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Tangent bundle embeddings of manifolds in Euclidean space

Mohammad Ghomi*

Abstract. For a given «-dimensional manifold M" we study the problem of finding the smallest

integer N(Mn) such that M" admits a smooth embedding in the Euclidean space RN without
intersecting tangent spaces. We use the Poincaré-Hopf index theorem to prove that N(E>1) 4,
and construct explicit examples to show that N(S") < 3« + 3, where §" denotes the «-sphere.
Finally, for any closed manifold M", we show that 2« + 1 < N(M") < 4« + 1.

Mathematics Subject Classification (2000). 53A07, 57R40.

Keywords. Submanifold, embedding, tangent bundle, tangent developable, skew loop, totally
skew submanifold, T-embedding.

1. Introduction

Every C1-immersion /: Mn —>¦ M.N, where Mn is an n-manifold and M.N is the

Euclidean Af-space, induces a mapping of the tangent bundle TM via the differential

map df : TM --* IRW. We say that / is a tangent bundle embedding, or a T-embedding
for short, provided that df is one-to-one. In other words, a submanifold of Euclidean

space is T-embedded provided that it has no pairs of intersecting tangent spaces. The

aim of this note is to begin the study of and call attention to the following basic

question:

Problem 1.1. For a given manifold Mn, what is the smallest integer N{Mn) such

that Mn admits a T-embedding in MN1

The above problem may be regarded as a generalization of the investigations
conducted in the 1940's by H. Whitney [12], culminating in his celebrated theorem
that every n -manifold may be embedded in IR2". The prime stimulus for this work,
however, is due to the recent renewed interest in studying global geometry of tangent

*The research of the author was supported in part by NSF Grant DMS-0204190 and CAREER award DMS-
0332333.
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lines of closed curves and knots ([1], [2], [4], [11], [13]), see Note 1.8. Our first result
shows that the circle S1 admits no T-embedding in IR3.

Theorem 1.2. Every closed C1 -immersed curve in R3 has uncountably many pairs
of intersecting tangent lines.

The proof of Theorem 1.2, which we present in Section 2, follows from the

Poincaré-Hopf index theorem (Proposition 2.3) together with a perturbation argument
for bitangent planes (Proposition 2.4). The remaining results of this paper, which are

proved in Section 3, are concerned mainly with some explicit constructions of T-

embeddings:

Theorem 1.3. Every torus T" admits a smooth T-embedding in M.4n given by

D 1 B Ul, Zn) > Ul, Z\, ¦ ¦ ¦ Zn, Zn) & <L

In particular, there exists a T-embedded closed curve in M4.

Where C" denotes the complex n-space. The previous two theorems solve Problem

1.1 for the case Mn S1:

Corollary 1.4. ^(S1) 4. D

Another class of T-embeddings may be constructed using cubic curves, and

exploiting the fact (Proposition 3.2) that T-embeddings are preserved under cartesian

product:

Theorem 1.5. Let f : Mn -? M.N be any C1-embedding, and fi, i 1,..., N be

the components of f. Then

Mbp^ (hip), flip), flip), fNi;p), f2Nip), flip)) € R3N

is a T-embedding. In particular, N(m.n) < 3n and N(Sn) < 3n + 3.

Since every planar curve has intersecting tangents, the above theorem immediately

yields that NQS}) 3. Further, note that the above result, via Whitney's
2n-embedding theorem [12], implies that any n -manifold admits a T-embedding
in M.6n. Working a bit harder, via successive projections into subspaces of lower
dimension, we obtain:

Corollary 1.6. NiMn) < An + 1, for any manifold Mn.
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Using Thorn's trans vers ality theorem, it can be shown that the above result is in
fact a generic property [5]. That is, any immersion of Mn in IR4n+1 can be turned
into a T-embedding by an arbitrarily small perturbation. In Section 3, we also obtain
a lower bound:

Theorem 1.7. N(Mn) > In + 1, for any non-contractible manifold Mn.

Note that since dim(TM") In, we trivially have N(Mn) > In for all manifolds.
The last theorem improves this lower bound for manifolds whose homotopy type
is different from that of a point. In particular, when Mn is a compact manifold
without boundary, N(Mn) > 2n + 1. However, the author does not know if the non-
contractibility assumption in Theorem 1.7 is necessary. More generally, the author
does not know if the estimates in the last two results can be improved. But it would
be reasonable to conjecture that N{Mn) < An.

Note 1.8 (Terminology and some history). The class of mappings we study in this

paper, the T-embeddings, are not to be confused with skew immersions, or S-immersions

([1], [2], [4], [11], [13], [8]), which are defined as immersions without any pairs of
parallel tangent lines. The first proof of the existence of an S-embedding of a circle,
or skew loop, in R3 is due to B. Segre [8]. For an explicit formula for such a curve
see [2]; there skew loops where used to solve Wente's shadow problem which is
related to stability questions concerning surfaces of constant mean curvature [3]. Skew

loops are also of interest due to their connection with quadric surfaces: the author
and B. Solomon [4] showed that the absence of skew loops characterizes ellipsoids,
and S. Tabachnikov [11] has ruled out the existence of skew loops on any quadric
surface.

One may also introduce a notion of totally skew embedding, or TS-embedding [5],
which is defined as an embedding which is both a T-embedding and an S-embedding;
an example is the cubic curve x i—> (x,x2,x3), and another example is given
by Proposition 3.1. Though in this paper we confine our attention primarily to T-

embeddings, Problem 1.1 can be stated for S-embeddings and TS-embeddings as

well. The case of TS-embeddings will be studied in [5], and is related to the existence

of nonsingular bilinear maps, and the "generalized vector field problem". The present
work has a different flavor which is in part due to the fact that, unlike T-embeddings,
TS-embeddings are not preserved under cartesian product (see Note 3.3).

2. Proof of Theorem 1.2

The basic idea for the proof of Theorem 1.2 is as follows. Let C c I3 be (the image
of) a closed C^-immersed curve. For every unit vector u e S2, let T\(u, X) be the
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plane which is orthogonal to u and passes through ku; that is,

U{u,k) := {x el3 : (x -ku,u) =0},

where -, -> denotes the standard inner product. Let ku be the infimum of all k such

that T\(u, k) is disjoint from C. Then I\u := Yl(u, ku) is tangent to C. Let Lu be

the collection of all tangent lines of C which lie in Ylu. We claim that, for some

u g S2, Lu must contain a pair of intersecting lines. Suppose not. Then, for each

u g S2, let tu be a line which passes through u and is parallel to the elements of Lu.
Since nu is orthogonal to u, this yields a tangent line field on S2. As we show in
Lemma 2.1 below, u \-> lu is continuous. But it follows from the Poincaré-Hopf
index theorem (Lemma 2.2), that there are no continuous line fields on the sphere.
Hence we obtain a contradiction. So at least one of the planes I\u must have contained
a pair of intersecting tangent lines. A perturbation argument (Proposition 2.3) applied
to nu then yields the existence of infinitely many pairs of intersecting tangent lines
in nearby bitangent planes, and completes the proof.

To proceed more formally, let c : S1 ~ W/2nZ, --* M? be a C1 unit speed curve,
i.e., a C1 mapping with \\c'\\ 1. For any u g S2, let tu G S1 be a maximum point
off h^ <c(0,M},andset£(w) := {±c'(tu)}.

Lemma 2.1. Suppose that c'{t\) ic'fe) whenever t\ and ^ are maximum points
oft h^ (c(t), u). Then l:E>2-* S2/{±1} ~ M"2 is well-defined and continuous.

Proof. Our hypothesis, together with the definition oil, implies that

l{u) {±c'{tu)} ^^ (c{t),u) <(c(tu),u), for all t G S1. (1)

Thus £ is well-defined. To prove the continuity of t, let u\ g S2 be a sequence, and

tu. be a maximum point oft *--* (c(t), u\). Then

i(ui) {±c'(tu;}}. (2)

Since S1 is compact, tu. has a limit point t. Thus, since c is C1, c'{tu.) has a limit
point at c'(t). So, (2) yields that

{±c'(0}is a limit point of l{u\). (3)

Next note that (1) and (2) imply

(c(t),ui) < (c(tUi),ui). (4)

Now let m be a limit point of u\. Then, since -, -> is continuous, (4) implies

(c(t),ü) <{c(t),ü).
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Consequently, (1) yields
i{ü) {±cf(t)}.

So, by (3), t{u) is a limit point of t{u\)\ therefore, we conclude that I is continuous.
D

We also need to recall the following well-known fact:

Lemma 2.2. There exists no continuous tangent line fields on §2.

Proof. By a generalization of the Poincaré-Hopf theorem on vector fields [10], the

sum of the index of the singularities of a line field on a 2-manifold M is equal to
the Euler characteristic / (M) In particular, if M has a line field which is defined

everywhere, i.e., it has no singularities, then we must have /(M) 0, which rules

out S2.

Combining Lemmas 2.1 and 2.2, we obtain:.

Proposition 2.3. For every C1 immersed curve c : S1 -> M3, there exists a plane
Fiel3 such that

(1) c(§1) lies entirely on one side of FI

(2) c has a pair of tangent lines in FI which intersect transversely

In particular, there exist to, so eS1, suchthat c(to),c(so) g II and c'(to) ~x.c'(so) ^ 0.

Proof. After a reparametrization, we may assume that c has unit speed. For each

u g S2, let tu be a maximum point of t i-> (c(t), u), and let FI„ be the plane given by

Uu :={x éM3 : {x,u) (c(tu),u)}.

Note that tu is a maximum point of t i-> (c(t), u) if and only if c{tu) G Uu.
Suppose now that c has no pairs of intersecting tangent lines in FI „. Then at all the

maximum points tu off i-> (c(t), u), the tangent vectors c'{tu) should be equal up to a

sign. So, by Lemma 2.1, the mapping I: S2 -> §2/{±l}, given by i{u) := {±c'(tu)},
is well defined and continuous. But (c'(tu), u) 0, so £ determines a tangent line
field on S2, given by

Lu := {u + Xv : v g 1{u), and À el}.
This contradicts Lemma 2.2 and thus completes the proof.

Next we show that it is possible to perturb the plane FI in the previous proposition
to produce infinitely many pairs of intersecting tangent lines. For every (eS1 and

eelwe define
Ue (t) := {x g S1 : distgi (x, t) < e },
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where distgi is the intrinsic distance in S1. The end points of the above interval are
denoted by dUe(t).

Proposition 2.4. Let c: Un(to) U Us (so) --* M? be a C1 immersion for some to,

so g S1, to ^ so, and t), S > 0. Suppose that there exists a plane [lei3 such that

(1) c(Uv(to) U Us(so)) lies on one side ofYl;

(2) c(to), c(so) G n;
(3) c'(to) x c'(so) £ 0;

(4) For every 0 < a < 8, there isaO <ß <a such that c(dUß(so)) n n 0.

Then there exists anO < e < r\ with the following property: For every t g Ue(to)
there exists an s g ^(^o) such that the tangent lines of c at c{t) and c{s) intersect
transversely.

Proof. Since (t, s) *--* c'(t) x c'(s) is continuous and c'(to) x c'(so) ^ 0, we may
choose e small enough so that

c\t) x c\s) £ 0, for all (t, s) g Ue(t0) x Ue(s0). (5)

In particular, Ue (to) n C/e (jo) 0. Further, item 4 above implies that we may assume

n 0, (6)

where dU denotes the endpoints of U.
Now let £x denote the tangent line of c at c(x). Using (6), and the assumption

that c'{to) x c'{so) t^ 0, we may rotate n around £to to obtain a new tangent plane,

say n(o, such that

n(o separates c(so) from c(dUe(so)). (7)

That is, c(so) lies in one of the open half-spaces determined by n(o while c(dUe (so))
lies in the other open half-space.

Let no denote a unit normal to Uto, and n : Ue(to) -> §2 be any continuous unit
normal vector field of c with n(to) «o- For every t G Ue(to), let Ylt be the plane
which pass through c{t) and is perpendicular to n{t). Then, by continuity of t i-> I\t,
(7) implies that there exists 0 < e' < e such that

n( separates c(so) from c(dUf(so)),

for all t g U€i(to).
So, for each f g Ue/(to), we may rotate FI( around £( until we obtain a plane, say

Yl't, which is tangent to c(Ue(so)). Then, in addition to £t, Tl't will contain another

tangent line ts, for some s G Ue(so). Thus (5) implies that tt and ts intersect

transversely, which completes the proof.
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The above propositions now yield:

Proof of Theorem 1.2. For any C1 immersed closed curve c: S1 —>¦ IR3, Proposition

2.3 ensures that all the conditions of Proposition 2.4 are satisfied except possibly
Condition 4. If Condition 4 is also satisfied, then Proposition 2.4 yields that c has

uncountably many intersecting tangent lines. On the other hand, if Condition 4 is not
satisfied, then it follows that c maps an open neighborhood of S1 into FI. In particular,

c is tangent to n uncountably often. But this again results in uncountably many
intersecting tangents, because FI contains a pair of nonparallel tangent lines.

Note 2.5. It is comparatively easy to prove the existence of intersecting tangents for
knotted curves c : S1 —>¦ IR3. To see this let d be the maximum distance of cC&1)

from the origin o := (0, 0, 0), and S c R3 be a sphere of radius r > d centered at o.

Then, for each t e S1, the ray

Rt :={c(t)+kc'(t) :k > 0}

has a point inside and a point outside of S. So Rt intersects S at a unique point, say
c{t) + ktc'{t). Since c is continuous, t \-> kt is continuous as well. Thus

c:=c(t)+ktc'(t)

gives a closed curve in S. Suppose that c has no pairs of intersecting tangents. Then

RtnRs 0 (8)

for all t t^ s. Consequently c is one-to-one. So, by Jordan's curve theorem, c(§1)
bounds an embedded disk, and is therefore unknotted. Now define h : S1 x [0,1] —>¦

M3 by

h{t, s) :=c{t)+sktc'{t).

Clearly h is continuous. Further, (8) implies that h is one-to-one. Thus h gives an

isotopy between c(§1) and c(§1), which is a contradiction. So we conclude that c

must have a pair of intersecting tangent lines

Note 2.6. The set of all tangent lines to a C1 curve c : S1 ->¦ R3 determines a surface

parametrized by c(t) + sc'(t), and called the tangent developable of c. Theorem 1.2

implies that the tangent developable of any closed C1 curve in R3 has infinitely many
double points. The multiple points and singularities of the tangent developable of
"generic" curves have been studied by a number of authors. For a survey of results
of this type and references see [7].
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3. Proof of other results and examples

In the previous section we established the nonexistence of closed T-embedded curves
in IR3. The following result shows that such curves may be constructed in M4.

Proposition 3.1. The mapping c : S1 —>¦ IR4, given by

CdS'szA (z,z2) eC2,

is a TS-embedding.

Proof. We may parametrize c as

c(t) := (cost, sint, cos2f, s\n2t).

First we verify the skewness. To see this let

T(t) := -—— — (-sin*, cos*, -2 sin2*, 2 cos 2*).
Ik'COII V3

It is enough to check that T(t) ^ ±T(s), unless t s (mod27r). Suppose T(t)
T(s). Then sinf sin^, and cosf cos^. This yields t s (mod27r). Next

suppose that T(t) —T(s). Thensinf — sins, andcosf — coss. This yields

t s + 7t (mod2it). (9)

But we also have sin 2t — sin 2s, and cos 2t — cos 2s. So

2t 2s+ n (mod27r). (10)

Subtracting (9) from (10) we get t s (mod 2n). So c is skew.

To see that c is totally skew, note that

c(t)

That is, c is the image of a one parameter subgroup of the special orthogonal group
SO(4) acting on c(0). In particular, c is invariant under such rotations. Thus to show

that the tangent lines of c do not intersect, it is enough to check that the tangent line
of c at c(0) does not intersect any other tangent line. Let

it(s):=c(t)+sc'(t)
(cost — s sint, sint + s cost, cos2f — 2s sin2f, sin 2t + 2s cos 2t

cost
sinf

0

0

— sinf
cosf

0

0

0

0

cos2f
sin2f

0

0

- sin 2t
cos2f

1

0
1

0
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be a parametrization for the tangent line of c at c(t). Setting tt{s\) £0(^2) yields:

cos t — s\ sin t 1,

(11)
sinf + si cost S2,

cos 2t - 2s 1 sin 2t 1,

sin 2t + 2s 1 cos 2t 2s2

Eliminating s\ from the first and third equations, we get

2 sin 2t cos t — sin t cos 2t 2 sin 2f — sin f.

Using the identities sin 2f 2 sin t cos f and cos 2t 1 — 2 sin2 f, we may rewrite
the above equation as

2sinf (1 -cosf)2 0.

The solutions to this equation, modulo 2n, are t 0 and t n. But a quick
examination of (11) reveals that only t 0 satisfies all the equations. Thus the

tangent line £0 is disjoint from all other tangent lines of c, and we conclude that c is

totally skew.

Proposition 3.2. If M\ c K"1 and M2 C K"2 are T-embedded submanifolds, then

so is Mi x M2 C M"1+"2.

/ Suppose, towards a contradiction, that M\ x M2 has intersecting tangent lines.
Then there are distinct points p, q in M\ x M2 and vectors v e TP{M\ x M2) and

u; G T?(Mi x M2), such that

_p + v q + w.

Note that p (pi, pi) and g (gi, ^2) where pi, q\ are points in Mi, i 1, 2.

Further, v (vi, V2) and w (wi, W2) where v\ G TPiMi and w\ G Tq;Mi. Thus
the above equality implies that

pi + vi qi + iv 1 and /?2 + "2 qi + ^2-

Since, by assumption, p ^ q, we must have /?i 7^ P2 or gi 7^ ^2- Thus the

above equalities imply that M\ or M2 must have a pair of intersecting tangent lines

respectively.

Note 3.3. In contrast to the previous proposition, S-embeddings are not closed under
cartesian product. Indeed, the cartesian product of any two submanifolds will always
have parallel tangent lines. To see this let Mi c M"1 and M2 C M"2 be a pair of
submanifolds,and/? g Mi,v g TpMi,andq,r g M2. Then(u,0) G T(P)9)MixM2,
and (v,0) e T(P)r)Mi x M2. Thus Mi x M2 has parallel tangent vectors at all pairs
of points (p, r) and (p, q).
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Combining the previous two propositions immediately yields Theorem 1.3.

Further, the last proposition also yields:

Proof of Theorem 1.5. Any submanifold of a T-embedded submanifold is also T-

embedded. Thus, by Proposition 3.2, it suffices to check that

l9m (x,x2,x3) eK3

has no intersecting tangent lines. Suppose otherwise. Then there are x, y g R,x ^ y,
such that

(x, x2, x3) + A.(l, 2x, 3x2) (y, y2, y3) + p(l, 2y, 3y2),

for some X, ß el. The above equality yields three equations:

x — y \i — X,

x — y 2(ßy — Xx),

x3 -y3 =3([iy2 -Xx2).

Solving for y in the first equation and substituting in the second yields that X ±/x.
If X ix, then the first equation yields x y, which is a contradiction. If X —\x,

then dividing the third equation by the first yields that

x+xy + / (/+x).
The above equation is equivalent to (x - y)2 0, which yields x y, another
contradiction.

From this we immediately obtain the following result.

Corollary 3.4. Ifa manifold admits an embedding in Rm, then it admits a T-embedding
in R3m.

Further, we can use Theorem 1.5 to etablish Corollary 1.6.

Proof of Corollary 1.6. As is well-known, every compact manifold Mn admits a

smooth embedding into W1, provided that m is sufficiently large [6, p. 23]. Thus, by
the previous corollary, Mn admits a smooth embedding without intersecting tangents
into M.N, where Af 3m. If ,/V < An + 1 we are done. So suppose that ./V > 4n + 1.

Define g : {TM x TM - ATM) -> SN~\ by

g(x,y) :=
\\x - y\
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where A denotes the diagonal elements of a cartesian product. Since

dim(TM x TM - ATM) An < N - 1 dim(Sw-1),

and g is a C1 mapping, the image of g must have measure zero [6, p. 68]. In particular,
g is not unto. Let u g E>N~l be a vector in the complement of the image of g, Hu

be the hyperplane through the origin and orthogonal to u, and nu : IRW —>¦ Hu be the

orthogonal projection
7tu(x) := x — (x, u)u.

Then n is an embedding on TM. But n(TM) T(n(M)). Thus n(M) has no
intersecting tangent spaces, and we obtain a T-embedding of M in Hu ~ IR*"1.
We may repeat this procedure until we reach the desired dimension, An + 1, for the

ambient space.

Finally, we prove the last observation mentioned in the introduction. The proof
below uses the notions of contractibility and retract of a topological space X. Recall
that X is contractible if there exists a point xq & X and a continuous mapping

/ : X x [0, 1] -> X such that f(x, 0) x, and f(x, 1) x0. A subset Fclis
called a retract of X if there exists a continuous map / : X -> Y such that f{y) y
for all y G Y.

Proof of Theorem 1..7. Suppose that there exists a non-contractible manifold Mn
which is T-embedded in M.2n. Since dim(TM) 2n, it follows from the theorem

on the invariance of domain that TM is an open subset of M2". We claim that TM is

closed in R2n as well. To see this let p\ be a sequence of points in TM converging
to a point p in R2n. Let q\ be the corresponding sequence of points in M such that

Pi G TqiM. Since M is compact, q,: have a limit point g in M. Since the tangent space

TqM is a limit point of TQi M, it follows that p G TqM c TM. Thus TM is both open
and closed in IR2", which yields that TM IR2". In particular TM is contractible.
But M is a retract of TM, and the retract of a contractible space is contractible. So

M is contractible - a contradiction.

Acknowledgments. The author thanks Bruce Solomon, Ralph Howard, and Serge
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