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The representation theory of cyclotomic Temperley—Lieb
algebras

Hebmg Rui and Changchang Xi

Abstract. A class of associative algebras called cyclotomic Temperley—Lieb algebras is
introduced in terms of generators and relations. They are closely related to the group algebras of
complex reflection groups on the one hand and generalizations of the usual Temperley—Lieb
algebras on the other hand. It is shown that the cyclotomic Temperley—Lieb algebras can be
defined by means of labelled Temperley—Lieb diagrams and are cellular in the sense of Graham
and Lehrer. One thus obtains not only a description of the irreducible representations, but also

a criterion for their quasi-heredity in the sense of Cline, Parshall and Scott. The branching rule
for cell modules and the determinants of Gram matrices for certain cell modules are calculated,
they can be expressed in terms of generalized Tchebychev polynomials, which therefore play an
important role for semisimplicity.

Mathematics Subject Classification (2000). 16G10, 16K20, 17B10, 18G20, 20C05, 20G05,
57M25, 81R05.
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1. Introduction

The Temperley-Lieb algebras were first introduced in 1971 in the paper [15] where

they were used to study the single bond transfer matrices for the Ising model. Later
they were independently found by Jones when he characterized the algebras arising
from the tower construction of semisimple algebras in the study of subfactors.
Their relationship with knot theory comes from their role in the définition of the
Jones polynomial. The theory of quantum invariants of links nowadays involves

many of research fields. Thus, many important kinds of algebras related to the
invariants of braids or links, such as Birman-Wenzl algebras [3], Hecke algebras
and Brauer algebras, have been of great interest in mathematics and physics.
They are all deformations of certain group algebras or other well-known algebras.
Recently, several interesting type of such algebras have emerged: the cyclotomic
Birman-Murakami-Wenzl algebras are introduced in [6] and cyclotomic Brauer
algebras are investigated in [14] (see also [6]), while the cyclotomic Hecke algebras
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were already introduced by Broué and Malle in [4], and independently by Ariki and
Koike for type G(m, l,n) in [1]. They are deformations of the unitary reflection
groups.

In the present paper, we focus our attention on the study of cyclotomic Temper-
ley-Lieb algebras, which are generalizations of the classical Temperley-Lieb
algebras. They are also subalgebras of cyclotomic Brauer algebras, which are closely
related to complex reflection groups. We first present the ring theoretic définition
of the cyclotomic Temperley-Lieb algebras in terms of generators and relations.
Then we show that our définition can be reformulated geometrically by means of
labelled Temperley-Lieb diagrams. Using this description we are able to prove that
the cyclotomic Temperley-Lieb algebras are cellular, a notion introduced in [7].

As a consequence, we obtain both, the classification of the irreducible representations

of the cyclotomic Temperley-Lieb algebras, and a criterion for a cyclotomic
Temperley-Lieb algebra to be quasi-hereditary. For cell modules, the branching
rule is discussed, and also the discriminants of certain bilinear forms are calculated.

This leads us to introduce the n-th generalized Tchebychev polynomials. It
turns out that a necessary condition for a cyclotomic Temperley-Lieb algebra to
be semisimple is that certain generalized Tchebychev polynomials do not vanish
on its defining parameters.

2. The ring theoretic definition of cyclotomic Temperley—Lieb al¬

gebras

Throughout the paper, let R be a commutative ring containing an identity 1 and
elements So, #i,..., #m-i- Let n, m G N be two positive integers. In this section,
we introduce the cyclotomic Temperley-Lieb algebra TL„jm((5o,..., #m-i) of type
G(m, 1, n) over R. We shall prove that the iî-rank of TLn m(ôo,..., #m-i) is at

Definition 2.1. The cyclotomic Temperley-Lieb algebra TLn m(ßo,..., <5m_i) (or
TLntm for simplicity) is the associative algebra over R with generators 1 (the
identity), e\,..., en_i,ti,... ,tn subject to the following conditions:

(1) eißjßi a if \j -i 1,

(2) aej e3e% if \j - i > 1,

(3) e\ öoei for 1 < { < n - 1,

(4) t™ 1 for 1 < i < n,

(5) tltJ=tJtl for l^ij^n,
(6) at-ei 6ket for 1 < k < m - 1, 1 < i < n - 1,

(7) tltl+1el e{, ettttl+i et for 1 < { < n - 1,

(8) eitj tjei if j <£ {*,* + !}.
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If m 1, then TLr^m is the usual Temperley-Lieb algebra, which is denoted
by TLn(So) or TLn for simplicity. This algebra was first introduced in [15] to
describe the transfer matrices for the Ising model and for the Potts model in
statistical mechanics (see also [12]). It is known that

dim# TLn (2n) if R is a field.
n+ 1 n/

The following lemma is due to Jones [8]. Recall that an expression of a monomial
w G TLn(ôo) (in the variables e-y, e2,..., en_i) is called reduced if the number of
ei in the expression is minimal.

Lemma 2.2. (1) Any monomial w G TLn(5o) has a reduced expression

i p * p • -i p i h p * p • -i p i \ • • • i p ¦ p ¦ -i p i ilejiejl-l efciAej2ej2-l ek2) \e3pe3p-l ekp),

where ji+y > ji > ki, ki+i > ki for any 1 ^ { ^ p — 1.

(2) For any n, there is an isomorphism of TLn-\-modules

TLn(ö0) TLn^(ö0) 0 TLn

where TLn_i((5o) is the subalgebra ofTLn(So) generated by 1, ei,. en_2-

To obtain an upper bound on the rank of a cyclotomic Temperley-Lieb algebra,
we need the following lemma.

Lemma 2.3. For any n, the cyclotomic Temperley-Lieb algebra

is spanned over R by the set

Mn {t\Hk22 ¦ ¦ -t^xt[Hl22 ¦ ¦ -t\

Proof. We claim that the iî-module TLn^m spanned by Mn is a left TLnm-module.
This claim implies TLn^m TL„jm((5o,..., #m-i) since 1 G Mn.

By the définition of Mn, we see that TLnm is stable under the left multiplication

of ti, 1 ^ i ^ n. So we have to prove that for 1 ^ j ^ n — 1,

Without loss of generality, we may assume that x is a monomial in ei, e^,..., en-\.
First, we consider the case j n — 1. By Lemma 2.2,

x (e^e^-i • • • efcl)(ei2ei2_! • • • efcj • • • (eipeip_! • • • efcp).

By 2.1(8), xtn tnx if jp ^ n - 1. It follows from 2.1(7) that
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Suppose jp n — 1. If en_2 does not occur in the expression e3l • • • e^ • • • eJpl
¦ ¦ • efcp_1, then (*) follows from the following equality

,kn—i—kn i_kn—i—kn / w \ <•

where kn-\ — kn k (mod to). If en_2 occurs in the expression of e3l ¦ ¦ ¦ eJpl
¦ ¦ ¦ efcp_1, then eJpl en_2- In this case, we have

en-itn-\ n%

(eji • • •efcp_2)(en_1£nrl~ rl"1en_2en-i)(en_3 • • •efcp_1)(en_2 • • ¦ ekp)

(eji ¦ ¦ ¦ekp-2)trT-2 1(en-3 • • • efcp_1 )(en_ien_2 • • -efcp).

If en_3 does not occur in e^ • • • ekp_2, then

(eJl ' ' ' ekp-2 )*n-2 " ^n-2 " (eil ' ' ' efcp-2 J

and (*) follows. If en_3 occurs in the expression of e^ •••eJp2 •••efcp_2, then

eJp2 en_3. In this case, (*) follows from the argument similar to the case

eJpl en_2 together with an induction. Thus we have proved (*) in the case

j =n- 1.

For 1 ^ j ^ n — 2, we use induction on n. In this case, ejtn tnej. If
en_i does not occur in the expression of x, then (*) follows from the induction
assumption on n—1. Now suppose that x y(en_ien_2 • • • e^) for some y G TLn_i
and èêN. Note that eJ+iejtj+2 (ej+i^j+2)ej ej+i^7+iej ej+i(^7+ieJ-'

ej+i^jej ^jej+iej f°r all ^ an(i i- By a direct computation, we have

Again by the induction hypothesis on n — 1, we see that

n-l

can be expressed as a linear combination of the elements in Mn-\. Now, (**)
together with the 2.1(7)-(8) yields the desired form (*). This completes the proof
of the result.

The following lemma gives more explicit information on the elements in Mn,
which leads to an upper bound on the rank of TLrhm.

Lemma 2.4. For any x e TLn, the element w flLi tii)x( Oj=i *j € Mn

with 0 ^ ki, lj ^ to— 1 can be written as { f^f_^ t -f )x( fllLp+i ^/ w«i/i 0 ^ k-, I' ^
to — 1.

Proof. Without loss of generality, we may assume that

x (ejieji-i • • • efci)(ej2ej2-i • • • efc2) • • • (eipeip_i • • • efcp).
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Suppose jp ^ n — 1. Then x G TLn_ijm and hence tnx xtn. Therefore,

\=i ' j=i "2=1

By induction on n, the element n"=i ^)x 117=1 V can ^>e written as

(IK;>
n-l

t-, with 0 ^ k'h I'j ^ m — 1.

This proves the result.
Suppose jp n — 1. By (**),

2=1 2=1 2=1 2=fc

n-l p-1 fc-1 n-2
nt^TTfee 1 •••et. 17 t'* TT t^+2 -tm~kn(e i ¦ ¦ ¦ ek)th~lk+1

2=1 2=1 2=1 2=fc

Now the result follows immediately from the induction assumption, 2.1(8) and

(**). This completes the proof of Lemma 2.4.

Let us remark that the proof of this lemma also shows that for a fixed x G TLn,
when we write w as the form (Fff-i t/.)x(T\?-^-t t?) with 0 < k',,11- < m — 1,

the lower index sets {ji, ¦ ¦ ¦ ,jP} and {jp+i, ¦ ¦ ¦, jn} depend only on x.

Corollary 2.5. IfR is afield, then

dimfi TLr,m < mn dimfi TLn -^— (2n).

In the next section, we shall show that over a commutative ring R the rank of
TL„,m is equal to ^(2™).

Finally, let us point out that the notion of B-type Temperley-Lieb algebras was
introduced by torn Dieck [16], whose approach was based on the knot theoretic
point of view and root systems. In fact, these algebras are completely different
from our cyclotomic Temperley-Lieb algebras since the dimension of the B-type
Temperley-Lieb algebra over a field is always of the form ™) (see [16]). However,
the algebra TLnm is closely related to the complex reflection groups Wnm of
type G(m, l,n). Recall that Wr^m is generated by so, s\,..., sn_i satisfying the
relations (1) s2 1 for i > 1 and the braid relations for si,..., sn_i; (2) s™ 1,

and (3) sosisosi sisosist), s°s* s*s° f°r * > 2. If we define t\ so, tt
Si-iti-iSi-i, then t™ 1. Thus, a deformation of the group algebra of Wrhm
is the cyclotomic Brauer algebra, which is clearly related to cyclotomic Birman-
Wenzl algebra as mentioned in [6]. TLn^m is a subalgebra of the cyclotomic Brauer
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algebra. Thus it is related in this way to both, the complex reflection group Wn m,
and the cyclotomic Brauer algebra.

As we know, Anki-Koike algebras are deformations of the unitary reflection

groups. But these algebras can also be viewed as deformations of certain products
of cyclic groups and Hecke algebras. In this same way, the cyclotomic Temperley-
Lieb algebras are deformations of certain products of cyclic groups and Temperley-
Lieb algebras. On the other hand, it is known that there are nice relationships
between Temperley-Lieb algebra and the quantum group Uq{sl2) (see [12]).

3. The graphical definition of cyclotomic Temperley—Lieb alge¬
bras

In this section, we shall redefine the cyclotomic Temperley-Lieb algebra in a
geometrical way. This is motivated by knot theory. Let us denote by TLn^m the
graphical cyclotomic Temperley-Lieb algebra. The main result in this section is

that the ring theoretic and the graphical definitions of cyclotomic Temperley-Lieb
algebras are equivalent, namely, TLnm TLnm for any n and m.

First, we introduce labelled Temperley-Lieb diagrams. These are special cases

of dotted Brauer graphs introduced in [6]( see also [14]).

Definition 3.1. A labelled Temperley-Lieb diagram D of type G(m, l,n) is a

Temperley-Lieb diagram with 2n vertices in which the arcs are labelled by the
elements of Zm := Z/mZ.

In the following a labelled Temperley-Lieb diagram D will simply be called a

labelled TL-diagram; if i and j are the endpoints of an arc in D, we shall simply
write {i,j} G D.

Graphically, we may represent a labelled TL-diagram D of type G(m, l,n) in
a rectangle of the plane, where there are n numbers {1,2,..., n} on the top row
from left to right, and there are another n numbers {1, 2,... ,n} on the bottom
row again from left to right. To indicate the label i G Zm on an arc, we mark
the arc with a dot and write the label i in parentheses above or below the dot.
Sometimes we draw i dots directly on the arc. For example, the following is a

labelled TL-diagram of type G(m, 1, 6) with m > 4.

6
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An arc in a labelled TL-diagram is said to be horizontal if its endpoints both
lie in the top row or in the bottom row; and otherwise it is said to be vertical.

In order to have a graphical version of cyclotomic Temperley-Lieb algebras, we
need to define the multiplication of two labelled TL-diagrams. Here we follow the
definition in [6] (see also [14]).

From here onward, we make the following convention: Given a horizontal arc
{«, j} with i < j, we call i (resp. j) the left (resp. right) endpoint of the arc {i,j},
and always assume that all dots in a labelled TL-diagram are marked at the left
endpoints of the arcs. A dot marked at the left (or right) endpoint of an arc will
be called a left (or right) dot of the arc. For a vertical arc we do not define its left
endpoint and its right endpoint.

The rule for movements of dots. We allow dots to move along an arc from left
to right. They may also move to another arc.

(1) A left dot of a horizontal arc {«, j} is equal to m — 1 right dots of the arc
{i, j}, and conversely, a right dot of an horizontal arc is equal to m — 1 left dots.

(2) A dot on a vertical arc can move freely to the endpoints of the arc.
(3) Given two distinct arcs {{, j} and {j, k}, we allow that a dot at the endpoint

j of the arc {i, j} can be replaced by a dot at the endpoint j of the arc {j, k}.

The rule for compositions. Given two labelled TL-diagrams D\ and _D2 of type
G(m, l,n), we define a new labelled TL- diagram D\ o _D2, called the composition
of D\ and _D2, in the following way: First, we compose D\ and _D2 in the same way
as was done for Temperley-Lieb algebras. Thus we have a new Temperley-Lieb
diagram P (which is possibly not a labelled TL-diagram). Second, we apply the
rule for movements to relabel each arc in P, and thus obtain a labelled TL-diagram
graph, denoted by D\ o _D2.

The rule for counting closed cycles. For each closed cycle appearing in the
above natural concatenation of D\ and _D2 we apply the rule for movements of
dots to relabel the cycle.

Note that the number of dots in each cycle lies in Z/(m). We denote by
n(i, D\, D2) the number of relabelled closed cycles in which there are i dots.

The following lemma can be proved easily.

Lemma 3.2. Given two labelled TL-diagrams D\ and D2, we define D\ ¦ D2

IlTJo1 ô"{l'Dl'D2)DlOD2. Then (D1-D2)-D3 £»1 • (D2-D3) for arbitrary labelled

TL-diagrams D\,D2 and D3.

Definition 3.3. Let R be a commutative ring containing 1 and So,..., 5m-\. A
graphical cyclotomic Temperley-Lieb algebra (TLn<m, •) is an associative algebra
over R with a basis consisting of all labelled TL-diagrams of type G(m, 1, n). The

multiplication is given by U\ ¦ Ü2 [[t=0 <\ 'ü\ 0 1J2.
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It is easy to see that TLrhm is the usual Temperley-Lieb algebra if m 1 and

that TLntm is a subalgebra of the cyclotomic Brauer algebra of type G(m, 1, n)
(see [6]).

'

Now let us illustrate this définition by an example. If

Do

then we have a diagram

D

Thus the composition D\ o D2 of D\ and D2 is as follows:

ooooooooo
D1oD2=

Now we relabel the closed cycles in D. By définition,

[^J o o
In this case, n(0, Du D2) n(l, Dh D2) 0 and n(2, DUD2)= n(3, £>i, £>2)

1 for m > 4. Thus D\ ¦ D2 ö\ö\D\ o D2 for m > 4.

Now let us prove that the graphical définition and the ring theoretic définition
of cyclotomic Temperley-Lieb algebras coincide.

Theorem 3.4. Suppose that R is a commutative ring containing 1, Sq, 5m—\.

Then TLn m TLn<m for any m and n. Therefore, TLn<m is a free R-module of
rank ^-y \™)- In particular, if R is a field, then

dimfi TL„,n
n + 1Vn
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Proof. Let Ei be the labelled TL-diagram in which {«, i + 1} is an arc in the top
row and also an arc in the bottom row, and the other vertex j {=/=%,% + 1) in the
top row connects with the vertex j in the bottom row. Let Tt be the labelled
TL-diagram in which the j-th vertex in the top row connects with the j-th vertex
in the bottom row for j 1, 2,..., n, and the i-th vertical arc carries one dot. If
we replace ej with Et and tt with Tt and apply the three rules above, then we know
that all Ei and Tt satisfy the relations in Définition 2.1. This induces an algebra
homomorphism </> : TLnm —> TLnm with </>(£$) Ti and </>(ej) £?$. Since TLnm
is generated as an iî-algebra by Ei and Tj with l^«^n — l,l^j^n, the map
</> is surjective.

We show that TLrhm is a free iî-module. Put r ^xx(^)- By Lemma 2.4,
there is a surjective iî-module homomorphism / : Rr —> TLrhm. Thus, we have

a surjective iî-module homomorphism </>/ from the free iî-module iîr to the free

iî-module TLn^m of rank r. Let if be the kernel of </>/. Then we have a split exact

sequence of iî-modules:

0 —? K —> Rr —> Rr —>0.

Here we identify the iî-module TLnm with iîr. This sequence also shows that K
is a finitely generated projective iî-module. We claim K 0.

Let p be a maximal ideal in iî. Since localization preserves (split) exact

sequences, we have a split exact sequence

0 -^ Kp -^ (Rpy -^ (Rpy -^ 0,

where Mp stands for the localization of an iî-module M at p. Thus (iîp)r — (iîp)r©
Kp as iîp-modules. Since iîp is a local ring and every finitely generated projective
module over a local ring is free, we see that the iîp-module Kp is free. Note
that any commutative ring with identity has the invariant dimension property. It
follows from (iîp)r ~ (iîp)r 0 Kp that Kp 0, and therefore K 0. (All facts on
localization used in the above argument can be found in standard text books on
commutative rings, for example [2].)

If K 0, then </>/ is an isomorphism of iî-modules and / must be injective.
Thus TLntm is a free iî-module of rank r and </> is an isomorphism of iî-modules.
This also implies that </> is an isomorphism of iî-algebras. The proof is complete.

Finally, let us remark that in [13] the so called blob algebras are considered,
but those algebras have different defining relations and are therefore completely
different from our cyclotomic Temperley-Lieb algebras.

4. Cellular algebras

Now let us recall the définition of cellular algebras due to Graham and Lehrer.

Definition 4.1. (Graham and Lehrer [7]) An associative iî-algebra A is called



436 H. Rui and C. C. Xi CMH

cellular algebra with cell datum (/, M, C, i) if the following conditions are satisfied:

(Cl) The finite set / is partially ordered. Associated with each A G / there is

a finite set M(A). The algebra A has an iî-basis CgT where (S,T) runs through
all elements of M(A) x M(A) for all A G /.

(C2) The map i is an iî-linear anti-automorphism of A with i2 id which
sends CgT to C^ $¦

(C3) For each A G / and S,Te M(A) and each a G A, the product aC$T can
be written as

(7eM(A)

where r' belongs to A<x consisting of all R- linear combination of basis elements
with upper index /x strictly smaller than A, and the coefficients ra(U, S) G R do
not depend on T.

In this paper, we call an iî-linear anti-automorphism i of A with «2 id an
involution of A. The following is a basis-free définition of cellular algebras in [9]

which is equivalent to that given by Graham and Lehrer.

Definition 4.2. Let A be an iî-algebra. Assume there is an anti-automorphism
i on A with i? id. A two-sided ideal J in A is called a cell ideal if and only if
i(J) J and there exists a left ideal A C J such that A is finitely generated and
free over R and that there is an isomorphism of A-bimodules a : J~ A®b«(A)
(where «(A) C J is the «-image of A) making the following diagram commutative:

J -?U A<g>Äi(A)

i\ x <g> y i—> {(y) <g> {(x)

J ^U A<g>Ä{(A)

The algebra A (with the involution {) is called cellular if and only if there is

an iî-module decomposition A J[ © J'^ © • • • © J'n (for some n) with i{Jj) Jj
for each j and such that setting Jj (BJl=1J[ gives a chain of two sided ideals of
A: 0 Jo C J\ C J2 C • • • C Jn A (each of them fixed by {) and for each

j (j l,...,n) the quotient Jj Jj/Jj_i is a cell ideal (with respect to the
involution induced by 1 on the quotient) of A/Jj_i. (We call this chain a cell
chain for the cellular algebra A.)

Cellular algebras include a large variety of important algebras related to links
in knot theory such as cyclotomic Hecke algebras, Temperley-Lieb algebras [7] and
cyclotomic Brauer algebras [14] as well as Birman-Wenzl algebras [18].

Given a cellular algebra A with the cell datum (I,M,C,i), for each A G /,
one can define a cell module A(A) and a symmetric, associative bilinear form
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$a : A(A) (g)fi A(A) —> R in the following way (see [7]): As an ß-module, A(A) has

an iî-basis {C$ \ S G M(A)} and the module structure is given by

aCxs= J2 ra{
U£M(\)

where the coefficients ra(U, S) are determined by (C3) in Definition 4.1.

The bilinear form $A is defined by

$A(C|,C^)C^V C*SC^ (mod A<A),

where £/ and V^ are arbitrary elements in M(A).
Let radA(A) {c G A(A) | $A(c,c') 0 for all c' G A(A)}. Then radA(A)

is a submodule of A(A). Put L(X) A(A)/radA(A). Then a complete set of
irreducible representations of A can be described as follows:

Lemma 4.3. (Graham and Lehrer [7]) Suppose R is a field. Then
(1) {L(X) | $a 7^ 0} «s a complete set of non-isomorphic irreducible A-modules.
(2) The algebra A is semisimple if and only if all cell modules are simple and

pairwise non-isomorphic.

In the following, we shall see an easy example of cellular algebras, which will
be used later on.

Let Gm^n be the iî-subalgebra oïTLnm generated by t\,t2, ¦ ¦ ¦ ,tn. Note that
Gm,n is isomorphic to the group algebra of the abelian group ®"=1 Z/(m).

Suppose that R is a splitting field of xm — 1. Therefore the relation t™ 1

implies that t™ — 1 Ilj=i(^ — Mj) 0 for some u\, • • • wm G R. Let A(m, n)
{(*i!*2i--- ,«n) I 1 ^ *j ^ m}- We assume that in case n 0 the set A(m, n)
consists of only one element 0. Now we define («i, «2, • • • «n) ^ (Ji,J2, ¦ ¦ ¦ ,jn) if
and only if «^ ^ jf. for all 1 ^ k ^ n. For each i [i\, «2, • • • «n), define

ci,i=n ft ^-w')-
j=ii=j3+i

(Here the product over the empty set is 1.) Note that {C\ 1 | i G A(m, n)} is a

cellular basis for the algebra Gmi„ with respect to the identity involution. Let us
remark that in this case each cell Gmn-module A(i) is one-dimensional. In fact,
this cell Gmn-module corresponds to the subquotient G^l1n/G^l1n. The simple
Gmn-modules are parametrized by the following set.

Lemma 4.4. Suppose R is a splitting field of xm — 1 with characteristic p.
(1) If p divides m, say m pts with (p, s) 1, then a complete set of non-

isomorphic simple G„hn-modules can be chosen as

{L(i) | i («i, «2, ...,«'„) with pl divides ij for all j}
its cardinality is sn.
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(2) If p does not divide m (for example, p 0), then a complete set of non-
isomorphic simple Gm^n-modules is {L(i) | i G A(m,n)}. In this case, the algebra

Gm,n is semisimple.

Proof. It is easy to check that

m mm(*j - u>) n^ -Wfc)=^ -w;) n^ -y'k)+ n ^ -u^-
k>i k>i k>i—l

It follows from the above equality that

n m

CUCU (IT IT K - ^))C7ll (m°d Gm,n)-
0=1 k>i,

If p divides m, then we see that each root of the polynomial xs — 1 is a root of
xm — 1 with multiplicity pl. But all roots of xs — 1 are simple roots. Hence we

may assume that («1;«2,... ,«m) (1> •••> 1>£> •••>£>••• >£s \ ••• >£s ^ where
£ is a primitive s-th root of xs — 1. Thus (1) follows.

If p does not divide m, then the algebra Gmn is semisimple, and therefore (2)
follows.

5. Irreducible representations of TLnm

In this section, we assume that R is a splitting field of xm — 1. We shall prove
that TLntm is a cellular algebra in the sense of [7]. Using the standard results
on cellular algebras, we classify the irreducible representations of TLr^m over the
field R. Let us first introduce some auxiliary notions.

An (n, k)-lahelled parenthesized graph is a graph consisting of n vertices {1, 2,

n} and k horizontal arcs (hence 2k ^ n and there are n — 2k "free" vertices
which do not belong to any arc), and satisfying the following conditions:

(1) there are at most m — 1 dots on an arc,
(2) there are no arcs {i, j} and {</, /} satisfying i < q < j < I, and
(3) there is no arc {i,j} and free vertex q such that i < q < j. (Given an

(n, fc)-labelled parenthesized graph, the vertices which do not belong to any arc
are called free vertices.)

Let P(n, k) be the set of all (n, fc)-labelled parenthesized graphs and let V(n, k)
be the free iî-module with P(n, k) as its basis. Recall that Gmn is the R-

subalgebra of TLn^m generated by t\,t2, ¦ ¦ ¦ ,tn.

Lemma 5.1. There is an R-module isomorphism V(n, k)<S>rV(n, A;)(8>flGmj„_2fc —

Mn]., where Mn]. is the free R-module spanned by all labelled TL-diagrams with
2n vertices and 2k horizontal arcs.
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Proof. Given a labelled TL-diagram D, we can write it uniquely as D\<g> D-2<%> x,
where Di is obtained from D in the following manner: After cutting all vertical arcs
and forgetting all dots on the vertical arcs, the top row is defined to be the D\ and
the bottom is the Di- Suppose that in D\ the free vertices are {«i, «2, • • •, in-2k}
and that in Di the free vertices are {ji,J2, ¦ ¦ ¦ ,jn-2k}- Then in D the vertical
arcs are {n, jijv • •, {*n-2fc, jn-2fc}- Suppose there are ms dots on the arc {is,js}-
Then we define x t™11™2 t^^tt ^ Gm,n-2k- Conversely, given such an
expression D\ <g>D2<S>x, we have a unique labelled TL-diagram D in Mn^. Hence

the result follows.

Thus we have the following equivalent description of the graphical basis of
TLrhm. Usually, this basis is not a cellular basis.

Corollary 5.2. The set {v1<S)V2®x | 0 < k < [n/2],v1,V2 G P(n,k),x G Gm,n-2fc}
is a basis ofTLnm.

In the following, we shall construct a cellular basis for TLn^m. Here we keep
the notation introduced in the previous section.

Let Am_n {(k, i) | 0 < k < [n/2], i G A(m, n - 2k)}. We define a partial order
on Amn by saying that [k, i) ^ (/, j) if k > I; or if k I and i ^ j. Then (Amn, ^)
is a finite poset. For each {k, i) G A„jm, let I{k, i) {{v, i) | v G P(n, A;)}. In the
following, we shall show that this datum defines a cellular algebra.

Theorem 5.3. Let R be a splitting field of xm — 1. Then TLn<m is a cellular
algebra with respect to the involution a which sends v\®V2®x to V2 <8> i>i <8> x for
all v\,V2 G P{n, k) and x G Gm^n-2k, 0 ^ k ^ [n/2].

Proof. For any (k/i) G Amj„ and «1,^2 G P(n,k), we define C^^ v\ <S>

V2 ®C\1. By 5.2, the set {C^;^2 | (k,i) G Anim,-yi,-y2 G P(n,k)} is a basis

of TLrhm. We show that it is a cellular basis. Let us verify the conditions in
Definition 4.1. By definition, 4.1(C1)-(C2) follow. It remains to check the condition

4.1(C3). Take a labelled TL-diagram Dx <g> D2 <8> x with £>i,-D2 G P(n,k)
and x t™^™2 -t™™2kk € Gmn_2fc- Suppose that «i, «2, • • •, *'n-2fc are the
free vertices in £>i and that ji,J2,---,jn-2k are the free vertices of £>2, where
1 ^ «s ^ n and 1 ^ js ^ n for all s 1, 2,..., n — 2k. Then D\ <g> £>2 <8) x
X • (Di (g. D2 ® idn_2k) {Dx ®D2® idn_2k) ¦ Y, where X T™'T™2 ¦ ¦ ¦ T^k
and Y T™1 T™2 ¦ ¦ ¦ T^T (see 3-4 for the definition of T{). Thus, for any
labelled TL-diagram D\ (g) Di <8) x,

where TLn}m is the free iî-submodule spanned by C^^j with (A;',i') ^ (A;, i)
and «i, w2 G P(n, Ä;'). Suppose that (£>! (E)D2®x)- c£$2 G TL^, where TL{n,Û



440 H. Rui and C. C. Xi CMH

is the free iî-submodule spanned by Co^ with v\,v2 G P(n,k). Then

(D\ <g> D2 (g) x) • C^fc'^ _Dj (g) «2 <8) x'C} 1

for some D[ in P{n,k) and some x' G Gmn_2fc, here x' does not depend on v2.

Write x1 Yll=i t/ f°r some 0 ^ kj ^ m — 1,1 ^ j ^ n — 2k. By an easy
calculation, we know that

n-2fc

x'C\ -, W u,° C\ -, (mod G^*_9t.),

where G"^n_2k is the free iî-submodule spanned by C?J 1 with j < i. Note also

that the coefficient fïj=i ui is independent of v2. This implies that 4.1 (C3) is

true.

As a corollary of Theorem 5.3, we classify the irreducible representations of
cycolotomic Temperley-Lieb algebras.

Corollary 5.4. Suppose R is a splitting field ofxm — l. Let p be the characteristic
of R. Then:

(i) suppose n is odd.

If m pfs with (p, s) 1 and t > 0, then the set

{L(k, i) | 0 < k < [n/2], i (iu i2,..., in-2k) & A(m, n - 2k)

with all ij divisible byp*}

is a complete set of pairwise non-isomorphic simple TLn^m-modules.
(ii) Suppose n is even.

I) If not all Si are zero and if m pf's with (jp, s) 1 and t > 0, then the

set
{L(k, i) | 0 < k < [n/2], i (iui2,..., in-2k) G A(m, n - 2k)

with all ij divisible byp*}

is a complete set of pairwise non-isomorphic simple TLrhm-modules.
2) Suppose all S{ are zero. If m pf's with (p, s) 1 and t > 0, then a

complete set of pairwise non-isomorphic simple TLrhm-modules can be parametrized
by {(k, i) | 0 ^ k < [n/2], i [i\, i2,..., in-2k) with all ij divisible by p*}}.

Proof. For any D\,D2 G P{n, k) and i G A(m, n — 2k), we have

If this product is not equal to zero, then C\ 1C* [^0. Now suppose that n is odd.
If £>i E\E% ¦ ¦ ¦ E2u-i and D2 E2E^ ¦ ¦ ¦ E2k, then x id. Hence statement (i)
follows from 4.4.

Assume that n is even. First case: there is some 5j ^ 0 and p does not
divide m. Then for k n/2 and i 0, the bilinear form 3>(fc,i) ^ 0. For the
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other (k,ï), we take D\ and Di as above. This implies $(fc,i) ^ 0. Hence the
index set of non-isomorphic simple modules is Amn. Second case: there is some

öj ^ 0 and p divides m. By arguments similar to the above, we have that a

complete set of non-isomorphic simple modules is {(k,\) | 0 ^ k ^ [n/2],i
(«i, «2j • • • j *n-2fc) with all «j divisible by pf}.

Assume öj 0,0 < j < m — 1. In this case, 3>(fc,i) 0 for A; n/2
and i 0. For A; 7^ n/2, our discussion will be the same as above, namely,
if m p*s, then index set of simple modules is {(k,ï) | 0 ^ k < [n/2],i
(«i, «2, • • •, *n-2fc) with all «j divisible by p*}; if p does not divide m, then the
index set of simple modules is Amn \ {(n/2, 0)}.

The following result follows from the proof of Theorem 5.3.

Corollary 5.5. Let A(k, i) &e i/ie cell module corresponding to (k,ï) G A„jm.
T/ien

6. Quasi-heredity of TLn>m

In this section, we shall characterize the parameters for which the cyclotomic
Temperley-Lieb algebras are quasi-hereditary in the sense of [5]. First, we recall
the définition of quasi-hereditary algebras.

Definition 6.1. (Cline, Parshall and Scott [5]) Let R be a field and let A be an R-
algebra. An ideal J in A is called a heredity îdealiî J is idempotent, J(rad (A))J
0 and J is a projective left (or, right) A-module, where rad (A) is the Jacobson
radical of A. The algebra A is called quasi-hereditary provided there is a finite
chain 0 Jo C J\ C J2 C • • • C Jn A of ideals in A such that J3j'J3-\ is a

heredity ideal in A/Jj-\ for all j. Such a chain is then called a heredity chain of
the quasi-hereditary algebra A.

From the ring theoretic définition of cellular algebras, we see immediately that
there is a large intersection of the class of cellular algebras with that of quasi-
hereditary algebras. Typical examples of quasi-hereditary cellular algebras
include Temperley-Lieb algebras with non-zero parameters [17] and Birman-Wenzl
algebras for most choices of parameters [18] as well as certain cyclotomic Brauer
algebras [14].

The main result in this section is the following theorem.

Theorem 6.2. Suppose R is a splitting field of the polynomial xm — 1. Then the

cyclotomic Temperley-Lieb algebra TLnm is quasi-hereditary if and only if the

characteristic of R does not divide m and one of the following is true:
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(1) n is odd;
(2) n is even and öj ^ 0 for some 0 < j < m — 1.

Proof. In [7, Remark 3.10] it is shown that A is quasi-hereditary if the index set
of the non-isomorphic simple modules over a cellular algebra A with cell datum
(/, M, C, i) is /. Conversely, A is not quasi-hereditary if there is a cell datum
(/, M, C,i) of A such that the index set of the non-isomorphic simple modules is

not / [10, Theorem 3.1]. In other words, every chain of ideals in A is not a heredity
chain. Thus Theorem 6.2 follows immediately from Corollary 5.4.

For the cases which are not included in Theorem 6.2, we can get a quasi-
hereditary quotient of TLrhm. In order to make TLr^m quasi-hereditary, we need

first to ensure that the group algebra G„hn is semisimple. The following result
follows from the above fact and the définition 4.1.

Proposition 6.3. Suppose that R is a splitting field of xm — 1 and p \ m, 2\n
and öj 0 for all 0 < j < m — 1. Suppose J is the two-sided ideal ofTLn<m
generated by all (n,n/2)-labelled TL-diagrams. Then the quotient TLn<m/J is
quasi-hereditary.

7. Restriction and induction of the cell modules

In this section, we assume that R is a splitting field of xm — 1. The main result of
this section is the branching rule for the cell modules of TLn^m.

Recall that V(n, k) is the iî-space spanned by all labelled parenthesized graphs

with k arcs. Let Ji := ®'ij V(n,j) (£>r V(n,j) (£>r Gm,n-2j- Then we have a

chain
0 C J[n/2] C • • • C Jl+1 C Jt C • • • C Je TLrhm

of ideals in TLmn, where e is zero if n is even, and 1 if n is odd. For any
(k, i) G Anm, the cell module

A(k, i) V(n, k) <g>fi v0 ®r A(i),

where vo G P(n, k) is a fixed diagram and A(i) is the cell module of the algebra
Gm,n with respect to i. In the sequel, we choose vo to be the (n, fc)-labelled
parenthesized graph with arcs {1, 2},..., {2k — 1, 2k} and free vertices 2k + 1, 2k +
2,..., n. Note that the subquotient V(n,j) <g)ß V{n,j) <g># Gmn_2j is a TLnrrr
module and the cell module structure on V(n, k) <g)ß vq <Sir A(i) is induced from
this subquotient. We make the following convention:

Throughout this section we fix an m and the parameters Jo, #i,..., Jm-i an(i
consider the algebra TLn_im canonically as a subalgebra of TLrhm by adding the
vertical arc {n, n'} to the right side of each labelled TL-diagram in TLn_im. This
embedding can be visualized as follows:
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¦L L>n—\,m

p n

o n

Note that the identity in TLn_im is sent to the identity of TLrhm. Thus every
TLnm-vnodn\e is also a TLn_ im-module via this embedding. The cell modules

V(n, k) <S)r vq <S)r A(i) over TLnm will be denoted by A(n, k; «i, «2, • • •, *n-2fc)-
Then we have

Proposition 7.1. (a) For all n and 0 ^ k ^ [^/2], there is an exact sequence

^ A(n, k; i\, «2, • • •, *n-2fc) I0 —> A( n - 1, /:; «i, «2, • • •, *n-2fc-

¦o,

where M I is the restriction of a TLnm-module M to a TLn_\m-module, and

A(n, «2, • • •, *n-2fc)^_2fc+i stands for A(n, «2, • • •, *n-2fc) ®fi Rti-2k+i-
(b) if/o 0 C Ii C C /m R{tn-2k+i) is a cell chain of the group algebra

R(tn-2k+i) Gm\, that is, Ij %s the free R-module generated by {0[>s(*«—2&+1 —

U[) \ 1 < s < j}, then there are m — 1 short exact sequences

0 -? V(n -l,k-l) (g)Rv0 (g)R A(«i, «2 in-2k) ® Ij-i
-U V(n - 1, A; - 1) (g)fi w0 (g)fi A(«i, «2 «n-2fc) ® Ij
—> A(n - 1,A; - l;«i,*2, • • -,in-2k,j) —> 0.

(c) 7/TLn_ijm «s semisimple, then

A(n, /:; «i, «2,..., «n-2fc) I— A(n - 1, A;; «1; «2,..., «n_2fc-i)©

A(n - 1, k - 1; *i, «2, • • •, *n-2fc,i)-

Proof. \iTLn-im is semisimple, then every TLn_im-module is projective. Therefore,

each short exact sequence in (a) and (b) splits. Now the statement (c) follows
immediately from (a) and (b). The map 7 in (b) is the canonical injective map and
the map S in (b) comes from the canonical projection It —> Ij/Ij_i. One can easily
prove that (b) is a short exact sequence of vector spaces. Obviously, both 7 and S

in (b) are TLn_im-module homomorphisms. Now let us prove the statement (a).
Since we may consider A(n — 1, k; i\, «2, • • •, *n-2fc-i) as a subset of TLn_ijm,

the map a is just the restriction of the above embedding. It is obvious that a. is

an injective map. Note that TLn^m is generated as an algebra by {et,tj \ 1 ^ { ^
n — 1,1 ^ j ^ n}. To show that a is a TLn_ im-module homomorphism, it suffices

to prove that for D G {et, t3 \ 1 ^ 1 ^ n — 2,1 ^ j ^ n — 1},
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However, a vertex (^ n) in v is free if and only if it is free in v', and {1,3} is an arc
in v if and only if it is an arc in v', where v' is the (n, A; — l)-labelled parenthesized
obtained from v by adding the vertex n. By the multiplication of labelled TL-
diagrams in 3.2, we can see immediately that the above equation holds. Hence a
is a TLn_im-module homomorphism.

Now let us define the map ß. Given an (n, fc)-labelled parenthesized v G

P(n,k), we denote by v the labelled parenthesized obtained from v by deleting
the vertex n and removing the arc connected with n if it exists.

Let v be in P{n, k). If the vertex n in v is a free vertex, then ß sends v <g> vq <g>

i» 2t) zero vertex n in v is connected by an arc in which there are

/ dots, then ß sends v®vo(g)C[y2' 'tn-2k) to v(g)vo(g)C[y2 'tn-2k)tln_2k+1, wherey y+v_0 is the (n—1, A;—l)-labelled parenthesized with arcs {1, 2}, {3, 4},..., {2k—3, 2k—2}
and n — 2k + 1 free vertices.

In fact, we can extend /? to a map from V(n, A;)(g)wo<8)Gmj„_2fc to V(n— 1, A; —1)
(g) Gm,n-2fc+i- This map /? can be illustrated as follows:

1 3

n-1
(The image of an (n, fc)-labelled TL-diagram under the map ß is obtained from

the given (n, k)-labelled TL-diagram by deleting both the arc {2k — 1, 2k} and its
endpoints from the bottom row, and then shifting the vertex n from the top row
to the bottom row, and finally renaming the vertices at the bottom from left to
right.)

It is trivial that the sequence is an exact sequence of vector spaces. To finish
the proof, it remains to show that ß is also a TLn_ im-module homomorphism.
Since ß restricted to the image of a preserves the module structure, we need only
to prove that ß preserves the TLn_ im-module structure on the elements of the

form a(v(g)v0 ® cl*1/2'"'*"-2^), where a e {eht5 \ 1 < 1 < n - 2,1 < 3 < n - 1}
and the vertex n in v is not free. In the following, we show more generally that
the extended map ß is a TLn_im-module homomorphism.

Let v (g) vo <8> x with v G P(n, k) such that n is connected to 3 by an arc in v.
Suppose a ts or a er with r ^ {3 — 1, j}. In this case, by inspecting the picture,
it is easy to see that ß preserves the module structure on the element a(-y<g>-yo<g>a:).

Now suppose a es with s 3 — 1 or s j. In the latter case, since there are

no free vertices between j and n in v, the labelled TL-diagram ß(ej(v (g) vq (g) x))
is just the graph eoß{v <g>vo<g>x). This is what we wanted to prove. In the former

case, if 3 — 1 is a free vertex in v, then ej_i(v <8) vq (g) x) lies in the image of a,
which is mapped to zero under ß. Moreover, the element ej-\ß(v is also
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zero since it contains one more arc. Now assume that j — 1 is adjacent to a vertex
sin«. Then s < j — 1. In this case, there are no free vertices between s and n in
v. Again by inspecting picture we see that ß{eo(v <g vq <g x)) eoß(v <g vq <g x).
This completes the proof.

The following result follows from Proposition 7.1 and Frobenius reciprocity.

Proposition 7.2. IfTLnm is semisimple, then

A(n -l,k;n,..., «n_2fc-i) T - A(n, A; + l;*i,*2, • • •, *n-2fc-2)©

A(n, k; «i,..., in-2k-i,j),

where A(n — 1, A;; «i,. in-2k-i) T stands for the TLn^m-module induced from the

TLn_im-module A(n — 1, A;; «i,..., in-2k-i)-

8. Gram matrices and their determinants

In this section, we assume that the field 1? contains a primitive m-th root of
unity (for example, if R is algebraically closed and of characteristic p which does

not divide m, then our assumptions are satisfied). The goal in this section is

to calculate the discriminant of the bilinear form $(k,i) for certain (k,\), where
0 < k < [f ] and i («1; i2,..., in-2k)-

Recall that $(fc,i) is defined on the cell module A(fc, i) in the following way.

(v-i <g vi <g Cj^)^ <g w2 ® Cj^) $(fc,i)K, «2)«i ® v2 <g Cj^ (mod

where TLn,m is a free iî-submodule spanned by C^^^ with (A/, i') < (A;, i) and

«1,«2 € P(n,k').
According to a general construction in [11], there is a bilinear form </>(">fc) from

V(n, k) <gß V(n, A;) to Gmj„-2fc such that the product can be written as

(vi <g Vl <g Cji)^ <g v2 «> Cj^) «i <g v2 <g ^;^(ti, *2, • • •, tn-ik){C\tlf,
(mod TL<^y),

where ^'^(ii,^, • • -,tn-2k) is an element in Gm^n_2k.

Define a(A;, i) U"=ik lÏÏlt, (u*3 ~ui)- li follows that

${k,i){vi,v2) a{k,i)4>^l{utl,ul2, ,uln_2k),

where u\, u2,..., um are the roots of xm — 1.

Now let us compute the matrix ^(n, A;) := (</>i)™^2) for the case k 1. Let

Wj be the element in P(n, 1) whose unique arc is {«, « + 1} and let v\3' be the
(n, l)-labelled parenthesis in which there are j dots on the arc {«,« + 1}. The
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elements in P(n, 1) can be ordered as follows: v[ := v\, v\
(m-1) (0) (1) (m-1) rpi,v2,v\ ',... ,v\ ',...,vKn^ :=vn-i, vynl1,...,vïn_1 ¦'.Thus:

(m-1) (0) ._

*(n, 1)

/ A B1

B\ A B2
BT2 A B3

\ ^n-2

where Bt is the matrix with the (s,t)-entry t*~* for 1

stands for the transpose of Bi, and

A

A ß„-2

s,t

\

m, the matrix Bj

5\ Ö2

Sm-i So

Let us look at a simple example. We consider the algebra TLç4^(ôo, Si, 62),
that is, n 4 and m 3. In this case we have t? 1 for { 1, 2. Thus

So Si S2 1 t\ ti 0 0 0 \
Si S2 So

(n, 1)

1 t\ 0 0 0

tf

f *i 1 0 0 0

0 à\ 02 1 to ti
1 (^2 Jq ^2 1 ^2

0 0 0 1*2*2^0^1 S2

0 0 0 t\ 1 t2 Si S2 So

\0 0 0*2*1 I S2 So Si J

Suppose mi is a primitive m-th root of unity. Define Uj u\ for j 2,..., m
and um mo I- Then m^ Mm_fc. Let V Vm(\,ui,..., um—\) be the
Vandermonde matrix of order m:

Vm(l,Ul, .,Mm_l)

1

Ml

Mi

1

M2

\

7
Since we shall evaluate each tj as some Mi3, when we calculate the value of
&(k,i)(vi> V2)i we may suppose that t3 utj for all 1 ^ j ^ n — 2. Thus the
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matrix Bj is of the form

/ 1 \

m—1

-1
¦/%

m-1

i-i,, ,U„m— 1

Now we define Yj to be the matrix of order m with 1 at the [i0, m — imposition
and 0 otherwise. For i0 m, we define Yj to be the matrix with (m, m)-entry f0 j
and all other entries 0. Then B3 VYJVT'.

Let p(x)

P(x)

R[x\. We write

X — U\

Since v,\ is a primitive m-th root of unity and v,i j for j, we have Sj

P(uj)/ f°r i Ij 2,..., m. Now we can rewrite £&

Note that the index k can be an arbitrary natural numbers and that Si 5^ if /

k (mod m). Thus the matrix A can be written as (#fc+;)o<fc,i<m-i- Furthermore,
we have A VAVT, where A diag(Ji, S2, ¦ ¦ ¦, 5m) is the diagonal matrix.

Since xm — 1 (x — u\)(x — u2) ¦ ¦ ¦ (x — um), we know that the A;-th elementary
symmetric polynomial in u\, u2,..., um is zero for 1 ^ k ^ m — 1. Hence Newton's
identities imply that

m, if k m,

Thus we have

VV1

/m 0 ••• 0 0 \
0 0 ••• 0 m
0 0 ••• m 0

\ 0 m ••• 0 0 /
This implies that (det(V))2 (_i)(™-i)(m-2)/2mm_ Thus det(*(n, 1))

(_l)è(™-i)(™-2)(»-i)m™(»-i)det(*(n, 1)), where

\
Â Y2

Y2T A Y3

\ ^-2 ^ /
Now let us calculate the determinant of ^(n, 1). Since each matrix Yj is of special
form, we partition («i,*2, • • •, in-2) into («i,i,*i,2, •••, h,jx, «2,1, «2,2, •••,*2,j2, ¦•¦,»rjr)
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with ji + J2 + ¦ ¦ ¦ + jr n — 2 such that m divides iPA + *P,g+i for all p with
1 ^ </ < jp and that m does not divide ipjp + *P+i,i for all 1 ^ p < r. Thus

n,l))

\n—1

Let

det

1

1 X2 1

1 I, 1

Then

det (*(n, 1)) (_

'•• Xn_i 1

1 xn/

\I1-1

We have proved the following proposition.

Proposition 8.1. Let R be a field containing a primitive ra-th root of unity. Then
the determinant of the Gram matrix of the bilinear form $(i,i) is

p=l

As a consequence of Proposition 8.1, we know that under the above assumption,
a necessary condition for TLrhm to be semisimple is that all the polynomials
p(sip,i ,ôip,2,..., 5îvJp are non zero.

The following is a description of the polynomial P(#i,..., xn).
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Let I(n) := {n, n-2, n-4,... } C {0}UN and define T(n, r) := {(n, «2, • • •, *V)
1 ^ «i < «2 < • • • < *r ^ "-, *r "- (mod 2), «J+i «j + 1 (mod 2) for all 1 ^ i ^
r — 1} for all r G /(n). If a («i, «2,..., *r) € T(n, r) we write xa for xnxl2 xir.
Then

p(X1,x2,...,xn)= J2 E (-i)(-r)/2^-
rE/(n) aer(n.r)

This can be proved by induction on n and the recursive formula P(xi, X2,..., xn)
xnP{x\,X2, ¦ ¦ •, xn-\) — P{x\, X2, ¦ ¦ ¦ ,xn-2). In fact, the set F(n, r) is a disjoint
union of {(«i, «2, •••, *r-ijn) I 1 ^ *i < «2 < ••• < *r ^ n — lj V-i n —

1 (mod 2);«i+i i,- + 1 (mod 2) for all 1 < j < r - 2} and T(n - 2, r). Thus this
decomposition of F(n, r) corresponds just to the two summands in the recursive
formula of P(xi,X2,..., xn).

Note that if m 1 or if xi xi • • • xn, then both det $^ i)
and P{x,x,...,x) are Tchebychev-type polynomials which play an important
role in the study of Temperley-Lieb algebras (see [7] and [17]). Hence we call
P(xi,X2, ...,xn) the n-th generalized Tchebychev polynomial. It follows from
the recursive formula that P(xi, X2,..., xn) is irreducible in the polynomial ring
i?[xi, X2, xn] with n variables xi, X2, xn.
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