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Geodesic laminations with closed ends on surfaces and Morse
index; Kupka-Smale metrics

Tobias H. Colding* and Nancy Hingston

1. Introduction

Let M2 be a closed orientable surface with curvature K and y c M a closed geodesic.
The Morse index of y is the index of the critical point y for the length functional
on the space of closed curves, i.e., the number of negative eigenvalues (counted with
multiplicity) of the second derivative of length. Since the second derivative of length
at y in the direction of a normal variation un is — / uLyu where Lyu u" + Ku,
the Morse index is the number of negative eigenvalues of LY. (By convention, an

eigenfunction 4> with eigenvalue X of Ly is a solution of Ly4> + X<p 0.) Note that

if X 0, then 4> (or </> «) is a (normal) Jacobi field, y is stable if the index is zero.
The index of a noncompact geodesic is the dimension of a maximal vector space of
compactly supported variations for which the second derivative of length is negative
definite. We also say that such a geodesic is stable if the index is 0.

We give in this paper bounds for the Morse indices of a large class of simple
geodesies on a surface with a generic metric. To our knowledge these bounds are the

first that use only the generic hypothesis on the metric.

Theorem 1.1. For a generic metric on a closed surface, M2, any geodesic lamination
with closed ends has finitely many leaves and each leaf has finite Morse index.

Our second result is:

Theorem 1.2. For a generic metric on a closed surface, M2, there is a bound for
the Morse index of any collection of simple closed geodesies for which each limit is

a geodesic lamination with closed ends.

A lamination on a surface M2 is a collection X of smooth disjoint curves (called
leaves) such that \Jte£ I is closed. Moreover, for each x g M there exists an

open neighborhood U of x and a C° coordinate chart, (U, $), with <£>(£/) c K2 so

that in these coordinates the leaves in X pass through ®(U) in slices of the form

*The first author was partially supported by NSF Grants DMS 9803253 and DMS 0104453.
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(R x {t}) n $>(U). A foliation is a lamination for which the union of the leaves is

all of M and a geodesic lamination is a lamination whose leaves are geodesies. The
closure of the union of a collection of disjoint, simple, complete geodesies is always
a geodesic lamination.

If £ G X is noncompact, then we set

£+ f]£(s,oo). (1.1)
s>0

Since £+ is the intersection of nonempty nested closed sets it is closed and nonempty
since M is compact. Since \Jte£ £ is closed, £+ c \Jie£ £¦ Likewise we define £-.
A leaf £ g X is said to be isolated if for some x g £ (hence all x g £) there exists

e e(x) > 0 such that Bs(x) n £ 0 for all £ G X \ {£}. Note that £-, £+ consist of
nonisolated leaves. We say that a geodesic lamination X has closed ends if for each

noncompact leaf £ g X both £+ and £- are closed geodesies.
We will equip the space of metrics on a given manifold with the C00-topology. A

subset of the set of metrics on a given manifold is said to be residual if it is a countable
intersection of open dense subsets. A statement is said to hold for a generic metric
if it holds for all metrics in a residual set. The conclusions of Theorems 1.1 and 1.2

are true for a residual set of metrics that we call Kupka-Smale (KS-metrics). This

hypothesis on the metric has a natural interpretation in both the dynamical systems
and the variational contexts. Here are two versions of our hypothesis.

KS-metric (dynamical version) :

(1) Every simple closed orbit of the geodesic flow whose Poincaré map has real

eigenvalues is hyperbolic.

(2) Every intersection of stable and unstable manifolds at a simple geodesic is

transverse.

KS-metric (variational version) : Let y be a simple geodesic.

(1) If y is periodic, there is no periodic Jacobi field without zeroes.

(2) If y is noncompact and has closed ends, there is no bounded Jacobi field without
zeroes.

The above two conditions are equivalent under the additional condition that the

metric is bumpy. A metric on a surface is bumpy if each closed geodesic is a non-
degenerate critical point, i.e., Lyu 0 implies u 0. Bumpy metrics are generic,
[Ab], [An]. For convenience we will prove the conclusions of Theorems 1.1 and 1.2

for these "bumpy KS-metrics". For further discussion of these metrics, see Section 4
where we show that the set of bumpy KS metrics contain a residual set.

Here is the idea of the proof of Theorem 1.1: Unstable closed leaves in a fixed
lamination are always isolated; thus we need to show that noncompact leaves are
isolated and have finite index. In Theorem 1.1 part 1 of the KS-condition is applied
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to get a nice structure on the ends of noncompact leaves, and to ensure that these

ends are isolated and countable. If an end leaf is closed and hyperbolic, this structure
is striking: On each side of the end (limit) leaf there are two smooth circles of
geodesies, each spiraling toward the limit leaf, one in each direction on each side; see

Figure 1 and Corollary 3.4. Each circle foliates a tubular neighborhood of the given

Figure 1. One of the four circles worth of noncompact geodesies spiraling into a simple closed

strictly stable geodesic.

side of the end. These circles of noncompact geodesies are the stable and unstable
manifolds of the end leaf, when viewed as a closed orbit of the geodesic flow on
the unit tangent bundle of the surface. The second part of the KS condition ensures

that, in a given lamination, leaves limiting on a given pair of ends are isolated, as the

corresponding circles intersect transversely in a local (two-dimensional) section of
the flow; see Figure 2. These noncompact leaves have finite index since index "stops
accumulating" once they get close to the stable, hyperbolic, ends.

To prove Theorem 1.2 we first extract a converging subsequence of the given
sequence of simple closed geodesies. The limit is easily seen to be a geodesic
lamination with multiplicities; see the discussion preceding Proposition 3.10. On long
stretches the geodesies in the subsequence will mimic the behavior of the limit
lamination. By assumption this limit lamination has closed ends. The transversality of
the intersection of the stable and unstable manifolds will then allow us to conclude
finiteness of the indices for the converging subsequence of geodesies.

It is easy to see that the first part of Theorem 1.1 is false without the word "generic".
One can construct a surface of revolution that has a geodesic lamination with infinitely
many leaves. In this example all the leaves are stable and have closed ends. However
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Figure 2. Transverse intersection of two circles worth of noncompact geodesies spiraling into
two different simple closed strictly stable geodesies.

in [CHI] we showed that on any M2, there exists a metric with a geodesic lamination
with closed ends and infinitely many unstable leaves. Moreover, there exists such a

metric which has no bound for the index of all simple closed geodesies.
General geodesic laminations on surfaces need not have closed ends; consider

for instance a flat square torus with the foliation consisting of lines with a common
irrational slope. In fact, on any surface there are (bumpy) metrics and geodesic
laminations without closed ends:

Theorem 1.3. On any surface M2, there exists an open {nonempty) set of metrics

having geodesic laminations without closed ends. These laminations are limits of
sequences of simple closed geodesies.

Our interest in whether the Morse index is bounded for simple closed geodesies

on surfaces comes in part from its connection with the spherical space form problem;
see [PiRu], [CM2] where Pitts and Rubinstein ask for such a bound for embedded

minimal tori for a sufficiently large class of metrics on §3. Clearly obstructions to
Morse index bounds for simple closed geodesies on surfaces give obstructions to
Morse index bounds for embedded minimal tori on 3-manifolds (the most immediate
generalization of simple closed geodesies on surfaces to 3-manifolds is embedded

minimal tori with uniform curvature bounds). In addition new obstructions occur;
[HaNoRu], [CD]. We believe that many of the ideas of this paper can be used to give
bounds for the Morse indices of geodesies on surfaces and on embedded minimal
tori (or more generally fixed genus) with uniform curvature bounds on 3-manifolds
with generic metrics. In fact, the arguments given here should be useful even for
surfaces without curvature bounds; for instance on closed 3-manifolds with positive
scalar curvature any complete stable minimal surface is necessarily compact and in
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fact either topologically S2 or IRP2. Thus "ends" of embedded minimal annuli (even
without curvature bounds) in such manifolds are closed; see [CD] for more discussion

on this.

Throughout this paper M2 is a closed orientable surface with a Riemannian metric,
X is a geodesic lamination, and when x e M, ro > 0, and D c M, then we let Bro (x)
denote the ball of radius ro centered at x and Tro(D) the ro-tubular neighborhood
of D. Moreover, if x, y e M, then yx,y'- [0,distM(x, y)] --* M will denote a

minimal geodesic from x to y. Whenever we look at a single geodesic it will always
be assumed to be parameterized by arclength.

We are grateful to Camillo De Lellis for making the illustrations.

2. Geodesic laminations on surfaces

We will often implicitly use the following simple fact: If y c M2 is a simple closed

geodesic, then there exists S S (y) > 0 such that the nearest point projection

ny : Tg(y) --* y is well defined. Moreover, if y : [0, 1] —>¦ Tg (y) is a geodesic, then

\\dUy\9\-l\<f(8) (2.1)

where lim^o i>(&) 0. Note that this just says that the geodesies y and y are

nearly parallel. If y is oriented, then we say that y : [0, 1] —>¦ Ts(y) has the same

orientation as y if \dUy y' — y'\ < i>{&). We will most often assume that this is the

case.

We will assume in what follows some knowledge of Jacobi fields and indices of
geodesies; see e.g. [Kl] or [Sp]. Three facts will be particularly important:

1) A Jacobi field / is uniquely determined by the values {J{t), J'{t)) for any t.

2) A complete geodesic (closed or noncompact) is stable if and only if it has no
Jacobi field with more than one zero. (In the closed case we of course mean
Jacobi field with the same periodicity as the geodesic.)

3) A noncompact geodesic has finite index if and only if there is a bound for the

number of zeros of any nontrivial Jacobi field along it.

To show that certain geodesies are stable (or have bounded Morse index) it is

sometimes useful to apply the following standard fact: A Schrödinger operator Lu
u" + Ku is nonpositive (—L > 0) if it has a positive supersolution 4> (that is 4> > 0

and L(p < 0). This follows since -(log^)" > K + |(log0)'|2 and hence if / is

a compactly supported function, then integration by parts and the Cauchy-Schwarz
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inequality yields

/2|(log0)'|2 < -J /2(log0)"
(2.2)

Thus, -ffLf -f f{f" + */) > 0.

Lemma 2.1. Let y be a strictly stable (—Ly > 0) simple closed geodesic on M2.

There exists 8 <5(y) > 0, such that any geodesic segment contained in Ts(y) with
length > 1 is stable.

Proof. Since y is strictly stable, then — Ly > 0 so if we let k\ be the first eigenvalue

and 4> a corresponding eigenfunction, then k\ > 0 and <fi2 > 0. In particular
—Ly |0| k\\4>\ > 0. Let y c THy) be a geodesic segment with length > 1 and

set <f> <p o ny, then |0| > 0 and (by (2.1)) -Ly \<f>\ > 0. The lemma now follows
from the remarks preceding it.

Let y be a closed geodesic with universal cover y. Then

1) y is stable if and only if y has no Jacobi field / : R —>¦ R with 2 zeroes.

2) y is strictly stable if and only if y is stable and y has no periodic Jacobi field.

The "only if" part of each statement follows by contradiction from the simple
argument of Lemma 2.1 when applied to a first eigenfunction 4>, with / the restriction
of / for 1) to an interval between two zeroes, and for 2) to one period of /. The "if"
part of 2) is clear; to see the "if" part of 1) we argue using (2.2): Let Xn be the cutoff
function (we may assume that Length(y) 1),

Xn(t)

1

1 -
0

(\t\ -n2)/n
for \t\ < n

for«2 < |,

otherwise.

<n2 + n, (2.3)

If / is a function on y, / its lift to y, set /„ //„, and 4>n h (where /„ is a

Jacobi field with Jn(-n2 - n) 0 and Jn\(-n2 - n, oo) > 0. Then by (2.2) for /„

2n2j Kf2 < j Kpxn <

fYl2x2 + ^- f Kff + iffl + fiffixn)2 (2.4)
2« Jnï<\t\<n2+n J

<2n(n + 2) f(f)2 + 3 f\f)2.
J y J y
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Dividing (2.4) through by 2n2 and letting n -> oo gives - / fLf - f f(f" +
Kf) > 0.

We will also use the following two well-known facts; see e.g. [Kl] or [Sp]. One

can also see 4) below by arguing as in 1) and 2) above:

3) A Jacobi field / is uniquely determined by the values (/(0> J'(t)) for any t.

4) A noncompact geodesic is stable if and only if it has no Jacobi field with more
than one zero and it has finite index if and only if there is a bound for the number
of zeros of any nontrivial Jacobi field along it.

Note that 1) and 4) together imply that y is stable if and only if y is.

Lemma 2.2. Any nonisolated leaf I ofX is stable.

Proof. If £ had a Jacobi field with 2 zeroes, then so would every sufficiently nearby
(in the unit tangent bundle) geodesic. But between £ and any nearby geodesic £t

which does not intersect £, we can find (using £ and £\ as barriers) a stable geodesic
x] which has no Jacobi field with 2 zeroes.

From the definition of a lamination and Lemma 2.2 one easily shows:

Lemma 2.3. Each£+ is connected {as a subset of M). Moreover, given x e £+, then

x g £o c £+for some £o £ X; £o is said to be a limit leaf and is stable.

We will need the following result.

Lemma 2.4. If £ e X is noncompact and £+ contains a closed geodesic a, then

£+ a and £ spirals monotonically toward £+.

Proof. Since £ is simple and complete and does not intersect a, once £ gets into
a small tubular neighborhood of a, then one of the two "directions" of £ must be

completely contained in a small tubular neighborhood of o. Now using that a c £+
it follows from this that the "forward direction" of £ is actually contained in a small
tubular neighborhood of a and hence (again since a c £+) must spiral toward a
monotonically.

We say that a geodesic /2 : [0, £2] -? M2 can be written as a normal graph over
a geodesic y\ : [0, k\] --* M by a function u (on [0, fci]) if there is a diffeomorphism
a : [0, ki] -+ [0, k2] such that for all t G [0, h],

y2(a(t)) expyi(f)(u(t)nn(t)). (2.5)

The next corollary follows from Lemma 2.4.
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Corollary 2.5. Suppose that X has closed ends. If l\,l e X and £ is noncompact
with l\ (0) —>¦ £(0), then, for i sufficiently large, £-l± l± and £i is a normal graph
over £.

Recall that we equip the space of C00 metrics on a closed surface M2 with the

C00-topology and we write g, -> g if \g — g; \ct -> 0 for all k. Most of the next
lemma will be needed only in Section 4.

Lemma 2.6 (Lemma B.I of [CHI]). Suppose that the metric g on M is bumpy.

For each L > 0, there exists at most finitely many closed geodesies of length < L.

Moreover, if L is not equal to the length of any closed geodesic in g, then in a

neighborhood ofg each metric has precisely as many {simple) closed stable geodesies

of length < L as g. Finally, ifg; --* g and {/;,&}, {yk} are the (simple) closed stable

geodesies in gi, g, respectively, of length < L, theny;^ -> Ykfari -> oo and each k.

In the remainder of this section the metric on M2 is bumpy and X has closed ends.

For a bumpy metric (or for a metric with either version of the condition KS (1)), each

element in a collection of disjoint simple closed geodesies is isolated. Thus X contains

finitely many closed leaves r\\, r\m ; these are the only limit leaves. Choose e > 0

so that:

dîst(j7/, m) > 2e for j ^ k; (2.6)

TE(rjj) Hi is graphical over rjj for 1 < j < mandl e »CjandFl: Te(U?y/) --* |J qj
is smooth. Using the local product structure, there exist C > 0 and S with dS smooth

so that

\jTE/c(rij)cSc\jTe(r}j) (2.7)

and dS intersects X transversely. 5} denotes the component of S containing rjj.

Corollary 2.7. Suppose that the metric on M is bumpy and X has closed ends. Let rjj
and S be as above. There exists p < oo so that, for each £ e X, each component a

oft \ S has Length(a) < p.

Proof. This follows by compactness.

Using the local product structure, Corollary 2.7 implies that there are collections

Tj, 1 < j < m, of components a of IJ^ £ \ S so that each a e 7} spirals
between r\\. and r]2} ¦ Hence,

min dist( I J a, I J a) e > 0. (2.8)

aeTJl
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3. Morse index bounds for bumpy Kupka-Smale metrics

Let M2 be a closed surface with a bumpy metric. In this section we discuss the

stability of the leaves of a geodesic lamination. The first goal is to prove Corollary 3.7,
which says that a nonisolated leaf in a geodesic lamination with closed ends implies
a non-transverse intersection of two circles which will be described below. From this

corollary we will then be able to give a condition (KS-metrics) on a metric on M
which will imply that all geodesic laminations with closed ends have finitely many
leaves, and that there is a bound for the Morse index of simple closed geodesies; see

Propositions 3.9 and 3.10. In Section 4 we will see that this condition is generically
satisfied.

If y : [t\, t2] --* M2 is a geodesic, then we let Pt2>tl denote the (relative) linear
Poincaré map which describes to first order how nearby geodesies advance along y.
That is, if (a, b) e R2, then Pt2A (a, b) (J(t2), J'(t2)) where / is the Jacobi field
on y with J(t\) a and J'(t\) b. Note that Pt2ttl Pt2,tPt,tx- Set

Ryit)-\-K(y(t)) 0

By the Jacobi equation j-tPt,t\ Ry{t)Pt,t\\ since Tr(/?y) 0 and Ptl>tl is the

identity it follows that PtA e SL(2, R). Observe that if y : [0, sy] -> M is closed,
then Py PSyio is the usual linear Poincaré map.

The existence of a Jacobi field along y with zeroes at t\ and t2 is equivalent to the

fact that Pt2>h (as a linear map from R2 to itself) takes the y -axis to itself; thus we
will want to keep an eye on the y-axis as Pt>tl acts on M2. Note that the 1 in the upper
right corner of Ry means that if we watch the motion of a vector (a,b) under Pt>h,

then at a time t2 when the vector hits the y-axis (i.e. when Pt2ttl (a, b) (0, y)), the

vector is moving clockwise, i.e. ^Pt,t\ (a, b) (y, 0). (This agrees with common
sense: If J{t2) 0 and J'(t2) y, then J{t) has the same sign as y for t > t2.)

If the metric on M is bumpy, and y is a closed limit leaf of a geodesic lamination,
then y

1) is simple,

2) has no Jacobi field / : R -? R with 2 zeroes,

3) has no periodic Jacobi field.

If y is closed, it is clear by the above discussion and continuity that if Py PSyio

does not have a positive real eigenvalue (i.e. if Py does not fix the direction of some
vector in M2), then the path Pt,o, 0 < t < sy, rotates each vector in M2 clockwise
by a positive amount. However, since PmSY+t,o PtflP™ o>in mat case eventually
the y-axis will be mapped to itself, causing a Jacobi field with 2 zeroes. Thus if y
is simple closed and strictly stable, the eigenvalues of Py are of the form X and I/A.
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where 0 < X < 1 ; it follows that Py has a basis (not necessarily orthogonal) of
eigenvectors. (Note that 1 cannot be an eigenvalue by 3).)

A local section S of the geodesic flow along y is obtained as follows; [Bi], [MS].
Pick to, and construct a geodesic r on M transverse to y'{to) at y {to). Let Fl be

the projection from the unit tangent bundle T\M onto M. The surface S c T\M is

the intersection of a neighborhood of y'{to) with the set n~1(r). Each point in S

corresponds (by giving an initial tangent vector) to a geodesic near y. If y is closed,

by following the geodesies around we obtain the (C1) Poincaré map P : S —>¦ S
with fixed point y'{0). (Strictly speaking we will need to make the domain of P
smaller in order to get the range inside S.) The derivative of 3> at y'{0) is the linear
Poincaré map P Py.

We will use without proof the following lemma, which says that an appropriate
limit of geodesies is a Jacobi field. We decline to put a topology on the set of
geodesies on M. However, very loosely speaking, if we think of the space of Jacobi

fields along y as the tangent space to the set of geodesies at y, then the lemma says
that a neighborhood of y in the set of geodesies is diffeomorphic to a neighborhood
of y'{to) in S. The "diffeomorphism" takes a geodesic a to its tangent vector a'{t)
at the time t when it crosses r, and a Jacobi field along the geodesic to the values

{J{t), J'{t)) at that time.

Lemma 3.1. Let y be a geodesic, and for i > 1 let u\ {t) be the normal graph over y
of a geodesic y\. Assume that lim,^oo II {u\ (0), u'. (0)) || 0, and that the limit

exists. Fix to. Thenlimi-^oo ui/\\{ut{to), w-(?o)ll exists and represents a Jacobi field J
with

(3.2)

for all t. Conversely, any Jacobi field is the limit ofa l-parameter family of geodesies

{though it may be that none of these geodesies is the normal graph of a function u{t)
defined for all t).

Suppose now that y is simple closed and strictly stable. The lemma that follows
says that the Poincaré map 3> has the same behavior as its derivative P: It has one

contracting direction (eigenspace for X) and one expanding direction (eigenspace
for 1 A).

Lemma3.2(See [HiPu]). Let y be simple closedand strictly stable. IfE is sufficiently
small, then there is a C1 curve Y through the origin in S with the property that, for
all x g S,

lim 3>nx 0 ^^ x g Y ^=ï 3>nx g S for ail n > 0. (3.3)
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Thus a geodesic r near y has t+ y if and only if the point x in S corresponding
to r lies on Y. Y is called the stable manifold of P.

Corollary 3.3. Let y be simple closed and strictly stable. If I is a noncompact
simple geodesic with £+ y (or £ y), then I has a unique Jacobi field J+ with
the normalization X+(0) e {(cos 6, sin6) \ -n/2 < 6 < n/2}, where X+(t)
(J+(t), J'+(t)), and with ||/+(0ll bounded for t > 0. For this vector field there

exists C and a > 0 such that for t > 0

||X+(0ll<Cexp(-a0. (3.4)

Proof. Let x be a point in S representing 1; this means x I'(to). A vector in the

tangent space to S at x represents (by giving the initial values J(to) and J'(to)) a

Jacobi field along I. By Lemma 3.1, the derivative dxp describes how the Jacobi

field / advances along one loop of t. Using (3.2) it is clear that a tangent vector to
the stable manifold X at x represents a Jacobi field with the desired property.

Corollary 3.4 (See Figure 1). Let y be simple closed and strictly stable. Then there

are four "circles" of noncompact geodesies limiting on y. That is, on each side of y
in M, and for each orientation of y there is a C1 map S1 —>¦ T\M which gives a

bijection between the circle S1 and the set of geodesies £ with £+ y which limit
on y from the given side of M with the given orientation.

Proof. Implicit in the statement of the corollary is the map from T\M to the set

(untopologized) of geodesies on M. One way to parameterize the circle, in the set of
geodesies, is to use the segment of the stable manifold Y between two consecutive

points x representing a single geodesic £ with £+ y. In order to lift the circle to
a C1 map S1 -> T\M, it is clear how to reparameterize along the segment in order
to get the ends to match up. Once this is done, the image of S1 in T\ M will be a

circle close to the curve of tangents of y, whose image in M lies on the given side

of y.

If a geodesic £ lies in one of these four circles of geodesies given by Corollary 3.4,
then the vector field /+ along £ can be thought of as a tangent vector to the circle.

Corollary 3.5. Let y be simple closed and strictly stable. There exists a neighborhood

T of y such that for all x g T \ {/} there is a unique (maximal) geodesic
£x : (a, oo) ->¦ T with the same orientation as y and x e £x. Moreover, a > — oo,

3£x € dT, £x c T \ {y}, £x is simple, (£x)+ y, and F {£x}xedT U {/} is a

geodesic foliation ofT.

Proof. Let T have as its boundary the image in M of the circle in T\ M given in the

previous corollary. (This will need to be done once on each side of y.) To get the
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foliation structure, and the simplicity of £x, we use the fact that the derivative of the

composite
Y —> S —> M (3.5)

n

at the point y'(to) is nontrivial. The latter fact can be seen as follows: A tangent
vector to Y at y'(to) gives the initial values (J(to), J'(to)) of a Jacobi field which
returns after one loop around y as a multiple I/A of itself. Since y is stable and

thus has no Jacobi field with two zeroes, J(to) ^ 0 and thus the image under n is

nonzero.

There is a direct way (using the appendix of [CHI]) of getting Corollaries 3.4,
3.5 without appealing to Lemma 3.2. Namely, by appendix A of [CHI] there exists

a strictly convex function F defined in a neighborhood {F < e) (where e > 0 is

sufficiently small) of y. (In Figure 1 the curve circling y is meant to represent
a level set of F.) Note that each side of y in this neighborhood is convex and

homeomorphic to a cylinder. A straightforward convergence argument shows that

for each x e {F e) there exists a simple stable geodesic £x c {F < e) with
x g £x and (tx)+ y as in Corollary 3.5. That £x, £y do not cross (and that

Ux £x {F < e) \ {/}) follows easily from Lemma 3.1 using the linear Poincaré

map. Note that in this case each orientation of each component of {F e) gives a

parameterization of one of the four circles.

Corollary 3.6. Let y be simple closed and strictly stable. There exists e > 0 such

that ifX- is the vector field defined on TE(y) \ {y} by X_(x) y'(0) where y is a

noncompact geodesic with y_ y andy(0) x, then X_ is C1. X_ and its (first)
derivatives are also continuous functions of the metric on M. Moreover, there exists

a C2 curve c orthogonal to X- and such that dc e 9TE(y) U y.

The statement that X- is continuous in the metric makes sense in light of
Lemma 2.6. The vector field X_ is also locally defined and C1 with respect to
the metric in a neighborhood of a point t(to) if I- y, y is simple closed and

strictly stable, and if the vector field /_ along £ has /_ (to) ^ 0.

Proof of Corollary 3.6. The continuous dependence of the derivatives of X- upon
the metric follows from (in order) the continuity of the geodesic flow in the metric;
the fact that the Poincaré map P is C1, with derivatives depending continuously

upon the metric; the fact that the stable manifold Y is C1, with derivatives depending
continuously upon the metric. It can also be seen more directly using only the

continuity of the geodesic flow and general dynamic properties of the flow near y.

The next corollary is central to what follows. A noncompact leaf £ in a geodesic
lamination with £+,£- simple closed and strictly stable geodesies lies in the intersection

of two circles of geodesies, corresponding to its limit leaves £+ and £-. If £ is not
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an isolated leaf, say £\ e X with £-, (0) —>¦ 1(0), then as in Corollary 2.5 the leaves £-,

have the same limit leaves and thus also lie in the intersection of the same two circles
of geodesies. Corollary 3.7 can be thought of as saying that under these assumptions,
the two circles of geodesies have a common tangent vector at the point £ ; thus the

two circles are intersecting non-transversely. The vector field /+ (respectively /_)
defined in Corollary 3.3 should be thought of as the tangent vector to the circle of
geodesies ending at £+ (respectively £-) at the point I.

Corollary 3.7. Let X be a geodesic lamination on M. If £, t-x e X are (distinct)

noncompact, £+, £- are strictly stable simple closed geodesies, and £i(0) --* £(0),
then £ is stable and there exists a bounded (nontrivial) Jacobi field on £. Thus

J+ J-.

Proof. As in Corollary 2.5 we can assume that £-l± £±, and that £\ is the normal
graph of a function u\ (t) over £. Let S be a local section near the point £'+(0). By
Lemma 3.2, £ and £\ all correspond to points in S lying on the stable manifold Y.

By Lemma 3.1, lim^oo w,-/||(w,-(0)), w-(0))|| exists and is equal to /+. By the same

reasoning, lim^oo w?/||(w?(0), w-(0))|| /_.

Corollary 3.8. For a closed surface with a bumpy metric, the dynamical and vari-
ational versions of the Kupka-Smale hypothesis are equivalent. A bumpy metric is

KS (by either definition) if and only iffor each simple stable (noncompact) geodesic
with closed ends, /+ ^ /_.

Proposition 3.9. Let M2 be a closed surface with a bumpy metric and let X be a

geodesic lamination with closed ends. Then each leaf has finite index and X has at
most finitely many closed leaves each of which is either isolated or strictly stable.

Moreover, if X has infinitely many leaves, then there exists a stable noncompact leaf
with a (nontrivial) bounded Jacobi field.

Proof. This follows by combining Lemmas 2.2, 2.1, and 2.4 with Corollary 3.7. The
index of each noncompact leaf is finite since by Lemma 2.1 and Lemma 2.4 index

only accumulates on a finite interval away from the two ends.

There are two different ways of proving our bounds on the Morse indices. One is

to use exclusively the Poincaré map and Jacobi fields (this is the way we will prove
Proposition 3.10 below). The other is to construct positive supersolutions of the

Jacobi equation. A particularly simple example of the second is given in Lemma 2.1.

Each approach uses the eigenvalue gap, that is that there are no bounded (nontrivial)
Jacobi fields on simple noncompact geodesies with closed ends.

Before proving our next result we will need a brief discussion on convergence of
a sequence of simple closed geodesies {/,} in a closed orientable surface M2. Let
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ro > 0 be sufficiently small depending only on max^ | K | and the injectivity radius
of M. Fix x g M, then Bro(x) n y, is the union of disjoint geodesies segments of
length at most 2ro for each i. Note that any two such that come close to each other
are "almost parallel". In fact it follows easily from the equation for geodesies that for
each i there is a coordinate chart Bro(x) -> 5ro(O) c R2 such that each component
of Bro(x) n y, is mapped to a line segment of the form 5ro(O) n (R x {t}) c R2.

In this way one can think of each y, as a geodesic lamination where the size of
the coordinate chart (and the regularity of the maps) given in the definition of a

lamination is independent of i. Since by the Arzela-Ascoli theorem such a sequence
of coordinate charts is precompact it follows that a subsequence of the y, 's converges
(as a sequence of laminations) to a geodesic lamination X. Implicit in this is that a

sequence of laminations is said to converge if the corresponding coordinate charts

converge and the local transversals converge as closed subsets of R in the Hausdorff

topology.
It follows from this discussion that if M2 is closed with a bumpy metric and {/;}

is a sequence of simple closed geodesies, then after passing to a subsequence we may
assume that y, --* X, where X is a geodesic lamination. Suppose that X has closed
ends and let {r]j} be the finitely many closed leaves of X and let e > 0 be sufficiently
small so that (2.6) holds. Let S be given by the remarks surrounding Corollary 2.7.

Note that in this case, where yt —* X, the support of X is connected and each ry is a

nonisolated leaf, hence strictly stable. If in addition M2 does not have a noncompact
simple geodesic with a (nontrivial) bounded Jacobi field, then by Proposition 3.9 we
can let {h}k=i,m,m+n be the finitely many noncompact leaves of X ordered so that
the first m are the stable leaves. It follows that for i sufficiently large each y, can be

decomposed into pieces that spiral very tightly around one of the r\-} 's and pieces that
are very close and almost parallel to one of the (Ik \ S)'s. Note that although there
is no a priori bound for how many pieces that circle one of the rç/s or are almost

parallel to one of the {lu \ S) 's for k < m and a given i, only one piece can be very
close to an unstable leaf Ik- Had this last claim not been the case then we would get
a contradiction by writing one of the two (disjoint) pieces as a graph over the other
and arguing as in Corollary 3.7 to get a positive Jacobi field.

Proposition 3.10. Let M2 be a closed surface with a bumpy Kupka-Smale metric.

Ify; is a collection of simple closed geodesies and every limit of{yi} is a lamination
with closed ends, then there is a uniform bound for the Morse indices of{yt}.

We say that a bumpy metric on M2 is a bumpy Kupka-Smale metric (or bumpy
KS-metric) if for each simple stable (noncompact) geodesic with closed ends in M,
any bounded (normal) Jacobi field vanishes identically. Note that if M2 is a closed
surface with a bumpy metric, then by the results above the metric is KS if and only
if for each simple stable (noncompact) geodesic with closed ends, /_ ^ /+.
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The proof of Proposition 3.10 will be by contradiction. We will assume that y, is a

sequence of simple closed geodesies in a fixed metric and show that the Morse index
of these is uniformly bounded. A limit of such a sequence is a geodesic lamination.
The relative Poincaré map of one of the y, 's (which will tell us how many zeroes a

Jacobi field can have) near the limit lamination will be pieced together from pieces
taken from the leaves of the foliation. Thus we will consider first the relative Poincaré

map along such a leaf y. The next three lemmas examine the three cases: closed
leaves rjj, noncompact but stable leaves Ik (k < m) and noncompact unstable leaves

Ik (k > m). We need to watch the image of a fixed vector under the relative Poincaré

map to see how many times it can cross the y-axis. Recall that such crossings are

always transverse and clockwise. In order to prevent the corresponding Jacobi field
from having more than one zero we will try to trap it in the right half plane after it
crosses the positive y-axis.

First let r\ be simple closed and strictly stable. Then using the fact that no Jacobi

field has 2 zeroes, it is not difficult to see that the Jacobi fields J± have no zeroes; thus

the vectors X±(t) (/±(0> /±(0) e ^2 never lie along the y-axis. If (according to

our convention above) J±(t) > 0 for all t, then X- and X+ both lie to the right of
they-axis, andX_ lies between the positive y-axis andX+. Pt,sX±(s) X±(t) and

PttS preserves the four quadrants defined by ±X±. Pt+Sl!,t has eigenvectors X-(t),
X+(t) with eigenvalues I/A., A (0 < A < 1) (the eigenvalues are independent of t)
thus the directions of the vectors X±(t) are periodic in t. Pt+Sll,t fixes these directions
and pushes vectors in the four "quadrants" away from the X+ -direction and toward
the X_-direction. Thus the region between the positive y-axis and the vector X+ is

a "trap" from which the future orbit of a vector under P cannot escape. Let Xo(t) be

a (unit) vector in M2 halfway between X±(t).

Lemma 3.11. Let r\ be a strictly stable simple closed geodesic. Then there exist

e, H > 0, so that any geodesic, which is the normal graph over r]\[a^]Withb—a > H,
of a function with norm < e, has the following property: If J is the Jacobi field with
(J(a), J'(a)) Xo(a), then J has no zero in [a, b], and (J(b), J'(b)) lies above

Xo(b) (in the right half-plane). {Here both the geodesic and its Jacobi field have

been reparameterized as graphs.)

Proof. This follows from the fact that by (2.1) the curvature K (as a function of
arclength), and thus the relative Poincaré map Pt+Sj),t for the nearby geodesic will be

close to that of r\, and the fact that the latter has eigenvalues A, 1 /A. This hyperbolicity
means that we do not need a bound for H.

Lemma 3.11 also follows from Lemma 2.1.

If X is a geodesic lamination with closed ends on M2 with a bumpy metric, then

we can find an e and an H which will work for each closed leaf. We will assume this
in the next two lemmas.
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Now let £ be noncompact and stable, with no (nontrivial) bounded Jacobi field.
Assume £- and £+ are strictly stable. The vectors X±(t) (J±(t), J±(t)) never cross
the y-axis, and, as above, X- lies between the positive y-axis and X+. PttS preserves
±X± and the four quadrants. Let P+(t) be the (nonrelative; ordinary) Poincaré map
for £+, with eigenvectors V±(t). For T large there is a map 0 : [7\ oo) ->¦ R so

that £+(4>(t)) is a (correctly parameterized) normal graph over £(t) on [T, oo). For
fixed s,

lim ||Pt+,,t(£) - P0(O+Î)0(O(£+)|| 0. (3.6)
t

Thus in particular when s si+, the period of £+, Pt+S)t(£) will have eigenvectors
close to V± and eigenvalues close to those of P+(4>(t)). Given e > 0, [i > 0, for f

sufficiently large the image under Pt)S(£) of any vector not within an angle /x of
±X+(s) (in M2 "at the time s") will lie at an angle < e of V_(4>(t + s)). From this

it follows (though different arguments are needed for the two cases) that

^\\x(t)\\ l|V(0(O)ll"

(As f gets large, V_ will "soak up" all vectors except V+, including X_. X+ does not
get soaked up, and must therefore equal V+.) Thus as £ spirals toward £+, the basis

(X_, X+) approaches the basis V_, V+), so that the two relative Poincaré maps can
be glued together. Similarly, as t -> —oo, the basis (X-{t), X+{t)) approaches a

basis (U-(\/s(t)), U+(^jr(t))) of eigenvectors of P-(^(t)) for an appropriate repa-
rameterization f.
Lemma 3.12. For each such (parameterized) geodesic t, there is an interval [a, b]
and a 8 > 0 so that, for each geodesic y which is the normal graph over £\[a,b] of a

function with norm < S, the following hold:

1) y\[a-H,a] and y\[b,b+m are normal graphs of functions with norm < e over
closed leaves as in Lemma 3.11.

2) IfJistheJacobifieldwith(J(a), J'(a)) (Uo(i>'(a)) (a unitvector midway be-

tweenU+{i]f{a)) andU-{i]f{a))), then Jhas no zero in [a, b], and{J{b), J'{b))
lies above Vo(<f>(b)) (in the right half-plane). (Here both y and its Jacobi field
have been reparameterized as graphs.)

Proof. This is similar to the previous lemma.

Lemma3.13. Let £ be a noncompact, unstable leaf. Assume that £± are strictly stable

simple closed geodesies. There is an interval [a,b], a 8 > 0, and N g Z so that, for
each geodesic y which is the normal graph over £\[a,b] of a function with norm < 8,

1) y\[a-H,a] and y\[b,b+m are normal graphs of functions with norm < e over
closed leaves as in Lemma 3.11.
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2) If J is a Jacobi field along y \ [a^], then J has at most N zeroes.

We can find a, b and S which work simultaneously for all the noncompact leaves.

Proof ofProposition 3.10. Suppose now that there were no bound for the Morse index
of all simple closed geodesies on M ; it follows easily that there exists a sequence
{/?} of simple closed geodesies with index —>¦ oo and so that y, --* X, where X is

a geodesic lamination. Let {rjj}, {h}k=i,...,m+n be the leaves of X as above. Let
H, e, 8, a, b be as above. If i is sufficiently large, y, will consist of a union of
pieces, each of which lies within e of a closed leaf rjj for a time > H, or which (after
reparameterization) is a normal graph with norm < 8 over some £k\[a, b]. We can

assume that only one piece is a normal graph over Ik if k > m (by convention Ik is
unstable for k > m). Let / be a Jacobi field along y y,-. We claim that / can have

at most n{N + 1) zeroes. By Lemmas 3.11, 3.12, if y|[c,d] is a union of pieces as

above, but only using the closed leaves rjj and stable noncompact leaves, then J\[c,d\
can have at most one zero. Once the vector (J(t), J'(t)) crosses the (say) positive
y-axis, it will be trapped in the right half-plane, preventing / from having another

zero. The claim follows using Lemma 3.13, and thus the proposition.

4. Genericity of bumpy Kupka-Smale metrics

We begin with some general comments on the Kupka-Smale hypothesis.
A vector field on manifold is Kupka-Smale (see [PW]) if (1) all closed orbits are

hyperbolic, that is, their Poincaré maps do not have any eigenvalue of modulus 1,

and (2) stable and unstable manifolds of closed orbits intersect transversely. Note
that without hyperbolicity, in general there are no stable and unstable manifolds,
so (2) does not make sense without (1). The Kupka-Smale Theorem states that

Kupka-Smale vector fields are generic among Cr-vector fields, for r > 1. Our first
(dynamical version) definition of KS metric has in mind the Kupka-Smale condition
on the vector field generating the geodesic flow on the unit tangent bundle of M.
There are two differences: First, we are interested only in simple geodesies. Second,

we only insist upon hyperbolicity for closed geodesies whose Poincaré maps have real

eigenvalues. Note that this includes all stable closed geodesies and all closed ends

of simple geodesies, so the manifolds in (2) are indeed manifolds. Since a Poincaré

map coming from the geodesic flow on a surface always has determinant 1, if the

eigenvalues are not real there is no hope of pushing them off the unit circle by a small

change in metric. Thus in the sense of dynamics of simple geodesies our KS-metric
condition is the most one could ask of a generic metric. A careful reader can check
that this condition alone is enough to prove Theorems 1.1 and 1.2.

The variational version of the KS-metric condition is also interesting. Condition

(1) is a weak version of the bumpy metric condition. It says that, to first order, y
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does not lie locally in a foliation of M by simple closed geodesies. Condition (2)
is an analog of the bumpy condition for noncompact geodesies, and appears to be

independent of the bumpy metric condition.
In this section we will show that on M2 bumpy KS-metrics are generic. Here is

the idea: A simple noncompact geodesic y is an intersection point of two circles of
geodesies spiraling toward y_ and y+. The intersection will be transverse if the two
circles have different tangent vectors at y, i.e., if /_ ^ /+. We will show how to
deform the metric so as to make the two circles intersect transversely.

Fix a metric g on M and suppose that y\, yi c M are strictly stable simple
closed geodesies (where y\ yi is allowed). Let F_ be the noncompact (unit
speed) geodesies y with y_ y\, and F+ those with y+ yi- If y <= r_» then

we let F- : (—e, e) x R -> M be a (nontrivial) geodesic variation of y so that

F_(s, ¦) e T_, F_(0, ¦) y, and g(^, ^)|/=o 0. Likewise if y e F+,
then we let F+ be a (nontrivial) geodesic variation of y consisting of geodesies

asymptotic to yi. (Note that by Section 3 these variations are essentially unique; we

can also assume that f^F±(0, ¦) J±(y) and gf^F±(O, ¦) /±(y)). We say that
F_ and r+ intersect transversally at y if the two curves representing F_ and F+ in
a local section S at y are transverse, i.e., if given a curve v : (—e, e) —>¦ M with
v(0) y (to) for some to and v'(0) transverse to y'(0), the curves ^-|v X_|v)

9F iand -g^ | v X+ \ v) in FI x

(v) c 7i M are (well defined and) transverse at 0. (Note

^(0, 0) ^that ^(0, 0) ^(0, 0) y'(to).) Now a tangent vector to the curve

at s 0 is given by (v*(^).F_(0, to), V*{j^)^§r(®, to)), which is proportional to

(J-(to)n + a-jfi, J!_(to)n),wherea is the slope of the tangent vector to v in the (s, t)
coordinates, and similarly for F+, /+. Thus transversality means that the vectors

(J-(to), J'_(to)) and (J+(to), J+(to)) are not parallel. Since the Jacobi fields are

determined uniquely by their and their derivatives values at t to, by Section 3

transversality of F_ and F+ at y is equivalent to the fact that y has no bounded
nontrivial Jacobi field. To prove that the set of bumpy KS-metrics on M2 is residual it
suffices therefore (by Lemma 2.6) to show that a residual set of metrics on M2 consists

of bumpy metrics with the property that, for each pair of strictly stable simple closed

geodesies y\ and yi, F_ and F+ intersect transversally.
The rest of this section is devoted to the proof of:

Theorem 4.1. On a closed surface the set of bumpy KS-metrics contains a residual
set.

Proof of Theorems 1.1 and 1.2. Theorems 1.1,1.2 follow by combining Theorem4.1
with Propositions 3.9, 3.10, respectively.

In Lemmas 4.2, 4.4 below we let M2 be a closed surface with metric g and

c : [—e, ro + e] —>¦ M be a simple Cm+2 curve parameterized by arclength. Let nc
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be the unit normal (so nc g Cm+1) and let <£>: [—e, so + e] x [0, e] -> M be

given by 4>(s, f) expc^(tnc(s)) so that 4»"1 are geodesic normal coordinates in
a neighborhood of c. In these the metric is of the form f2(s, t)ds2 + dt2 where

/ G Cm. (Note that in any metric of this form, the curves s constant are minimal
and thus geodesic.)

We will give a simple direct argument to show that the set of strictly bumpy metrics

on M is dense. The following deformation lemma will be needed to show that on a

surface for a dense set of metrics certain geodesic variations intersect transversally.
The lemma allows us to alter the geodesic flow in a controlled way by altering the

metric.

Lemma 4.2. Let M2, c, <i> be as above. Let cw : [—e, so + e] -> M be the

curve cw(s) $>(s, e — ws). There exists a l-parameter family of Cm metrics gw

{w g {-8, 8)) such that go g, each gw g on M \ $([—£, so — e] x [0, 3e/4]),
(£>w(s, e) cw(s) for s g [0, so], and yt$w(s, e) points perpendicular to the curve

cw (s). {Here i1"1 are geodesic normal coordinates in a neighborhood ofc in the metric

gw.) That is, in the gw metric, the geodesies which enter the box 4> perpendicular
to the curve c{s) exit perpendicular to the curve cw{s).

Proof. Fix w > 0 sufficiently small. Let ^~l be geodesic normal coordinates in a

neighborhood of cw parameterized so that ^w(s, t) : [—e, so + e] x [0, e] —>¦ M,
and tyw(s,~) are geodesies moving away from c and ending up on cw orthogonal

to Cw In particular Vw(s, e) cw(s). In these coordinates the metric can
be written as f2(s, t)ds2 + dt2. Let r\ : [0, e) —>¦ [0, 1] be a smooth cutoff function

with rç|[0, e/2] 1. Then $>~}w(s, t) (^(f)^"1^, t) + (1 - r]{t))^wl){s, t)
is a diffeomorphism and gives therefore local coordinates (s,t). In these define
a metric by gw(s,t) (r](t)f(s,t) + (1 - r](t))fw(s,t))2ds2 + dt2. Finally,
let 4> ^ Cq°(—«.so + £) witn 0 < 0 < 1, 0|[0, so] 1, and set gw(s,t)
<fi(s)gw(s, 0 + (l —<l>(s))g(s, t). It is easy to see that this gives a l-parameter family
with the desired properties.

We will use this deformation to make the family F_ (locally) transverse to F+.
The metric will be deformed in a rectangle 4> to change the family F_ as it moves

through the rectangle, (roughly speaking) before it meets the family F+ at the top of
the rectangle. To see the effect of this deformation of the metric on the image of the

family of geodesies F_ in the local section S given by the (fixed) curve co at the top
of the rectangle, we will need to know the angle at which these geodesies cross the

curve co. The image of the family in S is (in appropriate coordinates) the graph of
the crossing angle as a function of arclength along co. Lemma 4.4 below begins by
showing that the deformation of the metric given in Lemma 4.2 moves this graph (and
thus the curve which is the image of the family F_ in S off itself. The following
version of Sard's theorem says that if we can move a curve in the plane off itself,
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we can make it transverse to a second curve. (Here we say that the intersection of
the image of h and the graph of / is transverse if h'(t) (^, -^) is transverse to
(1, f'(x)) for every (x, y) and t with h(t) (x, y).)

Lemma 4.3. Let fw{s) be C1 functions, where s e [0,1] and w e {-8, 8). Let
h-.R-^l^beC1. If\^\ w=o is nonvanishing, then there exists a sequence w, -> 0

such that the curves (s, fw. (s)) are transverse to h.

Proof. By a C1 change of coordinates, we can assume the functions fw(s) are
constant. In these coordinates trans vers ality of h and fw is equivalent to fw being a

regular value oi^oh, where jt2 is projection onto the second factor in R2. By Sard's

theorem the claim easily follows.

Lemma 4.4. Let M2, c, <i> be as above with m 0. If h: [0, 1] —>¦ T\M\<i>(-, s)
is a C1 curve, then there exists a sequence of metrics g; --* g with g; g on
M \$([—e, ^o+e] x [0, 3e/4]) and such that in any gi, ^ intersects h transversally

along <£>(-, e)|[0, sq\. Here 4»"1 are geodesic normal coordinates in a neighborhood
of c in the metric gi.

Proof. Assume first that c is actually C00. As above let 4»"1 (s, t) be geodesic
normal coordinates in a neighborhood of c so that we can in particular think of t
as a function on this neighborhood. Moreover, in this neighborhood the metric is

f2{s,t)ds2 + dt2. Let gw,<&w be given by Lemma 4.2 and set hw ^|$(-,e). It
follows from Lemma 4.2 that | -^. _Qhw is nonvanishing for s G [0, jo]. Namely, it
is easy to see that hw is C1 so we need only check that the derivative is nonvanishing.
To see this let yw: [9o,6w] -> M be a (unit speed) geodesic (in the metric g) with
Yw(Oo) e {^(s,s - ws)}, y^(6o) orthogonal to {<&(s,e - ws)}, and yw(6w) e

{${s, e)}. Set u{6) {t o yw)>(9) g(y^(0), Vf), then u'{&) Uesst(y^, y'w)

(l-u2(6))^r. Hence, |(log[(l + m)/(1 -m)])'| < C, where C C(g) is a constant.
In particular,

+ u(6w)) (1 - u(6o))

-u{6w)) (1 +u{
Moreover, it is easy to see that for some a a(g) and some ß ß(g) > 0

\0w-90\<aw and \u(60)\>ßw. (4.2)

Combining (4.1) with (4.2) we conclude that for some ß' ß'{g) > 0

\u(6w)\>ß'w. (4.3)

As gw g on M \ $([—£, so + e] x [0, 3e/4]) it follows easily from (4.3) that

^ VJ-o^w is nonvanishing for s G [0, so] and the lemma follows from Lemma 4.3.
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In the general case where c is only C2 let cj be a sequence of C00 curves in M
with | c — Cj | C2 —>¦ 0. It follows easily from the continuity of the quantities involved
that for j sufficiently large (but fixed) if gwj and <&wj are given by Lemma 4.2 with

respect to cj and hwj dwr] |$(-, e), then \j^\w=o^wj\ is nonvanishing. The
lemma now easily follows from Lemma 4.3.

Let again M2 be a closed surface with a metric g and suppose that y\, y2 are

strictly stable simple closed geodesies (where y\ y2 is allowed). Let F^ + be the

y g T_ n r+ with y \ Ts(y\ U y2) of length < k.

The next result will follow by applying Lemma 4.4 a finite number of times.

Lemma 4.5. Let M2, g, y\, and y2 be as above. Given k > 0, there exists gn --* g
with gn g in a neighborhood of y\ U y2 and such that for each gn, Y-{gn) and

F+(gn) intersect transversally at T^L +{gn).

Proof. Fix 8 small but positive. Letai: S1 —>¦ M be a simple closed curve in Ts/2 (yi)
meeting each geodesic in F_ exactly once (Corollary 3.4). Parameterize F_ as a map
F- : S1 x WL -+ T\M with F_(s, 0) o\{s). Similarly let a2 : S1 -? Ts/2(y2) meet
each geodesic in F+ exactly once, and let

F+ : S1 x M -? T\M with F+(s, 0) o2{s). (4.4)

(Of course we want F_ --* y\ as t --* — oo and F+ --* y2 as t --* oo.) Given e

sufficiently small, and x e T$/2{y\), we can find (Corollary 3.6) a unit speed curve
c: [—2e, 2e] -^ T^(yi) withc(O) x, and which is everywhere perpendicular to the

vector field X_. Let 4> : [—2e, 2e] x [—e, 0] -^- M be geodesic normal coordinates,
with <b(s, 0) c(j) and <b(s, ¦) G F_ (when extended) for each s. Given k, and

y G F_, there exist e, yu. > 0 (depending only upon k, not on y) and to G [—1, 0]
(depending upon k and y so that this box <£> for the point x y (to) has the following
properties:

a) Geodesies entering the bottom (t —e) of the box vertically (tangent to s

constant) have never been in the box before.

b) Geodesies leaving the top (t 0) of the box at an angle less than /j, of the

vertical travel at least a distance 5k before returning within e of the box.

Let c: [-2s, 2e] -> FI"1^) be the lift of the vector field X_: c X_|c. Note that

by a) above, c is the intersection of the local section S FI"1 (c) c T\M given by
the transversal c, with the image of F- \ (-oo,0] • Let D be the disk in S consisting of all
vectors in FI"1 (c) making an angle less than /j, with X-. Consider the image in T\M
of F+|[_fe)00). This "tube" will intersect D transversely if /x < n/2. The tube will
thus intersect D in a union C^ of C1 curves whose total length is finite. An arbitrarily
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small alteration gw of the metric in the box will not change the intersection Ck of D
with F+\[-k,oo) by b) above, but will, by Lemma 4.4, make c|[-e,e] transverse to Ck.

Given k we can find a finite number of such boxes <i> with each geodesic in F_
intersecting somec|[_ej£]. Thus we will be done if we can make each c|_ej£] transverse

to Ck. Now when we alter the metric in the second box it may change the image in
the section D at the top of the first box, of the forward tube F+| [_£,(»)• However a

sufficiently small change of metric in the second box will not destroy transversality
for the first box due to the fact that, as a consequence of Corollary 3.4, transversality
is an open property.

Since transversality of the sets r_(g) and r+(g) along F^+(g) for any fixed
k > 0 is an open property in g (this follows easily from Corollary 3.6) we get:

Corollary 4.6. Let M2, g, y\, and /2 be as above. lfY_{g) and T+{g) intersect

transversally at F^ +(g), then there exists an open neighborhood U of g such that

for each g e U, r_(g) and r+(g) intersect transversally at F^+(g).

Proof. Suppose not; it follows easily that there exists g, -> g,y\j -> y\,Y2j -> yi,
and yi e r*)+(gf) with (-g^, -^f-) (^r1. ~S^f) at Y- Clearly y, -* y e

F^ ,(g) and by Corollary 3.6 it follows easily that (^-, 3^r) i^jr, i^w) at Y

which is the desired contradiction.

Proof of Theorem 4.1. Fix integers L,k > 0 and let gz,,^ be the set of metrics g on
M2 with the following two properties:

a) All closed geodesies with length < L are nondegenerate critical points.

b) If Y\ > Yi are simple closed strictly stable geodesies with length < L, then F_ (g)
and r+(g) intersect transversally along Yk_+(g).

Combining the fact that the set of bumpy metrics is dense (see [Ab], [An]) with
Lemmas 2.6, 4.5, and Corollary 4.6 we get that %L,k is open and dense, hence

nL,t>o 9-L,k is residual.

5. Geodesic laminations without closed ends; Theorem 1.3

A train-track is a one-complex T embedded in a surface satisfying conditions of (1)
smoothness, (2) nondegeneracy, and (3) geometry. The definition is quite involved,
and probably familiar to many readers. Rather than attempt an abridged, incorrect
version, we refer the reader to [HaPe] (see p. 4 there) for this and other definitions.

Let F be a disk with fourholes removed, see Figure 3a, and let ./V be the topological
double of F so ./V is a closed orientable surface of genus 4. Equip ./V with a metric
with negative curvature so that the boundary of F c N consists of geodesies.
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Figure 3a. The disk-minus-4-holes F, the disk-minus-3-holes Fq, and generators A, B, C for
the fundamental group of Fq.

On F pick three of the holes; there is a unique closed geodesic coon F enclosing
these three holes but not the fourth. Let Fq C F be the disk bounded by a>, with the

three holes removed. The fundamental group of Fo is a free group on three generators
A, B, C, one for each hole. Figure 3b shows a transversely recurrent train-track T

Figure 3b. The train track T and the closed curves cr, on the double N of F.

on N. (That T satisfies the "geometry" condition for a train-track is clear from the

characterization on the top of p. 6 in [HaPe] : The complement of T in Af is connected,
and clearly has no component that is an embedded nullgon, monogon, bigon, annulus,
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or punctured annulus. Transverse recurrence can be seen by looking at the closed

curves on JV that are the doubles a; of the curves in Figure 3b. The reader will easily
see how to find curves as the o\ 's so that each branch of T meets at least one of
the a;, and for each i, the complement in JV of T U a; is either connected, or has

two components, one of which is an embedded trigon. Since neither component is

an embedded bigon, each o\ hits T efficiently ([HaPe], p. 19).)
In Figure 3c we see a simple curve p on F that for t > 0 is carried on this train-

track. The bounded homotopy class (that is, we only consider homotopies that move
points a bounded distance in the universal cover) of the forward end of the curve p

Figure 3c. The curve p.

determines a (semi-)infinite word BA~lB~lCBAB~l A
and C. Theorem 1.3 will follow from two lemmas:

in the generators A, B

Lemma 5.1. An uncountable number ofdifferent words in A, B, C comefrom different
completions of the forward end of p as a simple curve carried on the train-track T.

Lemma 5.2. Each such completion of p is bounded-homotopic in F to a simple
geodesic.

Proof ofLemma 5.1. In Figure 3c each of the holes a, b, c lies in a snake-like cavity
bounded by a segment of p. Two of these cavities open out where p meets a>; the

third ends at the forward end of p. The retraction of p onto T retracts the head of the

snake to the boundary of a monogon (the monogon actually lies in the disk, before
the holes have been removed to form F) whose interior contains no other branches
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of T, and identifies the two sides of each snake's body, so a simple curve carried by T
that enters one of these cavities has exactly two ways to continue up to homotopy:
Clockwise or counterclockwise. These properties will persist as we complete the

curve p.
At present the forward end of p lies at the top of the picture. It will proceed around

to the bottom, and enter the cavity containing hole a. The reader can easily verify that
when one snake eats another as in Figure 4a the possibilities are as follows: Suppose

Figure 4a. One snake about to eat another.

the left snake has the word R in the letters A, B, C, and the right snake the word S.

(R is conjugate to A, and S to B.)

(1) The word (RS)kRSR-1(RS)~k, k>0.
(2) The word (RS)kR(RS)-k, k>l.
(3) The infinite word RSRSRSRSR

In the first two cases, the forward end emerges as in Figure 4b. It will then proceed
to enter the third cavity, and the above possibilities repeat.

Figure 4b. The tail of the second snake emerges.

The important things for us are: There are no "wrong turns", that is the curve can

always be completed as a simple curve carried by T; and the curve never runs out of
possibilities, that is there is always another choice of words in the future. It follows
that an uncountable number of different words results.

Proof ofLemma 5.2. Let N be the universal cover of JV and N (oo) the sphere (circle)
at infinity of N; see for instance [Eb]. Let p be a lift of p to N, with p the point lying
over the intersection of p with co. Let co be the lift of co through p, and F be the lift
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of F through p. By proposition 1.5.1 of [HaPe] (that proposition is stated in case of
constant negative curvature but the argument extends) p has two (unique, and distinct)
limit points q, r on JV(oo). Let £ be the geodesic on N with these two limit points.
If r is a geodesic on N with neither q nor r as a limit point, then the topological
intersection numbers #(p, t) and #{£, r) are well defined and equal. Because N has

negative curvature, the number of points of intersection of two geodesies in N is 0

or 1. It follows that £ lies on F, and on Fq after crossing co. Moreover, if à is a

geodesic segment, with boundary on dP, then #(p, a) #(£, â). The reader can

easily verify that for each branch of T there is a curve r on Fo, with boundary on
dFo, that intersects T exactly once. By making p stick close to T, we can assume
that r and p intersect once each time (and only when) p follows the given branch

of T (i.e., when the retraction of p onto T includes the branch). Each lift of r to Fo

that meets p, say at a point p\, is homotopic to a geodesic a-, with boundary on dFo,
and ai will intersect £ exactly once, say at q\. We can now define a homotopy from p
to £ that starts by taking each point p\ to q\ ; then "pull tight" to straighten out the

curve in between the points q\. Thus p is homotopic to £ inside F, and p is homotopic
to £ inside F, by a homotopy that does not move any point very far.

It remains only to see that £ is simple. Since p is simple, p does not intersect any
other lift of p. The same intersection number argument as before shows that £ does

not intersect any other lift of £, which implies that £ is simple.

Proof of Theorem 1.3. First we will produce an open set of metrics on M having
geodesic laminations without closed ends. Fix a metric on JV with constant curvature

-1 (F is one-half of N) and letU c N be an open neighborhood of F. On the

given surface M we can complete the metric on U to a metric on M. Any nearby
metric on M will contain a (unique) metric surface F c U of negative curvature and

geodesic boundary that also has a completion to a metric of negative curvature on N.
The statement now follows from the lemmas as follows: If £ is the geodesic

in F isotopic to p, and £ has closed ends, by Lemma 2.4 the word determined by p
will eventually repeat. But uncountable many of the words determined by simple
completions p will be nonrepeating. For such p the closure of £ will be a lamination
of F with nonclosed ends.

Next we find a (smaller) open set of metrics, each having a geodesic lamination
without closed ends that is the limit of a sequence of simple closed geodesies.

Let F\ be a topological disk-minus-6-holes. As before we assume a metric of
negative curvature on F\ with geodesic boundary, that extends to a metric of negative
curvature on the topological double JVi of F\. Let œ be a geodesic enclosing holes a,
b, c but not holes d, e, f. Put the train-track T inside œ as before, and a similar train-
track S around the holes e, f, g. As before we can find a simple curve p on F\ that

crosses œ once, and whose bounded homotopy class determines a (doubly) infinite
word starting in d, e, f and ending in a, b, c, and not repeating at either end. We will
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next describe a sequence of simple closed curves pu on F\, which "approximate" p.
The curve pk starts at a point on co, and follows the path of p in and out of k — 1

cavities. In the fc'th cavity, the curve pu will turn around counterclockwise, and then
stick close to the (just laid out) strand of pk on its left, until it retraces its steps back
to the intersection with a>. The other half of the path of pu does the same thing
on the other side, then closes up. There will be a simple closed geodesic yu in the

free homotopy class of pu- Take lifts pu through a fixed point p lying above œ, and

corresponding lifts yu- The curve p will cross (in order) a sequence ct, of lifts of (a

finite number of) geodesic segments oj on F\, with boundary on dF\, that keep track
of which choice was made at each branch. The same will be true of the geodesies yu,
as long as pk follows p. Now fix /. By the Arzela-Ascoli theorem, for each / any
limit lamination of the sequence yu will contain a geodesic tj with a lift that has

the same intersection with the aj, \\j\\ < J, as p. Finally, the closure of the set of
geodesies tj in the unit tangent bundle contains a geodesic I with a lift that intersects
all of (and only) the segments ct, intersecting p, in order. This geodesic does not
have closed ends, since its "word" is the same as that of p (note that their lifts are

bounded-homotopic), and hence nonrepeating. By construction any limit lamination
of the sequence yk must contain the geodesic t.

Fix the metric of constant curvature — 1 on JVi, and let U be an open neighborhood
of Fi in JVi. For a given surface M, any metric extending the metric surface U will
possess a neighborhood consisting ofmetrics, each ofwhich has a geodesic lamination
without closed ends that is the limit of a sequence of simple closed geodesies.
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