â 1 which follows from observing

that the left hand side is a central function for x; y 2 K £K and computing the

expansion in terms of characters for K £ K Because characters are orthogonal

Z

¯
¯
¯

X d¡1
¹ Â¹ g

¯
¯
¯

2
dg X d¡2

¹ Z jÂ¹ g j
2dg X d¡1

¹ :

The Weyl dimension formula implies that this sum is ¯nite provided k does not
have su 2 factors see below ; hence in most cases the density in 2 1 6 represents

an L2 function on K In general if we ¯x a maximal torus and positive Weyl
chamber so that we can parameterize the representations by dominant integral
functionals ¹ then the Weyl character formula implies that for g 2 T

X d¡1
¹ Â¹ g ¢ g ¡1

Xw2W ¡1 l w
n

ei½

X¹
d¡1
¹ ei¹

o
w

g ;

where W is the Weyl group l w is the length of w and ½ is half the sum of
the positive roots If we write ¹ in terms of the fundamental dominant integral
functionals ¹ P

nj¹j then the Weyl dimension formula implies

d¹ Y®>0

h¹ + ½; ®i
h½; ®i » Yj

nh¹j;2½ij ;
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so that
P

d¡1
¹ ei¹

P
d¡1
¹ eiP

njµj always represents an L2 function with respect
to the Haar measure of T Since this function is the boundary values of a holo-
morphic function on C·1 r it cannot vanish on a set of positive measure This
explains the meaning of the density 2 1 6 and shows that d½ is in the Lebesgue

class see Appendix B for a more direct proof
In the case of K SU 2 the density in 2 1 6 as a function of diag z; z¡1

z eiµ is given by

1

z ¡ z¡1 nz Xd¸1

d¡1z ¡ z¡1

Xd¸1

d¡1z¡d
o ¡Imn

eiµ ln 1 ¡ eiµ
sin µ o

ln 2 ¡ 2 cos µ 1 2 + cos µ
arg 1 ¡ cos µ ¡ i sin µ

sin µ
:

b Theorem 2 1 4 gives an algebraic characterization of functions F g; h
which have the form f ghg¡1h¡1 in situations where all the ¯bers p¡1 k are

connected e g for K simply connected see Appendix A It seems to be unknown
whether there might be a reasonable characterization for more general groups e g

¯nite groups

Corollary 2 1 7 of Theorem 2 1 4 For a e boundary condition k 2 K
the action

¼0 Aut §k £ Hom §k; K
is ergodic on the Lebesgue class of each component

To prove 2 1 4 we need to be able to analyze the transformations in 2 1 3
Let T T2 denote the unitary transformation on L2 K1 £ K2 corresponding

to the second of these transformations where we have introduced copies K1 and
K2 of K for notational clarity Recall that the Peter{Weyl Theorem asserts that
there is a K £ K-equivariant isomorphism

M¹ L V¹ L2 K : L¹ f; f g X¹
dimn ¹ 1 2tr¹ L¹¼¹ g¡1 2 1 8

where L V¹ denotes the space of linear transformations of V¹ the sums are over
all irreducible representations and the linear action of gl; gr 2 K £ K on these

respective spaces is given by

L¹ ¼¹ gl L¹¼¹ gr ¡1

f g f g¡1
l ggr :

Lemma 2 1 9 Via the isomorphisms

L2 K1 £ K2 L2 K1; L2 K2 M¹
L2 K1; L V¹ ;
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T diag T¹ where T¹ is the multiplication operator

T¹ : L2 K1; L V¹ L2 K1; L V¹ : F¹ g F¹ g ¼¹ g ¡1: 2 1 10

In particular

L2 K1; L V¹ T¹ fF¹ : F¹ g j V g¹
0; a e gg; 2 1 11

and if F¹ is T¹-invariant then viewed now as a function of two variables

F¹ g;h F¹ g; ha g ¡1 ; 2 1 12

for any measurable function a : K K such that [a g ; g] 1 a e

Proof of Lemma 2 1 9 The formula for T¹ is a direct consequence of the Peter{
Weyl theorem and the other statements follow directly from the formula for T¹

¤
Note that

A fa : K K : [g; a g ] 1; 8gg 2 1 13

is an abelian subgroup of the gauge group Map K; K We will assume that the

maps in A are smooth unless noted otherwise It is probably not the case that
A is a Lie subgroup because the family of projections onto the subalgebras kg

g 2 K is not smooth Nonetheless we will refer to

a fx : K k : Ad g x g x g ; 8gg: 2 1 14

as the Lie algebra of A because it has the crucial property

exp a ½ A:

The group A acts on K1£K2 in two ways corresponding to the actions 2 1 3
by

A1 a : g; h ga h ¡1;h ; A2 a : g; h g;ha g ¡1 ; 2 1 15

respectively Note that the transformations T n
i i 1; 2 correspond to a k kn

Note also that the transformations 2 1 15 are volume-preserving
We can restate 2 1 9 as

Lemma 2 1 16 The L2 function F g;h is Tj -invariant if and only if F is
Aj-invariant for j 1; 2: Here we can require the maps in A to be C1 C0 or
merely measurable { the basic result is insensitive to this requirement



346 D Pickrell and E Z Xia CMH

Let G denote the closure of the group of volume-preserving transformations of
K £ K generated by A1 and A2 inside the Lie group of all volume-preserving
di®eomorphisms of K £ K it will turn out that for our purposes we could just
as well consider the closure in the group of all volume-preserving transformations

in the natural strong operator topology It is unclear whether G is a Lie group
but it is useful to think in these terms as we will now see The Lie algebra actions

corresponding to 2 1 15 are given by the vector ¯elds on K1 £ K2

dA1 x jg;h ¡x h ; 0 ; dA2 x jg;h 0;¡x g ; 2 1 17

respectively for x 2 a These actions do not necessarily commute

De¯nitions 2 1 18 a g0 is the Lie algebra of vector ¯elds on K £ K given
by

g0 f xjh; yjg : x; y 2 ag;

b g is the Lie algebra of vector ¯elds on K £ K generated by the family of
Lie algebras

fAd ¾g0 : ¾ 2 A1 or A2g:

The bracket for g0 is given by

[ x1; y1 ; x2; y2 ]jg;h dx2 y1 jh ¡ dx1 y2 jh; dy2 x1 jg ¡ dy1 x2 jg 2 1 19

see 0 2
Heuristically g0 is the Lie algebra corresponding to the group generated by

the identity components of A1 and A2 while heuristically g is the Lie algebra
corresponding to G In practice we will think of g as an Ad ¡ -invariant Lie
algebra containing g0

Lemma 2 1 20 Assuming we require maps to be C1 we have exp g ½ G

Proof of Lemma 2 1 20 Suppose that » y; x 2 g0 Now expft 0; x g 2 A2
and expft y; 0 g 2 A1 8t Thus

exp » lim
n 1

exp y n; 0 exp 0; x n n
2 G; 2 1 21

because Trotter's product formula see 2 12 5 of [V] is valid for vector ¯elds on
a compact manifold Therefore for any ¾ 2 Aj

exp Ad ¾ » ¾ exp » ¾¡1
2 G: 2 1 22

Using Trotter's product formula and the analogue for brackets in the same way
we see that for sums and brackets of such vector ¯elds we again exponentiate

into G ¤
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Our goal now is to show that the Lie algebra g is in¯nitesimally transitive o®

a set of codimension > 1 along a generic ¯ber of the commutator map p We

calculate that

dpjg;h : k © k k0 : »; ´ »hgh¡1

¡ »hg + ´hg ¡ ´h;

»h¡1

¡ » + ´ ¡ ´g¡1 hg:
2 1 23

Proposition 2 1 24 For g and h in the complement of a set of codimension
> 1 the evaluation map

eval jg;h : g ker dpj g;h

is surjective where eval is the evaluation map

Proof of Proposition 2 1 24 If K is abelian then at all points

eval jg : a kAd g 2 1 25

is surjective and it follows from this that g is transitive

So suppose that K is nonabelian Recall the set of regular points

Kreg fk 2 K : dimn kg rg 2 1 26

where r rank k is the minimal possible dimension of kg The singular set
K n Kreg has codimension 3 because for a nonregular point g kg always contains

a copy of su 2 in addition to a maximal torus For a regular point g 2 K eval jg
in 2 1 25 will be surjective while the image shrinks at nonregular points e g
eval j1 a f0g ; this follows from the real analyticity of the vector bundle g kg

over Kreg Therefore for g;h 2 Kreg

eval jg;h g0 kh
© kg

½ ker dpjg;h ½ k © k: 2 1 27

This always ¯lls out the central part of k For this reason without loss of generality
we can henceforth assume that k is semisimple

The map p is regular at all points g; h such that kg\kh
f0g by 2 1 23 The

abstract meaning of this condition is that the representation of ¼1 § determined
by g; h is irreducible in the intrinsic sense that the commutant of the image in
K is the center of K To understand this condition more concretely from a point
of view useful to us suppose that g and h are regular Write h exp y so that
kh Ck y the centralizer of y For x 2 kg

[x; y]
X®

® x y® 2 1 28



348 D Pickrell and E Z Xia CMH

where the sum is over all roots ® of kg and y® denotes the component of y in the

root space of ® In order for x 2 kh we must have ® x 0 whenever y® 6 0

The condition y® 0 is two independent real conditions because the root space

has one complex dimension Thus f g;h : kg \ kh
6 f0gg has codimension at

least 2
We now know that the dimension of ker dp is dimn k o® a subset of codimen-

sion 2 Let proji denote projection onto the ith factor The map proj1 induces an
exact sequence

0 f 0; kg
g ker dp

proj1¡¡¡ f» 2 k : 1 ¡ Ad h¡1 » 2 kg
g 0;

there is a similar sequence for proj2 The evaluation of g0 at g; h 2 Kreg
£Kreg

¯lls out ker proj1 +ker proj2 Since

f» 2 k : 1 ¡Ad h¡1 » 2 kg
g 1¡Ad h kg ;

to prove that eval : g ker dp is surjective at a regular point it su±ces to prove

that
1 ¡Ad h kg + proj1 eval jg;h g k; 2 1 29

there is a similar statement for proj2
Now g is ¡-invariant hence

X¡
°¤

eval j°¡1 g;h g0 ½ eval jg;h g : 2 1 30

In geometric terms the sum is the ¡-invariant distribution generated by g0 We

will ¯rst consider only a small part of this sum namely the T2-invariant distribu-
tion generated by g0

Suppose that yjh; xjg 2 g0 We have

T n
2 ¤

eval jT¡n
2 g;h y; x

0; xjg + d

dt jt 0 gety hgn
; hgn gety hgn ¡n

y hgn ;x g ¡P
n
k 1 y hgn gk

; n > 0

y hgn ;x g +
P

0
k n+1 y hgn gk

; n < 0:

2 1 31

From this we see that

Xhgn2Kreg

khgn
½ proj1 eval jg;h g : 2 1 32

Now for g; h 2 Kreg
£ Kreg if fgn

g is a dense subgroup of T exp t then

Xfn:hgn2Kreg
g

khgn

Xfx2t:hex2Kreg
g

khex
: 2 1 33
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For we clearly have ½ Conversely given x 2 t such that hex is regular we can

¯nd a sequence fnjg such that gnj ex as j 1 hence hgnj will be regular for
j su±ciently large and khgnj khex

so that the opposite inclusion holds

Lemma 2 1 34 There is a set X2 ½ K of real codimension ¸ 2 such that for
g; h 2 K £ X2

1 ¡Ad h kg + Xfx2kg:hex2Kreg
g

khex
k: 2 1 35

Proof of Lemma 2 1 34 We write h exp y We also write t kg Since h is
regular there are open neighborhoods u and U of y and h respectively such that
exp : u U is an isomorphism; let log denote the inverse There is a Taylor series

expansion of the form
log hex

Xn¸0

cn h; x ; 2 1 36

where cn is homogeneous of degree n in x If jad y j < ¼ where j ¢ j denotes the

operator norm then we can also expand each cn and the form of these expansions

can be read o® from the Baker{Campbell{Hausdor® formula namely c0 y

c1 x +
1

2
[y; x] +

1

12
[y; [y; x]] + ¢ ¢ ¢ x + O jyj ; 2 1 37

and for n > 1
cn constant ¤ ad x n y + o jyj ; 2 1 38

as jyj # 0 where the constant depends only upon n We also have

1¡ Ad h x [x; y] + o jyj as jyj # 0: 2 1 39

We now claim that the sum in 2 1 35 equals

1 ¡Ad h t + kh + spanflog hex : x 2 t; hex
2 U \Kreg

g
1 ¡Ad h t + kh + spanfcn h; x : n ¸ 0; x 2 tg:

2 1 40

The ¯rst equality is immediate; the second follows from the fact that the span of
the power series 2 1 36 will contain the span of the coe±cients replace x by sx
note that hesx

2 U\Kreg for small s and di®erentiate with respect to s at s 0
Now we ¯rst show that 2 1 35 holds for h 2 Kreg where jyj is small As in

2 1 28 kh Ck y and we can write

y yt +X®

y®; 2 1 41
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relative to the root decomposition of kC with respect to t If all the y® 6 0 then
together t and fad x n y : x 2 t; n ¸ 1g will span k But 2 1 37 2 1 38 and
2 1 39 now imply that fcn h; x : n ¸ 1; x 2 tg and 1 ¡ Ad h t will span k

provided that jyj is small
Note that the condition y® 0 is linear and describes a subset of codimension

2 as we pointed out below 2 1 28 Thus for h not in a subset of codimension 2

in a neighborhood of 1 the equation in 2 1 35 holds It remains to do a similar
analysis for a neighborhood of a point ey0

6

1
Suppose that h ey0+z where log ey0 y0 and z is small We have c0 h; x

y0 + z

c1 h; x c1 ey0 ; x +
1

2
[z; x]+o jzj c1 ey0 ; x +O jzj 2 1 42

1 ¡ Ad h x 1 ¡ Ad ey0 x + [x; z] + o jzj 2 1 43

cn h; x cn ey0 ; x + constant ¤ ad x n z + o jzj 2 1 44

as jzj # 0 where n > 1 The derivative of kh as it varies in the Grassmannian
of subspaces Gr r; k is a linear transformation T z : C y0 C y0 If
T z »0 »1 then to ¯rst order in s exp ad y0 + sz »0 + s»1 »0 + s»1 i e

[y0; »1] + [z; »0] 0; in terms of the root decomposition for C y0 we have

T z » X̄
¯ »

¯ y0
z¯ : 2 1 45

Thus

kh graph T z : C y0 C y0 + o jzj 2 1 46

as jzj # 0

Now consider the possibility that together kexp y0 ; 1¡Ad ey0 t; and fcn ey0 ; x :
n ¸ 0;x 2 tg do not span k The argument proceeds initially as in the case

exp y0 1 If 8® z® 6 0 the components with respect to the root decomposition
for t then fad x n z : n ¸ 1; x 2 tg will span t We now use 2 1 42 { 2 1 44
For the variation of the span of kh 1 ¡Ad h t and fcn h;x : n ¸ 0; x 2 tg to
be all of k it is therefore su±cient for the natural map of an r + 1-dimensional
space to an r-dimensional space

Rz + graph T z k t 2 1 47

to be surjective note that the z comes from the c0 term; see the line preced-
ing 2:1:42 Thus if 1 z® 6 0 8® and 2 2 1 47 is surjective then for h
corresponding to small z 2 1 35 will hold

We have already remarked that the ¯rst condition describes a subset of codi-
mension 2 From the formula 2 1 45 for T z we see that z is generically inde-
pendent of graph T z and graph T z is generically transverse to t Therefore
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the condition 2 also describes a subset of codimension 2 for z in a small neigh-
borhood of 1 This completes the proof ¤

We can now continue with the proof of Proposition 2 1 24 Let Q denote
the set of points g in Kreg with the property that fgn

g is not dense in the torus

exp kg

Now by 2 1 33 and 2 1 34 we know that eval j g;h maps onto ker dp pro-
vided that g; h is not in the set Q1 £ K2 [ K1 £ X2 Now by consider-
ing the T1-invariant distribution generated by g0 and proj2 we can also con-
clude that eval j g;h maps onto ker dp provided that g; h is not in the set
K1 £ Q2 [ X1 £ K2

Because the condition that evalj g;h maps onto ker dp is a linear independence

condition involving real analytic vector ¯elds the set of points where eval does

not map onto ker dp is generically real analytic and by the proceding paragraph
of codimension ¸1: Since X1 and X2 have codimension ¸2 the only portion of the

singular set identi¯ed in the previous paragraph which could a priori support an
object of codimension one is Q1£Q2: But Q has Hausdor® dimension d¡1 where d
is the dimension of K hence Q1£Q2 has Hausdor® dimension 2d¡2: So the singular
set must have codimension at least 2: This completes the proof of 2 1 24 ¤

Proof of Theorem 2 1 4 Suppose that F 2L2 K£K is ¡-invariant By 2 1 16 F
is G-invariant Now given a generic point where g is in¯nitesimally transitive along

the ¯ber the G-orbit of that point will be open in the ¯ber For a generic ¯ber
the complement of these open sets has codimension >1 by 2 1 24 Hence for a
generic ¯ber the

G-orbits necessarily coincide with the components of the ¯ber
Thus an invariant F is locally constant on connected components of a e ¯ber ¤

2 2 The n-holed torus with group element boundary condition
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Let § k1;:::;kn
denote the n-holed torus with boundary components c1; : : : ; cn

as in Figure 2 where we ignore s momentarily with group element boundary
condition kcj kj 1 · j · n Let §¡k denote the one-holed torus with group
element boundary condition considered in Section 2 1 which reappears in Figure

2 with boundary component s and where we have moved the basepoint from
the vertex to s which we can do without a®ecting the results of Section 2 1 Let
§+

k0;k1;:::;kn
denote the n+1-holed sphere with group element boundary condition

pictured in Figure 2 where k0 is the labeling for s and kj is the label for cj ; the

corresponding Hom space is empty unless k0

Q
kj in which case it is a point

The Sewing Lemma 1 3 implies that we have a ¼0 Aut §¡ -equivariant bijection

Hom § k1;:::;kn ; K $ Hom §¡k ; K £ Hom §+
k;k1;:::;kn

; K 2 2 1

where k
Q

kj Note that ¼0 Aut §¡ ¼0 Aut §
Unfortunately this is not a situation where we can integrate over k to obtain

a result for every boundary condition because k is ¯xed by the kj We need to
vary one of the boundary conditions say kn We write § ~k;¢

for the object with
boundary kcj kj 1 · j < n where we allow kcn to vary We then have a
¼0 Aut § -equivariant bijection

Hom ¼1§¡;K $ Hom § ~k;¢
; K : 2 2 2

An immediate consequence of Theorem 2 1 4 is the following

Corollary 2 2 3 For a e kn [d½] the action

¼0 Aut § £ Hom § ~k;kn
; K

is ergodic on the Lebesgue class of each connected component
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3 Proof of ergodicity
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Let § denote the one-holed surface of genus p with basepoint and link to the

boundary c as depicted in Figure 3 ignore the paths s and ® at this point

Theorem 3 1 If the genus p > 1 then for every group element boundary
condition k 2 K0 the action

¼0 Aut §k £ Hom §k; K Hom §k; K

is ergodic with respect to the Lebesgue class of each connected component

Note that Theorem 0 1 when the genus > 1 is the special case k 1 of
3:1 When the surface in 0 1 has genus 1 then 0 1 essentially reduces to

the abelian case and this is a standard application of Fourier series

The basic facts about the connectedness properties of Hom §; K which we will
require are gathered in Appendix A for the convenience of the reader In particular
A 3 asserts that ¼0 Aut § acts on components so that the statement of the

Theorem makes sense

Proof of Theorem 3 1 Consider the decomposition of Hom §; K into connected
components described in A 3 If we prove 3 1 for all groups of the form T £K1
where T is a torus and K1 is simply connected then we will be done So henceforth
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we assume that K0 is simply connected In this case all the representation spaces

are connected by A 2
We have proven that ¼0 Aut §¡ acts ergodically on Hom §¡; K for a one-

holed torus §¡ as in Section 2 1 for a e group element boundary condition Sim-
ilarly we have proven that ¼0 Aut §+ acts ergodically on Hom §+;K for a

two-holed torus §+ as in Section 2 2 for a e boundary condition on one end and
for every boundary condition on the other end It therefore su±ces to prove the

following: suppose that s is a separating curve as in the Sewing Lemma 1 3
such that §+ is a two-holed torus; if ¼0 Aut ·§ acts ergodically on components

of Hom ·§; K for a e boundary condition on s then the conclusion of 3 1 holds

see Figure 3; §+ is to the reader's right of s
Let kc denote the ¯xed boundary condition for § The measure classes for

possible boundary conditions on s are the same for §§ the Lebesgue class on
K0 see 2 1 5 Let F denote a characteristic function on Hom §; K If F is
¼0 Aut ·§ -invariant then by the Sewing Lemma 1 3 and our induction hypoth-
esis it follows that F is constant along a e ¯ber; hence F is of the form f gjs
where f is a characteristic function on K 0

Now suppose that F is ¼0 Aut § -invariant As in Figure 3 we choose a Dehn
twist ¾ corresponding to a loop ® that will cross the curve s but will not cross

the link to the boundary component so that ¾ 2 ¼0 Aut § Now the loop ®
does not pass through the basepoint There are two elementary ways in which we

can use s to link ® to the basepoint; if we go from the basepoint in the negative

direction along s to ® around ® and return to the basepoint then we denote this
based loop by ¹®; if we go from the basepoint in the positive direction along s to ®
around ® and return then we denote the loop by ® Using Figure 3 we compute
that

¹® ®p[¯p; ®p]¯p¡1®p¡1¯¡1
p¡1; ® s¯p¡1®p¡1¯¡1

p¡1®p[®p; ¯p]¡1s¡1; 3 3

¾ ± ®j ®j ; ¾ ± ¯p¡1 ¹®¯p¡1; ¾ ± ¯p ¯p ¹®¡1; 3 4

¾ ± s ®s¹®¡1

³
p¡2

Y1

[®j ; ¯j ]´[®p¡1; ¹®¯p¡1] 3 5

s[®p¡1; ¯p¡1]¡1®p¡1®p[®p; ¯p]¡1®¡1
p¡1[®p¡1;¯p¡1][®p; ¯p]®¡1

p : 3 6

It is convenient to streamline our notation We put

g1

p¡2

Y1

[g®j ; g¯j ]; g g®p¡1 ; h g¯p¡1 ; k g®p ; l g¯p : 3 7

We have ¾ ¢ F g f g¾±s Hence the ¾-invariance of F is equivalent to

f g1[g; h] f g1g kk¡1
c g1[g;h] g1g ¡1 kk¡1

c ¡1 ; 3 8
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for a e g1; g; h; k; l subject to the constraint g1[g;h][k; l] kc
De¯ne

Á : f g1; g; h; k; l : g1[g; h][k; l] kcg K0 £ K 0 3 9

Á : g1; g; h;k; l g1[g;h]; g1g kk¡1
c g1[g; h] g1g ¡1 kk¡1

c ¡1 ;

3 8 is equivalent to Á¤1f Á¤2f a e If this equality held at all points then to
prove that f is constant it would su±ce to show that the relation de¯ned by Im Á
or the equivalence relation generated by Im Á is transitive; since the equality

holds in an a e sense we must consider the relation de¯ned by the interior of
Im Á It is plausible that Á is surjective but we can only prove the following
weaker result

Lemma 3 10 Let pr1 : K 0 £ K 0 K 0 : m; n m Then

K0

n pr1 Interior Im Á has real codimension at least 2 in K0

This Lemma implies that for each m 2 pr1 Interior Im Á we can ¯nd open
sets Um and Vm in K0 such that m 2 Um and Um £ Vm ½ Im Á Since Á¤1f
Á¤2f a e it follows that f is constant on Um a e Since pr1 Interior Im Á is
connected this constant must be the same for each Um This implies that f is
constant a e Thus proving 3 10 will complete the proof of 3 1

Proof of Lemma 3 10 We can suppose that p 2 which amounts to setting

g1 1 and that K K0 For notational simplicity we will abbreviate Ad g ¢

to g ¢

To prove 3 10 we ¯rst claim that it su±ces to show that the map

Ãm : f[g; h] mg £ f[k; l] m¡1kcg K : g;h; k; l gkk¡1
c mg¡1 kk¡1

c ¡1

3 11

is regular at some smooth point of its domain for each m 2 K n Y where Y has

codimension 2 For if Ãm is regular at the smooth point g; h; k; l then g; h is
regular for the commutator map which is the ¯rst factor of Á Thus Im dÁj g;h;k;l
spans both the vertical and horizontal directions hence g; h; k; l is regular for Á

To specify Y consider the commutator map [; ] : K £ K K This map is
surjective the ¯bers generically have dimension d dimn K and the exceptional
¯bers have dimension exceeding d e g [; ]¡1 1 has dimension d+r r rank K
Let N denote the set of values n 2 K such that there exists g; h with [g; h] n
and i g 2 Kreg and ii kg \ kh

f0g i e g; h is regular for [; ] By B 5 of
Appendix B K n N has codimension at least 2 in K We set

K n Y fm : m 2 N and m¡1kc 2 Ng: 3 12

The Zariski tangent space to [; ]¡1 m at g;h is given by

T j g;h f x; y : xh¡1

¡ x + y ¡ yg¡1
0g: 3 13
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Projection onto the x factor induces the exact sequence

0 f 0; y : y 2 kg
g T j g;h fx : 1 ¡ h¡1 x kg

g 0: 3 14

If g; h satis¯es i and ii then g; h is a smooth point and the spaces in 3 14
have dimensions r d and d ¡ r respectively Note that

fx : 1 ¡ h¡1 x kg
g 1 ¡ h kg ; 3 15

and this space depends only upon g: since hgh¡1 g¡1m ¡1 h is unique up to
multiplication on the right by ¸ 2 CK g and ¸ acts trivially on kg

Fix m 2 K n Y The derivative of the map Ãm is given by

dÃmj g;h;k;l : x; y; z; w xm¡1 kk¡1
c ¡1

¡ x kk¡1
c g + zk¡1

c gm¡1kc ¡ z k

x kk¡1
c m ¡1

¡ x + zm¡1kc ¡ zm¡1kc g¡1m kk¡1
c g : 3 16

Together with 3 14 and 3 15 this means that we must show that for suitable
g; h;k; l the sum of subspaces

1 ¡ kk¡1
c m ¡1 1 ¡ h kg + 1 ¡ g¡1m m¡1kc 1 ¡ l kk 3 17

is all of k

Now to deal with 3 17 we need some control over solutions to the constraint
equations [g; h] m [k; l] m¡1kc For this purpose consider the equation
[g1; h1] n In B 1 of Appendix B we show that for any maximal torus T there

exists a solution g1; h1 with g1 2 T For n 2 N by dimensional considerations

and the fact that these equations are algebraic g1 is a ¯nite multi-valued function
of T see a of B 6 for explicit equations Apply this to n m Given T we

obtain solutions [g; h] m We have g¡1m hg¡1h¡1
2 hTh¡1 Therefore we

obtain a ¯nite number of tori hT h¡1 We claim that the multi-valued map

Ám : fTorig fTorig : T hT h¡1
½ CK g¡1m 3 18

is surjective In a loose sense the inverse is Ám¡1 because [hgh¡1; h¡1] m¡1

More precisely given a torus T1 apply the preceding to m¡1 and T1 to obtain
g1; h1 with [g1; h1] m¡1 and g1 2 T1 De¯ne g; h and T so that g1 hgh¡1

h1 h¡1 T h1T1h¡1
1 Then [g; h] m and T1 hT h¡1 This proves the

claim
Similarly the multi-valued map

©m¡1kc
: fTorig fTorig : T kl T kl ¡1

½ CK kk¡1
c m ; 3 19

where [k; l] m¡1kc k 2 T is surjective and the inverse again in a loose

sense is ©
k¡1

c m For given T1 we can ¯nd [k1; l1] k¡1
c m k1 2 T1

De¯ne
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k k1l1 k1 k1l1 ¡1 l k1l1 k¡1
1 k1l1 ¡2 T k1l1 T1 k1l1 ¡1 Then [k; l]

m¡1kc k 2 T and T1 klT kl ¡1

Choose the pairs g; h and k; l such that [g; h] m and [k; l] m¡1kc and
such that both pairs satisfy i and ii above It may be necessary to consider per-
turbations of these pairs We will refer to perturbations which ¯x the constraints

as admissible The conditions i and ii are stable under small admissible pertur-
bations The space [; ]¡1 m has dimension d and for g as above the possible h's
with [g;h] m form an r dimensional set Thus an admissible small perturbation
of g; h gives a smooth d ¡ r dimensional perturbation of g the tangent space of
which is described by 3 15 The same comments apply to k; l 2 [; ]¡1 m¡1kc

Now consider the subspace represented by the ¯rst term in 3 17 We ¯rst ¯x
g and h We claim that we can choose an arbitrarily small admissible perturbation
of k; l such that

1 ¡ kk¡1
c m ¡1 1 ¡ h kg

Im 1 ¡ kk¡1
c m ¡1 kkk¡1

c m :
3 20

This will hold if we can arrange for 1¡ h kg to intersect ker 1 ¡ kk¡1
c m ¡1

trivially i e

kkk¡1
c m \ 1 ¡ h kg

f0g: 3 21

Because k is regular kk¡1
c m kl k kl ¡1 is regular Thus kkk¡1

c m has dimension

r and 1 ¡ h kg has dimension d ¡ r the latter statement is equivalent to
condition ii By B 1 and 3 19 we can ¯nd an arbitrarily small admissible
perturbation of k; l such that the intersection 3 21 will be zero

We now ¯x our choice of k; l We claim that we can ¯nd an arbitrarily small
admissible perturbation of g; h such that

1 ¡ g¡1m m¡1kc 1 ¡ l kk kg¡1m : 3 22

The argument is essentially the same It su±ces to establish

kg¡1m \m¡1kc 1¡ l kk f0g: 3 23

As before g¡1m is regular because g is regular By 3 18 we can arrange this by
an arbitrarily small admissible perturbation

We now have found g;h; k; l such that the image of the subspace 3 17 equals

kkk¡1
c m + kg¡1m kkk¡1

c m \ kg¡1m ; 3 24

and this equality is stable under small admissible perturbations Again by 3 18
and 3 19 we can ¯nd a small admissible perturbation so that 3 24 will be all
of k

We have now proven that the map Ãm is regular at some smooth point for each
m2KnY and as we observed at the beginning of the proof this implies 3 10 ¤
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Appendix A Connectedness properties

The following results can be deduced from [BR] and perhaps elsewhere We

record them here for the convenience of the reader

Lemma A 1 Suppose that K is simply connected Then f g; h 2 K £ K :
[g; h] kg is connected 8k 2 K

If C denotes the conjugacy class containing k then there is a surjective map

f[g; h] kg f[g; h] 2 Cg conj K
and the ¯bers are homogeneous spaces for K The ¯bers are connected because K
is connected and by [BR] the moduli space corresponding to C is connected be-
cause K is simply connected This establishes A 1 It would clearly be desirable
to give an elementary direct proof of this

Lemma A 2 Suppose that K is simply connected Suppose that § is an object
with group element boundary condition which is obtained by sewing one-holed tori
to an N -holed sphere Then Hom §; K is connected

Proof The space Hom for an N -holed sphere is empty or a point When we sew
we obtain a connected object by 1 3 ¤

Let pr : ~K K denote the universal covering of K

Proposition A 3 If § is a one-holed surface with boundary condition l 2 K
then we have the decomposition into connected components

Hom §l; K G
~l2 ~K0\pr¡1 l

pr¤
Hom §

~l
; ~K :

This decomposition is equivariant with respect to ¼0 Aut §
This follows from A 2

Appendix B Commutators

At several points of this paper we used the fact that the commutator map [; ] :
K £ K K 0 is surjective and we presented an indirect proof of this in a of
2 1 5 Here we discuss some re¯nements which we use in the proof of 3 10

Proposition B 1 Let T denote a maximal torus in K The map

Ã : T £ K K 0 : ¸; h [¸; h]

is surjective
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Proof of Proposition B 1 To simplify the notation we will write K in place of
K0; d will denote the dimension and r the rank of k

The derivative of Ã at ¸; h is given by

t £ k k : x; y x¸h¡1

¡ x¸ + y¸ ¡ y h; B 2

hence the image of the derivative at ¸; h is

Ad h Ad ¸ 1 ¡ Ad h¡1 t + k¸
Ad h¸ 1 ¡ Ad h¡1 t + k¸ :

B 3

We claim that the point ¸; h is critical for Ã if and only if i ¸ 2 Kreg or ii
kh \ t 6 f0g To see this suppose that ¸ is regular and kh \ t f0g Then k¸
t has dimension d¡ r and 1¡Ad h¡1 t has dimension r If the intersection of
these two spaces is nonempty then there is x 2 t such that xh¡1

x + y where

y 2 t is not zero; but xh¡1
and x have the same length so that x y implies

y 0 which is a contradiction Thus the dimension of the space B 3 is d and
this establishes our claim

We can factor Ã ~Ã ± p where

T £ K p¡ T £ K T
~Ã

¡ K : ¸; h p¡ ¸; hT
~Ã

¡ [¸; h]; B 4

so that at any regular point ~Ã will actually be a local di®eomorphism We claim
that the set of critical values for ~Ã has codimension at least two This will imply
that ~Ã is surjective because a boundary for the image would necessarily have

codimension one

Suppose that i holds i e ¸0 2 T reg In this case as we vary h ¸0h¸¡1
0 h¡1

will sweep out the ¸0-translate of a nongeneric conjugacy class which will have

dimension · d¡r¡2 Thus the dimension of the set of critical values arising from
condition i will be · r ¡ 1 + d ¡ r ¡ 2 d¡ 3

Now suppose that ii holds The subset fh0 2 K : kh0\t 6 0g has codimension
at least 2 in K : if h0 exp X where X is regular then we must have X® 0
for some root ® of t where X® denotes the ®-root space component of X see

the proof of 2 1 24 especially the paragraph containing 2 1 28 This is a
T -invariant condition hence the set of critical points corresponding to ii has

codimension at least 2 in K T It follows that the corresponding set of critical
values has dimension · r + d¡ r ¡ 2 This completes the proof ¤

Corollary B 5 For the commutator map [; ] : K £ K K0 the complement
of the subset N of K0 de¯ned by

fn : 9 g; h 2 [; ]¡1 n s:t: i g 2 Kreg; ii kg \ kh
f0gg

has codimension at least 2
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Proof Given a maximal torus T each regular value for the map Ã of B 1 will
belong to N In the proof of B 1 we established that the complement of the set
of regular values for Ã has codimension at least 2 By varying T we obtain B 5

¤

Remarks B 6 a It is of interest to consider the more general question of
whether for given g 2 K the map

Ãg : T £ K0 K0 : ¸; h [g¸; h] B 7

is surjective This has a factorization

T £ K p¡ Dg f ¸; l 2 T £ K : g¸ » lg
~Ãg¡ K Lg¡ K

¸; h p¡ ¸; hg¸h¡1 ¸; l
~Ãg¡ ¸l¡1 k

Lg

¡ gk; B 8

where g¸ » l means g¸ and l are conjugate The map ~Ãg is the restriction to Dg
of the natural coset ¯bration

T £ K T £ K ¢ T ; B 9

where ¢ T is the diagonally embedded copy of T in T £ K and we identify
T £K ¢ T with K by ¸; l ¢ T $ ¸l¡1 The map ~Ãg is surjective if and only

if for each k 2 K there exists ¸ 2 T such that g¸ » l k¡1¸ This is equivalent
to a system of r polynomial equations

Âi g¸ Âi k¡1¸ ; i 1; : : : ; r B 10

for r unknowns ¸1; : : : ;¸r 2 T where Âi is the character corresponding to the

ith fundamental irreducible representation and ¸
Q

r
1 ¸hii where the hi are the

coroots e g for SU 3 we have 2 equations

3

X1

Ai¸i 0; ¹A1¸2¸3 + ¹A2¸1¸3 + ¹A3¸1¸2 0; B 11

for the ¸i 2 T subject to the constraint
Q

¸i 1 where Ai gii ¡ k¡1 ii It
is trivial to check that for SU 2 Ãg is always surjective but this is not so for
SU 3 Thus in particular the equations B 11 do not in general have solutions

satisfying the reality condition j¸ij 1; on the other hand B 1 asserts that such
solutions always exist for g 1

This suggests a number of questions such as how does one describe the set of
conjugacy classes which meet gT when is Ãg surjective and so on
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b Identify SU 2 with H1 the group of unit quaternions by µ
a b

¡¹b¹a ¶ $
q a¡ bj and take T T The conjugacy classes in H1 are obtained by ¯xing

the real part of q Now ¯x g a ¡ bj The conjugacy classes which meet gT are

indexed by [¡jaj; jaj] We have

Dg f ¸; q 2 T £ H1 : Re q Re a¸ g;

~Ãg : Dg H1 : ¸; q ¸¹q;

TDgj¸;q f is; q0

2 iR £ Im H : Re a¸is Re qq0

g; B 12

d ~Ãg : TDg j¸;q Im H : is; q0 q is + ¹q0 ¹q;

Dg;critical f ¸; a¸ + q1 ¡ jaj
2zj : ¸; z 2 Tg:

When 0 < jaj < 1 the singular set is a 2-torus; at the extreme values jaj 0; 1

the critical set degenerates to a circle The SU 2 miracle is that in all cases the

set of critical values

~Ãg Dg;critical f¹a ¡q1 ¡ jaj
2¸zj : ¸; z 2 Tg B 13

is a circle One can easily visualize how ~Ãg covers H1
The extreme case jaj 0 when there is just a single totally geodesic con-

jugacy class corresponds to the condition that g is a so-called principal element
[K]
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