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The symplectic topology of Ramanujam's surface

Paul Seidel and Ivan Smith

Abstract. Ramanujam's surface M is a contractible affine algebraic surface which is not homeo-

morphic to the affine plane. For any m > 1 the product Mm is diffeomorphic to Euclidean space
R4™. We show that, for every m > 0, M™ cannot be symplectically embedded into a subcritical
Stein manifold. This gives the first examples of exotic symplectic structures on Euclidean space
which are convex at infinity. It follows that any exhausting plurisubharmonic Morse function
on Mm has at least three critical points, answering a question of Eliashberg. The heart of the

argument involves showing a particular Lagrangian torus L inside M cannot be displaced from
itself by any Hamiltonian isotopy, via a careful study of pseudoholomorphic discs with boundary
on L.
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1. Introduction

Ramanujam showed in [21] that the complement M of a certain singular curve in the

Hirzebruch surface Fi is a contractible algebraic surface. Algebro-geometrically, M
is distinguished from the affine plane A2 by being of log general type (having log
Kodaira dimension 2, cf. [17]). Topologically, in spite of being contractible, M is

not homeomorphic to M.4, since its fundamental group at infinity is nontrivial. Now
consider the m-fold product Mm M x ¦ ¦ ¦ x M. This is still of log general type, in
particular not isomorphic to A2m as an algebraic variety. However, form > 2 the
fundamental group at infinity becomes trivial, and as a consequence Mm is diffeomorphic
to M4"1 ; indeed, Dimca [unpublished] observed that any contractible affine variety of
complex dimension d > 3 is diffeomorphic to M.2d (cf. [25, Theorem 3.2]). The
conclusion is that the smooth manifolds M4"1, m > 2, admit nonstandard algebraic
variety structures.

The aim of the present note is to consider this phenomenon from the symplectic
perspective. We will equip M with an exhausting plurisubharmonic function <pM,

which makes it into a Stein manifold of finite type, and consider the associated
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symplectic form com (for this and related terminology, see Sections 2 and 3). On Mm

we take the product structure.

Theorem 1. For all m, Mm cannot be symplectically embedded into a subcritical
Stein manifold.

In particular, for m > 2 we obtain a symplectic structure on M4"1 which is exotic
(in the usual sense, of not admitting an embedding into the standard R4m). Any
sufficiently large relatively compact part of M is exotic in the same sense, because of
the finite type property (cf. Lemma 3 and Lemma 15 below). There is a consequence
which can be stated purely in terms of Stein geometry, answering a question of
Eliashberg [10, Problem 3]:

Corollary 2. For all m, any exhausting plurisubharmonic Morse function on Mm

must have at least 3 critical points.

It seems appropriate to compare Theorem 1 with some other known results. There
are several constructions of exotic symplectic structures on R2n for n > 2, starting
with the abstract existence theorem of [15, Corollary OAA^]. However, in contrast
to our example, the resulting symplectic forms are not known to be convex at infinity;
in fact, at least one construction [18] is explicitly designed to violate that condition.
In a somewhat different direction, we should mention that Eliashberg [10] has given
candidates, by an explicit Lagrangian handle decomposition, for Stein subdomains

of C2", n > 2, which are diffeomorphic to balls, and for which he conjectures that
the conclusion of Corollary 2 still holds.

The main result of [21] asserts that A2 is the only algebraic surface which is

contractible and simply-connected at infinity. The symplectic counterpart of this is the

observation that (assuming the 3-dimensional Poincaré conjecture) any 4-dimensional
Weinstein manifold which is contractible, simply connected at infinity, complete, and

of finite type, is symplectically isomorphic to standard M4. The proof relies on the

uniqueness of tight contact structures on S3 [9] and the description of Stein fillings of
this structure via families of holomorphic discs [8]. Moreover, the picture changes if
one drops the finite type condition: Gompf [13] has used a suitable infinite handle-

body decomposition to produce Stein structures on uncountably many manifolds
homeomorphic, but not diffeomorphic, to M4.

The essential ingredient in our proof of Theorem 1 is a particular Lagrangian
torus L c M, described below. By a careful study of pseudo-holomorphic discs, and

invoking a theorem of Chekanov [5], we show that L c M cannot be displaced from
itself by a Hamiltonian isotopy. More generally, if j : M ->¦ JV is a symplectic embedding

into a complete Stein manifold, then i (L) c N has the same non-displaceability
property. This, together with the corresponding facts for products Lm, leads easily to
Theorem 1.
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The heart of the argument involves considering two different compactifications
X and X Fi of M. The complement X\M is a curve S S' U S" with two
irreducible components, one of which S" has a cusp singularity; the Lagrangian torus
L lies in a neighbourhood of the cusp. Rather than working with a single Lagrangian

torus, we consider a family {Lt} which as t --* 0 collapses into the cusp point on 5"'.

Intuitively, the limit of a family of holomorphic discs {(B, 3B) -> (M, Lf)h6(O,i] as

f —>¦ 0 is either a holomorphic sphere in X disjoint from S', or is the constant map to

the cusp point. The first case is excluded since S' is ample; the second is impossible
for topological reasons concerning the fundamental group 7ti(V\S"), where V c X
is a small neighbourhood of the cusp. The upshot is that no such families of discs

can exist, enabling us to appeal to Chekanov's work.

For technical reasons, we in fact work with a blown-up compactification X --* X
of M in which the complement S X\M is a divisor with normal crossings. The
tori Lt now appear as so-called linking tori for a normal crossing point p of S.

To construct them as manifestly Lagrangian tori, and to make the abovementioned

limiting argument for holomorphic discs rigorous, we use a simple algebro-geometric
trick. Take CP1 x X and blow up the point (0, p), obtaining a threefold Y with a

projection Y —>¦ CP1. The singular fibre Yo has an irreducible component which
is a CP2. We take a Clifford torus Kq in that component, and move it by parallel
transport to obtain a family of Lagrangian tori Kt,t e [ -1 ; 1 ], in the nearby fibres Yt.

For /0, these fibres are naturally identified with X, and we define Lt to be the

image of Kt under this identification, for t e (—1; 0]. Since the total submanifold
K Ute[-i i]^iCF is Lagrangian, Gromov compactness can be applied directly
to families of discs with boundary in K. The drawback of this argument is that
the Yt X carry varying Kahler forms. To take account of this, we give a careful
discussion of Stein deformations in Section 2, and introduce in Section 3 the technical
notion of a "Stein-essential" Lagrangian submanifold. The idea is that for any given
E > 0, we can deform our Stein structure and our Lagrangian submanifold, in such

a way that at the endpoint of the deformation, there are no pseudo-holomorphic discs

of area less than E. Section 4 introduces Lagrangian linking tori, and describes the

implications of a linking torus being Stein-essential. Only in Section 5 are these

ingredients assembled to derive Theorem 1.

There are at least two possible alternative ways of analyzing the symplectic nature
of Mm. One could try to use Floer homology or symplectic homology as introduced

by Viterbo [24], [23] and Ciehebak-Floer-Hofer [7]. In fact, as we intend to discuss

elsewhere, existence of a Stein-essential Lagrangian submanifold already implies
that SH*{Mm) t^ 0. To compute SH*{Mm) precisely would presumably require
an analysis of the Reeb flow at infinity, though since Floer homology behaves well
under products [19] it would be enough to do the computation for M itself. Floer

homology may also distinguish between different exotic symplectic structures on
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M4"1, which falls outside the scope of the arguments used here. The other possible
approach would be via a symplectic field theory decomposition argument. The aim
would be to prove that if Mm is subcritical, there has to be a non-constant algebraic

map A1 —>¦ M, contradicting a property of contractible surfaces of log general type
[17, Theorem 4.7.1]. Eliashberg has announced a theorem which says that if a smooth

projective variety contains a smooth ample divisor with subcritical complement, then
the variety has many rational curves. In examples, it appears that these rational
curves are closures of maps of A1 to the complement, but this is not well-understood
in general. Closely related results have been obtained by Biolley [3].

Acknowledgments. The first author would like to thank Denis Auroux for an

illuminating discussion. Thanks go to Kai Cieliebak for helpful comments on an earlier
version of the paper. This research was partially supported by NSF grant DMS-
0405516 and a grant from the Nuffield foundation NUF-NAL/00876/G.1 &*-

2. Background

We begin by reviewing the definitions and some elementary results. This follows
([11], [10], [4]) with some modifications. The proofs have been relegated to the

Appendix.
Take a manifold M equipped with a symplectic form coM, a one-form 9M such that

dQM com, and an exhausting (which means proper and bounded below) smooth
function <fiM ¦ M -> R. Let XM be the Liouville vector field associated to 6M, so

<*>m(^m, 6m- The quadruple (M, com, 6m, 4>m) is a convex symplectic manifold
if there is a sequence c\ < C2 < ¦ ¦ ¦ converging to +oo, such that cLc^mO^m) > 0

on each level set 4>m1^)- We call a convex symplectic manifold complete if the

flow of Xm exists for all positive times (the corresponding statement for negative
times is always true), and of finite type if there is a cq such that cLQm&m) > 0

on (t>Ml{[cQ\ +oo)). Note that if M is complete and of finite type, then the flow of
Xm defines a diffeomorphism /: [0; oo) x (pM1(co) —? 0ji/([co; +oo)) satisfying

f*6M er(6M\4>Ml(cü))> wherer is the variable in [0; oo). Hence M is a symplectic
manifold with a conical end.

Lemma 3. Let M, N be convex symplectic manifolds, with M offinite type and N
complete. Take cç, such that d<fiM(XM) > 0 on <fijj ([cç,; +oo)). Then any embedding
i ¦ 0m1((~CX); c°]) ~* N such that i*6n — 6m is an exact one-form, can be extended

to an embedding M —* N with the same property.

Let (a>M,t, 6m,t, 4>M,t), 0 < t < 1, be a smooth family of convex symplectic
structures on a fixed manifold M. We say that this is a convex symplectic deformation
if the following two additional conditions hold: the function (t, x) *--* 4>M,t(x) on
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[0; 1] x M is proper; and for each t G [0; 1] there is a neighbourhood t G / c [0; 1]

and a sequence c\ < C2 < ¦ ¦¦ converging to +cxd, such that d(f>M,s(^M,s) > 0 along
4>MS(ck) for all k and all s g /. A convex symplectic deformation is called complete
if all the convex symplectic structures in it are complete, and offinite type if there is

a co such that d<pM,t(^M,t) > 0 on 0M\([co; +oo)) for all t.

Lemma 4. Let (o)M)t, ÔM,t > 4>M,t) be a complete convex symplectic deformation. For
any relatively compact open subset U c M, there is a smooth family of embeddings

jt: U -> M starting with jo id, such that j*9M,t — 9m,o are exact one-forms on U.

Lemma 5. Let (a>M,t, 0M,t, 4>M,t) be a complete finite type convex symplectic
deformation. Then there is a smooth family of diffeomorphisms ft: M -> M, starting
with /o id, such that f*ÔM,t — @m,o dRt, where (t, x) i->- Rt(x) is a compactly
supported function on [0; 1] x M.

It may be instructive to compare our definitions with some that appear elsewhere in
the literature. The condition of a manifold being Weinstein, defined in [10], is related

to but stronger than being convex symplectic; the function 4>m is tied closely to Xm

by a Lyapunov condition, which is somewhat more restrictive than our requirements.
Convex symplectic manifolds were introduced in [11], defined as exact symplectic
manifolds (M, wM, &m) together with an exhaustion by relatively compact subsets

U\ c U\ c Ui C Ui C U'i c ¦ ¦ ¦, such that each dUk is a smooth hypersurface and

convex of contact type. This coincides with our notion, but we choose to describe the

exhaustion Uk 0M1((—cxd; ck)) via sublevel sets of some function. Our definition
of convex symplectic deformation stays close to the same picture, since locally in
the deformation parameter t, the manifolds (M, a>M,t, 0M,t) have smoothly varying
exhaustions U^t 4>Mt{(-oo; Ck)). For convex symplectic manifolds which are

both finite type and complete, this is the natural analogue of the notion ofdeformation
in [10].

A Stein manifold (M, Jm, 4>m) is a complex manifold (M, Jm) with an exhausting
plurisubharmonic function 4>m- Here plurisubharmonicity is always intended in the

strict sense, meaning that —ddc<pM —d(d<pM ° Jm) is a positive (1, l)-form. We

say that the Stein manifold is complete if the gradient flow of 4>m exists for all positive
times, and offinite type if there is a co such that all c > co are regular values of 4>m-

Taking com —ddc4>M and 9m —dc4>M then makes M into a convex symplectic
manifold, whose Liouville vector field is Xm ^4>m (and which therefore satisfies

d(f>M&M) > 0 on each regular level set of 4>m)- Completeness or finite type nature
of the Stein manifold imply the corresponding convex symplectic properties.

Lemma 6. Let(M, Jm, 4>m) be a Stein manifold, andh: R —>¦ R a function satisfying
h'{c) > 0, h"{c) > Ofor all c, and such that there are cq and S > 0 with h"{c) >
Sh'(c) for all c > cq. Then 4>m h(4>M) is again plurisubharmonic and makes
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(M, Jm) into a complete Stein manifold. Denote the convex symplectic structure
obtained from 4>m by (com, 6m)- If the original Stein structure was complete and of
finite type, there is a diffeomorphism f : M -> M such that f*(9M) -9m dRfor
some compactly supported function R.

Lemma 7. Let 4>m, 4>m be two exhausting plurisubharmonic functions on the same

complex manifold (M, Jm), of which the second one is complete and offinite type
(while the first one can be arbitrary). Then there is an embedding i: M —* M such

that i*(9M) — 0M is an exact one-form.

Let (Jmj, 4>M,t), 0 < t < 1, be a smooth family of Stein structures on a manifold
M. We call this a Stein deformation if the following two additional conditions hold:
the function (t, x) *--* <f>M,t(x) on [0; 1] x M is proper; and for each t G [0; 1] there
is a neighbourhood t G / c [0; 1] and a sequence c\ < C2 < • • ¦ converging to +oo,
such that ck is a regular level set for each 4>M,s, s e I. A Stein deformation is called

complete if all the Stein structures in it are complete, and offinite type if there is a cq

such that all c > cq are regular values of (f>M,t for all 6 [0; 1]. Clearly, these kinds
of deformations induce the corresponding convex symplectic notions.

It remains to make the connection with algebraic geometry. Let X be a smooth

projective variety, E --* X an ample line bundle, se g Ho(E) a nonzero holomorphic
section, and S s^1 (0) the hypersurface along which it vanishes. Ampleness means
that we can put a metric || ¦ \\e on E such that the curvature form a>x iFvE °f me
associated connection V# is a positive (1, l)-form. The restriction of this form to
M X \ S can be written as com a>x\M —ddc4>M, where 4>m —log II^ëHë.
This is clearly an exhausting function, hence defines a Stein structure.

Lemma 8. Suppose that S has only normal crossing singularities (but se can vanish

along the irreducible components with arbitrary multiplicities). Then 4>m is offinite
type.

There is also a version of this for deformations: in the same algebro-geometric
situation, given a family || ¦ \\E>t of metrics, one gets a finite type Stein deformation

(JM,t JM,4>M,t -lO

3. Stein-Essential Lagrangian submanifolds

Following a line of thought similar to the one in [4], we combine "soft" displacement
methods for subcritical Stein manifolds with "hard" Lagrangian intersection results

to derive some restrictions on embeddings of Stein manifolds.
Let (M, com, 9m) be any exact symplectic manifold. By a Hamiltoman isotopy

of M, we will mean an isotopy (gt), 0 < t < 1, starting with go id, which is
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induced by a smooth family of Hamiltonian functions Ht, such that (t, x) *--* Ht(x)
has compact support in [0; 1] x M. The Hofer length of (gt) is defined as

/'Jo
dt.

Now let L c M be a Lagrangian submanifold (throughout, all such submanifolds

will be assumed to be compact). Consider Hamiltonian isotopies (gt) such that

gt(L) n L 0. The infimum of the Hofer lengths of all these isotopies is called the

displacement energy of L (of course, there are cases where no such isotopy exists, and

then the displacement energy is oo). Recall that by definition, a Lagrangian isotopy
(Lt) is exact if the class [9M\Lt] e /^(L^R) H1(Lq; R) is constant inf. These

are precisely the Lagrangian isotopies which can be embedded into Hamiltonian ones,
in the sense that there is a (gt) with gt(Lo) Lt. Hence, the displacement energy is

invariant under exact Lagrangian isotopies. Chekanov's theorem ([5] ,[6], [20]) says:

Theorem 9. Let L c M be a compact Lagrangian submanifold whose displacement

energy is E < oo. Let Jm be an a>M-compatible almost complex structure which is

convex at infinity. Then there is a non-constant JM-holomorphic map u : (B, 3B) ->
(M, L), where DcCis the closed unit disc, whose area is f u*com < E.

Convexity at infinity of the almost complex structure means that there is an

exhausting function <fiM such that outside a compact subset, —d(d<fiM ° Jm) is positive
on all /M-complex tangent planes. This holds for the given complex structure on

any Stein manifold, but it also allows one to deform that structure (compatibly with
the symplectic form) on a compact subset. Chekanov's theorem actually holds in
somewhat greater generality, but that will not be necessary for our purpose.

Recall that a Stein manifold {M, Jm,4>m)^ subcritical if 4>m is a Morse function
and has only critical points of index < | diniR M. The next statement is a special
case of [4, Lemma 3.2] (and technically somewhat simpler than the general result):

Lemma 10. For any Lagrangian submanifold L in a complete subcritical Stein

manifold M, there exists an exact Lagrangian isotopy (Lt) such that Lq L and

Li n Lo 0.

Suppose that we have a Stein manifold, containing a Lagrangian submanifold
such that there are no non-constant holomorphic discs bounding it. Then our Stein
manifold cannot be subcritical (one would use Lemma 6 to make it complete, and

then combine Theorem 9 with Lemma 10). A little less obviously, this manifold
cannot have an exact symplectic embedding into any subcritical Stein manifold. We
will spend the rest of this section deriving a more complicated version of the latter
statement.
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Let (M, Jm, 4>m) be a complete finite type Stein manifold, and take co as usual.

On ^^([co; co)), which in symplectic terms is the cone part of M, consider the

splitting

where Cm ker(<#M) H ker (dc<fiM) is the contact hyperplane field on each level set

4>MX (c),c > Co ; and §M WV(pM © ^-Pm is spanned by the Liouville vector field
together with the Reeb vector field on each level set, which is pm Jm^4>m/\\^4>m\\2-
The decomposition (1) is /^-invariant and orthogonal with respect to com- One can
therefore find an mM -compatible almost complex structure Jm which

is equal to Jm on 4>Ml(—00; co]);

preserves Cm, and maps *„ on^co; +00));
to a positive multiple of pm

is invariant under the Liouville flow on 4>Ml ([co + 1 ; +00)).

(2)

Lemma 11. Let So be a compact connected Riemann surface with boundary, and

u: So ->¦ M a JM-holomorphic map such that m(9So) C </>Af1((—00; co]).
1

The second part of (2) implies that on 4>Ml ([co; +00)), —d(j>M ° Jm
with a strictly positive function r\. Hence

dr]
-d(d(f>M o /m) =t)ft)MH A (-d<t>M ° -^m)- (3)

Suppose that we have a /M-holomorphic map u: So ->¦ M such that m(9So) C
0m1((—cxd; co]) but «(So) (£ 0M1((—cxd; co]). Then there is a c > co such that m

intersects the level set 4>MX (c) transversally in a nonempty set. Consider the function

f 4>m ° u on the surface S a '^([c; +00)) C So. By pulling back (3) and

using the positivity of u*com we obtain a differential inequality for tf/, which in a

local holomorphic coordinate z s + it can be written as

(dj + df)f -o(s, t)dsf - r(s, t)dtf > 0

with a (r) o u)~lds(r] ou),x (r] o u) ldt(r] o «). The strong maximum principle
[12, Theorem 3.5] applies to solutions of such equations, hence tf/ < c everywhere
on S, which means that m (So) C </>Af1((—00; c]). Since c can be chosen arbitrarily
close to co, the result follows.

Because Jm is invariant under the Liouville flow outside a compact subset, it is

tame in the sense of [1, Chapter V, Definition 4.1.1]. In particular, the monotonicity
lemma [1, Chapter V, Proposition 4.3.1] applies:
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Lemma 12. Let gM be the metric associated to com and Jm- There is a p > 0, which
is less than the injectivity radius ofgM, o.nd an e > 0, such that the following holds.

Let x be any point in M, and Br (x the closed ball of radius r < p around it. If T, is

a compactRiemann surface with boundary, and u: S —>¦ Br(x) a JM-holomorphic
map satisfyingx g m(S) andw(3S) c 3Br{x), then f u*mM > er2.

Lemma 13. For every E > 0 there is a C > 0 with the following property. Let
S be a compact connected Riemann surface with boundary, whose boundary is

decomposed into two nonempty unions of circles 9_E U 3+E. Let u: S -> M
be a JM-holomorphic map such that m(9_S) c 4>m1{{—oq; cq\) and m(3+S) c
4>m\[C; co)). Then /E u*coM > E.

Proof. Consider the diffeomorphism /: [0; oo) x «^/(co) ~* 4>m1^c^ °°)) which
defines the conical end structure. Since the metric gM blows up on the cone, the

distance between any two sets /({«} x ^^(co)), i 0,1, 2,... is bounded below

by some S > 0. Take the constants p, e from Lemma 12. After making 8 smaller
if necessary, we may assume that 8/2 < p; we then take an integer k greater than
98-2€~lE, and choose C so that ^([C; oo)) C f([k; oo) x 4)Ml(c0)).

Since S is connected and intersects both (J>m1((—oq; cq\) and f([k; cxd)x0^1(co))
nontrivially, there are points z\, ¦ ¦ ¦, Zk & ^ such that x, u{zi) G f({i — 1/2} x
4>m1{cq)). The balls Br(x;), for any r < 8/2, are mutually disjoint. Choose

r g (<5/3; <5/2) in such a way that u is transverse to all the boundaries 95r(x,).
By Lemma 12, each w, u\u~l{Br{xi)) : M~1(5r(x,)) -> 5r(^i) has area > e<52/9.

Hence, the total area of m is > ke82/9 > E.

Let (M, /m, 0m) be a finite type Stein manifold. We say that a compact La-
grangian submanifold L c Mis Stein-essential if for each E > 0 there is a finite
type Stein deformation (Jmj, 4>M,t) and a smooth family of compact submanifolds

Lt c M (0 < t < 1), with the following properties: at the starting point t 0, we
have the original Stein structure and Lagrangian submanifold L Lo; for all t, Lt
is o>M,t-Lagrangian, and the cohomology class [Omj] g Hl(Lt; R) Hl(L; R) is

constant in f ; and at the opposite end, every /M,i-holomorphic map m : (B, 3B) —>¦

(M, Li) with / u*com,i < E is constant.

Proposition 14. Lef M 6e a finite type Stein manifold, which admits an embedding
i: M —* N into a complete subcritical Stein manifold, such that i*9n—0m is an exact
one-form. Then M cannot contain any Stein-essential Lagrangian submanifolds.

Proof. Assume that on the contrary, there is a Stein-essential Lagrangian submanifold
L c M. By definition, for each E we can find a finite type Stein deformation

(Jmj, 4>M,t) and family of Lagrangian submanifolds (Lt), such that £ is a strict
lower bound for the area of non-constant /M,i-holomorphic discs in (M, L\). We
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may take E to be the displacement energy of i (L) inside N, which is finite by Lemma
10.

Because the deformation {Jmj 4>M,t) is of finite type, there is a cq > 0 so that all
c > co are regular values of 4>M,t for all t. After making co larger if necessary, one can
also assume that Lt c <^Af1f((—oo; co]). Lemma 6 says that one can find functions

ht depending smoothly on t, such that the modified Stein structures (Jmj, 4>M,t

ht(<f>M,t)) are complete. Choose these functions in such a way that ht(c) c for
c < co, which means that the Lt remain Lagrangian for the associated modified
convex symplectic structures (ä>M,t, §m,t)¦

By construction JM) l, 4>m, l is complete and of finite type. Introduce a new wM, l -

compatible almost complex structure Jm, i as in the discussion preceding Lemma 11.

More explicitly, to carry over that construction to the current situation, one should

replace the notation Jm, 4>m, Jm in (2) by Jm,\,4>m,\, Jm,\ respectively; and similarly
KmXm,Pm are now the contact hyperplane field, Liouville vector field, and Reeb

vector field associated to (o)M)i, Ôm,i) and to the conical end [co; +oo)x<fiM11(co) ->
4>Mll ([co; +oo)). We will now state some properties of the data introduced so far.

(a) There is an embedding 1: M -> N with ~i{L) i{L), such that TOn — 9M,o is

an exact one-form.

To obtain that, restrict i to an embedding of (/>Af1((—oo; co]) into N, note that

0M §Mq on that subset, and then extend it to the whole of (M, ö>m,o, 0m,o) using
Lemma 3.

(b) There is a diffeomorphism f\\ M ->¦ M such that f*§M,i — ^m,o is an exact

one-form, and fi(Lo) is exact Lagrangian isotopic to L\.

By definition (Jmj, 4>M,t) is a complete finite type deformation, so Lemma 5

provides a family of diffeomorphisms ft: M -* M such that f*§M,t — @m,o are exact.

fift 1(Lt) is a Lagrangian isotopy between /i(Lo) and L\, and the cohomology
class [6M,i\fift ^Lt)] [ÔM,o\ft~l(Lt)} [6M,t\Lt] [0M,t\Lt] is constant in t,
which means that the isotopy is exact.

(c) The image of any J'm\\-holomorphic disc ü : (B, 3B) -> (M, L\) is contained

By construction L\ c 4>M11((—oo; co]); therefore Lemma 11 applies and yields
the desired result.

(d) There is a C > co with the following property. Let S be a compact con¬

nectedRiemann surface with boundary, whose boundary is decomposed into two

nonempty unions of circles d-YUd+Y. Letü: S —>¦ M be a JM,i-holomorphic
map such that m(3_S) c 4>Ml x{{-oo; co])andü(d+'Z) c 0m\([C; °°))- Then

fy U*ä>M,l > E.
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Up to the change in notation, this is Lemma 13.

Consider the compact subset K ^^((-cx); C + 1]), and let j ï o f^1 \K :

K -> N. Clearly, one can find an wN-compatible almost complex structure Jn
with the following two properties: Jn Jn outside a compact subset; and j* J~n

Jm, i\K. From (b) we know that the Lagrangian submanifold j (L \ is exact isotopic
to ~i{L), hence its displacement energy is again E. Since Jn Jn at infinity, we
can apply Theorem 9, which shows that there is a non-constant /w-holomorphic disc

u: (B, 3B) -> (N,j(Li))withfu*coN < E.

Choose a c e [C; C + 1] such that u intersects the hypersurface j(4>^111(c))

transversally. Consider only the part of our /w-holomorphic disc u that lies on the

interior side of that hypersurface. This may have several connected components;
we ignore all of them except the one which contains 3B, and compose that with
j~l to obtain a /M,i-holomorphic map ù: Y, ->¦ K c M. By construction, S is

a connected compact Riemann surface with boundary; its boundary contains one
circle 9_S such that m(3_S) c L\ c 4>m11((—oo; co]), and if S+S is the union

of all the other boundary circles, then m(3+S) c 0m\(c) C 0^1i([<-'; °°)); nnaHy

/ û*û)m,i < £• By (d) above, this is possible only if S+S 0, which means that

m is a non-constant /M,i-holomorphic disc in (M, L). Applying (c) we find that the

image of ü must be contained in 0^11((—cxd; co]), which implies that it is in fact a

/M,i-holomorphic disc, with / ü*com,i < E. However, given our original choice of
the deformation, the existence of such a disc violates the definition of Stein-essential

Lagrangian submanifold.

In fact, the requirement that ./V is complete can be omitted, due to the following
observation, which is similar to step (a) in the previous proof:

Lemma 15. Let M be a finite type Stein manifold. If M admits an embedding
i: M -> N into a subcritical Stein manifold, such that i*6n — Qm is an exact one-

form, then it also admits an embedding into a complete subcritical Stein manifold,
with the same property.

Proof. Take co so that all c > co are regular values of 4>m- Use Lemma 6 to find
an h such that 4>n h{4>N) gives rise to a complete Stein structure. This is still
subcritical, because the critical points and their Morse indices remain the same, h

can be chosen in such a way that the new convex symplectic structure (Son On agrees
with the old one on i(</>Af1((—oo; co]) C N. By restricting i to (/>Af1((—oo; co]), and

then extending it again using Lemma 3, one gets an embedding j : M —* N such that
j*§N — 9m is exact.
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4. Linking tori

Throughout this section, X will be a smooth projective algebraic surface; Sclan
algebraic curve with only normal crossing singularities; and p £ S a crossing point.
Set M X \ S. Take local holomorphic coordinates (a, b) centered at p in which
S {ab 0}, and let U c X be a ball of some radius p > 0 in those coordinates.
Consider the torus L c M given by {\a\ [i, \b\ v} for some 0 < [i, v < pl~Jl.
We will call such an L, as well as any other torus isotopic to it inside U n M, a Unking
torus for S at p.

Recall that, given any algebraic curve on a smooth algebraic surface, one can
resolve its singularities by blowups, until only normal crossings remain ([2], Chapter II).
The linking tori constructed in this way can be viewed as lying in the complement
of the original curve, since blowups leave that complement unchanged. We will now
consider in more detail the simplest example of this, which is relevant for our
application later on. Let X be a smooth projective algebraic surface, and Xcla curve
which has a cusp singularity at the point p. Blow up to get a map q : X --* X, such

that S q~1(S) has only normal crossings. We assume that this resolution is the

minimal one (meaning that no exceptional component of S can be blown down without

violating the normal crossing condition). Take local coordinates (c, d) centered

at p in which S {c2 d3}; let V c X be a small ball in these coordinates; and set

V q~1(V). The curve S HV consists of a small piece of the principal component,
which is the proper transform of S, and three exceptional components of multiplicities
2, 3 and 6. Figure 1 summarizes the stages of the blowup process and the corresponding

coordinate changes (the thick lines are the exceptional components, and the dots

indicate the origin of the coordinate systems used).
Consider the linking torus L {\a\ n, \b\ v] at the point (a, b) (0, 0)

where the principal component of S n V crosses the exceptional component of
multiplicity 6 (this point is indicated by the small arrow in Figure 1). Its image under q
is the torus L LßtV parametrized by

c ß3(veiy + \)e3iS, d ß2(veiy + \)em

for (y, S) g R/2jtZ, and where /x, v > 0 are suitably small constants. By keeping

ß constant and letting v —>¦ 0, one obtains a smooth family of tori in V \ S, which in
the limit shrink to the loop (c ß3e3iS, d ß2e2iS) lying on (S \ {(0, 0)}) n V.

The topological aspect of cusp singularities is well-known: the intersection S3 n
{c2 d3} is a (2, 3)-torus knot, which is a trefoil k. One can find a diffeomorphism
V \{(0, 0)} (0; 1) x S3 which takes S\{(0, 0)}to (0; 1) x/c, hence identifies V \S
with (0; 1) x (S3 \k). From the argument given above, it follows that the loop on L
given by {y const.} is homotopic to a longitude of k. Here, by longitude we mean
a curve in S3 \ k which runs parallel to k for some framing which may not necessarily
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be the canonical one (this ambiguity could be settled by explicit computation, but it
is irrelevant for our purpose). Similarly, by inspection of the limit v —>¦ 0 with fixed

fj, and S, one sees that the other loop {8 const.} on L is a meridian of k. It is a

general fact about nontrivial knots (Dehn's Lemma, see e.g. [16, Theorem 11.2]) that

longitude and meridian together define an inj ective homomorphism I? -> it\ {S3 \ k

which for us means that n\(L) --* n\(V \ S) is injective. Using the identification
V \ S V \ S provided by q, we arrive at this conclusion:

Lemma 16. If a loop on L bounds a disc in V \ S, then it must be contractible on L
itself.

Returning to the general discussion of linking tori, we now reformulate their
definition using a degeneration of X to a normal crossing surface. Let Y be the variety
obtained by blowing up (0, p) e P1 x X, and n : Y ->¦ P1 x X ->¦ P1 the projection
to the first variable. The smooth fibres Yt,t G P1 \ {0}, are obviously isomorphic to X.
The singular fibre has two irreducible components, Yq ZUP: Z is the blowup of X
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at p, and P P(C © TXP) is the exceptional divisor in Y. They are joined together
by a normal crossing, where one identifies the exceptional curve in Z with the line
Co P({0} © TXP) in P. Let T c Y be the proper transform of P1 x S c P1 x X
under the blowup, and Tt T n Yt. For t ^ 0 one can obviously identify Tt c F(

with S1 c X; while To is the union of T n Z, which is the proper transform of S1

under blowing up p e X, and of T n P, which consists of the two lines C\, C2 C P
obtained by projectivizing C x (tangent space to either branch of S at p). Choose

an isomorphism P P2 in such a way that the Q become the coordinate lines, and

let Ko C (C*)2 P \ (Co U C\ U C2) be one of the standard Clifford tori. One can
find a submanifold with boundary K c Y, lying in n l ([-1 ; 1]) and with boundary
in n 1({—1; 1}), such that 7r|Ä" : K --* [—1; 1] is a smooth fibration, whose fibre
over f 0 is the given /To- One way to think of this is to choose a connection (a

horizontal subbundle) on the open subset of n-regular points of Y. Since Ko lies in
that subset, one can use parallel transport to move it to other fibres, and doing that in
both directions along the real axis yields K. In fact, any K with the properties stated

above can be obtained in this way, for some choice of connection.

Lemma 17. For all sufficiently small t e [—1; 1] \ {0}, Kt K n Yt is a linking
torus for S at the crossing point p.

It may be appropriate to first clarify the meaning of this. As before, let (a, b) be

coordinates centered at p in which S {ab 0}, and U a ball in those coordinates.

By identifying Yt X for t e [-1 ; 1] \ {0}, one can think of the Kt as tori inside X.
A more technical formulation of the lemma is that for sufficiently small such t, Kt lies
in U \ S, and is isotopic inside that set to the standard linking torus {\a \ =/x, \b\ v}.
(This formulation, and the following proof, are somewhat pedantic, but are engineered
to adapt well to the symplectic geometry requirements to be imposed subsequently.)

Proof. Let W be the preimage of P1 x U under the blowup map F->P'xI Since
Ko C P C W, one has Kt c W n Yt U for sufficiently small t £ 0. Similarly,
because Ko n T Ko n (C\ U C2) 0, one has Kt n S 0 for sufficiently small
t 7^ 0. The next step is to show that the isotopy type of Kt inside U \ S is independent
of the choice of K. If one thinks of that choice as given by a connection, any two
connections can be deformed into each other, which gives rise to an isotopy of the

associated submanifolds Kt. The previous considerations show that for small t, this

isotopy will take place inside U \S.
With that in mind, it is sufficient to prove the statement that the Kt are linking ton

for just one choice of K. We write down the local picture near Pc Fin coordinates:

Y {(t, a, b, [r : a : ß]) G C3 x P2 : (t, a, b) G [r : a : ß]},

7t(t,a,b,[r :a : ßj) t,

Z {t 0, r 0},
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P {t a b 0},

T {aß 0}.

Here (t,a,b) should actually lie in a small neighbourhood of (0, 0, 0), but we omit
that to make the notation more transparent. By definition, Kq {t 1, |a| /x,
\ß\ v} for some constants [i, v > 0, and one can therefore take K {t e R,
\a\ n\t|, |£>| v|f |}, in which case Kt (t ^ 0) is clearly a family of linking tori,
whose diameter shrinks as t --* 0.

From this point onwards, we will make the additional assumption that there is

an effective divisor D on X whose support is S (in other words, D is a sum of the

irreducible components of S with positive multiplicities), which is ample. Let E
Ox(D) be the associated ample line bundle. Form the tensor product OPi (1) IE] is ->
P1 x X and pull it back to a line bundle on Y (keeping the notation for simplicity).
For d » 0, F (OPi (1) M E)®d ® Oy (-P) -? Y is again ample. We will now
recall Kodaira's classical proof of this fact; for full details see e.g. [14, p. 185].
Start with a metric || ¦ \\e on E whose curvature (more precisely iFyE, where V# is
the associated connection) is a positive (1, l)-form, denoted by a>x- Similarly, on
Opi 1 we choose a metric whose curvature is a positive (1,1) -form co^i. Tensor them

together to give a metric on OPi (1) IE] E, with curvature <x>Pi + a>x. By specializing
to the point (0, p) G P1 x X, this induces a metric on the bundle Op(l) —>¦ P, and a

Fubim-Study form wP on P. One can identify Oy (—P) | P Op (1), so this gives a

metric on 0 y (—P | P, which one can extend to a small neighbourhood of P. On the

complement of P, Oy(—P) is canonically trivial, so one can take a constant metric,
and patch that together with the other one using a cutoff function. The outcome is a

metric on Oy (—P) whose curvature form restricts to cop on P. Direct computation
shows that for d » 0, the curvature of the resulting tensor product metric || ¦ \\f on
F is a positive (1, l)-form, which we denote by coy.

For our application, we suppose that || ¦ ||# has been chosen in such a way that
the two branches of S meet orthogonally at p. This is always possible, in fact

one can modify the Kahler potential to make the metric standard in any given local
holomorphic coordinates; see e.g. [22, Lemma 7.2]. The advantage is that we can
then identify P P2 in such a way that Cq,C\, C^ become the coordinate lines, and

cop the standard Fubini-Study form. As a consequence, any Clifford torus Ko C P
is Lagrangian for coy\P cop. The Kahler form coy also induces a symplectic
connection on the set of n -regular points in Y. We use this connection to transport Kq
into nearby fibres, as described above. The resulting K is a Lagrangian submanifold
with boundary inside (Y, my) (this is best seen in two steps: since the connection
is symplectic and Ko is Lagrangian, each Kt will be Lagrangian in Yt; and since
the horizontal subspace is defined as the my -orthogonal complement to the fibrewise

tangent spaces, K itself is Lagrangian).
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Lemma 18. Suppose that there is a sequence tk £ (0; 1] with lim^ 0, and a

sequence of holomorphic discs uu: (B, 9B) --* (Ytk, Ktk) whose areas f ufcoy are
bounded. Then, after passing to a subsequence, there is a finite collection of
holomorphic maps v, : P1 —>¦ X with the property that (with respect to the isomorphism
Ytk X) the image of u^ for k » 0 is contained in an arbitrarily small neighbourhood

of the union of the images of the vj. Moreover, the union of the images of the v-,

is connected, and contains p.

Proof. Consider (tk, uk) as a sequence of holomorphic discs in Y with boundary
on the Lagrangian submanifold K, and apply Gromov compactness to a suitable

subsequence. Since the images of the discs lie in Ytk, the limiting stable disc has

image in Yq. Its components are of three kinds: holomorphic spheres w-, : P1 —>¦ Z
andy,- : P1 -> P, as well as discs z\ : (B, 3B) -> (P, Ko). A fairly weak implication
of Gromov convergence is that the image of (tk, uk) for k ^> 0 is contained in an

arbitrarily small neighbourhood (in Y) of the union of the images of the w\,yi,zi.
We define the v, to be the images of all the original components under blowdown
Y --* P1 x X; the yi and zi become constant, and in the latter case we replace the

domain B by P1. The convergence statement then holds by construction; since the

original stable disc was connected, the same applies to the union of the images of the

vi ; and since there was at least one z\ component, there is at least one v\ which is the

constant map with value p.

Lemma 19. Suppose that there is a union of irreducible components of S, forming
a sub-curve S' c S with p g S', and an effective nef divisor D' whose support
is S'. Assume that we have (tk, uk) as in the previous lemma, with the additional
assumption thatu^l(S') 0 for all k. Then v~l(S') 0 for all i.

Proof. We have u^ ¦ D' 0 because the supports are disjoint, and by looking at the

Gromov limiting process, J2i vi - D' 0 (the fact that (0, p) is blown up in Y plays
no role here, since p 4- $')¦ Nefness implies that v, ¦ D' 0 for each i, which means
that the image of v, is either contained in S' or disjoint from it. Connectedness of the

Gromov limit, together with the fact that p i S' lies on one of the v\, means that the

first possibility is excluded.

We now link this with the previous discussion of Stein-essential Lagrangian sub-

manifolds. E comes with a canonical holomorphic section se which vanishes

precisely on S. From this, the section of Opi (1) which vanishes exactly at {oo}, and the

nowhere zero meromorphic section of Oy(—P) which has a simple pole at P, one

gets a section sp of F which vanishes precisely on Yœ U T U P. For t ^ 0, oo,
choose the isomorphism F\Yt E in such a way that sf gets mapped to se. Then
the restriction of || -1| f to Yt X induces a metric || -1| E,t on E, hence an exhausting
plurisubharmonic function 4>M,t — log \\se \\E,t, which by Lemma 8 makes M into
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a finite type Stein manifold. Note that the associated convex symplectic structure

(coM,t, 0M,t) satisfies 6M,t (dclog \\sF\\F) \ (Yt \ Tt) and coM,t coY\ (Yt \ Tt),
where we are again using the identifications Yt\Tt X\S M.

By Lemma 17 one can find a r > 0 such that for t G (0; r ] c P1, Kt is a linking
torus, and in particular disjoint from S. This yields a smooth family of submanifolds

Kt <Z M which are ft>M,t-Lagrangian. Moreover, the class [9M,t\Kt] is constant in t.
To see this, note that since K itself is <x>y-Lagrangian, the restriction of dc log \\sF \\F

to K n n~l (0; r] is a closed one-form. Its image under the restriction map Hl(K n
n~l{{0; r]); R) -> Hl(Kt; R) is [9M,t\Kt], which is therefore independent of t as

claimed.

Lemma 20. Suppose that Kx, as a Lagrangian submanifold of the Stein manifold
(M, (f>M,r), « not Stein-essential in the sense of Section 3. Then there is a sequence
tk g (0; r] with lim^ tk 0, and a sequence of non-constant holomorphic discs

uk : (B, 3B) -> {Ytk \ Ttk, Ktk) whose areas f u\wY are bounded.

Proof. Suppose that the conclusion is false. Then as t g (0; r] goes to zero, the least

area of non-constant holomorphic discs bounding Kt in (M, comj) must go to infinity.
More precisely, for each E > 0 there is a x' G (0; r] such that every holomorphic
disc (B, 3B) -> {M,Kxi) with f u*coM>x> < E is constant. The manifold M,
with its given complex structure and the family of plurisubharmonic functions 4>M,t,

t G [V; r], is a finite type Stein deformation (see the remark following Lemma 8),
and the Kt,te [r'; r ], are a family of Lagrangian submanifolds such that [Omj I Kt]
is constant. By definition, the existence of such a deformation for each E means that

Kr is Stein-essential, contrary to our assumption.

Slightly more generally, suppose that for some m > 1, the product K™ is not
Stein-essential as a Lagrangian submanifold of Mm equipped with the product Stein
structure (meaning the product complex structure and the plurisubharmonic function
(xi, xm) h^ 4>m,x(x\) + ••• + 4>M,x(xm), which is still of finite type). Then the

same argument as before shows that one can find tk and non-constant holomorphic
discs {u\, ...,uf): (B, 3B) -> ((Ytk \ Ttk)m, K™) with bounded area. After choosing

a non-constant component u^ u£, i^ g {1, m) of each disc, one arrives at

the same conclusion as in the lemma itself.

5. Conclusion

We briefly recall Ramanujam's construction [21]. In P2 take a smooth conic, and

a cubic with a cusp singularity, which intersect each other at two points with
multiplicities 1 and 5 respectively (the intersection points should also be distinct from
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the cusp). Blow up the multiplicity 1 intersection point, and let S\ S" be the proper
transforms of the conic and the cubic, respectively, inside the blowup X =¥\. The

union S S'US" has two singular points, namely the multiplicity 5 intersection point
and the cusp. Take the minimal blowup q : X -> X such that S q~l {S) is a divisor
with normal crossings. The resolution graph describing S is shown in Figure 2. The
fattened vertices correspond to those components which are the proper transforms of
S' (with selfintersection —2) and 5"' (with selfmtersection —3); the other components
are exceptional divisors lying above the cusp (on the left) and the multiplicity 5

intersection point (on the right). Let p e S be the crossing point in the preimage of
the cusp where the proper transform of the cubic intersects the exceptional divisor of
multiplicity 6; this corresponds to the edge indicated by the arrow.

_2

i
-3 -1 ^ -3 -1

Figure 2

Because S is ample, one can find an ample divisor D onX whose support is S.

Set E OX(D), and carry out the construction from the previous section for the

point p; this yields a family of plurisubharmonic functions (f>M,t and «M.t-Lagrangian
tori Kt. Take r as in the discussion before Lemma 20. Equip M with its standard

complex structure Jm, the function <pM 4>m,x which makes it into a finite type
Stein manifold, and the Lagrangian submanifold L Kt.

Let S' c S be the preimage of S', which is its proper transform together with
the exceptional curves arising from blowing up the multiplicity 5 intersection point.
Since S' c X is ample, one can use Kodaira's construction to find an effective
divisor D' with support S'', and a (1, l)-form representing its Poincaré dual, which
is nonnegative everywhere, and positive away from the preimage of the cusp point.
This means that any curve S with S D' < 0 must lie on the preimage of the cusp
point; in particular D' is nef.

Proof of Theorem 1. Assume that Mm has a symplectic embedding i into a sub-

critical Stein manifold N, which we may assume to be complete by Lemma 15.

Since H1(Mm;R) 0, the closed one-form f*6>« - 0m is automatically exact.

By Proposition 14, Lm cannot be Stein-essential. Using Lemma 20 and the
remark following it, one then gets a sequence tu and non-constant holomorphic discs

Uk'. (B, 3B) --* (Ytk \ Ttk, Ktk) with bounded energy. The isomorphism Ytk X
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sends Ttk to S, hence the image of each uk is disjoint from S' c S. The limit of this,
in the sense of Lemma 18, is a finite collection of holomorphic maps v,; : P1 —>¦ X,
which by Lemma 19 are disjoint from S'. Using the observation made above, it
follows that the image of the u; lies in the preimage of the cusp point. In other words,

if y is a neighbourhood of the cusp in X, and V its preimage in X, then for k ^> 0

we have a non-constant holomorphic disc u^ : (B, 3B) -> {V \S,Ktk). Since Ktk is

a linking torus for a crossing point which arose from a cusp, we can apply Lemma 16

to conclude that Uk{SW) is a contractible loop on Ktk. But by Stokes this implies that
the area / u\cùy is zero, which means that uu is constant, hence yields a contradiction.

D

Proof of Corollary 2. Suppose that Mm carries an exhausting plurisubharmonic
Morse function 4>m with just 1 critical point. In view of Lemma 6, we may
assume that 4>m is complete; and it is of finite type by assumption. Lemma 7 then

says that there is a symplectic embedding i : M —* M such that i *§m — 6m is exact,

contradicting Theorem 1.

Appendix

Proof ofLemma 3. This is a straightforward generalization of the case of cotangent bundles,
discussed in [11, Proposition 1.3.A]. Without affecting the validity of the statement, we may
replace 9ff by 9ff 9ff + dK for any compactly supported function K. A suitable choice of
K ensures that ?*% 9m, and then i takes the Liouville flow Im to the modified Liouville
flow In associated to % • By assumption, for any point x e M there is a t > 0 such that

lM'(x) € <pMl((—oo; co]), and on the other hand I'N is defined for all t > 0. Hence

Jt îtN°i°lMt, t>0
is a family of mutually compatible extensions of i to successively larger subsets, which exhaust

M, and they satisfy //% 9m-

Proof ofLemma 4. After a finite decomposition of the interval [0; 1], we may assume that
there are c\ < C2 < ¦ ¦ • converging to +oo, such that d<pM.t(XM.t) > 0 on <t>Mlt(ck) for all

t e [0; 1]. There is a k such that U C 0M1O((—oo; ck]). Let ßt be the Moser vector field defined
by a>M,t(ßt, •) —d9M.t/dt. By choosing r » 0 sufficiently large, one can achieve that

d<l>M.t(ßt ~ rkM,t) + dt<t>M,t < 0 on <t>M\t(ck) for all t e [0; 1]. Hence, integrating fit - rXM.t

yields a smooth family of embeddings it : 0M1O((—oo; ck]) -> <pMlt((—oo; ck]) starting with
i*o id, such that i^mj — e~rt9M.o is an exact one-form. Define jt by composing it\U and

the time rf flow of Xm.t- D

Proof ofLemma 5. Let co be as in the definition of finite type deformations. Gray's Theorem on
the stability of contact structures implies that there is a family of diffeomorphisms of <pM t (co)
which pulls back (the restrictions of) 9mj to 9m.o- Lhis induces a family of diffeomorphisms
which identify the cone-like ends of (M, comj, 9m.i) for different t. Going back from isotopies
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to the generating vector fields, the outcome is that one can find vector fields yt on <j>M1t ([co; oo))
such that Lyt9M,t+dt0M,t Oand[yt, >^M,t]+dt^M,t 0 (the first condition comes from Gray's
argument, and the second one expresses compatibility with the conical structure). Extend these

vector fields to all of M in an arbitrary way, and integrate them to get a family of diffeomorphisms
gt '¦ M -> M such that g*t0u,t ~ @M,o vanishes outside a compact subset. Moser's Lemma then

yields another family of diffeomorphisms ht: M -> M, which is compactly supported and
satisfies h*g*0M,t — &m,o dRt as desired. Set ft gt o ht. D

Proof ofLemma 6. The main statement is taken from [4, Lemma 3.1]. There, the authors

observe that for any h with h! > 0, h" > 0, the modified function <Pm A (0m) is again
plurisubharmonic. Moreover, the Liouville vector field associated to the modified Stein structure
is related to the original one by

with the norm taken in the original Kahler metric. This means that the modified Liouville flow
has the same flow lines as the original one, but moves along them at a slower or equal rate. The
additional condition h" (c) > 8h'(c) for c > cq implies d<pM(^M) < & 1 outside a compact
subset, so that the flow is then complete.

To prove the last statement in the lemma, consider the family of functions <pM,t ht((pM)
withÄf(c) (l — t)c+th(c),0 < t < 1. These also satisfy h't > 0,h" > 0, sotheflowof V<j>M,t

(with respect to its associated Kahler metric) is slower than that of V0m • We are assuming the
second flow is complete, hence so is the first one. Besides that, we are also assuming that <j>m

is of finite type. Hence what we get is a complete finite Stein deformation (M, Jm, 4>M,t), to
which Lemma 5 can be applied. D

Proof ofLemma 1. We imitate the argument from [11, Theorem 1.4. A], with some clarifications.
We will prove the statement first in the case where (f>M grows faster than <Pm by which we mean
that the difference S 4>m ~ 4>M is an exhausting function. Let U^ 5^1((—oo; k)) be the
associated family of exhausting subsets; after changing (f>M by a constant, we may assume that
<5 > 1 everywhere, hence Uk 0 for k < 1. Fix a smooth function I : R —>• R such that l(r) 0

for r < — 1, l(r) r for r > 1, and I"(r) > 0 everywhere. For k 0,1,2,... consider the

functions <j>M,k 4>M + K4>M ~4>M - k). These satisfy <j>M,k 4>M on Uk-\, 4>M,k 4>M - k
on M \ Uk+i, and are plurisubharmonic because

ddc4>M,k (1 - I') ddc(pM + I' ddc4>M + I" d(4>M ~ <Pm) A dc(<pM - <Pm)

with I' l'(4>M -4>M-k) e [0; 1], and I" 1"(4>M - 4>M - k) > 0. Let (â>M,k, &M,k)
be the convex symplectic structure associated to <pM,k- By applying Moser's argument to the
linear deformation between the &th and (k + l)st of these structures, we get a diffeomorphism

fk'. M —?¦ M which is the identity outside Uk+2 \ Uk-\, and such that fk*0M,k ~ @M,k+i is the

derivative of a function Kk supported in Uk+2 \Uk-i- Let i: M —>¦ M be the infinite composition
/o ° /l ° • • • • This is well-defined because for each x e M, one has fk(x) x for all but finitely
many k. The infinite composition is injective and a local diffeomorphism, hence an embedding
(but not necessarily a diffeomorphism; composing the fk

1 in the opposite order makes no

sense). By definition §m,o @M', and for each relatively compact subset U C M there is a k
such that §M,k 6m on U, and fk+\\U fk+i\U • • • idy. It follows that i*à>M o>m,
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and moreover i*§M 0M + dK for K (/i o f2 o • • • )* Ko + Œ ° h ° ¦ ¦ ¦ )* K\ H .the
same argument as before showing that this sum is well-defined.

We now pass to the general situation, where </>m is complete and of finite type but otherwise

arbitrary. One can then find a function h as in Lemma 6 for which h (4>m) grows faster than <j>m,

and moreover this rescaling does not change the (exact) symplectic isomorphism type. One can
then apply the previous argument to <Pm and h((pM), and derive the desired result. D

Proof ofLemma 8. For simplicity, we write || • || || • \\e and s sg. Around a point x e S,

choose local holomorphic coordinates, and a local holomorphic trivialization of our line bundle,
with respect to which s (z) z™1 z™n ¦ Write w w i + • • • + wn. With respect to the trivial
metric || • ||o one has

!«,„(«,-1) Hsu1"1/1",

where > means greater than or equal to some small constant times the right hand side (in spite
of that, we have kept the Wj, because they indicate how the inequality between arithmetic and

geometric mean is applied). One also has |<i||.s|| | + ||,s|| > |<i||.s||ol and ||ä-||o > Hill1^1^1".

After combining the inequalities, one sees that d\\s\\ does not vanish at points z where \\s(z) II is

sufficiently small, hence x does not lie in the closure of the critical point set of <j>m- a
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