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An infinite family of non-concordant knots having the same
Seifert form

Taehee Kim

Abstract. By a recent result ofLivingston, it is known that if a knot has a prime power branched

cyclic cover that is not a homology sphere, then there is an infinite family ofnon-concordant knots

having the same Seifert form as the knot. In this paper, we extend this result to the full extent.

We show that if the knot has nontrivial Alexander polynomial, then there exists an infinite family
of non-concordant knots having the same Seifert form as the knot. As a corollary, no nontrivial

Alexander polynomial determines a unique knot concordance class. We use Cochran-Orr-
Teichner's recent result on the knot concordance group and Cheeger-Gromov's von Neumann

p-invariants with their universal bound for a 3-manifold.
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1. Introduction

We work in the topologically locally flat category. A knot is an embedding of a circle
into the 3-sphere. A knot is called slice if it bounds a (locally flat) 2-disk in the 4-ball.
For two knots K\ and^, K\ is said to be concordant to Ki iîK\# — K2 is slice. Here
the symbol # denotes the connected sum operation and —K denotes the mirror image
of K with reversed orientation. This is an equivalence relation. The equivalence
classes (which are called the concordance classes) form an abelian group under
the connected sum operation. The group is called the {classical) knot concordance

group and denoted by C. In C, the identity is the class of slice knots. Levine [L]
constructed an epimorphism i^:6^S where S denotes the algebraic concordance

group of Seifert forms modulo a certain equivalence relation. The homomorphism 4>

maps the concordance class represented by a knot to the algebraic concordance class

represented by Seifert forms of the knot. Jiang [J] showed that the kernel of 4> is

infinitely generated. This implies that for each algebraic concordance class there are

infinitely many (mutually) non-concordant knots whose Seifert forms represent that

algebraic concordance class. But each algebraic concordance class is also represented
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by infinitely many distinct Seifert forms, and a question arises whether or not for a

given Seifert form there are non-concordant knots having that Seifert form. In fact,
Jiang's examples have distinct Seifert forms, hence his result does not give an answer
to this question. Recently Livingston [Li] made progress and gave a partial answer
under a condition on the Alexander polynomials.

Theorem ([Li, Theoreml.l]). If a knot K has Seifert form Vk and its Alexander

polynomial A^(f) has an irreducible factor that is not a cyclotomic polynomial 4>n

with n divisible by three distinct primes, then there is an inanité family {Ki} ofnon-
concordant knots such that each Ki has Seifert form Vk.

In the above theorem the technical condition on the Alexander polynomial is

necessary since the theorem was proven by using Casson-Gordon invariants. (For
Casson-Gordon invariants, refer to [CG].) More precisely, Casson-Gordon invariants

are defined via characters on the first homology ofprime power branched cyclic covers
of knots and if every prime power branched cyclic cover of the knot has the trivial
first homology then all Casson-Gordon invariants vanish. The following theorem
due to Livingston shows that a knot has a prime power branched cyclic cover with
nontrivial first homology under the given condition on the Alexander polynomial. In
the theorem, A^ (t) denotes the Alexander polynomial of a knot K.

Theorem ([Li, Theorem 1.2]). All prime power branched cyclic covers of a knot K
are homology spheres if and only if all nontrivial irreducible factors of Ak(î) are
cyclotomic polynomials cf>n{t) with n divisible by three distinct primes. All unite
branched cyclic covers of K are homology spheres ifandonly ifAk(i) 1.

In addition to these results the author [K] proved that for each n divisible by three
distinct primes there exist infinitely many non-concordant knots Ki with A^;
(4>n(t))2 which have the same Seifert form. (In fact, in [K] the author showed that
the knots Ki are linearly independent in the knot concordance group.)

In this paper we extend the above results to the full extent. The main theorem is

as follows.

Theorem 1.1 (Main Theorem). If a knot K has Seifert form Vk and its Alexander

polynomial is not 1, then there is an inanité family {Ki} ofnon-concordant knots such

that each Ki has Seifert form Vk-

In fact, in the course of the proof of the main theorem, we show a stronger result
that for i ^ j, the knots K{# — Kj are not (1.5)-solvable. (For the definition of (1.5)-
solvable knots, see Section 2.) Also we note that if the rational Alexander module
of the knot K has a unique self-annihilating submodule with respect to the rational
Blanchfield pairing, then using rationally universal solvable representations of the

fundamental group of zero surgery on a knot in the 3-sphere as used in [K], one can
construct the above knots Ki such that they are not only mutually non-concordant
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but also linearly independent in the knot concordance group. A proof for this is not
given in this paper, but one can easily prove this using arguments in [COT2, K].

ByFreedman's work if Àjç-(f) 1 thenK is topologically slice [F, FQ]. (Thatis,
the concordance class of K is the identity in C.) On the other hand, the main theorem

implies that if Àjç-(f) is not 1 then there are infinitely many non-concordant knots

having the Alexander polynomial À jç- (t). Thus we have the following corollary.

Corollary 1.2. No nontrivial Alexander polynomial determines a unique concordance

class in the knot concordance group.

In the proofof the main theorem we construct the knots Ki by performing satellite
construction on K. (This construction is also called genetic modiocation in [COT2].)
This construction is briefly reviewed in the next section. To show that the Ki are

mutually non-concordant we use Cochran-Orr-Teichner's filtration of the knot
concordance group in [COT1] and von Neumann p -invariants defined by Cheeger and

Gromov [ChG], which were applied as knot concordance invariants first by Cochran,
Orr, and Teichner in [COT1]. In particular, we use the fact that there is a universal
bound for von Neumann p-invariants for a fixed 3-manifold. More precisely, for a

fixed 3-manifold M, there exists a constant cm such that |pp (M, ijr)\ < cm for every
representation tf/ : n\(M) --* F where F is an arbitrary group [R, Theorem 3.1.1].
We remark that in [CT] Cochran and Teichner used this fact to show that Cochran-
Orr-Teichner's filtration of the knot concordance group is highly nontrivial, that is,
3^n/3^n.5 is nontrivial for all n > 2.

2. Preliminaries

Throughout this paper, we use the following convention. Unless mentioned otherwise,
integer coefficients are to be understood for homology groups. The zero surgery on a

knot K in S3 is denoted by Mk We use the same notation for a simple closed curve
and the homology (and the homotopy) class represented by the curve. We denote

Q[t, t l], the Laurant polynomial ring with rational coefficients, by A.
In this section we briefly review the machinery that will be used in the proof of

the main theorem. In [COT1], Cochran, Orr, and Teichner established a filtration
of the knot concordance group {3>i}neiN indexed by half-integers where 3n is the

subgroup of (n)-solvable knots. The definition of (n)-solvable knots (n e No) is as

follows. Recall that for a group G, G^ denotes the nth derived group of G which is

defined as follows: Let G^ G, and inductively G<"' [G{n~l\ G^"1)].

Definition 2.1. A knot K is called {n)-solvable if Mk bounds a spin 4-manifold W

such that the inclusion map Mk --* W induces an isomorphism on the first homology
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and such that W admits an (n)-Lagrangian with (n)-duals. This means that the

intersection form and the self-intersection form on H2 (W; Z[ni{W) /ni{W)^]),
which vanish on the (n)-Lagrangian, pair the (n)-Lagrangian and the (n)-duals non-
singularly and that their images together freely generate H2(W). The 4-manifold W

is called an («)-solution for K and we say K is {n)-solvable via W.

Similarly, we define (n.5)-solvable knots for n e No. (An (n.5)-solution W is

required to admit an (n + 1)-Lagrangian with (n)-duals.) For more details, refer to

[COT1, Definition 8.5 and Definition 8.7].
Cochran-Orr-Teichner showed that every slice knot is (n)-solvable for all n

[COT1, Remark 1.3.1]. They detect (n.5)-solvable knots, n e No, using von
Neumann p-invariants as follows.

Theorem 2.2 ([COT 1, Theorem 4.2]). Suppose that V is an {resolvable poly-
torsion-free-abelian group. Let 4>: ix\{Mk) —> Y be a homomorphism. If K
is {n.5)solvable via a 4-manifold W over which the coefficient system 4> extends,

thenpP(MK,(p) 0.

We explain the terminologies in the theorem. A group G is called {resolvable if
Q(n+i) 1 a group G is defined to be poly'-torsion-free-abelian (henceforth PTFA)
if it admits a normal series 1 Go < G1 <]¦¦¦<] Gm G such that the factors

Gi+i/G, are torsion-free abelian. For the von-Neumann p-invariant pj; (Mk, 4>),

refer to [COT1, Section 5] and [COT2, Section 2].
In fact, the target group V which we will use for the proof of the main

theorem is a quotient group G/Gj1 where G/1 is the nth rational derived group
of G defined by Harvey [H] as follows. Let Gr G. For n > 1, define

G^ [G{rl),G{rl)]Pn-i where

Pn_i {geG("-1) I gk g [G^-15, G^-15] for some JkeZ-{0}}.

The quotient G{p/G{j+l) is isomorphic to (G{p/[G^, G^f)])/{Z - torsion} for

all i > 0 [H, Lemma 3.5]. Harvey showed the quotient G/G{rn+r> is PTFA [H,

Corollary 3.6], and one easily sees that G/G? is (n)-solvable.
To construct the knots Kf in the main theorem we use satellite construction (or

genetic modification) explained as follows. Let K be a knot and x\ be an unknot
in S3 which is disjoint from K. Let / be another knot. Take the union of the

exterior of x\ in S3 and the exterior of / in S3 along the common boundary (which
is homeomorphic to a torus) such that a meridian of x\ is identified with a longitude
of / and a longitude of r\ with a meridian of /. The resulting ambient manifold is

homeomorphic to S3. The image of K under this construction is denoted by K {rj, J)
and we say K{q, J) is obtained by performing satellite construction on K via r\
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and /. If we let D be an embedded disk in S3 bounded by r\, then this construction
is equivalent to tying all the strands of K transversally passing through D into /.
For more details, refer to [COT2]. This construction can be generalized to the case

when we have a trivial link {r]\, r\n} which is disjoint from K and auxiliary knots

{J\ ,...,/„} by iterating the above process. In this case the resulting knot is denoted

by K({T,l,...,T,n}, {/!,...,/„}).

3. Proof of Theorem 1.1

Let F be a Seifert surface of a knot K with A^(f) 7^ 1 and Vk an associated Seifert
form. The Seifert surface F can be thought of as a disk with 2g bands where g is the

genus of F. Let rf,\<n< 2g, be a trivial link in S3 which is disjoint from F such

that the nth component rf links the nth band of F once and does not link the other
bands. It is known that rf, 1 < n < 2g, generate the rational Alexander module

H\(Mk; A). (For example, see [Ro].)
I (1)

By [R, Theorem 3.1.1], there exists a constant c such that \pr (Mk#-k, <P) < c

for every representation 4>: tt\(Mk#-k) —* F where F is an arbitrary group. Let
(1) (1)

J\ be a knot with vanishing Arf invariant such that pz {J\) > c. Here pz {J\)
(1)

denotes the von Neumann p-invariant pz (Mj1, cp) where (p : it\ (Mj1 —>¦ Z is the
(1)abelianization. Note that pz {J\) is equal to the integral of the Levine-Tristram

signatures of J\, integrated over the circle normalized to length one [COT2, Proposition

5.1]. Inductively, we define /;+i to be a knot with vanishing Arf invariant
such that pg (/(+1) > c + 2g ¦ pg (/,). These /, can be easily found by taking the

connected sum of suitably many even copies of a left-handed trefoil. For each i g N,
let J]1 be a copy of J} for 1 < n < 2g. That is, J.]1 /?, 1 < n < 2g.

Now let Ki K({r]\ r]2g], {//, jf8}), the knot resulting from satellite
construction. Since rf, 1 < n < 2g, lie in the complement of F in S3, Ki have the

same Seifert form Vk as K. We prove Ki are mutually non-concordant.
Fix i and j (i < j), and suppose that Ki and Kj are concordant. That is, Kt# — Kj

is slice. Observe that

Here rf denote the mirror images of rf, 1 < n < 2g.
Let M Mk#-k and M' Mk;#-k}-- We construct a cobordism C between

M and M' as follows. Choose a (O)-solution W{ for /,. (Since /, has vanishing Arf
invariant, it is (O)-solvable. See [COT1, Remark 1.3.2].) By doing surgery along
niiWi)^, we may assume tat n\(Wi) Z. Similarly, we choose a (0)-solution
Vj for -/;. Let W? W} and VJ Vj for 1 < n < 2g. Take M x [0, 1] and

the disjoint union L_[re=i ^?) li (LJnli V?). To form C, for each n identify the
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solid torus S1 xD2m3Wf (S3 \ N{JF)) U S1 x D2 (where N{J^) denotes an

open tubular neighborhood of /" in S3) with a tubular neighborhood of r\n x {1}
in M x {1} such that a meridian of /" is identified with a longitude of rf and a

longitude of /" with a meridian of r\n, and identify the solid torus S1 x D2 in

dVJ (S3\N(-JJ))US1 x D2 with a tabular neighborhood of ?fx{l} in M x{l}
similarly. One sees that 9_C M and 9+C M'. Moreover one sees that C is

spin.
Since K{# - Kj is slice, Kj# - Kj is (1.5)-solvable by [COT1, Remark 1.3.1].

Let W be a (1.5)-solution for K;# - Kj. In particular, dW M'. Let W be the

union of C and W along their common boundary M'. Hence W is a 4-manifold with

Lemma 3.1. The 4-manifold W, which is constructed as above, is a (I)-solution for
K#-K.

The proof of the above lemma is postponed. Let F Tt\(W)/Tt\(W)r Note
that T is a (Insolvable PTFA group by [H, Corollary 3.6]. Let (f> : tti( W) -+ Y be

the projection homomorphism. Note that M', Mjn, M_jn, and W are subspaces

of W, hence 4> can be restricted to the corresponding fundamental groups. Let </>"

(respectively 0") denote 4> restricted to n\(Mjn) (respectively n\(M_jn)), 1 < n <
2g. By [COT2, Proposition 3.2],

n=l n=l

In the above equation, pp (M;, <^|^j(Af')) 0 by Theorem 2.2 since ^^(M')
extends over (1.5)-solution W. Note that 0" factors through tti(W") which is iso-

morphictoZforeachn. If0(^") e, the identity element in F, then pp (Mjn) 0.

If (f)(r]n) t^ e, then the image of 0" is isomorphic to Z and pr (Mj?) p^ (/"),
which is defined in the previous section, by [COT1, Proposition 5.13]. We obtain

similar results for pr (M_jn). Now let e" 0 if(p(r]n) e and e" 1 otherwise,
1 < n < 2g. Define e", 1 < n < 2g, similarly. Then we have the following equation.

n=\

We claim that e" 7^ 0 for some n or e" 7^ 0 for some n. One sees that x\n

together with rf ,\ < n < 2g, generate the rational Alexander module H\ (M; A).
(This is obvious since H\{M; A) is isomorphic to H\{Mk; A) © H\{M-k; A).)
Since A^(f) ^ 1, H\(M; A) is not trivial. Hence K# - K has the (nontrivial)
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nonsingular rational Blachfield form Bi: Hi(M; A) x Hi(M; A) -> Q(t)/A. Let
f*: H\(M; A) —>¦ //i(V7; A) be the homomorphism induced by the inclusion. Since

P Ker(i*) is self-annihilating by [COT1, Theorem 4.4] (that is, P P1) and

5£ is nonsingular, f* is not a trivial homomorphism. Hence «*(??") 7^ 0 for some

« or i*(rf) 7^ 0 for some n in //i(V7; A). Since W is a (l)-solution for K# — K,
Hi(W) Z. This implies that n^W)^ tti(WO(1). Hence

^ ®z Q #i(W; A).

The first isomorphism holds by [H, Lemma 3.5]. Thus <j>(r)n) 7^ e or <j>(r)n) 7^ e for
some « in tti W)^/it\ V7)^ which is a subgroup of F, and this proves the claim.

Now suppose e" 7^ 0 for some «. By our choice of /, and //,

p{r](M, 4>)<2g- p{}\JÙ - p{i\jj) < -c,

which is a contradiction. If e" =0 for all n, then e" 7^ 0 for some n by the above

claim. Then
Pr}(M,(f>) >p(i]{Ji) > c,

which is also a contradiction. Therefore, to complete the proof we only need to prove
Lemma 3.1 and a proof is given below.

Proof of Lemma 3.1. We follow a course of the proof for a more general case in

[CT]. Using Mayer-Vietoris sequence observe that

Hi(M) Hi(C) Hi(M') Hi(W) HX(W) Z.

Again using Mayer-Vietoris sequence one sees that

2g Ig

n=\ n=\

and observe that H2(W) (H2(C) 0 H2(W')) /(p*, q*){H2{M')) where p* and

q* are induced by inclusions p: M' —> C and q: M' —> W, respectively. Since

H\W) -> H\M') is an isomorphism, H3(W, M') -> H2(M') is an isomorphism
by duality. Thus the homomorphism q* : H2{M') --* H2(W) is a trivial homomorphism.

Observe that H2{M) H2{M') Z and they are generated by a capped-off
Seifert surface of K# — K and its image under satellite construction, respectively.
Moreover p* : H2{M') —> H2{C) maps the generator of H2{M') to the generator of
H2(M). Hence

2g Ig

n=\ n=\
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Observe that n\(W'Yl) maps into ni(W)^ by the homomorphism induced by the

inclusion. Also iti{Wf) and n\(V-) map into ni(W)^ by the homomorphisms
induced by the inclusions since rf and r\n lie in n\ W) (-1-) and they generate n\ V7" and

xi(Vj) (which are isomorphic to Z), respectively. Now using naturality of equiv-
ariant intersection forms, one sees that (O)-Lagrangians and (O)-duals for V7" and

Vj and a (l)-Lagrangian and (l)-duals for W together form a (l)-Lagrangian and

(l)-duals for W. Finally, W has two possible spin structures, and a spin structure on
W can be chosen such that W is spin. This completes the proof.

Acknowledgements. The author would like to thank Jae Choon Cha for helpful
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