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The cone of curves associated to a plane configuration

C. Galindo*and F. Monserrat**

1. Introduction

In the last decades, cones associated to varieties have been a basic tool to approach the

theory ofminimal models. Although this theory works in the case of smooth surfaces

by using Castelnuovo criterion to contract — 1)-curves, the higher dimensional case

is much more difficult. For treating it, there exists a minimal model program, where
Kawamata's Theorem [5] on the cone of curves associated to a variety X plays an

important role. This theorem generalizes a result by Mori [9] and guarantees that the

cone NE(X) is rational polyhedral if the anticanonical bundle of X is ample.

On the other hand, the characteristic cone P(Z/X), introduced by Hironaka, is

considered in [3] to study projective birational morphisms n : Z —>¦ X which are an

isomorphism outside n l(O), for a closed point O G X, where X and Z are normal
algebraic varieties over an algebraically closed field. Set A\{Z/X) the M-vector

space N\{Z/X) ®z R, N\{Z/X) being the commutative group of 1-dimensional

cycles on Z which are mapped to O by n modulo numerical equivalence and R (Z)
the set of real (integer) numbers. Consider NE{Z/X) the (convex) cone in A\{Z/X)
spanned by the cosets of effective curves in Z which are mapped to O by n. Denote

by Al{Z/X) the dual vector space of A\{Z/X) and by P{Z/X) the dual cone of
NE(Z/X).

A topological cell of a cone C is defined to be a cone D such that either it is

equal to C or it is a maximal cone contained in E — interior(£'), where E is some

larger cell of C and interior(£1) denotes the relative interior of E. It is proved in

[6] that a one to one correspondence can be given between sandwiched varieties of
n : Z —* X and topological cells of P(Z/X). The relation between topological cells

of P(Z/X) and of P(Z/X) shows that if the cone NE(Z/X) is polyhedral, then
the set of sandwiched varieties associated to n is finite [1]. Recall that sandwiched
varieties are those normal schemes through which n factorizes by birational projective
maps.

Now, assume that dim X 3. Suppose also that n is given by a constellation of

*Supported by MCyT BMF2001-2251, F. Bancaixa P1-1A2001-03 and by GV048-19.
**Supported by MCyT BMF2001-2251 and by GV048-19.



76 C. Galindo and F. Monserrat CMH

infinitely near points over X, that is, it is given by a configuration of infinitely near
points over the variety X - see the Section 2 for the definition - with a unique point
at X. Denote by 5; the exceptional divisor which appears after blowing-up each

infinitely near point of the constellation and by E; its strict transform in Z. Then, it
can be proved [1] that the number of sandwiched varieties associated to n is finite
provided that every cone NE(Ej) is polyhedral, NE(Ej) being the cone spanned by
the images in A\{Ei) of the cosets in N\{Ei) of effective curves on £,, where N\{Ei)
denotes the commutative group of 1-cycles on E\ modulo numerical equivalence and

Ai(Ei) the M-vector space JVi(£;) ®z R.

This paper follows the above outlined way, started by Campillo and Gonzâlez-

Sprinberg in [1] and recently continued in [2], which consists on studying projective
birational morphisms by means of cones. It motivates the study of the following
problem. Set X P2 the bidimensional projective space over an algebraically closed

field ofcharacteristic zero and K a configuration ofinfinitely near points over X which
gives a projective birational morphism n : Z --* X, usually called a modification of
X. We are interested in the polyhedrality of the cone NE{Z), also called the cone of
curves associated to K. Notice that, in most cases, the anticanonical bundle of the

variety Z is not ample.

There exist other reasons which make interesting the study of the polyhedrality
of NE{Z) as Nikulin says in [10]. Those are that surfaces whose cone of curves is

polyhedral can be considered as Algebraic Geometry analogue of arithmetic groups
generated by reflections in hyperbolic spaces and that it is expected that quantum
cohomology of varieties fibrated by surfaces Z with polyhedral cone of curves have

good applications, since the set of exceptional curves of Z can be considered as the

analogue of a system of simple real roots.

The main goal of this paper is to prove that, roughly speaking, if n corresponds
to a case singular enough, then the cone NE{Z) is polyhedral.

In the course of this paper, we shall prove that NE(Z) is a polyhedral cone if,
and only if, the set of its extremal rays and possibly other ones of NE{Z) with null
self-intersection has no limit points. These limit points (if they exist) are given by
points which are in the intersection between a half-space associated to the canonical
divisor class on Z and the unit sphere in an ambient space of dimension equal to the

cardinality of the configuration K. Moreover, we deduce that the cone of curves of a

configuration of cardinal eight or less is always polyhedral (see [8, Theorem 26.2],
for the case when all the blown-up points are in P2).

To decide the polyhedrality of the cone NE(Z) for configurations of higher
cardinality, we give a geometrical condition in Theorem 1 and an explicit one in Theorem 2.

The statement of the second referred theorem is simple: The cone of curves is
polyhedral whenever xGx1 > 0 for all vector x e R" \ {0} of nonnegative coordinates,
where G is an explicit and easy to compute n-dimensional square matrix, which
depends on the singularity of the configuration (of cardinality n) K. From the study
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of the entries of the matrix G, we can conclude that if the singularity of K is large
enough, measured in terms of proximity chains among the points in K (see Definition

4), then the cone NE{Z) is polyhedral. The condition established in Theorem 2

can be strengthened when the configuration is a chain (Proposition 6) and so, we
can guarantee that the cone NE{Z) is polyhedral only by inspecting the sign of the

entry (n, n) in the matrix G. Notice that this fact provides a wide range of examples
whose associated cone of curves is polyhedral. Finally, we derive a consequence to
ensure polyhedrality in the case when K is the configuration associated to a germ of
analytically irreducible plane curve.

2. Preliminaries

Let X be a smooth variety of dimension d > 2, we shall consider varieties obtained
from X as follows: Take finitely many closed points in X: Q\, Q\, Q\. Blowup

X at Q\ and the obtained variety at Q\ and so on. Denote by B\ (1 < i < r)
the exceptional divisor associated to the blowing-up at Q\. The closed points of B\
(1 < i < r) are called points in the first infinitesimal neighborhood of Q\. Now,

pick finitely many closed points at each divisor B\ and blow-up the last obtained

variety at each new point. We can iterate this method finitely many times. For j > 0,
define inductively the points in the j'th infinitesimal neighborhood of Q\ as the points
in the first infinitesimal neighborhood of some point in its (j — l)th infinitesimal
neighborhood. The points Q which are in the j'th infinitesimal neighborhood of
some point P appearing in the above described process for some j > 0 are also

called infinitely near points to P (this will be denoted P < Q). A family of closed

points as we have described is called to be a configuration K (of infinitely near points
over X) and the obtained variety after the last blowing-up will be called the sky of the

configuration and usually denoted by Z. Notice that the relation < is a strict partial
ordering in K. The points Q\ will be said points of level 0, those at B\ of level 1

and so on. Due to the local character of the blowing-up, we do not need to take into
account the order in which the points are blown-up.

We usually denote a configuration by K {Qi, Q2, ¦ ¦ ¦, Qn}, bearing in mind
that if Qt < Qj then i < j. K provides a finite sequence of point blowing-ups,
called a modification of X:

Z Xn+\ —> Xn —> ¦ ¦ ¦ —> X2 —> X\ X,

Jti being the blowing-up at Qi. Clearly, apoint Qj is infinitely near to Qi ifnij(Qj)
Qi, where ntj is the composition of the maps associated to n, nij: Xj --* X\.
Furthermore, denote by 5; the exceptional divisor that we get after blowing-up X\ at

Qi and by E; (resp., Ef) the strict (resp., total) transform of 5, in Z. We shall say
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that Qj is proximate to ß; (denoted by j --* i or Qj --* Q\) whenever Qj belongs
to the strict transform of 5; in the variety which contains Qj.

Set E ®i<i<nZEi, the group of divisors of Z with exceptional support. It is

no difficult to see that E\ E* — J2j^i E*;- As a consequence, the set {E*}i<i<n
is also a basis of E and the matrix relative to the bases {Et} and {E*}, called the

proximity matrix of the configuration K, is given by (Pij)i<ij<n, where pn 1,

Pij — 1 when i --* j and pij 0, otherwise.
We can associate to each point of a configuration K a nonnegative integer, called

its weight or its virtual multiplicity, giving rise to a weighted configuration. Note that

weighted configurations are usually called clusters.

Assume that d 2, X (K, {vqJqçk) is a weighted configuration and C a

curve on X. Then we can define the virtual transform of C on X\ relative to X as

i-i

whenever 2 < i < n, Cf~ C. The virtual multiplicity of C at Q\ relative to X is

defined to be the multiplicity of Cf~ at Q;. We shall say that the curve goes virtually
(resp., effectively) through the weighted configuration X when the virtual transform
of C on Z is an effective divisor (resp., it coincides with its strict transform on Z).
We usually say that C goes through X when it goes virtually through X.

3. Polyhedrality of the cone of curves

As we have mentioned in the introduction, set X P2 := ¥2F, where F is an

algebraically closed field of characteristic zero. Consider a configuration K
loi» Ô2, • • •, Qn} of infinitely near points of X and the associated modification
n : Z —* X. Denote by N\(Z) the commutative group Pic(Z)/ where denotes

numerical equivalence and set A\ (Z) JVi (Z) <g>zR. Notice that, in our case, JVi (Z)
is isomorphic to the group of 1 cycles on Z modulo numerical equivalence and that

on it, we can consider the intersection form which gives on A\(Z) a bilinear form
also denoted by "•".

Definition 1. We shall define the cone of curves associated to a configuration of
infinitely near points of X, K, denoted by NE(Z), as the convex cone of A\(Z)
spanned by the images in A\{Z) of the cosets in N\{Z) of effective curves on Z
modulo numerical equivalence.

Throughout this paper, the numerical equivalence coset in N\{Z) of a divisor
D on Z will be denoted by [D] and by an abuse of notation, we usually identify
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an element in Pic(Z) with its numerical equivalence coset, and also elements (and
their intersection form) in JVi (Z) with their natural image (and their bilinear form)
in Ai(Z).

Next, we supply two bases of the M-vector space A\(Z), which we shall use to
handle NE(Z). Let L be a projective line on X and let L (resp. L*) be its strict (resp.

total) transform on Z. Then, it is not difficult to show that B := {[L], [Ei], [En]}
and B* := {[L*], [E*], [E*]} are bases of N\{Z) as Z-module and, therefore,

they are bases of A\ (Z) as M-vector space.
We are interested in the polyhedrality of the cone NE(Z). First at all, we study its

extremal rays. In what follows, we shall denote by K either the canonical divisor class

associated to the variety Z or, by an abuse of notation, its coset modulo numerical
equivalence (or, even, its image in A\{Z)). Moreover, we say that an element in

N\(Z) generates a ray of NE(Z) when its image in A\(Z) does so. The following
result is an easy consequence of the Riemann-Roch Theorem.

Proposition 1. Let [D] be the coset in N\(Z) of an integral curve D on Z that

generates an extremal ray of the cone NE(Z). Then:

i) The intersection number D ¦ D D2 satisnes D2 < 0.

ii) It holds that either D2 <: 0 or K ¦ [D] > 0, whenever D is the strict transform
on Z of an integral curve C on X and some point in K does not belong to the strict
transform ofC on the variety X\ containing it.

Remark. An interesting, but obvious, fact is that if A is an effective curve on Z, then
there exists finitely many integral curves C on Z such that A ¦ C < 0.

Next, we state some straightforward consequences of the above remark:

Remark. Let C be an integral curve on Z such that C2 < 0. Then:

i) C is the unique integral curve on Z whose coset in JVi (Z) generates the ray that
it does.

ii) If, in addition, D is an integral curve on Z different from C, then the inequality
C ¦ D > 0 holds.

iii) [C] generates an extremal ray of the cone NE(Z).
Furthermore, if z is an extremal ray of the closure of NE{Z), NE{Z), such that

z2 < 0, then z must also be an extremal ray ofNE(Z).

The family F {[£f]}"=1 is a linearly independent set of the Z-module N\(Z).
So, each [Ei] gives rise to an extremal ray of the cone NE{Z) because if [£,] were
equal to a linear combination (with nonnegative coefficients) of cosets of irreducible
curves on Z, this combination would involve only elements in 3r.

Since Kawamata's Cone Theorem (see [5]) asserts that the set of extremal rays
of the cone NE(Z) in the region given by K ¦ z < 0 is discrete, we are interested
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in studying the region ofNE(Z) given by K ¦ z > 0. It is straightforward, from the

remark after Proposition 1, that if there is a curve of degree 3/ which goes (virtually)
through the configuration K with multiplicities equal to /, then there are finitely many
images of irreducible curves of Z in the region given by K ¦ z > 0.

From now on, fix an ample divisor H on Z and assume that n > 2 (note that when

n 1, the cone NE(Z) is polyhedral). For any divisor D on Z, set 0(1) := {z €

A\ (Z) | [D] z l} and consider the function

4>D: IzeAi(Z) | [D] ¦ z > 0} -
which maps z to the intersection point between the hyperplane 0(1) and the line

joining 0 and z. Finally, denote by NE(Z)y the set NE(Z) n 7, whenever 7 be a

subset of Ai(Z).
The following definition gives three sets which will be broadly used along this

paper.

Definition 2. We shall denote by 3i (31, resp.) the set of extremal rays of NE(Z)
(NE(Z), resp.). Also set

3t0 := {R e 3Ï \r2 0 for all r G R}.

Remark. Since NE(Z) is a subset of M.n+l, we can identify each ray oîNE{Z) to

a point in the unit sphere Sn in IR"+1. A limit point of 31, 31 or 3lo will be the ray
generated by a limit point (in Sn) of the set of points in Sn that generate rays of the

above cited sets. As a consequence of the compactness of Sn, whichever of the sets

31, 31 and 3lo has a no limit point if, and only if, it is finite.

The following result relates the topology of extremal rays to the polyhedrality of
the cone NE(Z).

Proposition 2. NE(Z) is a polyhedral cone if, and only if, the sets 31 and 3lo are
unite. Furthermore, if this is the case, then 31q is empty.

Proof. It suffices to assume that 31 and 3lo are finite. Associated to the ample divisor
H, we consider the nonnegative half-cone

V {z G Ai(Z) | [H] ¦ z > 0 and z2 > 0},

which is contained in NE(Z) (see [4],V.l.8). By Kleiman ampleness criterion NE(Z)
is a strongly convex cone and, thus, a system of representatives which generate the

rays in 3i constitutes a minimal set ofgenerators ofNE(Z). NE(Z) is spanned by the

elements of V and the rays in 31, and therefore 3Ï <^ MUV. However, MnV 3io

because those elements that generate rays in 3i have nonpositive self-intersection.
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Hence, above representatives in 31 form a finite minimal system of generators of
NE(Z).

Finally, by Hodge Index Theorem, y is a half-cone over an Euclidean ball of
dimension n, which is strictly convex. Therefore, r2 < 0 for all generators r of
elements of 31, since y is a subset of NE{Z). Then, 31 ç 31 and NE{Z) is a

polyhedral cone.

As we have seen, limit points of rays in 31 and 3lo help to decide whether the

cone of curves is polyhedral. Therefore we shall give two conditions which must be

satisfied by the generators of these limit points. Set Z+ the positive integers.

Proposition 3. Let r e A\(Z) be an element which generates a limit point R of
whichever of the sets 31 or 31q. Then r2 0 and K ¦ r > 0.

Proof. The inequality K ¦ r > 0 follows from the Kawamata's Cone Theorem, since

there is no generator of a limit point of the sets 31 or 3lo in the region of A \{Z) given
by the inequality K ¦ z < 0.

It only remains to prove that r2 0 when R is a limit point of rays in 31. Let
{Q}/eZ+ be a sequence of integral curves in P2, such that the cosets in N\ (Z) of their

strict transforms on Z, [Q], are distinct and whose corresponding rays belong to 3i
and converge to R. Taking coordinates of the [Q]'s in the basis B*, we obtain the

sequence

\[Q] {du -e/,i, -e/,2, •••, -e/,n) •

After normalizing by the first coordinate, we obtain that the ray r will be given by
the direction (l, - lim/^oo ^-, ...,- lim/^oo ejf).

Now, since for each fixed degree there are finitely many classes in N\{Z) of strict
transforms of integral curves in P2, it is clear that the sequence {di}^ diverges.

Finally, the adjunction formula for the strict transforms of the curves C; proves that

Dividing by df and taking the limit at the infinite, we conclude r2 > 0. Since

Proposition 1 proves that [C/]2 < 0, it is clear that r2 0.

Remark. With notations as in the above proof, it is clear that the coordinates

(e/,i. e/,2» • • •, e/,n) are the effective multiplicities at the points of the configuration
K of the curves Q and so, they satisfy the proximity inequalities e/,, > X/-s.i ehb
i 1,2,...,« (see [7]). Dividing by d\, taking limit at the infinite and setting

r\ lim/^oo ^j-, we get that the r,'s also satisfy the proximity inequalities, that is
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Our next result concerns the case when the cardinality of the configuration is

small.

Corollary 1. Assume that the cardinality of a conoguration K which deones the

modification n : Z —>¦ X is n < 9.

\)lfn < 8, thenNE(Z) is polyhedral.

ii) If n 9, then either NE(Z) is polyhedral or there is a unique limit point of
extremal rays ofNE(Z) which is given by —K, K being the canonical divisor class

on the variety Z. Furthermore, if K has, at least, two points proximate to another
third one in K, then the cone NE{Z) is polyhedral.

Proof. Set B := {z e NE(Z) \ {0} | z2 0}. i) is a consequence of Propositions 2

and 3 and the fact that, in this case, B is contained in the half-space of A\ (Z) given
by K ¦ z < 0 (see the proof of Lemma 1 in [1]).

To prove ii), assume that NE(Z) is not a polyhedral cone. Taking into account that

ßcj^e A\ (Z) | [L*] ¦ z > 0}, we can consider the image of B by 4>l* and so 3ïq

has, at most, one point. This follows from Kawamata's Cone Theorem and the fact
that, in M9, the hyperplane Xj=i xi 3 is tangent to the sphere Yll=i xf 1 at that

point with all its coordinates equal to 1/3. We finish the proof of the first statement

by observing that Propositions 2 and 3 show that 31 has a unique limit point given by
the anticanonical divisor.

Finally, if K has two, or more, points proximate to another third one in K, then
the cone NE(Z) is polyhedral since, otherwise, the coordinates of the unique limit
point of 31 must satisfy the proximity inequalities, which is false.

For any subset S ç A\(Z), Co(S) stands for the convex cone generated by S.

The following result gives another condition for the cone NE{Z) to be polyhedral.

Theorem 1. The cone NE(Z) is polyhedral if the following condition

[z e NE(Z) | K ¦ z > 0} n {z e NE(Z) \ z2 0} \ {0}

ç (J {zeAi(Z)|a-z<0}
aeNE(Z)

holds.

Proof. Proposition 3 and the remark after Proposition 1 show that the set 3i has no
limit points. We only need to prove that the set 31q given at Definition 2 has no limit
points.

Suppose that 3ïq has a limit point and look for a contradiction. Let r be a generator
of this limit point. It is clear, by Proposition 3, that K r > 0 and, from the hypothesis,
[A] ¦ r < 0 for some coset [A] of an effective divisor A on Z.
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Let [A] < 0 ([A] > 0, resp.) denote the half-space of A\ (Z) given by [A] ¦ z < 0

([A] ¦ z > 0, resp.)- Let T be the set of cosets of integral curves in [A] < 0. T is

finite by the above mentioned remark.

NE(Z) ç Co(T UMs(Z)[A]>o), because T contains the images in Ai(Z) of the

integral curves in the half-space [A] < 0 and NE{Z\a\>o contains the remaining
generators. However, Co(T U NE{Z)[ä\>o) is a closed convex cone (it is generated

by a compact set on the hyperplane H (I)). Then, NE{Z) Co(T U NE(Z)[a]>o).
This implies that the extremal rays of NE(Z) in the half-space [A] < 0 must be

generated by elements of T and so we are led to a contradiction to the existence

ofr.

Remark. Next, we state an equivalent condition to that given in the above theorem.

It uses the so-called nefcone associated to Z, P(Z). This is the dual cone ofNE(Z)
with respect to the bilinear form induced by intersection theory. The condition is the

following

P(Z) n {z € Ai(Z) | z2 0} \ {0} ç {z € Ai(Z) | K ¦ z < 0},

and the equivalence to the condition in Theorem 1 is an straightforward consequence
of the above mentioned fact that the half-cone V given in Proposition 2 is a subset of
NE(Z).

Corollary 2. The cone NE(Z) associated to a conoguration which contains only
points on the strict transforms ofa conic is polyhedral.

Proof. It suffices to apply Theorem 1 after considering the coset associated with the

divisor of the strict transform of the given conic on Z.

The next result gives a numerical condition for ensuring that NE{Z) is polyhedral.
The proof only considers the virtual transform on Z of a curve C on X relative to a

weighted configuration X and it uses Lagrange multipliers.

Corollary 3. Assume that the cardinality of a configuration K is n larger than 9,

and that a curve C on P2 of degree d goes through a weighted conoguration X
(K, {vQt := Vf}), such that not all the v, 's are equal. Demie

¦ ri -ilö/:=3^2, j G {1,2},
d £f=i v' + nd2ßj

where \.ij (j I, 2) are the roots of the quadratic equation

n n n j
2(9 n)nx2d2(9 - n)nx2 +2d(9 - n)J2

j=i f=i f=i
Then NE(Z) is polyhedral, whenever mm{6\, 62} > L



84 C. Galindo and F. Monserrat CMH

Example. Let us take homogeneous coordinates (X, Y, Z) on P2, the point
O (0, 0, 1) and the standard affine chart of A2 given by Z ^ 0. We write
x X/Z, y Y/Z and consider a configuration K of ten points such that each

of these points belongs to the last created divisor and it contains the base points of
the ideal (x4, y)0^,2O. The quartic Y4 0 goes virtually through the weighted
configuration (K, {2, 2, 2, 2, 2, 2, 1, 1, 1, 1}). Applying Corollary 3, we obtain that
the cone of curves associated to K is polyhedral, since min{<5i, $2} — 1.07 > 1.

We desire to give conditions easier to apply which guarantee that the cone of
curves associated to a plane configuration NE{Z) is polyhedral. To this purpose, we
consider the image of P(Z)n{z £ A\(Z) \ z2 0} \{0} by certain map with values

in R" and an explicit cone on R" that contains it. This fact, jointly the inclusion given
in the remark under Theorem 1, will provide the condition asked for.

Let G be a hyperplane in R" defined by the equation g{x) 0, x g R", we shall
stand G+ for the half-space in R" given by g(x) > 0.

Definition 3. Let K {Q\, Ô2, • • •, Qn} and n be as above. The convex cone in
R" given by the intersection of the half-spaces p|r=i H?> where Ht {x e R" |

x\ — ^2j^i xj 0}, x (xi, X2, ¦ ¦ ¦, xn), is called proximity cone associated to K,
PC(Z).

Next,weobtainexplicitlytheextremalraysofPC(Z). Denote/« := {1,2,..., n}.

Proposition 4. The extremal rays of the proximity cone PC(Z) associated to a
modification it : Z —>¦ X given by a configuration K are generated by the vectors

ek (e\k, e2k, ¦ ¦ ¦, ßnk) (1 < k < n) such that e\k 0, whenever i > k, en 1 and

eik Hj\k->j-j>i eU (/¦« < k' ». h k e /„.

Proof. For each k e /„, denote by L^ the line on R", L^ p| -,k Hj. It is clear that
the extremal rays of the cone PC(Z) are generated by vectors with positive coordinates
determined by the lines Lk. Consider the {n — 1) x n matrices Ak (a?/) where
i G In \ {k} and j G /„, given by an 1, a\j — 1 when j --* i and a\j 0

otherwise. Lk is the solution of the linear system of equations

Akx< 0, (1)

x (xi, X2, xn) being a variable vector in R". Set A^ the submatrix of Ak

gotten by deleting the Ml column ak in Ak. Denote by bk the column vector obtained

by deleting the Ml coordinate to the vector — ak. Thus, the linear system of equations
(1) can be written

Af(xf)'=x^, (2)

where x£ is the variable vector in Wl~l obtained after deleting to x the M coordinate.

Clearly A^ is a regular matrix. Set (A^)~l (sij)ijein\{k}, then the linear system
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of equations (2) can be expressed (x^)' xic[(A®)~lbk]. Whence the vector x is a

solution of (1) if and only if for i e /„ \ {k}, x; J2j\k^j sij)xk- Therefore, the

equalities eik ^2j\k^j sij if ^ 7^ k and e\± 1 give the coordinates of a generator
of the extremal ray relative to Lu.

It is clear that e^ 0 whenever i > k. On the other hand, it is straightforward
that the entries of the matrix {A^)~l satisfy the following relations: su l,sij 0

iff > j, and stj J2i\j->isn otherwise. So, for i < k, eik J2j\k-*js'J
12j\k^j 12i\j^i sn- Since the last sum of the righthand of the second equality equals

eij and e\-} 0, whenever j < i, we conclude the proof.

The above given generators of the extremal rays of PC(Z) will be useful to know
when NE{Z) is polyhedral. Therefore, we give an easy way of computing the data

e\j which depends on a concept given in the following

Definition 4. Let K be a configuration and P and R points in K such that P < R.

A proximity chain from R until P is a finite sequence of points in K, {Pî}\=0 such

that

R P -+ Pi-! -+ ¦ ¦ • -? Po P.

To understand easily the meaning of each coordinate eik of the vector ek, we can
consider the chain of points in the configuration K of the form

Qi PQ<P1<...<Pl Qk. (3)

It is clear that the number ofproximity chains in K from Qk until Q\ can be computed
as the sum of the number of proximity chains until Q\ from those points P in the

chain such that Qk --* P. Then, proceeding by induction on the length / of the chain

(3) and taking into account the formula for e^ given in Proposition 4, we can state

the following

Proposition 5. Let K {Qi, Q2, ¦ ¦ ¦, Qn} be aconoguration. Then, the coordinate

eik of the generator ek of an extremal ray of the proximity cone PC(Z) counts the

number ofproximity chains in K from Qk until Qi.

Finally, we state our announced result which gives a condition for the cone NE{Z)
to be polyhedral.

Theorem 2. Let K be a configuration ofinnnitely near points over X, which gives a
modiocation n : Z —* X. Let G (gis) be the n x n matrix deonedby

1=1 1=1
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where e^ (e^, e^k, • • •, enk) (1 < k < n) are the coordinate vectors that span the

extremal rays of the cone PC(Z) given in Proposition 4. Then, the cone NE(Z) is

polyhedral ifxGx1 > Ofor all vector iel"\ {0}, such that all its coordinates are
nonnegative.

Proof. Consider the sets Uo {z £ A\(Z) | [L*] ¦ z > 0} and

Y {z e Ai(Z) | [Ei] ¦ z > 0, 1 < i < n},

the homeomorphism h : L*(l) —>¦ IR", given by (1, x\, xn) \-> (—x\, —xn),
and the composition map yu. h o <fiL*, where 4>l* is the function defined after

Proposition 1.

Then, it is clear that Y n Uo contains P(Z) \ {0} and /j.(Y n Uo) PC(Z) (the

proximity cone associated to the configuration AT). As a consequence, the following
inclusion

m (P(Z) n {z € Ai(Z) U2 0} \ {0}) ç pc(Z) n 5""1

holds, Sn~l being the unit sphere in R". The complement in R" of the set /x({z G

Ai(Z) | /T ¦ z < 0} n £/<,) is the set K+ {{xu xn) e R" | E"=i x' > 3}- So'

applying the condition given in the remark under Theorem 1, it suffices to check that
the set PC(Z) n Sn~x n ^T+ is empty to prove that the cone NE(Z) is polyhedral.

Now, each vector a (af)"=1 in R" of nonnegative coordinates provides an

element in PC(Z), Ylt=i akßk, denoted by ra. So, the elements in Sn~l n PC(Z) are

of the form ra / || ra ||, where || ¦ || denotes the norm || ¦ ||2 in R". Then NE(Z) is

polyhedral if
n

ra/\\ra ||e jx€Mn|^xf<3J, (4)

for all a e R" \ {0} of nonnegative coordinates. To end the proof, we shall show that
the hypothesis of the theorem guarantees the property (4). In fact, G is a symmetric
matrix and it defines a quadratic form g which can be expressed by

eikXk)
1=1 k=\ i,k=\

g(x) xGx1 9 J2 J2 eikXk) ~ Y. eikXk)
1 k k

and the condition g{a) > 0 for all vector a/0 of nonnegative coordinates proves
(4) by taking positive square root, which concludes the proof.

Example. In Figure 1, we depict the proximity graph of a configuration K that
satisfies Theorem 2 (see the matrix G below) and so its associated cone NE(Z) is

polyhedral. The vertices of the graph represent the points oîK. Edges join proximate
points. An edge joining P and R (P > R) is a continuous straight line whenever P
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09

Oil

Ô10

04

03

02

01

Figure 1. The proximity graph of K

is in the first infinitesimal neighborhood of R, otherwise it is a dotted curved line.

/ 8 7 14 13 12 11 10 9 9 12 11 \
7 14 19 17 15 13 11 9 9 15 13

G

14 19 38 34 30 26 22 18 18 30 26
28
21

14

7

13 17 34 38 33 28 23 18 18 33

12 15 30 33 36 30 24 18 18 27
11 13 26 28 30 32 25 18 18 21

10 11 22 23 24 25 26 18 18 15

18 18 18 18 18 18

18 18 18 18

12 15 30 33 27 21

18

15

11 13 26 28 21 14 7

9

18

9 36 30
0 30 32

Remark. Theorem 2 gives a condition, depending on proximity, that ensures the

polyhedrality of the cone of curves associated with a configuration K, and this also

happens when the cardinality of K is smaller than 9. So, it would be interesting
to give an answer, improving that of Theorem 2, to the following question: Given

r < 8 and proximity graphs Fi, F2, Fr of local configurations, when is it true that

NE{Z) is polyhedral for any configuration K with points of level 0, P\, P^, Pr
and proximity graphs Fi, F2,..., Fr respectively at Pi, P2, ¦ ¦ ¦, -Pr?
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Next, we shall assume that the configuration K is a chain conoguration, that

is, each point Qt in K belongs to the divisor created after blowing-up ßf-i for all
indices i. In this case, we shall show that Theorem 2 provides an easy condition
to decide whether the cone NE(Z) is polyhedral. Firstly, we state two supporting
results. The first one does not need the configuration to be a chain.

Lemma 1. With notations as in Theorem 2, the elements of the matrix G (gis) are
related by the following equalities,

is £ gJs+9eis ~ X
Proof. If follows from the following chain of equalities

/-I /-I n

(=1 1=1 1=1

/-I /-I n

£
where the second equality holds by applying Proposition 4 and the last one is true
since I —>¦ j implies j < I.

Lemma 2. Let K be a chain configuration and G (gis) the matrix associated to

K given in Theorem 2. If gnn > 0, then all the entries of the matrix G are positive.

Proof. We shall reason by contradiction. For each index s (1 < s < n), define

As {i G {1, n} | gis < 0} and assume that As j^ 0 for some fixed index s.

Consider z'o the minimum element in A^. In the proof, we shall use the following
two properties which are easily deduced from the formula that Lemma 1 gives for the

element g-loS (which, we know that it is not positive).

• Property 1. If the point Q-l0 is proximate to Qk then,

gks
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• Property 2. 9e-]S - YTi=\ eis < 0 f°r all i > *o-

Notice that Property 2 holds since it is true for j fo by Lemma 1 and moreover

ejs < eis if j > i.
Now, we shall prove that gjs < 0 for all j > fo- It shows that gni. < 0 and this

will conclude the proof since if s n we are led to a contradiction and otherwise

gj„ < 0 because G is a symmetric matrix and thus the same procedure for n instead

s proves gnn < 0 which is a contradiction.
We can assume that fo < « and, for proving the above inequalities, we shall

use the following inductive procedure: First, we shall prove the basic step, that is

8io+i,s < 0, and after the inductive step, where we shall show si+i,s < 0 whenever

81,s < 0 for all positive integer j such that fo + 1 < j < I.

To do the basic step, we distinguish two cases: Case 1 which occurs when there
exists an index k (1 < k < fo < n) such that the point Qio+\ is proximate to Qk (and

obviously, Q;o is also proximate to Qk) and the complementary of Case 1, which we
shall refer as Case 2.

In Case 1 we get,

n n

gio+hs Sks + gios + 9e?0+i,i- - ^ eu < gks + gÎQS + 9ei(hS - ^ e\s < 0.

And in Case 2,

In both cases the equality is given by Lemma 1. In Case 1, the first inequality holds
since K is a chain configuration. Finally, the fact g;oS < 0 and the above given
Property 1 (resp., 2) for the Case 1 (resp., 2) conclude the proof of the basic step.

Finally, we show the inductive step. Suppose gjs < 0 for io < j <l < n, we
shall see that gi+i,s < 0. Here, we need to distinguish three cases:

i) There exists an index k (1 < k < fo < n) such that the point Ô/+1 is proximate
to Qk (in such case the point Q-l0 is also proximate to Qk). Then,

gl+ltS gks + gis + 9e/+i,i- - ^2 eis < gis + gks + 9eioS - ^ eis < 0.

i=l f=i

ii) There exists an index k (1 < fo < k < /) such that the point Qi+\ is proximate
to Qk. Then,

8l+l,s gks + gh + 9e/+i,i- - ^ e-ls < 0.
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iii) The point Qi+x is only proximate to Q\. Then,

gl+l)S gis + 9ei+hs - 2_^ eis < 0.

This ends the proof by noticing that we have applied Lemma 1 in all cases,
Property 1 in case i) and Property 2 in cases ii) and iii), and the inductive hypothesis
in all cases which asserts that gis < 0 in cases i) and iii), and that gus < 0 and gis < 0

in case ii).

We have obtained an interesting consequence for the associated matrix to chain

configurations K: The condition xGx1 > 0 for all vector x e R" \ {0}, with non-
negative coordinates, is equivalent to the fact gnn > 0. Thus, we have proved the

following

Proposition 6. Let K be a chain conoguration whose associated date gnn given in
Theorem 2 is strictly positive. Then, the cone of curves NE(Z) relative to K is

polyhedral.

Finally, we state some consequences of Proposition 6, which allow to conclude
that the statement on this proposition is not trivial.

Corollary 4. Let K {Q\, Qn} be a chain conoguration and let B be a germ
ofanalytically irreducible plane curve which goes through the points in K with effective

multiplicities m\, ,mn satisfying the proximity equalities and 9 YTi=x m^ ~
(XT=i m') > 0- Then, the cone ofcurves associated to K is polyhedral.

Proof. It follows from the fact that the vector of effective multiplicities of B is a

multiple of the vector en in Theorem 2, because it determines the only direction
satisfying the proximity equalities. So, the condition given in the statement of the

corollary on the multiplicities m, implies gnn > 0 and the result.

Corollary 5. Let O be a closed point o/P2, {x,y} local coordinates at O and
K {<2i O, 02, • • • » on} the chain conoguration corresponding to the minimal

embedded resolution of an analytically irreducible germ of plane curve at O

with a unique characteristic pair (ßo, ß\). Then, the cone of curves associated to
the conoguration K is polyhedral if the pair (ßo, ß\) satisoes one of the following
conditions:

(1) ßi 1 (mod ßo), ßo < 8 andßx < 8^0.

(2) ßi 1 (mod ßo), ßo>9 and ßi < 7ß0.

(3) ßx £ 1 (mod ßo) andßx < 1 + |ä, + Ü4ß0 + 5ß%.
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k\ times ^2 times ks times

Proof. Let {w\, w\, W2, ¦ ¦ ¦, u>2, ¦ ¦ ¦, ws, ws) be the sequence of multiplicities

of the germ at the points of the configuration K. Then,

W2 ßi-\j-\ßo, «,, i, (5)

where |_-J means the floor (or the integer part) function, and clearly one gets the

following recurrence relations:

ws-i ks, w; kf+iWi+i + Wf+2 (1 < i < s - 2). (6)

By Corollary 4, for the cone of curves associated to K to be polyhedral, we only need

to check when
S S 2

(=1 1=1

To do it, we distinguish two cases:

i) ßi 1 (mod ßo). Here, s 2, ki ßo and, then, the condition (7) is

equivalent to the following one:

which is true if, and only if, ßo and ß\ satisfy the formulae in 1 or 2 of the statement.

ii) ß\ ^ 1 (mod ßo). By using the conditions (6), one gets that (7) is equivalent
to the following inequality:

9{w\W2 + k\w\) — {w\ + u)2 + k\W\ — 1) > 0,

and by means of the equalities (5), this inequality is true if, and only if,

which happens only when the formula in 3 of the statement holds.

Corollary 6. Let K {Q\, Qn} a chain configuration whose proximity graph
is that of the following ugure with g > 1 dotted curved lines (its Dynkin diagram has

g stars). Then, the cone of curves associated to K is polyhedral.

Proof. It follows from Proposition 6 since the vector (e\n, enn) corresponding
to this configuration is (2g, 2g~l ,2g~l, 2, 2, 1, 1), where g (n - l)/2. D
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Figure 2. Proximity graph of Corollary 6
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