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The distribution of geodesic excursions into the neighborhood of
a cone singularity on a hyperbolic 2-orbifold

Andrew Haas

Abstract. A generic geodesic on a finite area, hyperbolic 2-orbifold exhibits an infinite sequence
of penetrations into a neighborhood of a cone singularity of order k > 3, so that the sequence of
depths of maximal penetration has a limiting distribution. The distribution function is the same
for all such surfaces and is described by a fairly simple formula.

Mathematics Subject Classification (2000). 30F35, 37C50, 37E35, 53D25.
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1. Introduction

Many of tire concepts of number theory can be realized in a geometric setting. Ulis
is especially true in the field of classical diophantine approximation, where much of
the theory has been reformulated as statements about the depth of penetration of a

geodesic into the cusp, or non-compact, end of the modular surface.

'Hie theorem of Bosma, Jager and Weidijk [6], called the Lenstra Conjecture,
describes the distribution of values 9„ qn \ qnx — p„\, for almost all real numbers %,

where p„/q„ is the nth continued fraction convergent to x. Bosma proved a closely
related result for approximation by mediants [5]. In [8] we proved analogues of
these results which describe the distribution of the depth of maximal penetration of a

generic geodesic into the cusp end of a finite area, non-compact hyperbolic 2-orbifold.
These purely geometric results were then applied to prove Fuchsian group versions
of [6] and [5]. The distribution of the 9n, defined with respect to a finite area Fuchsian

group, is given independent of the group and agrees with the classical result.
In this paper we look at how a generic geodesic on an orbifold surface "approximates"

a cone singularity of the surface. This type of investigation was begun in [9].
In that paper, the geometric Markoff theory was generalized to this setting. Here it
is shown that the sequence of depths of maximal penetration of a generic geodesic
into a neighborhood of a cone singularity has a limiting density which is explicitly
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computable and the same for all Unite area surfaces and most orbifold surfaces. As
in [8], the resulting densities bear a striking similarity to the ones found in [6] and

[5|, although they are somewhat more complex and arcane. The similarity becomes

particularly clear when the distributions are expressed in terms of area.

1.1. The main results. We shall begin with a heuristic treatment of some of the
definitions and then state the main results of the paper. A hyperbolic 2-orbifold S is

represented as the quotient of the hyperbolic plane BT by a Fuchsian group G. We
shall assume that S has finite area and, if S is compact, G is not a triangle group. A
point p on S is a cone point of order k > 3 if, under the projection from M to .V, /; is

covered by a point p which has non-trivial stabilizer of order k in G.

An /--excursion e, of a geodesic ray y into a neighborhood of the cone point, is

an arc of y associated to a point of maximal penetration of the ray y into the radius r
neighborhood, Br (p), of the cone point. The depth of the excursion <?, denoted d(<?

is the "distance" from e to p. When r is sufficiently small, the excursions are simply
the arcs y n Br(p) and d{e) is the actual distance. The precise definition becomes

more complicated with larger values of r. An r-excursion e, which is associated

with a closed arc of y that loops about p, is called an approximating r-excursion. e

is called an approximating excursion if it is an approximating r-excursion for some
value r. These definitions parallel the geometric analogues of mediant and continued
fraction approximations, as they appear on the classical modular surface.

Tire r-excursions of a ray y naturally form a sequence {/-,}. which goes out the
end of y if the sequence is infinite. In a similar fashion the approximating excursions
of y form a sequence |ej}. For a generic ray y, both sequences are infinite for all

r > 0.

Let #A denote the cardinality of the set A. For r > 0, 0 < z < r and a geodesic

ray y with infinitely many r-excursions ej into the radius r neighborhood of a cone

point p of order k, the distribution of the depths of r-excursions is defined as

1

distA-(r, z)(y) lim - #{j | 1 < / < n.d(ej) < zj, (1)
n >oo n

if the limit exists. Similarly, if ej is an infinite sequence of approximating excursions

of y into the neighborhood of a cone point p of order k, then the distribution,

dist|(s)(y), of the depths of approximating excursions is defined just as the

function (1) above, with ej replacing ej in the definition, and ()<,-< r/., where

r/, sinh_1(cot f). Note that (he function does not depend on a parameter r. In
Corollary 2, of Section 4.2.2, we show that every approximating excursion is an
r-excursion for some r < r/..

We are now in a position to state the main results of the paper.



Vol. 83 (2008) The distribution of geodesic excursions 3

Theorem 1. For almost all geodesic rays y, for r > OandO <z< r the distribution
(lister, z)(y) converges to a function dist^r, 5). When r < 1%

When r > rk,

disVk(r„ z)

sinh z
distk(r,z) —— •

sinhr

f sinh z
if Z < rk.

ifz > rk.

sinh r tan"1 fggg;) + log(sin § cosh r)

Sinh s tan"1 (gag) + log(sin J cosh z)

sinh r tan"1 (ggg:) + log(sin | cosh r)

The result for approximating excursions is given in

Theorem 2. For almost all geodesic rays y and for 0 < z < rk the distribution

dist|(c)(y) converges to a function dist^(z), which is given by the formula

dist|(z)

j sinh z

log (2 cos j)
öiii{lan":l(f?t(sinh.zJJ + log (2 cosh z sin f cos f)

log (2 cos j)
1 —x tan -

ifz < l|,

ifz > %

where Sk sinli (cot and q>k(x)
>f+tan|

the first case does not occur.

When k 3 or 4, Sk < 0 and

1.2. Outline of the paper. There are two main pieces to the proofs of Theorems 1

and 2. First in Theorem 3, we prove the existence of the distributions and describe
their values by certain integrals. In Theorem 4, we complete the proof by computing
the values of these integrals.

Section 2 is concerned with background material and a precise treatment of
excursions. Hie statement of Theorem 3 is in Section 3.2 and the proof occupies the

remainder of Section 3. Theorem 4 is the focus of Section 4. In the last section,
Section 5, we see how the results look if area, rather than distance, is used to define
the depth of an excursion. Written in terms of area, it is easier to see how the work
with cone points relates to the more classical case.
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2. Excursions into a cone neighborhood

2.1. Basic notions and definitions. The quotient of the Poincaré upper-half plane
H by a Fuchsian group G is called a hyperbolic 2-orbifold. Let n : H ->W/G S

denote the projection from the upper-half plane to the orbifold S. A point p £ S is

called a cone point of order k if there is a preimage p of p in H so that the stabilizer
of p in G is generated by a transformation '/) of order k.

Throughout this paper we shall assume that S is a finite area hyperbolic 2-orbifold
with a cone point p of order k > 3 and that, if S is compact then G is not a triangle

group. One important consequence of this last hypothesis is that, if S is compact,
then there is a simple closed geodesic on S that does not pass through p. This follows
from the fact that such a surface will contain a homotopically non-trivial, simple
loop in the complement of the cone points on S, which does not go around a cone

point. We should mention that in the special case where G is a group with signature
(0; 2, 2, 2, k), the simple closed geodesic degenerates to a geodesic ray going back
and forth between order two cone points.

For r > 0, let Br(q) denote the open hyperbolic disc in H of radius r centered

at q. When r 0 set Bo(q) \q). For p covering the cone point p, Br(p) projects
to what we shall call the cone neighborhood afp of radius r, written If (p). When G
is not a triangle group, if r < then for g g G, g(Br(p)) n Br(p) f 0 if and only
if g is in the stabilizer of p, [4], Consequently, the projection of Br(p) is exactly
k-to-1 in tlie complement of p. For larger values of r, the projection of Br(p) can be

considerably more complicated.
Let y : (—oo, oo). -> S be a geodesic parameterized by arc length. A lift y of y

to H has endpoints y+ and y_ in the extended real line K E U {oo}, representing
respectively the limits at infinity and minus infinity. If the domain of y is restricted
to [0. oo) then we shall refer to it as a geodesic ray. A lift of the ray y has the

single endpoint y+ at infinity. Henceforth, all geodesies shall be parameterized by
arc length.

2.1.1. The distinguished ray X. It is necessary to choose a distinguished, simple
geodesic ray k on S with initial point "/,(()) p, which is used to catalogue the
excursions of a geodesic on S into a cone neighborhood of p. The two cases, S

non-compact and S compact, are considered separately.

If S is non-compact then it has a cusp end, also called a puncture, and there is

at least one simple geodesic rays with initial point p that eventually go out (he cusp
end. Choose such a ray and call it X.

Now suppose S is compact. We have assumed that G is not a triangle group and

therefore, on S there is a simple closed geodesic ß that does not contain p. We shall
choose k to be a simple geodesic ray that twirls asymptotically into ß. It can be

constructed as follows. Let <5 be a minimal length, and therefore simple, geodesic
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arc with its initial point at p and its terminal point on ß. Let /Î : IR —> M he a full
connected preimage of ß. Then there are lifts p of p and S of <5, so that I has its initial
point at p and its terminal point on ß. Let X be the geodesic ray from p to ß+, one

of the endpoints of ß. Then one easily shows that for g £ G, either g(X) n X 0 or
else the intersection is the point set {/?} and g is in the stabilizer of p. The ray X thus

projects to a simple geodesic ray on S with initial point p.
Observe that, given a sequence of values tj oo, in tlie non-compact case /.(/,,)

has no limit points in .V, while in the compact case the sequence $f%) will limit exactly
at points on the geodesic ß.

2.1.2. Normalization of the covering group. For the sake of clarity and computational

simplicity we shall choose a nicely normalized Fuchsian group G defining the

orbifold S. First, let the complex number i g III be our point p, covering the cone

point p. Then the transformation

COSyf + sin §r
nm - sin Ii +COS f

generates the stabilizer of I in G.
We may further normalize G so that the geodesic X has a lift Xo with initial point i

and terminal point 0 g IR. Then Xr 7/TXo) and X_i 7JT1 (Xo) are two other lifts
of X beginning at i. The point tan f m is the endpoint at inhnity of Xi and —a# is

the endpoint of X_i.
We fix some notation. Define the sets

/+ j(r,ï)l2|iÉ(0,at), ys( -%)},
I~ I v. y) M" I x G (-«a-, 0), y G (fi. |

J+ iî&f y) e I+ | y < -ak} and J~ {(x. y) G I~ \ y > au)

Set I I+ U /" and J J+ U ./

We shall use the shorthand Br for the disc Br(i) and Br for the disc Br(p).

2.2. Excursions

2.2.1. The definition. Given a Cone neighborhood Br of p and a geodesic ray y
on S, we are concerned with the "excursions" of y into B,. We saw in the introduction
that these can be regarded as certain arcs of y, although their definition is complicated
by the self-overlap of Br for larger values of r. Hence, we would like to distinguish
the fine structure of the excursions as y intersects different overlapping pieces of Br.
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The above considerations dictate the precise, but non-intrinsic, definition of an
excursion which follows. Suppose r s> 0. Dehne an r-excursion e of a geodesic y
into the cone neighborhood 6, to be a lift y of y to H with (y+, y_) g I so that

y n Br ß 0. In particular, y n Xo # 0.

If ß is a geodesic in M that intersects g_1(Xo) for some g g T, then for some

unique 0 < n < k — 1, (Tg o g(ß+), Tg o g(ß-)) G I. Consequently, associated to
each intersection y (~)Br ß 0 with (y 0 If) f i X ß 0, (here is a lift y, with endpoints
in 1 ; that is, there is an r-excursion associated with the intersection. Conversely, each

r-excursion is associated with such an intersection. Rather than trying to make this

relationship more precise, we shall work with the definition given in the preceding
paragraph.

The r-excursion e y is called an approximating r-excursion if (y+, y_) g J.
More generally, call e an approximating excursion ife is an approximating r -excursion
for some r > 0. In Section 4.2.2 we shall prove that every approximating excursion
is an r-excursion for some r < w± sinli

1

(cot j).
Let E(y,r) be the set of r -excursions of y and let A y be the set of approximating

excursions of y.

2.2.2. Ordering the excursions along y. To each r-excursion e y there is a

single intersection of the geodesies y with the ray Xo. We may therefore associate to g

the unique real parameter fe, for which y (/,.,) g Xq. Given a positive real value r and

a geodesic y the identification e —if te defines a function p : E(y, r (—op, oo).
Let E+(y, r) be the subset of e G Iii y, r) so that ß(e) > 0. p also induces a map on
A(y) and we similarly dehne A+(y). The range of p shall be called the excursion

parameters, written {te}. We then have

Proposition 1. Ife and e' are two distinct r-excursions along y, then p(e) ß ß(e').

Proof. Write e y, e' y' and suppose te i,,<. Since y is distinct from y', there
is a non-trivial g g G so that g(y) f and g(y(4)) y'itgr). It follows that

gdo) n Xo ß 0. This is only possible if g Tg for some n 1, • • •, à — 1. But then
because we have (y+, y_) g I, applying the transformation gives (g(y+), g(y_))
(y|- ft), f f- which is impossible.

Dehne an order on E(y, r) by stipulating that e < e' if p(e) < p(e'). Ulis
ordering does not depend on the parametrization of y. The next proposition shows

that this ordering of E is very well behaved.

Proposition 2. Given a geodesic y, which is distinctfrom the simple closed geodesic ß
used to define X, supposethat the set ofr -excursionsE+ E+(y,r) is infinite. Then

there is a unique map from N onto E+, making E+ into a sequence {G'}JXi so that

ej < ek ifand only if j < k. Furthermore, lim^^ pief) oo.



Vol. 83 (2008) The distribution of geodesic excursions 7

Proof. As G is discrete, E+ must be countable. Therefore, it will suffice to show
that for any sequence {ej }Jy} in E+, which is ordered as in the proposition,
linq^r» f ie/) oc. We argue by contradiction. Suppose there is such a sequence
of r-cxcursions for which the excursion parameters, which we shall write è (ej) ij,
do not diverge to oo. By passing to a subsequence, of the same name, we may suppose

tj > f® « oo.
Write cj Yj Choose a lift y of y. For each je N there is a transformation

gj g G with gjiyj) y. These transformations must be distinct, since they respect
the parameterization; in particular, gjiyji0)) y(0). Then gj(Br) D y fh 0 and

y (tj) gj(Xo) D y. We take tlie liberty to dehne, hopefully without confusion,

gj(Xo) kj. The rays kj intersecting y in a sequence of points y (7,) converging
to y(t*).

kj has endpoints gj(i) G H and bj g Ê. Since the interiors of the rays are all
disjoint and the sequence {tj} is increasing, the sequence {bj} can limit at, at most

two points in g Ê, on opposite sides of y By restricting to one side, we may further
stipulate that the sequence {ej} was chosen so that bj -> b* g Ê.

The initial point gj(i) of the ray kj is the center of the translate gj(Br) of the

disc Br. Since G is discrete, the points gj(i) will limit on Ê and not in H.
Consequently the discs gj(Br have Euclidean radii going to zero and they also will limit
on È. Recall that for each j, gj (ër) n y 7^ 0. Therefore the points.gj (i all lie in the

radius r neighborhood of y and must limit at an endpoint of y, denoted by y.,-..

If the rays kj accumulate in H, it must be at a lift of ß. The limit point h,,,

cannot be an endpoint of y distinct from y.t., for then the kj would accumulate on y
contradicting the hypothesis. Tlius if b* is an endpoint of y then b,. y,,..

Putting this all together: we have the sequence of geodesic rays kj, with the

endpoints on Ê converging to b* and the endpoints in M converging to In order
for this to happen the sequence of intersections kj n y y(tj) must converge to y*,
contrary to the assumption that the excursion parameters f (ej) tj, do not diverge
to 00.

If the ray y contains infinitely many approximating excursions then they are

ordered as a subsequence of the /y-cxcursions. We write (cj }Jy, for the sequence of
approximating excursions in A(y).

2.2.3. The depth of an excursion. Given a geodesic a g HT, dehne d (a) to be the
distance from a to the point i. Dehne the depth of the r-excursion e y of y, to be

the value dir) d(y). For a pair of points (v, yj g I, let a be the geodesic with
endpoints («+, u i (x, y) and dehne Dix. y i diu).
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3. The application of ergodic theory

3.1. The geodesic flow. The unit tangent bundle 7) H over H may be identified with
H x .S'1. Dehne the measure ß 4xö, where A and 9 are respectively, area measure
on M and lebesgue measure on .S'1. The measure ß is invariant under the geodesic
flow G' on 7] EL

A full measure subset of 7] H can be modeled by triples é, f, t) g R3 where
i/r ^ f. Let a be a geodesic in H parameterized so that a(0) is the Euclidean

midpoint of the semi-circle a(K). If tj/ a+ and f cf_, tlien è, <\ / corresponds
to the unit tangent vector oit) g 7jHi It is clear that the correspondence defines

an injection onto the subset of non-vertical vectors in 7j H. In these coordinates the

invariant measure j§ has the form ß — l_ ...T d\j/dt;dt, up to a constant multiple.
The measure ß projects to a measure p, on 7j .S", which is invariant under the

geodesic flow (•' on /j S. It is well known that when S is a finite area surface, G1

acts ergodically with respect to ft, Every orbifold has a finite branched cover that is a

hyperbolic surface. Thus ergodicity of the flow on the surface implies the ergodicity
of the flow on the orbifold. See [1], [10] and [11] for details.

3.2. Convergence of the distribution. Every vq g 7] .S' uniquely determines a

geodesic (or a geodesic ray) y where y(0) q and y (0) vq, the unit vector

tangent to y at q. Conversely, every geodesic determines a unit tangent vector at the

parameter t 0. We say that a property holds for almost all geodesies on S if there
is a set A c 7) .V, of full /i-measure, so that the property holds for every geodesic
determined by a vector in A, as above.

There are two classes of subsets of 7 and J that play particularly important roles
in what follows. For 0 < z •< oo set OJM {(.*, y) g 7 | D(x, y) < z] and for
0 <z<rk set LL(z) {(.v, y) g J \ D(x, y) < z}. As a consequence of Corollary 2

in Section 4.2.2, C2^(z) J for z > rk. At times we shall use the letters f and Ç in
place of x and y. Then for appropriate values of z define the integrals

After the next theorem, the proofs of Theorems 1 and 2 become computations in
hyperbolic geometry and plane integration.

Theorem 3. For almost all geodesic rays y on S, for r > 0 and 0 < z < r, the

distribution distA-(r, z)(y) converges to disftfr, z), where

and
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For almost all geodesic rays y on S and for 0 < £ < 1%, dist|(z)(y) converges to

disij (-). where

ä-
The remainder of Section 3 shall be devoted to the proof of this theorem. The

idea is to produce a measure transverse to the geodesic flow, on which there is an

ergodic action related to the sequence of excursions along a generic geodesic on S.

The distributions can be expressed as limiting sums with respect to this action which
then, using the Birkhoff Ergodic Theorem, become the above integrals.

3.3. A cross-section of Gf over T\X, Let 7) k denote the subset of the unit tangent
bundle over (lie geodesic X, consisting of the vectors vq with q e X — {p}. We shall
dehne subsets of T\ X associated with r -excursions and separately, with approximating
excursions. Most of the work takes place in H, on the preimage J\ Its of 7) k.

Given r > 0 dehne the set of vectors /' c T\Xo, where vq g lr if there is a

geodesic a in H with

(1) /,
(2) a(0) q G Xq — {(} and ù(0) vq,

(3) a D Br ^ 0, and

(4) the geodesic ray n a on .S' contains inhnitely many r-excursions.

Similarly, dehne /'' c T\ko, where vq g Ï* if Üiere is a geodesic a in H with

(1) (o'_|_, ff_) G /,
(2) a(0) q £ Xq — {i} and âfO) vq, and

(3) hie geodesic ray n o a on S contains inhnitely many approximating excursions.

In order to treat hie various cases simultaneously, we adopt the convention that r
denotes either the parameter r > 0 or hie symbol *. The set of vectors /r projects to
a set of vectors lx c IjjJL Essentially, lx consists of the tangent vectors of the form

y (te), associated to r-excursions (or approximating excursions) e, with the caveat that
the ray y contains inhnitely many such excursions. Since X is simple, the projection
TT,f : 7j k(> h* 7j 7. is bijective and consequently we have the following.

Proposition 3. The projection tt* : f -> /r is a bisection.

We let *-excursion be another term for approximating excursion. The next proposition

asserts that lx is a cross-section for the geodesic how on S.
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Proposition 4. For each value r, there is afull measure, G' -invariant subset Mr c
T\ S so that F is a cross-section for theflow Gf acting on Mt. In particular, for each

v g Mx, there is a geodesic ray y, possessing an infinite sequence of r-excursion

parameters {tej}, so that y (0) v and Gfv) g lT for t > 0 ifand only if t tej for
some j g N.

Proof. We argue when r r. Let Mr be the set of vectors 0 g 7j S so that a geodesic

ray y with y (0) v contains inhnitely many r-excursions, none of which intersect
the cone point p. It follows from Proposition 2 that Mr is G' -invariant. In particular,
V C Mr.

In order to sed that Mr has full /./-measure, choose a value u so that 0 < u <;

and it <r. As a consequence of the Poincaré Recurrence Theorem [7], there is a set

of full measure Nu c 7i S, with the property that for each v g Nu the geodesic y with

y (0) v returns inhnitely often to Bu. It is proved in Corollary 3 of Section 4.2.2,
that every intersection of a geodesic y with Bu produces a //-excursion. Therefore,
such a geodesic y must contain an infinite sequence of //-excursions. The subset

N* consisting of v g N„ so that the G' -orbit of v does not pass through p, has full
measure in Nu. As u < r, N* c M,. showing that Mr has full measure in TiS.

Given v g M,-, let y be the geodesic with y (0) v. Then y contains an infinite
sequence of r-excursions {ej} with excursion parameters %(/ (ej tej. As before write

ej yj with ((y/)+, (yj)-) g I. Thus for each j g N, Gte> (v) x*(yj)(tej) g F.
If for some is 0 and v g Mr, G1 (v) g V', then tliere is a lift I of v and y of y

so that y (l) v G 7iïo. (.Y+- Y 1 t I and y n Br 7^ 0. Therefore « y is an
r-excursion. Hie argument for approximating excursions is similar.

3.4. The first return map. Let FT : lT —> IT be the first return map under the

geodesic flow G' : MT MT. In other words, given v g lT let y be a geodesic in
S with y (0) v. Then Fr(v) y(f), where t > 0 is the first value with y (t) g /r.
ITie invariant measure // for the geodesic flow on S induces an Fx -invariant measure

vT on lT for which If is ergodic, [1, 2], Under the identification of F with F, Fx

lifts to a map Fx : F -> F which is invariant and ergodic with respect to the lifted
measure vr. Furthermore, this construction produces an isomorphism between the

dynamical systems (F, Fx, vr) and (F, If. vT).

It will be easier to work with If in a form associated to the (1je, Ç, i coordinates.
Let Ur denote Q (r) if r r and / is r *. There is a map Bx \ F flT, taking
vq to tlie endpoints (o'+, &.J) of the geodesic a with o/(0) q and à(0) vq. Br
is injective. If we represent vq (1/^, g^f tq) in coordinates, then Br becomes the

projection Bx flq, i;q, tq) Çq), onto the first two coordinates. Letœr BT(ÏX)

and define the transformations Rx : a>x coT by IF B, Bx o If. Note that a>x

is precisely the subset of Qt so that if a is a geodesic with (a+, mJj {fit, f g Gr
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the geodesic ray a projects to a geodesic ray on S that contains infinitely many
r-excursions or approximating excursions, not through p, as appropriate.

Arguing as in [11], we can use a theorem of Ambrose [3] to show that the geodesic
flow can be built up, in a nice way, from the first-return map on the cross section.
Tliis theorem allows us to conclude that the Gf -invariant measure p on S has the form
p vr x dt in local coordinates, where dt represents lebesgue measure on the flow
lines. Then p ty x dt pulls back to the G'-invariant measure p vT X dt on
I) IFi. It follows that in (<p\ i;) coordinates, vT ^ 2disdÇ is the induced invariant

measure for Rr. We shall write vr v since, in these coordinates, the measure is

independent of r.
Since Mr is full measure in ï) S and Gf -invariant, the cross-section lr is of full

measure in 7jk. It follows, in particular, that a>T is full measure in Qr. In light of
this, the transformation RT : Q.r Qr is well defined up to sets of measure zero, is

BT -conjugate to Fr, and has invariant measure v.
It is also important to note that, as a consequence of Proposition 4, for almost

all v g 7j S, there are infinitely many values tj -> oo so that the geodesic y with

y (0) v has y> (Zg) g lr Therefore, for almost all v g JjJ the geodesic y with
y(0) v has a lift with its endpoints in a>T. In other words, almost every geodesic
on S has a lift with its endpoints in cor.

3.5. The proofofTheorem 3. As usual, we shall prove the theorem for r-excursions.
The details for approximating excursions are similar. Let xy denote the characteristic
function of the set Y. First observe that for (i/^o- M 6 Yl (r) we have file equality

lim - #{j I 1 < j < «, D o R} (fo, f0) < z} (2)
w^oo n

1 "
lim - Y(xm 0 !)uR> (^0. Ml- (3)

n—ïCQ n L—'
7=1

The measure v* v is an R, -invariant probability measure on Q(r), with respect
to which R, is ergodic. By Birklroff's Ergodic Theorem and the fact that «>, has full
ù*-measure in (r), for almost all i//o, Ço) £ ^ (r) the limit (3) is equal to

f 1 /' - ACÛ
/ /hi' / v

Mr) Jafc) Mr)

Almost all geodesies y on S have lifts with endpoints in a>T. Let y be one of
these geodesies. Then there is an infinite sequence ej yj, j 0,1,..., of r-
excursions along the ray y, with associated excursion parameters /, \jf(ej). Let

Vj y(tj) g lT. By Proposition 4, Fr(vj) Vj+\ and therefore F/(«q) vj. Hie

lift of vj to Xq is vj fjXtj) and, as above, Ë/ (Do.) %.
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Write y yo- To each j i M there is a unique gj g G so that y;- gy (y). Then
in s <//. C. / > coordinates, r- ((y/)+, (y/)_, ig/iy. i. g/iy s/i. i'or some
values Sj that are not easily related to the tj. Then it we set (V/q, tft) (/+• Y-) i 1%

we get

to) •'>' °.F/ • />'. ''7-. y_) />' o F/(0o)
/>'• !/'/! Brigjifo), gj(Xo), 9) (gj(fo)-gjtto)>-

Turning to the distribution we have

1

disU-(r, z)(y) lim - #{j I 1 < j < n. Mm) < s}
n^-60 n

1

lim - #{j I 1 < j < n,d(yj) < z}
i-f®6 n

1

lim - #{j I 1 < j < tu D(gj(y+), gj(y-)) < z}
n-*oo «

lim - #{j I 1 < j < n, D(gj(<lro), gj(M) < z}. (5)
n—ïOQ n

By the sequence of equalities (4), the limit (5) is equal to the limit (2). Therefore,
we may conclude that for almost all geodesies y on S, dist(r, z)(y) converges to
dislO, z) which proves Theorem 3 for r-excursions.

Remark. In the argument for approximating excursions the roles of I and Û (z) are
taken by J and Ûvfe) and the proof proceeds as above.

4. The computation of Â and A"

4.1. The values of A and A*. In light of Theorem 3, the proofs of Theorems 1

and 2 will be completed by computing the values of A and A*. Recall that ij,
sinh J (cotf),4 si nil 1 (cot %j and tpk(x)

1 —x tan ;

x+tan jr

Theorem 4. For z>0we have

A
sinh sf if z < a-

sinh & tan
1 + log(sin | cosh z) if Z > rk,
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Ans)

X sinli s ifz<8k,

sinh $ tan
1

(<pk(sinli -)) + log (2 cosh z sin j cos j) ifh < z < rk.

(log (2cos j) ifz>rk.
When k 3 or 4, 8k < 0 and only the second two cases occur for the value ofA*(z).

The rest of the Section is devoted to the proof of this theorem.

4.2. Hyperbolic geometric considerations

4.2.1. The geodesic tangent to a disc. In order to turn A and A* into easily
computable double integrals, we shall derive several formulae that will be of use in
determining die limits of integration. Given distinct points a, b g Ê, let ab denote
the geodesic a in H with a+ a and a b.

Theorem 5. Given x > 0, the point w g [—{,.*), for which the geodesic xw is

tangent to the hyperbolic disc If,, is determined by the formula

wse,M "M"-'.
x + sinli p

Similarly, given x < 0 the point w g (x,
1

| for which the geodesic xw, is tangent

to the hyperbolic disc If, is given by the formula w — Wp{—x).

There are two geodesies in H tangent to Bp, with an endpoint at x. The condition
w g [ • J. ,v is equivalent to stipulating that i lies in the unbounded region of the

upper-half plane in the complement of xü7

Let A denote the unit disc model for the hyperbolic plane, which we envision as

sitting in the complex plane. Write 9 A for the unit circle, which is its boundary at

infinity. The proof of Theorem 5 involves computations in A and the transformation
of those results to M. The following lemma can be proved by an easy computation
using the hyperbolic metric in A.

Lemma 1. In A, the circle ofhyperbolic radius p and center 0 has Euclidean radius

r tanh Ç

If z, £ g 9 A then, as in the previous case, we let zf be the hyperbolic geodesic in
A with endpoints s, ç. Similarly, for z g 9A let z0 be the geodesic with endpoint a
passing through the origin. This geodesic is a Euclidean straight line. We use the

same notation Bp(0) to denote the hyperbolic disc of center 0 and radius p in A. To

avoid confusion we shall continue to write If for if,(i).
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Lemma 2. Suppose that z, f g 3A are two points so that the geodesic z| is tangent
to the hyperbolic disc Bp(0). Then [,z f I 2sech p.

Proof. There is no loss of generality in supposing that z x + iy with x, y > 0 and

f Jj, llien we have \z — | \ 2y and it remains to show that y sech p. Let C be

the circle perpendicular to 3À whose intersection with À is the geodesic zf. Since
C is invariant under the reflection c >

1

which fixes 3 A, it crosses the real axis in

points 0 < r < 1 and j. By Lemma 1, since C is tangent to the circle of radius p,
r tanh Ç.

As a consequence of 2 lying on C, it satisfies the equation z — 2(7 + '' j

[|( r
~~ r) i

• Also, since z g 3A, Jg] 1. Solving these equations simultaneously

gives 1 y-ji^r- Setting r tanh | and simplifying, gives the result.

Lemma 3. Suppose z is a point in the upper halfof the unit circle d A. Letf g 3 A be

the point which lies to the right of the line z0 so that z| is tangent to the disc Bp(0).

Then t; z(c — iV 1 — c2) where c 1—2 sech2p. The above also holdsfor z 1,

where | is then a point in the lower half of 3 A.

Proof. From the previous lemma we have J# — || 2sechp, which simplifies to
Re 1—2 sech2p. For simplicity write c I - 2scclrp. Note that as p increases

on the interval [0, 00), c increases on [—1,1).
The point G may be written in the form § qz, for a point q of modulus one.

Let q 11 + iv. One see by a simple computation that u Re zk c and then

w ±-\/l — c2. With the choice of the minus sign the points q c — i Vl — c2 fill
out the lower half of the unit circle. As a function of p, q moves counter-clockwise

through its arc as p increases from zero to infinity. Thus, treating the point G qz
as a function of p, we see that it moves counter-clockwise around the circle from —z
to 2 as p increases from zero to infinity. It follows that for all values of p, the point

I qz lies to the right of the line z0, or in the lower half-plane if z 1. With the
choice of a plus sign, q fills out the upper half of the circle and the points qz lie to
the left of z0, or in the upper half-plane if z 1. That completes the proof.

Proofof Theorem 5. The Möbius transformation g (z maps A isomet rically

to H, taking the disc Bp (0) to the disc Bp. g also dehnes a one-to-one correspondence
between 3 A and Ê, where 1 goes to 0, -1 goes to 00 and the upper and lower
semicircles respectively, are mapped to the positive and negative real axes.

As in the previous argument let q c — i Vl — c2, where c 1 — 2sech2p, and

dehne the transformation Wp(x) g('qg~
1

(.r)). Simplifying we get
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A further computation gives

1 + ij \ 2 Im r] Vl —

%—rjJ 11 — r) I 1 — c
sinli p,

which shows that the formula for Wfl is the one asserted in the theorem. Now we
need to see that Wp does what it is claimed to do.

If x >0 then g_1(jc) s lies in the upper-half of 3 A or is equal to 1. Then
^ is the point of 9 À for which the geodesic z$- satisfies the hypotheses of the

previous lemma. The image of this geodesic, g(z^), is the hyperbolic geodesic in M
which is tangent to g(Bp(0)) Bp and has endpoints 38 and Wp> (x). Recall from
the proof of Lemma 3 that | rjz lies in the counter-clockwise arc of 3 A between

—z and -. Since the image under g of this arc is the interval [- J. .*), the proof is

complete for jf > 0.

Now suppose.* < 0. Consider the i some try h (-) —IjofH. hmaps the geodesic

tangent to Bp, with endpoints —x and Wp{—x) g | —x) to the geodesic tangent to

Bp with endpoints .* and — Wp(—x) g (x, —1 Thus —Wp{—x) is as asserted in the

proposition.

4.2.2. Consequences of the tangency computations

Corollary 1. Given x,z > 0, D(x,y) < z for y g [—|,.*j if and only if y G

Hl WaMk

Proof For hxed x > 0 and for y g | J..vi. dehne H (y) Dix, y). Then H (y)
is the value p for which the geodesic xy is tangent to the disc Bp. We have shown
in the proofs of Lemma 3 and Theorem 5 that II is an increasing function of y,
mapping | J. ,v i onto [0, oo). Also recall that, for .v, y as above, Fv is tangent

to /}- precisely when y W-(x). It follows that D(x, y H(y < t if and only if
yiH,lTa(*)l.

Corollary 2. When k > 5, every z-excursion with z < % Rl an approximating
excursion. Moreover, every approximating excursion is a z-excursionforsome z < ra.

Proof. First observe that the equation Wz(cik) —ak has hie solution

w sinli ]un\ak)) sinlr1 'y,' sinh"1 cot Sk.

Tliis is positive if and only if k > 5. which we henceforth suppose to be the case. For

.v.• 0, Wz(x) is an increasing function in both variables. Therefore for ï < 8k and

x G (0, af), U'. f.vj < Wz(ak) -< W$k(ak) -ak.
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Let e y be a --excursion for some £ < % Then x y+ g (0, <%) and, as a

consequence of the above, y_ U' i .v < —ak. This says that e is an approximating
excursion, proving the first assertion of the corollary.

Now observe that z D(0, —a/-) is the value for which WC(0) Solving
for z we get % sinh cot (f)) ft. Thus the geodesic a with endpoints 0 and ails

tangent to the disc B,k

Let e y be an approximating excursion. Tlien y+ g (0, ak) and y_ G

| - y, -oi It follows that y lies above er in H and therefore, y n Bn zjf 0. The
second part of the corollary is proved.

Corollary 3. Suppose y is a geodesic on S and y n B,-k e ^ 0. Then there is

a lift y of y and a lift f off. contained in y so that I n Bn. 0 and e y is a
z-excursion for some z < ft,

Proof. Choose a lilt y so that n B,l: -f 0 and y+ g (0 ,aij. Without loss of generality
we suppose that y_ < y+. Since Wrk(ak) 0, the geodesic a with endpoints 0 and

oi is tangent to the disc Brk. If y_ > 0 then y lies entirely below a and y Cl B,k f 0,
which is impossible. Therefore y_ < 0 and e y is a z-excursion for some z < ri-

4.3. The proofofTheorem 4. We shall write the integrals as sums of iterated double

integrals. Once in this form, their actual evaluation is a elementary.

4.3.1. The computation of A(z). Consider fixed values z > 0 and x g (0.ai).
If U'-i.vI < 0 then, by Corollary 1, l)(x, y) < z for y. G 0) precisely when

y G [_i, U'u.vM- whereas if Wz(x) > 0 then D(x, f| < z for ail y G [—y-, 0). As a

result of this observation, for fixed z > 0, there are two cases to be considered.

The hrst case is when z < ft. This condition is equivalent to a% < or
Wood < 0. Since VL-(x) is an increasing function of x, this occurs if and only if
W-(x) <0forallx g (0, ai). Tlren, as observed above, for x G (O.ay), D(x,y) <z
for y g [—|, 0) if and only if y g VC(x)|. By symmetry, we have that for

x g i-ak, 0), Dix, y) < z for y g (0, -{] if and only if v G [ - WC(-x), -£].
Consequently, when z < ft we get

rak r Wz(x) 2 f~ak r-y 1

A(z) / / ~^dydx+ / / -y dydx
Jo J-\. (x-yr Jo J-wd-x)(x-yr

In the second case z > ft and we will have WC(x) 0 for x g (0, ak).
Then the set of y values for which D(x, y) < z will take two different forms. For

* e (0, Jfy), we have D(x.y) < z for y g [- J, 0) if and only if y G W-(x)];
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whereas, for x g 0) we get D(x, y) < z for all y g | 0). Similar results

again hold, by symmetry, for x G (—a, 0). Then for 2 > % we get

4.3.2. The computation of A*(z). The same considerations and cases come into
play in the computation of A *(z). In addition there is a third special case, which is

a consequence of the fact that every approximating excursion is an r-excursion for
some r < r/.. The three cases depend on the position of the points VI'-(x) with respect
to —at, rather than with respect to 0, as in the earlier computations. Tire cases are
also described by the position of the particular point xz, for which Wz(xz) —ak¬

in the first case z < <h- As observed in the proof of Corollary 2, this is equivalent
to U'-i.vi < lift for all x g (0, ay). Since % < 0 for k 3,4, this case does not
arise for those values of k. Then, by Corollary 1, for all g (0, djjh D(x, y) < f for
y ç [_i_ —ak) if ^ only if y G i |.U'-(xs|. and by symmetry, we have that for

allx g (—ak, 0), X>(x, y) < z for y g (//f. — A] if and only if y g [ — WZ(—x), j ].
This is the same situation we had computing the integral in the earlier first case.
Therefore for z < %,

In die second case % < z <- r/(, where we let <5a- 0 for k 3,4. Consider the

equation Wzp§) —ak, whose solution is a point x- <pA(sinh z). xz is a decreasing
function of fj. We have seen that x^ aj and x/(. 0. Therefore, for 8k < z < a- we
have W-(x) —ak for the point x xc g (0, at). As incase two in the computation
of A, the set of y values for which D(x, y) < z will take two different forms. For

x g (0, .y»), we have Dix. y) < f for y g - • a' —ak) if and only if y g |—|, UAx il
and for x g \x:. 0), we get D(x, y) < z. for all y G [- J. —ak). Similar results again
hold, by symmetry, for x G (—ak, 0). It follows that for 8k < z < >'k

Hie last case to consider is when 2 > r^. by Corollary 2, Q+(z) / lor all z > r/t.
Therefore, for all x g (0, ay), D(x, y) < z for all y G [• J. —ak). Consequently, in

A t - > Ai-i — sinh z.
k

A-Ö, - j
f X 1

f 7 7? dydx.
o p - sr
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this last case we have, for z > a

r"k r-at | r~ak f~"| |

A*!?) / / / / - dydx
Jo J s.v - yjr Jo /<% fr - y}2

5. Depth as a function of area

We have been dealing with excursion depth as expressed in terms of the radius of the

largest cone neighborhood disjoint from the excursion. In [8], where we looked at

excursion into a cusp, it was just not possible to express the depth of an excursion as

the distance to the cusp end, since the cusp is off at infinity. Instead we considered
the area of the largest neighborhood of the cusp disjoint from the excursion. Suppose

we were to take the same approach here,

In the hyperbolic plane H the area of a hyperbolic disc of radius r is 2n (cosh r — 1

[4], Let G be a Fuchsian group representing S and let m : IÎÎI — M/G .S' denote the
natural projection map. Suppose p is the cone point on S and p is a preimage in H.
The actual area of a disc />', p) is at most 1 jk times the area of its preimage Br (p),
with equality if the projection is precisely A-to-1. In the case of equality, if A is the

area of Br (p), then B, (p) has area kA 2jz (cosh r — 1 Even if there is overlap and

the projection is not A-to-l, in order to be consistent with [8], we dehne the A-deptli
of an excursion & written A(e), to be y (cosho/im — 1). Dehne an /^-excursion é

to be a usual r-excursion where r cosh-1 |J-J + 1), the radius of hie disc of area
R about p. The dehnition of an approximating excursion is unchanged.

Suppose {<',} is a sequence of /^-excursions along a geodesic y on S. Then define

.4 dislD A'. Z)(y) lim -#{j \ 1 < j < n, A(ej) < Z}.
WrJfm n

As a consequence of the dehnition of A(e), this is equal to

lim —# j j I 1 < J < «, ili ij < cosh-1 ^ —/ 4-1) ].

For almost all geodesies y on S this last limit was shown to converge to

/ / A \ / A \\ A(cosh-1 (Jj-Z + 1

distjt cosh I —R + 1 cosh ' I —Z + 1 —
V V 271 J Kill IJ A (cosh-1 {jyR +1))

For R < ^(cosh(rt) — 1) and Z < R, the above takes the form

\
(Z + x)2 - (x)2
(R + 2f)2-(2W
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which is almost linear in Z and which approaches Z/R as k —> do. This last

expression in the variable Z is the distribution function for an R-excursions along a

geodesic with respect to a cusped end of a surface, when R < 2, [8]. Note also that
as k —> oo, Rk approaches 2.

For approximating excursion, the corresponding distribution in terms of area has

the form

for Z < -picoshiV)/. — 1). Again as k -> oo the distributions limit at Z/2 log 2, the
value of the distribution of approximating excursions alone geodesies out a cusped
end when Z < 1.

Clearly, the other cases look rather nasty. Nevertheless, one can verify that they
limit at the corresponding distributions on surfaces with cusped ends.
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