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Some geometric properties of the Bakry—Emery—Ricci tensor

John Lott

Abstract. The Bakry—Emery tensor gives an analog of the Ricci tensor for a Riemannian man-
ifold with a smooth measure. We show that some of the topological consequences of having a
positive or nonnegative Ricci tensor are also valid for the Bakry—Emery tensor. We show that
the Bakryfﬁlmery tensor is nondecreasing under a Riemannian submersion whose fiber transport
preserves measures up to constants. We give some relations between the Bakry—Emery tensor
and measured Gromov—Hausdorff limits.
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1. Introduction

When considering the metric structure of manifolds with lower Ricci curvature
bounds, it is natural to carry along the extra structure of a measure and consider
metric-measure spaces. This is especially relevant for collapsing, and has been
discussed by Cheeger—Colding [8, 9, 10], Fukaya [15] and Gromov [17, Chapter 31].
In this paper we consider smooth metric-measure spaces. Let M be an n-
dimensional Riemannian manifold, with metric g. Let dvoly; denote the Rieman-
nian density on M. Let ¢ be a smooth positive function on M. Then (M, ¢ dvolys)
is a smooth metric-measure space. For reasons coming from the study of diffusion
processes, Bakry and Emery [4] defined a generalization of the Ricci tensor of M

by .
Ricso = Ric — Hess(In ¢). (1.1)

In terms of indices, (/R\lgoo> 5 = Ricap — (In@).0p.

It turns out that the Bakry—Emery tensor (1.1) has interesting connections to
logarithmic Sobolev inequalities, isoperimetric inequalities and heat semigroups.
We refer to [2] and [19] for information on these connections. (In fact, Bakry and
Emery defined their tensor in a more abstract setting than what we consider.)

Research supported by NSF grant DMS-0072154.
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We are interested in the geometric implications of bounds on the Bakrny/)mery
tensor. As in [20], let us define a related tensor Ric,. Given ¢ € (0, 00), put

Ric, = Ric — Hess(In ¢) — édlnqﬁ@ dln ¢ (1.2)
:ch_I_IeSTf(gb)_f_ (1_1)@@%

¢ 9
Hess ( )

Clearly, if ﬁEq > rg then Ricoo > rg. In the terminology of [3], a condition of the

= Ric —¢q—————*

form Ric, > rg implies a curvature-dimension inequality CD(r, n + ¢).
Our first result extends some classical topological results about the Ricci tensor
(i.e. when ¢ is constant) to the setting of the Bakry—Emery tensor.

Theorem 1. Suppose that M is connected and closed.

1. If Rico, > 0 then m (M) is finite.

2. If ﬁ\igq > 0 and q € (0,00) then w1 (M) has a finite-index free abelian
subgroup of rank at most n.

3. If Ricoe > 0 then HY(M;R) is isomorphic to the linear space of parallel
1 forms on M whose pairing with grad(¢) vanishes identically. In particular, if
RICOO >0 then by(M) < n. If RlcOO > 0 and bi(M) = n then M is a flat torus
and ¢ is_constant.

4. If RlcC>o < 0 then the isometry group of (M, g) is finite.

5. 1If RICOO < 0 then any Killing vector field on (M, g) is parallel and annihi-
lates .

Remark. Theorem 1.2 is a strengthening of [20, Theorem 6], which says that if
Ricy > 0 and g € (0, 00) then 71 (M) has polynomial growth of order at most n+q.

The proofs of parts 3—5 of Theorem 1 use a Bochner-type identity. If the pair
(g,9) is only cCo'nH? regular then one can use this identity to still make sense of
the notion Rice > rg or Rlcq > rg (see Definition 1 of Section 2).

An important result in the study of manifolds of nonnegative sectional cur-
vature is O’Neill’s theorem, which says that sectional curvature is nondecreasing
under a Riemannian submersion [7, Chapter 9]. We show that there is a Ricci
analog of O’Neill’s theorem, provided that one uses the Bakry—Emery tensor and
assumes that the fiber transport of the Riemannian submersion preserves measures
up to multiplicative constants.

Suppose that a Riemannian submersion p : M — B has compact fiber F. Put
F, = p~1(b). Given a smooth curve v : [0,1] — B and a point m € F, ), let p(m)
be the endpoint 7(1) of the horizontal lift 7 of v that starts at 7(0). Then p is the
fiber transport diffeomorphism from £, ) to Flq).
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Given the positive function ¢M on M, define ¢P, a smooth positive function
on B, by

e (&M dvolyy) = ¢P dvolp. (1.3)

—M ———B ,
Let Ric,, and Ric,, denote the corresponding Bakry-Emery tensors. Let dvolp
denote the fiberwise Riemannian density.

Theorem 2. Suppose that fiber transport preserves the fiberwise measure ¢y dvolp
up to a mulliplicative constant, i.e. for any smooth curve v : [0,1] — B, there is a

dvol Fw(l)) = g 71 dvol,
)

~(0)

constant ¢y, > 0 such that p* ((i)M -

Fya

M ——B
1. For anyr € R, if Ric,, > rg™ then Ric,, > rg®.
2. Suppose in addition that ¢ = 1. Put ¢ = dim(F). For any r € R, if
—B
RicM > rgM then Ricq > rgB.

Using Theorem 2, we show a relationship between iﬁéq and collapsing.

Theorem 3. 1. Given r € R and an integer ¢ > 2, let (B, ¢) be a smooth closed

measured Riemannian manifold with /I_{\iEqB > rgB. Then (B, ¢) is the measured
Gromov—Hausdorff limit of a sequence of (n + q)-dimensional closed Riemannian
manifolds (M, g;) with Ric(M;, g;) > rg;.

2. Let {(M;, g:)}2, be a sequence of N-dimensional connected closed Rieman-
nian manifolds with sectional curvatures bounded above in absolute value by A and
diameters bounded above by D, for some D, A € RT. Let (X, u) be a limit point
for {(M;,g:)}21 in the measured Gromov-Hausdorff topology. Suppose that for
somer € R and alli € ZT, Ric(M;, g;) > rg;. Suppose that X is an n-dimensional
closed manifold. Put q = N —n.

a. If g =0 then X has Ric > rg in the generalized sense of Definition 1 below.

b. If g > 0 then X has ﬁ\igq > rg in the generalized sense of Definition 1 below.

Finally, we give a condition in terms of distances and masses that is equivalent
to having Bakry—Emery tensor bounded below by r. If O is a measurable subset
of M, put

volg(0) = Aqﬁdvohw (1.4)

Following [17, Section 5.45], we define the notion of a distance tube in M. Let T}
be a closed subset of M. A subset 7' C M containing T is a distance tube with
base Tj if for all ¢ € T, there is a segment s C T from some tg € Ty to ¢ with
length I(s) = d(t,15). For 0 < uy < ug, define the distance annulus

A(’U,hug) = {t el u < d(t7T0) < UQ}. (1.5)
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Given ¢ € R, put
U
(w1, ug, ¢) = / e~ ter gy, (1.6)
u

1

Theorem 4. Suppose that ﬁ\izoo(M, g,9) > rg for some r € R. Given numbers
0 < uy < ug < ug, we assume that the tube T is a disjoint union of segments s,
starting at Ty, of length at least us. We also assume that volg(A(ua,u3)) > 0.
Suppose that for some c € R,

voly (A(ug, us)) <
volg(A(uy,ug)) ~ 0(uy,ug,c)’

v(ug, us, c)

(1.7)

Then there is a subtube T" CT' consisting of a union of segments s from Ty, such
that
L

voly(T" N Afuy, up)) . 1 volg(A(ua,us3)) <ﬁ(u27u370))17 L8]

voly(A(ug,ug)) = voly(A(ug, ug)) \0(uy,us, c)

2. If a segment s C T, starting from Ty, intersects T' N A(ug,us) then s C T,
and
3. For all uy > us,

volg (T N A(us, ug)) < (usg, uyg, €)

Yols (TR Alug,ug)) = Bz, 03,8)" 9]

Conversely, suppose that there is a number r € R so that for each tube T
and ¢ € R satisfying (1.7), there is a subtube T" with the above properties. Then

Riceo(M, g,8) > r4g.

In Sections 2-5 we prove Theorems 1-4, respectively. In Section 6 we make
some remarks.

I thank Max Karoubi for his hospitality at the Université de Paris VII, and
Thierry Coulhon and Sasha Grigor’yan for their hospitality at the Institut Henri
Poincaré, while part of this research was performed.

2. Proof of Theorem 1

We first prove parts 1 and 2 of the theorem. If fﬁéoo > 0 then iﬁéq > 0 for some
q € (0,00). Increasing g if necessary, we may assume without loss of generality
that ¢ is an integer greater than one. Thus for parts 1 and 2, it is enough to
consider the case when Ric, > 0 or Ric, > 0, for some integer ¢ greater than one.

Given i € Z7T, consider S? x M with the warped product metric g5**M —
g™+ i*2¢%gsq. Let p : S7 x M — M be the projection. Let X be the horizontal
lift to S9 x M of a vector field X on M and let U be a vertical vector field on



Vol. 78 (2003) The Bakry—Emery—Ricei tensor 869

S% x M. From [7, Proposition 9.106],

(2.1)

?

1
RicS*M (X, X) = p* (RicM (X, X) — =X, X)

¢E
Ric®"*M (X, T) =0

Ric* M (T, T) = Ric® (T, T) + (T, T) p* (—Vg‘f" C(g—1) |W’q|2> .

b7 ba

Taking + — oo, we see that if ﬁEq(M, g,¢) > rg then (M,gM, ) is the limit of
a sequence of (n + ¢)-dimensional manifolds with Ricci curvature bounded below
by r. If r is positive then from Myers’ theorem, 71(5? x M) = w1(M) is finite.
This proves part 1 of the theorem.

Now suppose that r > 0. For i large, the warped product metric on S? x M has
nonnegative Ricci curvature. There is a k& > 0 so that m1(S?x M) = 71 (M) has a
finite-index free abelian subgroup of rank k& and the universal cover S% x M has an
isometric splitting as R¥ x Y"t97% where Y is closed and simply-connected [12].

Considering the cohomology groups of S x M = RF x Y7ta—k it follows that
g+ max{j : H(M;Z) 40} =n+q— k. (2.2)

Then k =n — max{j : Hj(M; Z) # 0} < n, which proves part 2 of the theorem.
To prove the rest of the theorem, if V' is a vector field on M, let V't denote
the dual 1-form. If w is a 1-form on M, let wy denote the dual vector field.
Let iy denote interior multiplication with respect to V and let £y denote Lie
differentiation with respect to V.
If T'is a tensor field on M, let (T,7T) € C*°(M) be the inner product coming
from the Riemannian metric g. Put

(T, T) = /M(T, T)(m) ¢(m) dvolps(m). (2.3)

Let (Q*(M),d) denote the de Rham complex of M. Let § be the formal adjoint
of d with respect to the Riemannian metric g, i.e. in the case ¢ = 1, and let § be
the formal adjoint of d with respect to (-, ). Then

5 =0 —i(aing),- (2.4)
Put A = d§ + 6d and A = do + 6d. Then
A=A = diing), — itaingyd =2 = Liging),. (2.5)

The Bochner identity says that if w is a 1-form then there is an equality of
functions on M:

%&l(w?w) — (w, Aw) — (Vas, Vas) — (w, Ricw). (2.6)
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On the other hand,

iy 0,0) = 3 Lty (9). (2.7)
We have
Lq1n¢),9 = 2Hess(In ¢). (2.8)
Then
St 9,0, 0) = (@, L(aingyy») — (@, Hess(In $)w). (2.9)

(The minus sign in (2.9) comes from the fact that the pairing is on 1-forms instead
of vector fields.) Equations (2.4), (2.5), (2.6) and (2.9) give

%Sd(% W) = (w, Bew) — (Vir, Vaw) — (w, Ridoot). (2.10)
Multiplying (2.10) by ¢ and integrating over M, we obtain
0 = (w, Aw) — (Vw, Vw) — (w, Riceow), (2.11)

(dw, dw) + (dw, dw) — (Vew, Vw) = (w, Ricow). (2.12)

We can apply usual elliptic theory to the de Rham complex, with the inner
product (-, -), to obtain an isomorphism

H*(M;R) 2 {w € Q*(M) : dw = dw = 0}. (2.13)

If Ricoo > 0 and a l-form w satisfies dw = éw = O then (2.12) implies that
Vw = 0. Hence dw = 0. Along with dw = 0, (2.4) now implies that w(grad(¢)) =
0. Conversely, if Vw = w(grad(¢)) = 0 then dw = dw = 0. This proves the
isomorphism in part 3 of the theorem.

If by (M) = n then there are n linearly-independent parallel 1-forms on M that
annihilate grad(¢). The usual argument shows that M is a flat torus. As the
parallel 1-forms on M annihilate grad(¢), ¢ must be constant. This proves part 3
of the theorem.

A pointwise algebraic computation shows that

(dw,dw) + (L9, Loy 9) = 2(Vw, Vw). (2.14)
Then (2.12) becomes
(Vw, Vw) + (bw, 0w) — (w, Ricoow) = (Luygs Luyg)- (2.15)

If Ricoo < 0 and Lyvg = 0 then taking w = V¥, (2.15) implies that V = 0.
Hence the isometry group of (M, g) is discrete and, being compact, must be finite.
This proves part 4 of the theorem.
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If Ricoo < 0 and Ly g =0 then (2.15) implies that VV'# = SVE=0. As before,
we obtain that V¢ = 0. This proves part 5 of the theorem.

Remarks. 1. If we put w = df in (2.10) then we recover the definition of Ricoo
from [4].
2. Jianguo Cao pointed out to me that a formula related to (2.12) has been
used to study the d-operator on complete Kihler manifolds [14, Théoréme 5.1].
3. The operator A is related to the Witten Laplacian of [22], but the two
operators are distinct. To see the relation, note that 5= ¢~ 10¢. Put D = qbédqb_%
and D* = qS’%(Scb%. Then the Witten Laplacian DD* + D* D is related to A by

DD* + D*D = ¢2A¢ 3. (2.16)

The Bochner-type identity (2.12), when translated to a statement about DD* +
D*D, becomes

DD* + D*D — (&wré)* (#2Ve4) + Ric, (2.17)

where the adjoints are with respect to the unweighted L?-inner product. In
contrast, in Morse—Witten theory one collects the terms differently, by writing
DD*+D*D =V*V+ ... L

4. The equality (2.12) gives a way of defining the notion of Rice, > rg for a
class of nonsmooth measured manifolds (M, g, ¢). Namely, suppose that M is a
manifold whose transition maps are Ch!-regular. Let g be a Riemannian metric
on M whose components, in local charts, are in C° N H!, where H' denotes the
Sobolev space. Let ¢ € CO(M) N HL (M) be a positive function. (There are a
smooth manifold M’ and a Cl!l-diffeomorphism M’ — M. Hence after pulling
back, if one wants then one can assume that g and ¢ are defined on a smooth
manifold.)

Definition 1. We say that Ric(M, g) > rg if for all compactly-supported Lipschitz-
regular 1-forms w on M,

/(dw,dw)dvolM—i—/ ((5w75w)dvolM—/ (Vw7Vw)dvolM2r/ (w,w) dvolyy.
M M M M
(2.18)

We say that ﬁw(M , 0, ¢) > rg if for all compactly-supported Lipschitz-regular
1-forms w on M,

(dw, dw) + (0w, dw) — (Vw, Vw) > r{w, w). (2.19)

We say that ﬁizq(M7 g,¢) > rg if for all compactly-supported Lipschitz-regular
1-forms w on M,

(dw, dw) + (0w, dw) — (Vw, Vw) — é /M (W(VIng))? pdvoly > riw,w). (2.20)
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An immediate consequence of the definition is the following lemma.

Lemma 1. Let M be a smooth closed manifold.
1. If{g:}32, is a sequence of smooth Riemannian metrics on M with Ric(M, g;)

0 il
>rg;, and g; cni g for some C° N H'-regular metric g, then Ric(M, g) > rg.

2. If {(gi,:) 152, is a sequence of smooth Riemannian metrics and smooth

——— 0 1
positive functions on M with Ricoo(M, gi, &:) > 7gi, and (gi, &) L1 | (g, @) for

some C° N H'-regular pair (g, $), then Ricoo(M, g, ¢) > rg.

30 If {(gis 90) 152, is a sequence of smooth Riemannian metrics and smooth

—~ 0 1
positive functions on M with Ricg(M, g;, ¢:) > rgi, and (g;, ¢;) o 4 (g,¢) for

some C° N H'-regular pair (g, $), then ﬁ\iEq(M7 g,0) > rg.

For example, let {(M;, g;)}2, be a sequence of n-dimensional closed Rieman-
nian manifolds with Ricci curvatures bounded below by r € R, injectivity radii
bounded below by ig € RT and diameters bounded above by D € RT. Then
{(M;, g;)}2 has a limit point X in the Gromov—Hausdorff topology. From [1], X
is an n-dimensional closed manifold with a Riemannian metric g that is Whe-
regular for all p € [1,00). From the Sobolev embedding theorem, g is also
C%eregular for all @ € (0,1). After applying diffeomorphisms one has W1P-
convergence of a subsequence of {(M;,g;)}:2, to (X, g), and so Ric(X,g) > rg in
the sense of Definition 1.

For another example, suppose that M is a compact Kahler manifold with local
complex coordinates {2®} and metric g oB Its Ricci form, in local coordinates, is
the (1,1)-form —199 Indet(g). Now suppose that the g_5 are only C°NH !-regular.
The Kéahler condition still makes sense distributionally, and the Ricci form makes
sense as a closed (1, 1)-current. Then Ric(M, g) > 0 in the sense of Definition 1 if
and only if —199Indet(g) is a positive current. (This last condition makes sense
for a much larger class of g.)

3. Proof of Theorem 2

We (mostly) use the notation of [7, Chapter 9]. If X is a vector field on B, let X
be its horizontal lift to M. Let N be the mean curvature vector field to the fibers
F. Let A be the curvature of the horizontal distribution. Let T' be the second
fundamental form tensor of the fibers F. Let VM be the covariant derivative
operator on M and let VZ be the covariant derivative operator on B. From |7,
(9.36¢)], there is an identity of functions on M :

Ric” (X, X) = Ric” (X, X) - 2 (A, A¢) — (TX,TX) + (X, VMN). (3.1)
Given b € B, let {0;},c(_c ) be the flow of X as defined in a neighborhood of b
and for ¢ in some interval (—e, €). Let {0;};c(_c ¢y be the flow of X that covers 0.
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It sends fibers to fibers diffeomorphically. Hence it makes sense to define L+-dvolp
by

(Lxdvolp)| = = tzo(ﬁt*dvmp) n (3.2)
With our conventions,
Lsdvolp = — (X, N) dvolp. (3.3)
‘We have
B — M dvol p. 3.4
/F @™ dvolp (3.4)
Then
XoP = £x¢®? = ,cX/ M dvolp = / L+(¢M dvolp) (3.5)
F F
= / (XM — (X, N) $M) dvolp
F
and
XXP = / [X (XM — (X,N) M) — (X, N) (XM — (X, N) 6M)] dvolp
F

(3.6)

(XXM - X (X, N) 6™ —2(X, N) XM + (X, N)” ¢ | dvolr

B - o) - o) - (Zy

I
S

oM oM
+ (% - (X, N)) ] ™M dvolp.
Using the fact that VXX = VEX [7, (9.25d)], it follows that
Hess(¢p)(X, X) = XX¢” — (VE X)¢” (3.7)
Hess(6M)(X, X) XM\’
- /F %_ (X7V§(—4N) _ <¢_M)
M
+ (fﬁ/] } ™M dvolp

/ [Hess(In ¢™) (X, X) — VMN)
F

X, X
+ (%ﬁf ) ] ™M dvol p.
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Substituting (7, VJ‘%N ) from (3.1) gives

Ric? (X, X)pP — Hess(¢P)(X, X) = /

[Ricoo (X, ) + 2(Ax, Ax) + (TX,7X)
F

o (3.8)
- <— - (X, N)) } ¢Mdvolp

Using (3.5),
Hess(¢P)(X, X) = (X¢P)?
P (¢8)?
_ / [Rics (X, X) + 2 (45, 45) + (TX,TX)
F

Rico (X, X)¢® = [RicB(X,X)— }/)B (3.9)

- <7;LMM - (77]\[))21 M dvol p
v ([ G2 @) o) @

M XM  — M
L (¢ dvolp) = <¢—M — (X, N)) ¢ dvolp. (3.10)

‘We have

By assumption, %ﬂi — (X, N) is constant on a fiber /. Then

[ﬁ%ﬁ (X, X) +2 Ay, Ag) + (T'X, TY)] M dvolp
P

(3.11)
—~M, — —
> | Ric (X, X)¢p" dvolp.
F

S SN A =B
If Ric (X, X) > rg™ (X, X) then (3.11) implies that Ric_ (X, X) > r¢®?(X, X).
This proves Theorem 2.1.

Now suppose that ¢ = 1. Equations (1.2) and (3.9) imply that

—~—B

Ric, (X, X)¢”

/ {RicM(77Y) +2(Ag, A%) + (TX,TX) — é (X, N)Q} dvolp  (3.12)
F

+ (1-%) (-/F(Y,J\I)QCJMFJr </F (X, N) dvolp>2(q§B)1>.
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As (77 N) = —Tr (TY)7 we know that (TY7 TY) — % (77 N)2 > 0. By assump-
tion, (77 N ) is constant on a fiber F'. Then

—~B .
Ric, (X, X) ¢
. - 1 —
:/ {RicM(X7X)+2(AY7AX) + (TX,TX) — = (X,N)?| dvolp  (3.13)
F q
> /RicM(Y,Y) dvolp.
P
—M __ -
If Ric., (X, X) = rg™ (X, X) then

Ric, (X, X)¢? > r/ g™ (X, X) dvolr = rgB(X, X)4". (3.14)
P

This proves Theorem 2.2.

Example. Let p : M — B be a Riemannian submersion, with M compact,
whose fiber transport preserves the fiberwise metric up to multiplicative con-
stants. Equivalently, the Riemannian metric g on M comes from starting with
a submersion metric ¢’ with totally geodesic fibers, along with a positive function
f € C*(B), and then multiplying the fiberwise metric of g’ on I}, by f2(b). One
can think of g as a generalized warped product metric.

Suppose that the fibers I’ have nonnegative Ricci curvature. For ¢ > 0, let
ge be the Riemannian metric on M which comes from multiplying the fiberwise
Riemannian metrics by 2. Then as e — 0, the metrics g have Ricci curvatures
that are uniformly bounded below. Explicitly, let X be the horizontal lift of a
vector field X on B and let U be a vertical vector field. Then as ¢ — 0, with the
notation of [7, Chapter 9],

Ric (X, X) ~ p*Ric” (X, X) — (I'X,TX) + (X,VEN), (3.15)
RicM (X, U) ~0
RicM (U, T) ~ Ric? (T, T) + ¢ ((ST)(E T) - (N, TﬁU)) .

(The terms on the right-hand side of (3.15) are evaluated with respect to the
metric g1.) This is an example of a collapse with Ricci curvature bounded below,
to which Theorem 2.2 applies.

For another example, let M be a compact Riemannian manifold on which a
Lie group G acts isometrically and effectively. Suppose that the G-action on M
has a single orbit type and put B = G\M. Then there is a natural Riemannian
submersion p : M — B. As the orbits of the G-action on M are all G-diffeomorphic
to a homogeneous space G/H, and G/H has a unique G-invariant volume form
up to constants, it follows that the fiber transport of the Riemannian submersion
preserves measures up to constants. Hence Theorem 2.2 applies.
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4. Proof of Theorem 3

We refer to [15] for the definition of the measured Gromov—Hausdorff topology.

To prove Theorem 3.1, we just apply the warped product construction of the
proof of Theorem 1.1 to S? x B.

Let {M;,g:}°, be a sequence as in the statement of Theorem 3.2. We may
assume that lim; oo (M;, gs,dvol;) = (X, i) in the measured Gromov-Hausdorff
topology. If ¢ = 0 then X is a smooth manifold with a C'*-regular metric g~¥ and
after taking a subsequence and applying diffeomorphisms, we may assume that
(M;, g;) converges to (X, ) in the C1:®-topology (see, for example, [18]). In this
case, the theorem follows from Lemma 1.1.

Suppose that ¢ > 0. By saying that X is a manifold, we mean that in the
construction of X as a quotient space X/O(N) [16], the action of O(N) on the
manifold X has a single orbit type. Then X has the structure of a smooth manifold
with a Cl:%regular pair (g%, ¢%).

For any e > 0, we can apply smoothing results of Abresch and others [11,
Theorem 1.12] to obtain new metrics g;(¢) with

e g < gile) < gy, (4.1)
|vgz‘ - vg¢(6)| <kg

|V’;Z(E)Rlem(M“ gl(e))| S Ck(N7 €, A)7

where the constants are uniform. We can also assume that Ric(M,;,g;(e)) >
(r —e)gi(e) [13, Remark 2, p. 51]. (See [21, Theorem 2.1] for a similar statement
about sectional curvature.) For small €, let B(e) be a Gromov—Hausdorff limit of
a subsequence of {(M;, g;(€))}32,. We relabel the subsequence as {(M;, g;(€))}72;.
From [11, Proposition 4.9], for large i, there is a small C?-perturbation g/(¢) of
g;(€) which is invariant with respect to a Nil-structure. In particular, we may
assume that Ric(M;, gl(e)) > (r —2€)gj(e). Now (M;, g/(e)) is the total space of

a Riemannian submersion M; — B(e) with infranil fibers and affine holonomy.
Let gf (E), ¢f(€) denote the induced metric and measure on B(¢). As the fiber
transport of the Riemannian submersion preserves the affine-parallel volume forms
of the fibers, up to constants, Theorem 2.2 implies that ﬁ\igq (B(e)7 gf(€)7 c,bf(e)) >
(r—2e)gf(€). Varying i and €, we can extract a subsequence of { (B(e)7 gf(€)7 (bf(e))}

with 4 — oo and € — 0 that converges in the C1®-topology to (X, gX, ¢~ ). The
theorem now follows from Lemma 1.3.

5. Proof of Theorem 4

Let s be a segment from g € Ty to ¢t € T, with length I(s) > w3 and arc-
length parameter w. By definition, s is length-minimizing. We can decompose the
measure ¢ dvolys on A(uyi,uq) as ¢areas(u) du p(s), where p is a measure on the
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space S of distinct segments s that make up A(wq,us4), du is the length measure
along a segment s and areas(u) is the relative size of the transverse Riemannian
area density along s, as measured with respect to the fan of segments. Let h denote
the trace of the second fundamental form IT of a level set of constant distance from
Th. (With our conventions, the boundary of the unit ball in R has positive mean
curvature.) Differentiating along s, with respect to w, gives

Ou(d(u <(u
8, Infilajamen,la]) = (%) ii:;?ug) D _ hw)+8ulng(w)  (5.1)
and
92 In(¢p(u)areas(u)) = dyh(u) 4+ 92 In ¢(u). (5.2)
From the Riccati equation for II,
duh(u) = — Tr(I1?) — Ric(dy, ) < — Ric(dy, dy,). (5.3)
Then
82 In(p(u)areas (u)) < — Ricoo(du, ) < — 7. (5.4)
Hence for any ¢ € R,
82 (1n ($(w)areas(u)) + guz . cu> <0. (5.5)
Fix s and put
a(u) = ¢(u)areas(u), (5.6)
a(u) = e 5w e, (5.7)
v(uy, ug) = /u2 a(u)du (5.8)
and .
i, 1T = / il (5.9)
Then (5.5) says that
d2
—In(%) <0, (5.10)

i.e. that In (%) is concave in wu.

v(ug,ugz) v(ug,us) a(us) v(uz,usz)
Lemma 2. If 5603 S Surma) o7 G(ua) S Susrua)”

Proof. Suppose that

- . (5.11)
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If lu2) > alua) ¢hon the concavity of In (%) implies that

a(uz) = a(us)
w3 au)~ i
g(ug) S fUQ ua(U) ( ) b (512)
a(us) Juy @u)du
which is a contradiction. Thus
a(uz) — a(us)
With the concavity of In (%), (5.13) implies that ggz;
and so i
w2 a(uw)~
oy st @03 a(ua) (5.14)
f;f a(u)du a(ug)’ '
The concavity of In (%) and (5.13) also imply that
a(uz) < ‘/;ZS 3533 ( )du (5 15)
a(ug) f;; alu)du ’
Thus we have s alu) v alu)
fuf a(u)a(“)du a(ug) fu; a(u)a(u)du (5 16)
fsf a(u)du a(u) ;23 a(u)du ‘
which contradicts the assumption. O

Lemma 3. If §;258) < $Gb3e} then for us € (us, Uo)), 30258 < Hi258).

Proof. For uw € (us, ((s)), put

—In v(u37u) U(u%uS)
Flu)=1 (ﬁ(u37u)/ﬁ(u27u3)>' (5.17)
Then
Pl — (I(U) . a(u) _ a(u) a,(u) _W(U3,u)
P = ) ™ S ) o) {am) auw)] (5.18)

Lemma 2 implies that if F'(u) < 0 then F’'(u) < 0. We can extend F(u) smoothly

to u = ug, with
Flus) = In ((“3)/M>. (5.19)

a(uz)/ o(ug,us)
By Lemma 2, F(us) < 0. It follows that F(u) < 0 for all w € (us, (s)), which
proves the lemma. O
We have

fS vs (ug,us)

vs(ug,uz)

VO]¢(A(”LL2,U3)) Us u17u2)du( )
volg(Alur,us)) S vs(u1,uz)dp(s)

(5.20)
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Put N
S = {s €S vs (uz, ug) < v(ug,ug)} (5.21)
vs(ug,ua)  O(ug,ug)
and
7= Js (5.22)

ses’
We claim that (1.8) is satisfied. If it is not satisfied, put ” = § — &’ and
T” =T —T’. Then
VO]¢(T//QA(U1,U,2)) > VO]¢,(A(’U,277L3)) (6(%27u3)>1 (5 23)
volg(A(uy, us)) voly(A(u1, ug)) \V(ur,u2) ) '

However, from the definition of 7",
voly(A(uz, ug)) > vols(T" N Alug, uz)) = / Us(uz, ug)
s Vs (w1, us)

ﬁ(u27 ug) ﬁ(u27 u;g) 1
> < Us(u,u du(s) = ————%vol4(T ﬂAu7u R
> /S,,v(wz) (w1, w2 )dp(s) = 52 Hvoly (T 1 Alun w2)

ve(uy,us)du(s) (5.24)

which contradicts (5.23).
If there is a cutpoint along s, with respect to its basepoint in Ty, at u, €
(us3,uq) then we put vs(us, uq) = f:: as(u)du, and otherwise we put vg(us,ug) =

fsj as(u)du. Using Lemma 3,

V01¢(T/OA(’U/37’U)4)) o fs/ Zizz:z;;vs(uz’ug)du(s) < 6S(,U’?null) (5 25)
volg (T N A(ug,us)) S vs(u2,uz)du(s) = Ds(usg,uz)’ '

This proves the first part of the theorem.

Suppose that there is a number » € R so that for each tube T and ¢ € R
satisfying (1.7), there is a subtube 7" satisfying the properties of the theorem.
Given m € M and a unit vector v € T, M, let Ty be a hypersurface passing
through m such that T,,(To) = v and the second fundamental form of Ty at m
vanishes. Let s be a minimizing segment with s(0) = m and s’(0) = v. From (5.1),

d
2ol (In(@(warea(u)) = v(in g). (5.26)
From (5.2) and the Riccati equation,
j—; __ (n(g(u)area(u)) = ~ RiCoo (v, v). (5.27)

Put co = v(In¢) and ro = Ricoe(v,v). Then for small «,
In(¢(u)area(w)) ~ const. + cou — %Ouz. (5.28)
For small w; < uy < ug < uyg, we have

us 70,2
o(ug,ug) | Ju, € 2" T (5.29)

v(uy,ug) f;‘f e~ Butcou gy,
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and

&
v(usg, ug) fs: e U teoudy

ofug,ug) U T reoudy’

(5.30)

Take T to be a small tube around s (with small base Ty), take uz small relative
to ug and take ¢ = ¢g + € with € > 0 small so that (1.7) holds. If there is to be a
subtube 7" such that (1.9) holds, for all such choices, then we must have rq > r.
This proves the theorem.

6. Remarks

1. If M™ is compact and ﬁEq > rg, with ¢ an integer greater than one, then
Theorem 3.1 says that (M, g, ¢) is the limit of a sequence of (n + ¢)-dimensional
manifolds with Ricci curvature bounded below by r. As in the proof of Theorem
1.2, we can then apply standard results about manifolds with Ricci curvature
bounded below, in order to obtain conclusions about (M, g,¢). For example,
applying the Bishop—Gromov inequality to the (n + ¢)-dimensional manifolds and
taking the limit, we obtain a Bishop—Gromov-type inequality for the measures of

the distance balls in M. Namely, let vol, denote the weighted measure. Then for

0 < uy < usg, %ﬁ:’f; is less than or equal to the corresponding quantity in the

(n+ q)-dimensional space form of Ricci curvature r. If r > 0 then applying Myers’
theorem to the (n+ ¢)-dimensional manifolds and taking the limit, we obtain that

diam(M) < 74/ "—t‘r—l This gives alternative proofs of some results of Qian [20,

Corollary 2 and Theorem 5] in the special case when ¢ is an integer greater than
one. (The results of [20] are valid for all positive ¢.) One can also show that if

ﬁ\i?:q > rg with g € (0,00) then (M, g, ¢) satisfies the directional Bishop—Gromov
inequality of [8, (A.2.2)] with respect to a model space of formal dimension n+ g¢.

2. Similarly, if ¢ is an integer greater than one then there are Sobolev in-
equalities for the (n + ¢)-dimensional collapsing manifolds [6, Theorem 3, p. 397].
Applying these inequalities to functions that pullback from M, we obtain weighted
Sobolev inequalities for M. Namely, put V = fM ¢dvoly. Given o, 8 € [1,00)
such that o < %7 let ¥(n+ ¢;«, ) be the Sobolev constant of the standard
(n + q)-sphere S"T¢, defined by

IS lla
Idf lls

S + g;, ) — sup{ e WhB(S™H), £ 40, /

S

= o} . (6.1)
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Then if ﬁzq(M7 g,%) > "+q L4, we have

|4
<X(n+qo,B)R (W)

1
B
+ Va5 (/ f%dvolM)
M

for f € WLP(M). In the case 3 = 2, these inequalities appeared in [3].

3. From the Bishop—Gromov-type inequalities, one can easily show that for
any ¢, D € RT and r € R, the space of Riemannian manifolds (M, g) with a
smooth positive probability measure ¢ dvoly, satisfying ﬁ\igq(M7 g,¢) > rg and
diam(M, g) < D, taken modulo diffeomorphisms, is precompact in the measured
Gromov—Hausdorff topology.

1

(/M f“¢>dvolM> :

Q=

N (/ |Vf|ﬂ¢dv01M)

(6.2)

n+q
Since the relative volume in R"*? of B,,, and B, is (“—f) , We cannot expect

any Bishop-Gromov-type comparison theorem for the masses of balls in spaces
with Rics, bounded below, i.e. when ¢ — o0 in RICq However, it is interesting

that spaces with RICOO >rg for r > 0 do admit isoperimetric inequalities [5].

4. It is an interesting question whether there is a good synthetic notion of
a metric-measure space with Ricci curvature bounded below, in analogy to the
notion of an Alexandrov space with curvature bounded below. See [8, Appendix
2] for discussion. It is clear from Theorem 3.1 that triples (M, g, ¢) with /REQ >rg
are examples of metric-measure spaces with generalized Ricci curvature bounded
below by r, at least if ¢ is an integer greater than one.

There are various ways that one could try to extend the notion of Ricci curva-
ture bounded below, from smooth metric-measure spaces to more general metric-
measure spaces. One could fix ¢ € (0, 00) and try to extend the notion of having
ﬁEq > rg. Or one could consider all ¢ simultaneously, and say in particular that
a triple (M, g, ¢) has generalized Ricci curvature bounded below by r if f{Eq >rg
for some g € (0,00). Or one could consider a triple (M, g, ¢) to have generalized
Ricci curvature bounded below by r if Ricoo > rg. -

We note that there is a difference between having Ric, > 2rg for some ¢ €
(0,00) and having Rlc(,o > rg. For example, if r > 0 and RICq > rg for some
g € (0,00) then M is compact [20, Theorem 5], whereas if Ricoo > rg then M can
be noncompact (as in the case of R with ¢(z) = e~ 5%°.) It is also easy to see that
triples (M, g, ¢) with ﬁ\igoo > 0 generally do not satisfy the splitting principle.

If one does consider a triple (M, g, ¢) with ﬁém > rg to be an admissible space
with generalized Ricci curvature bounded below by r then one has a large class of
examples. For instance, from this viewpoint it would be reasonable to say that flat
R™ with the measure e~ Y dz; ...dz, has nonnegative generalized Ricci curvature
if V' is any convex function on R™.
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