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Bubbling location for F -harmonic maps and inhomogeneous
Landau-Lifshitz equations

Yuxiang Li and Youde Wang*

Abstract. Let / be a positive smooth function on a closed Riemann surface (M, g). Lhe
/-energy of a map u from M to a Riemannian manifold (N, h) is defined as

Ef(u)= f f\Vu\2dVg.
JM

In this paper, we will study the blow-up properties of Palais-Smale sequences for Ef. We will
show that, if a Palais-Smale sequence is not compact, then it must blow up at some critical
points of /. As a consequence, if an inhomogeneous Landau-Lifshitz system, i.e. a solution of

ut u x tf(u) + tf(u), u: M -> S2,

blows up at time oo, then the blow-up points must be the critical points of /.

Mathematics Subject Classification (2000). 35Q60, 58E20

Keywords, /-harmonic map, inhomogeneous Landau-Lifshitz equation, /-harmonic flow,

blow-up point.

1. Introduction

Let (M, g) and (N, h) be two Riemannian manifolds. A C^-smooth map u from
M into JV is called a harmonic map if and only if m is a critical point of the energy
functional E(v), which is defined in local coordinates by

f
Jm

E(v) / Tmceg(v*h)dVg,
Im

where
¦ ¦duaduß

Traceg(iT/z) g'} —-——haß{u).
dx1 dxJ

*The second author is supported in part by the National Key Basic Research Fund G1999075107 and the
National Science Fund for Distinguished Young Scholars 10025104 of the People's Republic of China.
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It is well known that the energy functional is conformally invariant when dim(M) 2.

In this paper we would like to study a class of C1-smooth maps from a Riemann
surface into a compact Riemannian manifold which are defined as the critical points
of the inhomogeneous energy functional written as

Ef(v) I Trace
Jm

:g(V*h)fdVg,

where / is a smooth real function. In [L] and [E-L] (see page 48, (10.20)), such

maps are called /-harmonic from M into N. Obviously, they are just harmonic maps
if / 1. Moreover, when m dim(M) ^ 2, an /-harmonic map is nothing but

2

a harmonic map from (M, fn-2g) to (N, h). In local coordinates, the /-harmonic
map satisfies the following Euler-Lagrange equation

fx{u) + Vf ¦ Vm =0.

Here r (m) is the tension field of u which can be written as

To see the physical motivation for the /-harmonic maps, we consider a smooth
domain Q in the Euclidean space M.m. An inhomogeneous Heisenberg spin system is

given by
dtu f{u A Am) + V/ - (m A Vm),

where / is a real-valued function defined on Q, u{x, t) g S2, a denotes the cross

products in IR3 and A is the Laplace operator on W1. Physically, the function /
is called the coupling function, and is the continuum limit of the coupling constants
between the neighboring spins. It is easy to see that if m is a smooth stationary solution
of the above equation, then u is just an /-harmonic map from Q into S2. Indeed, in
this case the tension field of u can be written as Am + |Vm|2m, therefore, the right
hand side of the above equation can be expressed by m a (fx(u) + V/ ¦ Vm), and u

satisfies the following equation

/t(m) + V/ ¦ Vm =0.

The above inhomogeneous Heisenberg spin system is also called inhomogeneous
Landau-Lifshitz system. Landau and Lifshitz also suggested considering the following

dispersive system

dtu u A (/r(w) + V/ ¦ Vm) - m a (m a (/r(w) + V/ ¦ Vm)),

with an initial value condition
m(0) MQ.
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For the well-known equation, Tang [T] proved that it admits a global weak solution

which is smooth except for finitely many points, if the domain manifold M is

2-dimensional closed / is a smooth positive function and the initial value map
belongs to W1'2(M, S2) (see also [St] and [G-H]). The bubbles which the weak solution
blows are called the magnetic bubbles ([Sh]). A natural question arises: Where do

the bubbling points of the Landau-Lifshitz equation locate! In this paper, we intend
to answer this problem partially.

Throughout this paper, we will always assume that / is smooth and positive. In
order to answer the above question, mathematically we need to consider the convergence

and bubbling of the sequence of /-harmonic maps with coupling function /.
Precisely, we obtain the following results.

Theorem 1. Let D be the unit disc in R2. Ifu:D\ {0} -^ N is a W^-map with
finite energy and satisfies the following equation

x{u) aVu + g,

where a e C°(D) and g e LP(D, TN) for some p > 2, then u may be extended to

amapü e W2'P(D,N).

Theorem 2. Let (M, g) be a closed Riemann surface and N a compact submanifold
ofRK. Let f be a smooth positive function on M. Assume that uk e W2'2(M, N) is

a sequence which satisfies

fx(uk) + Vf Vuk =ak

and

f \Vuk\2fdVg<C,
JM

where ak lies in L2{u^l{TN)) and satisfies

>¦ 0 asfc

If p is a blow-up point of the sequence, i.e.,

limliminf / \Vuk\2fdVg > 0,

then p must be a critical point of f.

Applying the above theorem to the inhomogeneous Landau-Lifshitz equation we
can partially answer the above question. Concretely, we come to the following result.
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Theorem 3. Let (M, g) be a closed Riemann surface, and let S2 be the unit sphere
with standard metric. Suppose that the coupling function f is smooth and positive
on M and u e L2((0, oo); W2'2(M, S2)) is the unique weak solution for the initial

value problem of the inhomogeneous Landau-Lifshitz equation with initial map
uç, g W1'2(M, S2). Ifu(t) u{-, t) blows up at time infinity, then the blow-up points
must be the critical points of the coupling function f.

2. Removable singularity

It is well known that the removable singularity theorem of Sacks and Uhlenbeck says
that a harmonic map from D \ {0} —* N with finite energy can be extended to 0

smoothly. The main aim of this section is to generalize Sacks-Uhlenbeck's theorem
to the present case, i.e., to prove Theorem 1. The method adopted here is essentially
due to Sacks and Uhlenbeck. One still sees that the Hopf differential is the key in the

proof. However, in our case the Hopf differential is no longer holomorphic, thus the

proof will be a little more delicate than theirs.
Let us first recall the e-regularity discovered by Sacks and Uhlenbeck.

Lemma 2.1. Suppose that u e W2'2(D, N) satisfies

T(u) g£L2(D,TN).

Then there exits e > 0 such that if /D |Vm|2 < ewe have

\\U-U\\W2.2{DI) < C(\\VU\\L2(D) + \\g\\L2(D)).
2

Here u is the mean value ofu over the unit disc and D\ is a disc with radius \ and

centered at the origin.

Proof. Cf. [S-U], or [D], or [D-T]. D

Using the standard elliptic estimate, we have

Corollary 2.2. Suppose that u e W2'2(D, N) satisfies

r(u)=aVu + g, (2.1)

where a(x) G C°(D) and g G LP(D, TN) for some p > 2. Then there exists e > 0

such that whenever fD |Vw|2 < ewe have

\Vu\(0) < C(\\a\\co(D), p)(\\Vu\\L2(D) + \\g\\LP{D)).
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In this section, we always assume m to be a map from D \ {0} to JV which belongs
9 9

to V7lo'c (D \ {0}, N) and satisfies the equation (2.1). In order to prove Theorem 1,

we need to prove the following lemmas. First, we have

Lemma 2.3. There exists e > 0 such that if fD \Vu\2dx < e, then there holds true

|x||Vw|(x) < C(||Vm||L2(D2w) + I*M x \\g\\LP(D2]x])) for all x e Di,

where C is a positive constant which depends only on e.

Proof. Fix an xq & Di, we define ü u(x\xq\ + xo). Then we have

Notice that | Vm| (0) | Vm| |xo|, hence we get this lemma from Corollary 2.2.

Now, let

idu du\* («i, «i) - {uy, uy) - 2i{ux, uy) 4 —, -—

where z x + iy. It is easy to see that

9F* 8 (am, — 8 U(u)(du, du) + «Vm + g, —

We need to prove a Stokes type equality for the 1-form z*.

Lemma 2.4. There holds true that

r
Adz-f z^dz= z3-z

J\z\=r JDr

Proof. As

d{z^dz) d-z(z^dz) Zd-Z^dz A dz,

by applying the Stokes formula, for any ro < r we have

f z^>dz= f zd
J\z\=r\\z\=ro JDr\DrQ

By (2.2),

|2 ' \g\2)dx^0I \zdfi)dzAdz\<CrQ I {\aVu
JDrQ JDrQ



438 Y. Li and Y. Wang CMH

as ro —>¦ 0. Therefore, to complete the proof of the lemma, we only need to prove

I z*dz ^/zï f
J\z\=rn JOZ\=ro

However this last equality follows from Lemma 2.3.

Lemma 2.5. There holds

/ (ur,ur)- (ue,ue) O(r).
JDr JDr

Proof By a direct computation, we have

«el2 + \z\2\u,

Then

Re ,2, d9 ImL Im ; zd^ty dz A dl
Dr

<

\aVu + g\\Vu\dx

i.e.,

Therefore

6)\zd6 O{r).

<Cr I (\g\2 + \aVu\2)dx,
JDr

f \ur{r,6)\2r2de - f \ue{r,
Jo Jo

/¦r />2ji / 2

},ue))= / / [\ur\2-^\u
Jo Jo V r

f -O(r)dr= f
Jo r Jo

(llr,Ur) - {U0, rd6dr

D

D

Proof of Theorem 1. As in [S-U] we approximate m by the function g which is

harmonic on every domain,
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and equals

and
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1 C2lï

— / u(2~mro,6)d6
2n Jo

1 f2jr 1

— / u(2~m~1ro,O)d6,
2n Jo

439

respectively, on the boundaries {z : \z\ 2 mro] and {z : |z| 2 m 1rç,}. Then

g is piecewise linear in log r and depends only on the radial coordinate. Now, for
2"m-1r0 < r < 2"mr0,

\q(r) - u(r, 0)| < mr0) - u(r,

+ /
2tt Jo

< C sup r|Vw

Now, we estimate the difference between q and u:

2 ^ f27t
|V(w - q)\l > r I (u(r, 6) - q(r))(ur(r, 6) - q (r)) a

m=0
Jo

— I (q — u)A(q — u) dx.
JDr

Since q'{r) constant x j on Dm(ro),

çllt
/ (u(r, 9) -q(r))q'(r)d6 0, for all r 2~"V0.

JO

"r0

(2.3)

Hence,

m=0
X] r A {u{r, 6) - q{r)){ur{r, 6) - q\r)), 9-m-U

p2
r0

Jo
(u(rQ,6) - q(rQ))ur(rQ,6) d6

- lim 2-"V0 / (u(2-mro,O)-q(2-mro))ur(2-mro,O))de.
m^+oo Jo
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By Lemma 2.3, we have

"V0 f (w(2-"V0, 9) - q(2-mro))ur(2-mro, 6) d6
Jo

< \\u(2-mrQ,6)-q(2-mro)\\Lc0 sup r|VM(r,0)| -? 0
r=2-mr0

as m ^ +oo.
Moreover, we have

r0
r2jI

Jo
6)-q(ro))ur(ro,6)d6

In p2jt \ 2

(u(ro,9)-q(ro))2de I \ur(ro,9)\2d9

\ 2,

^ f %

2 Jo
^ f \Vu(ro,6)\2rod6
2 J

and

jJDrn
\(q - u)(A(q - U))\ I

Jdt,
\q — u\ x \A(u)(du, du) — aVu — g\ dx

(2.5)
\Vu\2dx-

Obviously, for any 1 > S > 0, we can always pick up ro which is small enough such

that

f
JDrQ

\(q-u)(A(q-u))\<s( f \Vu\2dx+r0).
\ J

Applying Lemma 2.5, we get

¦ q)\2 dx > I {Me, ue) dxf \V(u-q)\2dx> f
JDr J Dr

~ ({U0,U6
^ J DrQ

{ur, ur))dx
(2.6)

((ue,ue) - {ur,ur))dx

\S |V«|
1 J Dr0

O{r0).
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Then, from (2.3), (2.4), (2.5) and (2.6) we can derive that

/ |Vw|2 < r0 / |V«(ro,<
JDrn JO's

where À is a positive constant which is smaller than 1.

Set

f(r)= f \Vu\2dx.
JDr

Then we have

< rf'{r) + Cr,

and hence

f\ > _Cr_,

By integrating the above differential inequality over the interval [r, 1] we obtain

/¦l
f(r)<Crl s~lds + f{l)rx < Crx.

By applying Lemma 2.3, it follows from the above inequality that

Thus, we can complete the proof of the theorem by standard elliptic estimate theory.
D

3. A variational formula

For the inhomogeneous functional Ef(-) defined on W1'2(M, N), we can easily see

that the first variational formula at point u g W2'2(M, N) can be written as

dEf(Ç)= f {fr(u)
Jm

for any § e TUW1'2(M, N). Here, we need to derive another formula for Ef(' ¦)
with respect to the variation of the domain manifold. The following calculation is

essentially due to Price ([P]).
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Take a 1-parameter family of transformations {4>s} of M which is generated by
the vector field X. We have

l f \V(uo(ps)\2f(x)dVg
2 Jm

\ I Y\d(uo4>s)(ea)\2f(x)dVg(x)

\ f YJ\du{4>s,(ea))\2{4>s(x))f(x)dVg(x)

~ /
2 JM

where {ea} is a local orthonormal basis of TM. Noting

—Jac^-1)^^!^ -div(X) dVg, Ys

we have

^o4>s)\s=0 -\ f \Vu\2fàÏN(X)dVg-\ f df(X)\Vu\2dVg
I Jm l Jmds

f (du(VeaX),du(ea))fdVg.

So, we have proved the formula

\Vu\2fâ\y{X)dVg-\ f df(X)\Vu\2dVg
M 2 JM

+ V /" (du(VeaX),du(ea))fdVg.

4. The proof of the theorems

The task of this section is to prove Theorems 2 and 3. In fact, what concerns Theorem 2

this just means the blow-up analysis for a so-called Palais-Smale sequence of Ef (w).
We will focus on what occurs if the sequence is not compact in the Sobolev space
W1'2(M, N).

Proof of Theorem 2. By the assumptions stated in Theorem 2, {uk} c W2'2(M, N)
is a Palais-Smale sequence of maps from M into N. Then it satisfies

ock, (4.1)
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Ef(uk) < C, (4.2)

whereof g u~^l{TN) fulfills
I|ajtlli2-»O. (4.3)

First we note that in local complex coordinates (4.1) can be written as

jt \ß\ak,

where to and Vo are the operators defined on M2 with standard Euclidean metric, since

r is a conformally invariant operator. Without loss of generality, we may assume that

g dx2 + dy2 in a complex coordinate system.
Set

S \x : limliminf f \Vuk\2dV„ > ol.
I r^-Ok-^+oo JDr(x) J

Usually, we say that x is a bubbling point for the sequence {uk} if and only if x g S.

It is easy to see that S contains only finitely many points. By the Lemma 2.1, for any

xo g S, we have

liminf / \Vuk\2 dVg > e for any r > 0.
k+ J

inf / \Vu
co JDr(x)

By the weak compactness of Wl'2(M, N) we know that there exists a subsequence
of {uk}, still denoted by {uu}, and m G Wl'2(M, N) with

Ef(u) < +oo,

such that {uu} converges weakly to u in Wl'2(M, N), which is an /-harmonic map.
Moreover, Theorem 1, Lemma 2.1, Corollary 2.2 and elliptic estimate theory tell us

that m g C^iM, N) and

in Wl'q{Q.,N)iornnyQ. CC M\Smdq > 1.

Thus, to prove Theorem 2 we only need to show that

S C {the critical points of /}.
Now, pick up a point p G S. As we have pointed out, we may assume g dx2 + dy2
in a complex coordinate chart «V around p. Without loss of generality, we may
assume that/? (0,0), Q [-1, 1] x [-1, 1] c ,N and Qn S {p}. If pis nota
critical point of /, then, without loss of generality, we may suppose that

df(O) =Xdx,

where À is a positive constant. Thus, in a neighborhood of p, df{x) Xdx + O{r)
where r2 x2 + y2.
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We need to choose two functions to cut off the vector field -i- in x and y directions,ox ^

respectively. First, we take a cut off function a e C°°(R) whichis 1 on[—8, <5],andO

on [-2,5, 2<5]c, where

s= te

16||VM||2O(ß)||/||co"

Then we define the second function as follows:

ri(t)

1 if\t\<b',
(b-t)f(b-b') iib'<t<b,
(b + t)/{b -V) if - b < t < -b',
0 if t > b or t < —b.

Here b and b' are chosen to satisfy 0 < a < V < b < 2a < 1, where a is a constant
such that

ke

J[-2a,2
9IVwl2 < (4.4)

Set

r](x)a(y)
d

dx'

By a direct computation we have

div(X) =ri'(x)a(y),
and

rt\x)a{y)

By the formula derived in Section 3, we have

2^2

dx

dx dy )f dxdy -2 I ;

/ JQ
fdxdy-2 r]{x)a (y)( — ,—)fdxdyJ \ dx dy I

iduk_ duk\
\ dx '

dy I'

dllk

dx dy

-I f {ak,f (X + O(r))r)(x)a(y)\Vuk\2 dxdy + 2 f {ak, ukJX)) dxdy.

Note that

supp(/?/(x)a(y)) U supp(/?(x)a/(y)) c ß \ (-a, a) x (-8, 8),

we can replace ß in the left side of the above equality with Q\(—a,a) x (—<5, <5).
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For arbitrarily fixed a and 8, uk is bounded in Wz'z(ß\(-§, f) x (-§,§)). So,

by taking a subsequence, we have Vm^ —>¦ VuinL2(Q\(—a, a)x(8, 8)). Therefore

and

Jq11
X ° y \

duk

dx

2
duk

dy

f r]\x)a{y)(

2 x

du

~dx

fdxdy
2 du

~dyTT - TT )fdxdy,

of t \ it \idllk dllk\ s ,i ,i-2 r}(x)a (y){——,——)/dxdy
JQ ax dy/. du du

ri(x)o'(y)( — ,—) fdxdydx dy

./r-
\Vu\ldxdy

[-2a,2a]x[-l,l]

(4.5)

(4.6)

where we have used (4.4) in the last inequality. Moreover, once S and a are chosen,
then

L \Vuk\2dxdy > s
l[-a,a]x[-8,8]

when k is sufficiently large. Hence

L [L{ak"(A + O(r))r](x)a(y)\Vuk\zdxdy + 2 / (ak, uk*(X)) dxdy > -Ae. (4.7)

In view of (4.5), (4.6) and (4.7), we have

f T)'(X
JQiQ

Letting b' —* b,we get

\x\=b

du
~dx~

du
~d~X~

du

9^

du

dy

f dxdy > -A.e.
4

fdy> -A.fi.

Recall that suppa c [-25, 25]. Then
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which contradicts the definition of 8. This means that X must be zero. Therefore p is

a critical point of /. This completes the proof of Theorem 2.

Now we return back to our problem on the location of the bubbling points of
the weak solutions to the inhomogeneous Landau-Lifshitz equations. Consider the

following initial value problem:

dtu u A (f(x)Au + V/ ¦ Vm) - u A (m A (f(x)Au + V/ ¦ V«)),

M(0) mo(x) G W1'2(M, S2).

Noting |m|2 1 and the identity

ma(ma(/(x)Am+V/-Vm)) (m-(/(x)Am+V/-Vm))m-(m-m)(/(x)Am+V/-Vm),

we can see easily that the above equations may be rewritten as

dtu f(x)x(u) + V/ ¦ Vm + u A (f(x)r(u) + V/ ¦ Vm),

M(0) mo(x) e W1>2(M, S"2). J

Here t(w) Am + |Vm|2m is the tension field of the map u: M -> S2.

Tang has ever employed Struwe's method to study the existence and uniqueness
of the above equation. We outline the argument in [T] as follows.

1. There exists T > 0 such that (4.8) is solvable in M x [0, T).
2. u{t) blows up at finitely many points.

3. u(t) converges to aw (T) e Wl'2(M, N) weakly, and on any sub-domain which
does not contain a bubbling point, u(t) strongly converges to u{T) locally.

Then we construct a new flow which stems from u j. Then, by the same argument
as in [St], we know that there exists T\ > 0 such that the new flow exists on the

interval [T, T\) and blows up at T\. At each bubbling point u{t) blows one or more
bubbles, i.e. one or more non-constant harmonic maps. It is well known that u(t)
must lose energy at every bubbling point. Hence, we always have a t such that

dtu f(x)r(u) + V/ ¦ Vm + u A (f(x)r(u) + V/ ¦ Vm),

m(0) u(f) G Wl'2{M, S2)

is solvable on [0, oo). The results in [T] can be summarized in the following lemma.

Lemma 4.1. Let (M, g) be a closed Riemann surface and f be a smooth positive

function on M. For any uç, g W1'2(M, S2) there exists a distribution solution
m : M x M.+ —>¦ S2 of the above equation which is smooth on M x M.+ away from
at most finitely many points (xk, tu), 1 < k < Ko, 0 < tu < oo, which satisfies the

energy inequality Ef{u{s)) < Ef{u{t)) for all 0 < s < t, and which assumes its

initial data continuously in Wl'2(M, S2). The solution is unique in this class.
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It is easy to see that the following identity holds for the solution to (4.8) and any
0 < t\ < t2 < oo:

Ef(u(ti)) - Ef(u(t2)) - f 2\\dtu\\2Lldt.

/
Jo

Hence, it follows that
•+OO

/ \dtu\\22<+OO.
Jo

This implies that there exists a sequence dtu{x, t;) such that

\\3tu(x,tt)\\L2^0.

So, {u(ti)} is a Palais-Smale sequence of Ef(u). Therefore, if u(t) does blow up at

infinity, then by applying Theorem 2 we obtain the conclusion of Theorem 3.

As another example, we may also consider the gradient flow of the function Ef,
i.e. a solution of

m(0) =uo(x) g Wl'2{M,N).

lfu(t) does blow up at infinity, we also have results similar to Theorem 3.
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