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On Hilbert's 17th Problem for global analytic functions in
dimension 3

José F. Fernando*

Abstract. Among the invariant factors g of a positive semidefinite analytic function / on, Ë3,
those g whose zero set 7 is a curve are called special. We show that if each special g is a sum of
squares of global meromoiphic functions on a neighbourhood of 7, then / is a sum of squares
of global meromoiphic functions. Here sums can be (convergent) infinite, but we also find some
sufficient conditions to getfinite sums of squares. In addition, we construct several examples of
positive semidefinite analytic functions which are infinite sums of squares but maybe could not
be finite sums of squares.

Mathematics Subject Classification (2000). 11E25, 32B10, 32S05.

Keywords. Hilbert's 17th Problem, sum of squares, irreducible factors, special factors.

1. Introduction

The representation of positive semidefinite functions on a real variety as a sum of
squares has attracted a lot of attention from specialists in number theory, quadratic
forms, real algebra and real geometry; the problem goes back to the famous Hilbert's
17th Problem for polynomial functions. The solution of that problem (see [Ar]) was
the starting point for the development of real methods in algebra and geometry. Such

development led to the theory of the real spectrum due to Coste-Roy (for more details
see [BCR] which has been the suitable technique for an algebraic approach to many
problems in real geometry.

This tool has been proved fruitful to understand and solve Hilbert's 17th Problem
for polynomial functions, Nash functions, analytic function germs at points and compact

sets,..., but it has fallen short to deal with global analytic functions in dimension
n > 3 without compactness assumptions. Maybe this lack of a suitable machinery is

the main reason why the problem for general global analytic functions has been apart
from any substantial progress until now.

*Author supported by Spanish GAAR BFM2002-04797 and GAAR Grupos UCM 910444.
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As it is well known, the problem is whether or not:

H17. Every positive semidehnite analytic function f:W —> IE is a finite sum of
squares of meromorphic functions.

Let us mention the best result we can state today: A positive semidefinite global
analyticfunction whose zero set is discrete offa compact set is a finite sum ofsquares
ofmeromorphicfunctions ([BKS], [Rz], and [Jw2]; see also [ABR]). Such result dates

back to the 80s. On the other hand, note that in the analytic setting infinite convergent
sums have a meaning, which gives a new viewpoint on the problem (see [ABFR]).
Nevertheless, the definition of an infinite sum of squares of analytic functions, which
will be recalled later, must be done carefully to keep the analyticity of such sum. It is

clear that an infinite sum of squares, whatever it means, is positive semidehnite and

the classical Hilbert's 17th Problem can be weakened to ask whether:

h17. Every positive semidehnite analytic function / : W —> 11 is an inhnite sum of
squares of meromorphic functions, that is, there exists a nonzero analytic function

g g 0(M" such that g2f is an inhnite sum of squares of analytic functions.

This is also a qualitative question, and suggests the study of thefiniteness question
for hie held M (M" of meromorphic functions of M" : Is every infinite sum ofsquares
in M(R") also a finite sum of squares? Obviously, H17 is equivalent to hl7 plus
hniteness. Quite remarkably, finiteness is equivalent to the finiteness of the Pythagoras

number pgn of the field M (MP) of meromorphic functions on R" (see [ABFR]).
We recall that p « is either the least integer p such that every sum of squares in
iMCH":} can be written as a sum of p squares in MAW") or +oo if such integer does

not exists.

Now, let us hx some terminology. Given a closed set Z c M" and an analytic
function / : K" -^Iwe say that f is a sum of squares at Z if there exist an open
neighbourhood Q. c M" of Z in K" such that f\n is a (possible inhnite) sum of
squares of meromorphic functions on Q. One of hie most relevant results in [ABFR]
is the following:

(•) To represent a positive semidefinite analytic function f as a sum of squares it
suffices to represent it at X (0).

In this work we go further and we search the obstructions for a positive semidehnite

analytic function / to have the following property:

(*) To represent fas a sum ofsquares it suffices to represent its irreducible factors
at their respective zero sets.

The most satisfactory results hold for dimension 3 and, in fact, we will prove that (>)
holds for ffi3, Furthermore, notice that to represent as sum of squares each irreducible
factor at its zero set is much less than to represent / at its zero set.
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Of course, first of all we have to define carefully the irreducible factors of a real

analytic function on K®. For that, it is crucial to introduce the irreducible factors
of a holomorphic function F : U C on an open set U C C" and to recall some
of their main properties. Throughout tlie paper holomorphic functions will refer to
the complex case and analytic functions to the real case. In both cases the notion of
irreducibility is very similar, however the behaviours are extremely different.

Given an open set G c K", we will say that an analytic function / e 0(0,)
is irreducible if it cannot be written as the product of two analytic functions with
nonempty zero set. Analogously, a holomorphic function F e ,H (U) on an open set

U c C" of C" is irreducible if it cannot be written as the product of two holomorphic
functions on U with nonempty zero set. We recall also that an analytic set V of II is

irreducible if it cannot be written as the union of two global analytic sets X\, X2 C X
both different from X.

First, we consider holomorphic functions. Here irreducibility behaves neatly. If
every locally principal sheaf of ideals on U is principal (which happens for instance

if H2(U, Z) 0) then there exists a bijection between die irreducible analytic sets of
U of codimension 1 and the principal prime ideals of the ring ,K{U) of holomorphic
functions on U.

Next, we tum to the real case. The situation for the irreducible functions of G (ÎP
is completely different and the behaviour of the zero set of an irreducible function
is unpredictable. The zero set of an irreducible function of G (M" f can have any
dimension; for instance, if 2 < k < n the analytic function fk(x) fu(x\ W)
xf+- -+%l is irreducible in G (M") but its zero set has dimension«— k. Furthermore,
there exist irreducible analytic functions of G (KZ with the same zero set but which
do not generate the same ideal of <9(KZ). Take, for instance, fi(x) x\ + ä| and

fi(x) x\ + 4.r|, whose common zero set is j,vi 0, isg 0}. Even more, as we
will see in Section 2, we can produce examples of real analytic functions which are
irreducible but whose zero set is reducible, and which can even have infinitely many
irreducible components.

Thus, one is led to dehne the irreducible factors of a real analytic function /
through the irreducible factors of a holomorphic extension F of / to a suitable open
neighbourhood U of M" in C" As usual the uniqueness of the irreducible factors will
be up to multiplication by units of the respective ring, 6>(KZ or <K(U), that is, never
vanishing analytic or holomorphic functions.

The process to construct the irreducible factors of a real analytic function / will
be developed carefully in Section 2, but we can describe roughly the main steps.

(i) First, we consider a holomorphic extension F : U -> C of / to a suitable open
neighbourhood K of R" in C", invariant under conjugation, and decompose
S F~](Q) as the union of its irreducible components {.S) }/s/. We show that

we can assume that .S) n IP" f 0 for all / e /.
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(ii) Next, for each we construct a holomorphic function //, which generates the
ideal sheaf of J§. For those Sj which are invariant under conjugation we

prove that die holomorphic function Hi can be chosen to restrict on R" to a real

analytic function.

(iii) The holomorphic function germs {T7,n»}iej al which are unique, will be

called the irreducible factors of f.
Moreover, / (9 IE" is irreducible if either (1) / has one irreducible complex
factor, whose zero set germ at R" is invariant under conjugation, or (2) two irreducible
complex factors whose respective zero set germs at R" are conjugated. In case 1 /•'

is irreducible, and in case (2) F is reducible.
Given analytic functions g, f e (9 (M"), we say that g divides f (in 0(R") with

multiplicity k > 1 if gk divides / but gk+1 does not. As it can be checked, taking
germs at any point of R" at which both / and g vanish, if g divides /, there exist
an integer k > 1 with the previous property. An irreducible factor h e 0 (R) of an

analytic function / e 0 (R" is special if the zero set germ at R" of a holomorphic
extension of It is invariant under conjugation, it divides / with odd multiplicity and
1 < dim //"'(()) < n — 2.

In close relation to the irreducible factors of positive semidefinite analytic functions

we will prove in Section 2 the following decomposition result that will be crucial
for our purposes.

Lemma 1.1. Let /: R" -> R be a positive semidefinite analytic function. Then

there exist analyticfunctions fo, fi, fz, h • R'! —* Rsuch that f\, fz, fz are positive
semidefinite, f f^fifzh and

(i) /i_1(0) is a discrete set (hence, by [BKS], f\ is a finite sum of squares of
meromorphic functions on R"),

(ii) fz is a sum of two squares ofanalytic functions on R", and

(iii) the irreducible factors of fz are all special and divide fz with multiplicity one>

In fact, we also see that the irreducible factors of fz are the special irreducible
factors of f or just the special factors of f. Moreover, if n < 2 we may take fz 1

in Lemma 1.1. Hence, we get that / is a finite sum of squares of meromorphic
functions (this is of course well known: [BKS] and [Jwl]). Thus, in what follows we

may assume n > 3.

Next, we recall the suitable definition of inhnite sums of squares introduced in
[ABFR]:

Definition 1.2. Let £2 C R" be an open set. An infinite sum of squares of analytic
functions on is a series X!a->i fk where all ft 0(G), such that:
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(i) the fk's have holomorphic extensions /y/s, alldehnedonthe same neighborhood
U of & in C", and

(ii) for every compact set L c U, Xy->i suPi /'A 12 < +oo.

Accordingly, the infinite sum of squares Ylk>i fk defines well an analytic function

/ on 12 U n IE" and we write / f2k>\ fk G ®(£2); of course, this trivially
includes finite sums. Hence, it makes sense To say that an element of the ring 0(0.)
is a sum of p squares in 0(0,), even for p +cx>. We recall that an analytic function

f: Q, ~ir M is a sum ofp < +oo squares (of meromorphic functions on Q) if there is

g G £>(&) such that g2f is a sum of p squares of analytic functions on Q. The zero
set [g 0} is called the bad set of that representation as a sum of squares. The choice
of a suitable sum of squares representation will be a crucial matter and we will need

often to have a controlled bad set, that is, a bad set contained in the zero set {/ 0}.
Concerning the difference between arbitrary and controlled bad sets, we recall this

Proposition 1.3 ([ABFR, 4.1]). Let £2 c IE" be an open set and let f : fi: -> M be

an analytic function which is a sum of p < +oo squares ofmeromorphic functions.
Then f is a sum ofq <2"p squares with controlled bad set. Moreover, on a smaller
neighborhood of{f 0} we can assume q < 2"~1p.

Our main result here is (lie following:

Theorem 1.4. Let f : IE" -> M be a positive semidefinite analytic function and let

{hj}jeJ be the special irreducible factors of f. Assume that for each j g J the

positive semidefinite analytic function hj is a (possibly infinite) sum of squares of
meromorphic functions at Xj hf1 (0). Let {T;};e/ be the family of the irreducible

components of the global analytic set X Um; Xj. Suppose that one of the two

following conditions holds true:

(a) }"'• n Yk is a discrete setfor i k:

(b) Yi is a compact setfor all i g I.
Then f is a possibly infinite sum of squares of meromorphic functions on IE" with
Controlled bad set.

The proof of the previous result goes along the same lines of the one of [ABFR,
1.5], but there are several aspects that go far beyond a mere updating of [ABFR, 1.5].
Moreover, one of the main difficulties for the proof of Theorem 1.4 and the reason
why the hypotheses (a) and/or (b) appear in its statement is that it cannot exist a

general formula to multiply infinitely many sums of squares; even, if these sums of
squares are finite.

On the other hand, if « 3, then the condition (a) in the statement of Theorem 1.4

is always satisfied, since dim X 1, and we get the following relevant consequence:
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(**) To represent a positive semidefinite analytic function f : R3 -ü- M as a sum of
squares it is enough to represent its special factors at their zero sets.

'Ilms, the problemhl7 for R;3 is reduced to study ifevery special positive semidefinite

irreducible analytic function on R3 is a sum of squares of meromorphic functions.
Moreover, from Theorem 1.4(b) and [ABR, VIII.5.8] one gets almost straightforwardly

the following:

Corollary 1.5. Let f : M" -> R be a positive semidefinite analytic function and let

{hj}jej be its special factors. Suppose that for all j g J, the setXj hjl(0) is

compact. Then f is a (possibly infinite) sum of squares of meromorphic functions
in R".

The previous result points out that the obstruction to be an infinite sum of squares
concentrates on the special irreducible factors whose zero set is not compact.

Concerning Unite sums of squares the situation is quite more delicate and we only
have some partial results.

Theorem 1.6. Let r >0 be an integer and let f : R" -> R be a positive semidefinite
analytic function. Let {hkjkeK be the special factors of f and let Xk hfl(0).

Suppose that each proper intersection Xk n Xg is a discrete set. Ifhk is a sum of 2f

squares at Xkfor all k g K, then f is a sum of 2r+" squares.

In fact, the previous result can be improved if we find a suitable distribution of
the special factors. Namely,

Corollary 1.7. Letr > 0 be an integer and let f : R" -> R be a positive semidefinite
analytic function. Let {hkfkm be the special factors of f and let Xk hfl(0).
Suppose that there exists a partition IP (Ajy — Am) of K such that each proper
intersection Xk n Xi, where k, £ belong to the same Aj, is a discrete set. Ifhk is a

sum of 2r squares at Xkfor all k g K, then f is a sum of 2r+" squares.

As we will show in Section 3, this more technical statement allows us to represent
as Unite sum of squares certain positive semidehnite analytic functions to which
Theorem 1.6 does not apply. Although the situation described in Corollary 1.7 is

quite general for positive semidehnite functions on R3, we also construct in Section 3

two examples of positive semidehnite analytic functions on R3 to which we can apply
Theorem 1.4 (hence, they are infinite sums of squares) but to which we cannot even

apply our best result Corollary 1.7 about Unite sum of squares:

• The Urst function / has the following properties: (1) the zero sets of all its
special factors, which are infinitely many, have all infinitely many irreducible
components; (2) its special factors are sums offour squares in #(R3); and
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(3) it has a holomorphic extension F to an open neighbourhood U o/M3 in C3

which is the uniform limit of a sequence {Fk}k of sums offour squares of
holomorphic functions on U whose restrictions to R3 are real analytic functions.1

However, any two of the special factors of this function share infinitely many
irreducible components, which makes Corollary 1.7 useless.

• The second function / has the following properties: (1) the zero sets of all
its special factors, which are infinitely many, have all finitely many irreducible

components; (2) its specialfactors are sums offour squares in 6>(R3),' (3) each

irreducible component of the zero Set of f is contained in no more than two of
the zero sets of its specialfactors; and (4) it is the uniform limit ofsums offour
squares in 0(R3) in the sense of the previous example.

Nevertheless, there does not exist an integer s such that the number of irreducible

components of the zero set of each special factor is bounded by s. Again, as we
will see later, Corollary 1.7 is useless here.

For the moment, we do not know whether or not the previous examples are finite
sums of squares of meromorphic functions on R3. Both examples have been
constructed with the purpose of having a measure of the limitations ofCorollary 1.7. Ulis
is done avoiding the hypothesis of Corollary 1.7 about the distribution of the zero
sets of the special factors, while keeping all the other hypotheses that seem essential
to have a finite sum. In fact, the second example avoids the hypothesis about the

distribution of the zero sets in a quite subtle way.
The relevance of such examples arises from the way and the purpose for what

they have been constructed. In fact, they seem to be at the border between finite and

infinite sums of squares. Thus, they are suitable candidates to be counterexamples
to Hilbert's 17th Problem for global analytic functions. On the other hand, if one is

able to prove that some or both of them are finite sums of squares, it seems plausible
to find relevant information to prove some version of Theorem 1.4 for finite sums of
squares.

The paper is organized as follows. In Section 2 we prove some key results concerning

the definition and computation of irreducible factors of a real analytic function and
the decomposition ofpositive semidefmite analytic functions described in Lemma 1.1.

Section 3 is devoted to the introduction and development of the examples previously
mentioned. Finally, Theorems 1.4 and 1.6, are proved in Section 4.

Hie author would like to thank Prof. J. M. Ruiz for friendly helpful discussions

during the preparation of this work.

' As' it is well known, the best way to guarantee the analytieity of the uniform limit of a sequence of real
analytic functions on W1 is to consider only sequences of such functions which have holomorphic extensions to
a common open neighbourhood of W1 in Cn.
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2. Irreducible factors

We gather here some notations and technical lemmas for later purposes. AI (hough
our problem concerns real analytic functions, we will of course use some complex
analysis. For holomorphic functions we refer the reader to the classical [GuRo].

2.1 General terminology. Denote the coordinates in C" by z (Jä Zti),
with zi m + v'' Cjl- where mi Re(si) and y; Inur; i are respectively the

real and the imaginary parts of %. Consider the usual conjugation a : C" -* C,
z Mr z (rl,..., zid, whose hxedpoints are M". A subset A c C" is (a-) invariant
if a (A) A; obviously, A n n(A) is the biggest invariant subset of A. Thus, we
see real spaces as subsets of complex spaces. The notations Int and CI stand for
topological interiors and closures, respectively.

Let U c C" be an invariant open set and let /•": U —* C be a holomorphic
function. We say that F is (a-§ invariant if F(z) FÇz). Uns implies that F
restricts to a real analytic function on U n If. In general, we denote by

the real and the imaginary parts of F, which satisfy F [ft'(F) + v
1 $(F). Note

that both are invariant holomorphic functions.
Given a closed set Z c C", germs (of sets or of holomorphic functions) at Z are

defined exactly as germs at a point, through neighborhoods of Z in C" ; we will denote

by Fz the germ at Z of a holomorphic function F defined in some neighborhood of Z.
For instance, if F : U —> C is an invariant holomorphic function such that c U
and Z M", then the germ /•/ is the same as the real analytic function / F|p.

In [ABFR, 2.3] we showed how to extend a convergent sum of squares of
holomorphic functions modulo another. Here such result will be again a powerful tool
and we recall the precise statement for the sake of the reader.

Proposition 2.2. Let U be an invariant open Stein neighborhood ofR" in C" and
let <b : U -s> C be an invariant holomorphic function. Let V be an open invariant
neighborhood ofthe connected components of<&~1 (0) that meet M", and suppose that
V does not meet the other connected components of (0). Let Ck- V C be a

family of invariant holomorphic functions such that sup£ |Qj- < +oo for every
compact set L c V. Then, there exist invariant holomorphic functions Ak~. "U C,

such that supA- I Ajt 12 < +oo for every compact set K c V. and divides all
the differences Ak\v — Ct.

:(ft(F) : U —* C,
F(z) + F(z)

z ^
and
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2.3 Complex irreducible factors of a real analytic function. Let / : R* -> M be

an analytic function. We define the irreducible complexfactors of / as follows.
Let F : i/o —R he a holomorphic extension of / to a small enough open

neighborhood Uq of IF:" in C'!. By [WBh, 6. Proposition 9], there exists a unique locally
finite family of irreducible germs [ .S' j - j at R" such that Si <f_ Sj if i 7/ j and

F_1(0|p Uie/ - By [WBh, 6. Prop. 8, Cor. 2], for each i £ I there exists an

open neighborhood Ui of IP/' in C" and an irreducible analytic set 7)- in Ut such that

Ifcp Si. Shrinking the open sets ßj (if necessary), we may assume that the family
{7} }j e/ is locally finite in C". In fact, we can take the t/; 's arbitrarily small. Consider
the open set in C" :

U (cn \ [J ClfC"(7}')) U (J (Uj \ [J(CIp»(7J) \ Ui)).
j'tfl Jffi

' i#
A straightforward computation shows that R" c U and that 7) n (J is closed in U
for all i g 7. Hence, for each J g I there exists an analytic set T( C 7); in U, which
for simplicity we denote again by 7/, such that Ti.w 5/ • Let XI c U be an open
invariant Stein neighborhood of R" in C" such that W is a deformation retract of XI

([Ca]). Denote again by 7/ the intersection T, n U. Taking the connected component
of Ti that intersects R" instead of T, we may also assume that 7): is irreducible.

Fix i g 7. Since the dim f§ n — 1, for each z f Ir there exists a holomorphic

function germ hf* g (9(C'f) that generates the ideal of the analytic germ 7}i2.

Consider the subsheaf 1 of the structure sheaf Ou defined by

(/^-mc«) if2 G Th

j O(C. i if z f F.

Note that is a locally principal coherent ideal sheaf. Hence, it defines a cocycle
in // ' U. Of). Since U is a Stein manifold, this group is isomorphic to 772(K, Z),
which is 0 since R" is a deformation retract of V. Hence, $'' ' is in fact a principal
ideal sheaf, say generated by a holomorphic function Uj : V. C. We also have, by
the definition of f('K that 77(:_1(0) T\ and that hi.zO(C")z //;,-d(C")- for all

z G T{. Thus, the germ j§ 7) j?n is determined by the holomorphic function 77;.

Moreover, since F_1(0) Uie/ T{, each 77/ divides /•'.

Furthermore, since the germs .S) are uniquely determined by F and the function

germ at R" of each 77/ is uniquely determined by Sf, the holomorphic function germs
Hf^n are uniquely determined by f F®«. Thus, we will say that [//•. «} are the

complex) irreducible factors of f.
Next we claim: [fS\ is invariant, we may assume that Hi is also invariant.
Indeed, since S, is invariant, the function 77/ o a has the same properties as 77/.

Hence, there exists a holomorphic function A; : V. C not vanishing on XI such
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that Hi o a Hi Ai. Thus, we have that

Hi Hi o a Aj a g Hi Ai Ai ma

and therefore AiAi o a 1.

Now, let Bj : U -k C be a holomorphic function such that B2 Ai and
/>' />' o 1. Indeed, />' />' or AjAjoa 1; hence, BjBt »c ±1.
Since the function Bj Bj oa restricts on Pi" to a sum of two squares in (9 (FX), we
deduce that B, Bj o a 1.

Then II' Hi B, : "U —C is invariant:

H! o a Hj o a Bj o a Hi o a Bj o a1 Bj Hj o cr A; o a Bj HjBj H(.

Moreover, it is clear that 77/ satisfies the same properties as 77; with respect to the

germ Sj. To simplify notations we denote again H{ by 77,. Recall that, 77; being
invariant, its restriction to Pi" is a real analytic function.

Definitions 2.4. (a) We say that 77;;jp is a special irreducible (complex) factor of /
or just a specialfactor of / if the germ of H~l (0) at IP" is invariant, the dimension d

of the real analytic set Hfl(0) n Pi" satisfies the inequalities 1 < d < n - 2 (which
for n 3 gives <7 1) and 77,; divides F with odd multiplicity. Moreover, since
77(_1 (0) n Pi" has dimension < n - 2, we may also assume that the special factors Ii,
of / are invariant and that /? ; Ii, •< is a real positive semidefinite analytic function.

(b) If / has only one irreducible (complex) factor and it is special, we say that /
is a special analytic function.

We recall that a global analytic set (in an open set P! of Pi" is irreducible if it
cannot be written as the union of two global analytic sets different from itself. By
[WBh, §8. Prop. 11] any global analytic set X in an open set Q of Pi" can be written as

the union of a unique irredundant locally finite family of irreducible global analytic
sets Xj with A [J; Xj.

Examples 2.5. (a) f(x, y, z) (x2 + y2)2z2 + x6 + y6 defines a special analytic
function whose real zero set is {x 0, y 0), which is irreducible.

(b) f(x, y, z) x4y2 + y4z2 + rP2 — 3x2y2z2 (Motzkin's polynomial) defines

a special analytic function whose real zero set is {x4y2 y4z2 r '.v2]. that is,

{.r 0, y 0} U {x 0, z 0} U {_v 0, z 0}

U {v ix, z ±x} U {3? ±.x, z ASjî

which is reducible.

To introduce more exotic examples we need the following result:
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Lemma 2.6. The homogeneous polynomial F(x,y,z) (Z + ax)2(z + by)2 +
z4 + c2x2y2 G R[x, y, z] is irreducible in C[x, y, z] for all a,b,c g M such that
a. h. r / 0. r" a2b2.

Proof. First, note that the zero set of F in R3 is the union of the two lines x 0, z 0

and y 0, z 0. Next, we write

F Ax' + 2azB2x + z2C.

where

A a2z2 + 2a2byz + (a2b2 + c2)/
(az + aby + v/—lcy){az + aby - v' —ley),

B z + £>>',

C (z + |f|2 + Z" (z + by + V-l z)(z + - -/-I z).

Let us show now that if a, b, c, a2lr — c2 f; 0, then F is irreducible. Suppose that
F is reducible.

First, since gcd(Â, zB. z2C) 1 (because gcd(ß, C) 1 and z does not
divide A) we have that F cannot be written as F G1G2, where G\ g C[.t, >\ z] is a

polynomial of degree 0 witli respect to x Next, we see that F cannot be written as

the product of two linear real factors with respect to x, namely,

F (a ix + ßi ){«2X + ßi)

where cf;, ßi g R[y, z]. If this were the case, the set {cfix + ß\ 0} n M3, which
has dimension 2, would be a subset of {F 0} n M3, which has dimension 1, a

contradiction.

Thus, if F is reducible, it has two conjugated roots in C(y, z), namely,

-azB2 ± zv'V/2/>' - AC
Ä '

Hence, *Ja2B4 — AC g y'—HR(y, z) and, in fact, since M[y, z] is a normal domain,
we have that \/~ÂC^~a2B4 g R[y, z]- Therefore, AC — a2 B4 H2, where H g

M[y, z] is a quadratic form. Thus, AC a2B4 + PI2 and looking at the factors of A
and C we essentially have the following possibilities:

(i) C divides aB2 + ill. Since C g R[y, z], we have that C divides B2, a contra¬
diction.
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(ii) Ei (az + aby + v'—'1 cy)(z + by + %/' — z) divides aB2 + i 77, that is,
aß- + i II qE\ for some rj e C. Then, there exists k, jj el such that

l(az~ + (2ab — c)yz + b2ay2) + jif»z2 + (ab + c) yz + cby2)

aB~ a(z + by)2 az2 + 2abyz + ab2y.

Ums, k + n 1, k(2ab — c) + ß(ab + c) 2ab and kab2 + ficb ab2.

Therefore,

k 1 — /x, n(2c — ab) c, I'/i r — ab) 0.

Hence, b, c being nonzero, we deduce that c ab, a contradiction.

(iii) E2 («s + aby + ^/^T cv)(s + by — divides a ß2 +177. Proceeding
as in the previous case, we deduce that c —aß, a contradiction.

Whence, we conclude that F is irreducible in C[.v, y, z]. n

Example 2.7. Let 77 : C -$ C be an invariant holomorphic function such that
77_1(0) {k g Z : k > 0} mnd 77 ta a zero of order one at each point of
its zero set. Such a function exists by the Weierstrass Factorization Theorem. Let
Sk H'(k) jb 0 for all integer k > 0 and let M > 0 be a real number such that

v
1

M p ——j for all couple of integers k, I > 0. Let
akat'

F(x, v,f] (z + siiii.T.vii2!,-; + sin(7rv))2 + z4 + M2H(x)2H(y)2.

which is an invariant holomorphic function on C3. Let us show that f F|j,3 is a
special analytic function whose real zero set is the net

S (J{* k, z 0} U (J {y l,z 0}
a->o e>o

which has infinitely many irreducible components.

Proof. Indeed, a straightforward computation shows that (/•' 0} n K" S. To

show that / is a special analytic function we have to check that the restrictions of F
to small enough invariant neighbourhoods U of R'! in C" cannot be written as the

product of two holomorphic functions G i.Gy: F » such that G]
1

(Oi Fl W fk 0.

First, we show some crucial properties of F to prove the irreducibility of /.
(a) For each pair of non-negative integers k,t >0 consider the point pi j

(k, 1,0). Then the function germs FPkl are irreducible in the ring fiPgi for
all k, i. This is because their initial forms at the points ptj are irreducible by
Lemma 2.6.
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(b) For each integer k > 0 and each À eR \ Z consider die point PR k, 0).
Then, for all k, X as before the function germs FPk

r
are the product in <9C3

of two irreducible factors of order 1 that vanish at the line germ x k, z 0.

Indeed, after translating the point pk.x to the origin, the initial form of FPkx is

(z + ax) b + c2x2 for some real number a, b, c > 0. Thus, by classification of
singularities, FPk x

is analytically equivalent either to x2 + z2 or to a polynomial
of the type x2 +f2 + eyk where k > 3 and e ±1. Since the zero set of FPkx
is the line germ x k, z 0, we conclude that FVk %

is analytically equivalent
tox2 + z2. Hence

FPk,x Fl + Fl (pl + V/3ÏF2)(Fi - -, IFZ).

where the factors F\ + v'—1F%, F\ — v —1^2 have order 1, are irreducible and

vanish at the line germ x k,z 0.

Suppose now that there exist an open invariant neighbourhood U of LR" in C"
and two holomorphic functions <%: U Ht C such that Gr (0) H R7 F 0 and

F GiG2. Then, for each p g S F~ (0) n M" we have that Fp Oup(t2,p-
Since the line x 0, z 0 is irreducible and it is contained in F 0, we may
assume that it is also contained in G1 0. As the germ Fp is irreducible for the points

P P0,i (0, li 0), we have that all the lines y t, ~ 0 arc contained in G\ 0.

Furthermore, since the germ Fp is irreducible for the points p p^0 (k, 0, 0), we
have that all the lines x k, z 0 are contained in G\ =0. Hence, S is a subset of
G1 0. Again, since the germ Fp is irreducible for the points p pks (k, I, 0),
we have that no line of S can be contained in G2 0. Hence, the lines being
irreducible, we deduce that G\

1

iOi n W! has to be a discrete set contained in S but
which does not intersect the set {Ik, £, 0) : k, I > 0}.

Next, we take p e G J1 (0) n M" ; we may assume p (k,X, 0) for certain integer
k > 0 and certain k g M which is not a non negative integer. Since FP G],pGarP is a

product of two irreducible factors of order 1 that vanish at the line germ x k. z. 0,

we conclude that G2,p must vanish at the line germ x k, z 0, a contradiction.
Thus, / is a special analytic function.

2.8 Decomposition of real analytic functions. Now we proceed to prove the

decomposition resul t Lemma 1.1 announced in the introduction. We first recall a well -known
result to get rid of the squares.

Lemma 2.9. Let f : Bf M be a positive semidefinite analytic function. Then we

can factorize f jffwhere fo, f are analytic functions on R" such that f is

squares free in 0(W'} and its zero set has codimension > 2.

Proof. Firstly, at each zero x of /, we write fx f 2
qx e $1« m, rjx without multiple

factors; this factorization is unique up to units. The germ {% 0} has codimen-
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sion > 2, because otherwise some irreducible factor É, of r)x would be real, and fx
would change sign at x.

Now, the £x's generate a locally principal coherent sheaf $ c #p. Since
1 0, % is globally generated by a global analytic function /o : R" -> R.

An easy computation shows that /q divides /, and we have / Each germ

/' coincides with qx up to a unit, hence its zero set has codimension > 2, f'x does

not change sign and it is squares free.

Now we are ready to prove Lemma 1.1:

ProofofLemma 1.1. By Lemma 2.9 there exist analytic functions /o, f : R" —M
such that f is squares free, dim\f 0} < n — 2 and / /02/'. Hence, all the

special factors of f divide it with multiplicity one. By 2.3, there exist:

• An open invariant Stein neighborhood 11 of Pi" in C" such that P." is a
deformation retract of K,

• A holomorphic extension /•"' of f to 11, and

• Holomorphic functions Hj : U. > C, j G /, such that {Sj If '(()) }jej are

the (complex) irreducible components of the germ F~U0) « and If generates
tlie ideal of H~l(0). Lurthennore, if Sj is invariant we may assume that Hj is

also invariant, hence hj Hj |r« dehnes an analytic function on R".

Let /] ={;g/: dinu.S) n R") 0, Sj a(Sj)}, h {j e / \ J\ :

Sj 7^ a (Sy)} and =s / \ (./{ Q Jf}- Consider the bijection & : J2 J2 dehned by
Sjij) cr (Si). This bijection dehnes on/2 (together with the identity) an equivalence
relation. Lor each equivalence class a we choose a representative j g a and consider
the set J2 C J2 of such representatives. We have .fnfrt.f) 0 and .IfJcri.lf) J2.

Next, let D\ \Jjeh Sj n R", which is a discrete set. Thus, we can dehne the

following sheaf

a
11 le 'xo hJ %".* ü-v '

{& .v if v / l)\.

Ulis sheaf $ is a locally principal coherent ideal sheaf whose zero set is D\. Since
the group H1(W1, %2) 0, all locally principal sheaves are principal, and % lias a

global generator f\. Since I)\ has dimension 0 we may assume that f\ is positive
Semidehnite on R". By the dehnition of $ we have that f\ divides f.

Let Z Uie/( H,
1

(0) which is an analytic subset of U. Consider the coherent

sheaf of ideals I dehned on 11 by

_ {rwt«* ®*<x 'Lx g z,
I C '. s if -v /..
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As before (in 2.3), the locally principal coherent sheaf $ is globally principal, say
generated by a holomorphic function F : U —> C, whose zero set is F (0) Z.
Moreover, by the definition of I we have that F divides F', and since F' is invariant,
also the holomorphic function F <s a divides FY By the properties of the set ./2' we have

that F and F o a do not have irreducible common factors in the ring M V. whose zero
set intersect Mâ. Hence, their product Fx F »<ÏF o a divides F' in a perhaps smaller

neighbourhood of KB in C". Moreover, 1:2 is an invariant holomorphic function such
that fx F%}]m- is a sum of two squares of analytic functions on M".

Next, since f\, fx are positive semidefinite analytic functions that divide / and

which do not have common irreducible factors, we conclude that fx /'/(/1/2) is

a positive semidefinite analytic function on IR". Moreover, a straightforward computation

shows that the irreducible complex factors of fx are If, j e Jx, which are all
special, as wanted.

Remark 2.10 Since f\ and fx are finite sums of squares ofmeromorphic function on
M*, to prove that / is a finite or convergent sum of squares of meromorphic functions
on M" it is enough to check that for fx. That is, we may always assume that all the

complex irreducible factors of / are special and divide / with multiplicity one.

3. Examples

In this section we construct two examples of positive semidefinite analytic functions
on IR3 which are infinite sums of squares of meromorphic functions on R but for
which we have not been able to decide whether or not they are finite sums of squares
of meromorphic functions. We also produce an example of a positive semidefinite
analytic function to which we cannot apply Theorem 1.6 but to which we can apply
Corollary 1.7; hence, it is a finite sum of squares. Let us begin with such example.

Example 3.1. Let /o : RR IR be the analytic function given by

fo(x, y, z) (z + x^iz + y) + z
' F 4x2y2,

which by Lemma 2.6 is a special analytic function. Note that / is a sum of three

squares of analytic functions.
For each integer | > 1, let fi(x, y,z) fo(x — </;. y — (f — qi), z) where

qt j ]. The zero set of ft is

J6 {.v q,. 7 0} U Iy I- qt. z ()|.

Since the family {Xt}i is locally finite, the set X J f X f is closed in IR3. Hence,
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the presheaf

fx —
U^xexJfOO^h if* X,

0(R3), it .v </ X

is a subsheaf of the structure sheaf <%a. $ is a locally principal coherent sheaf of
ideals whose zero set is X. Since //' (RZ2) 0, all locally principal sheaves are

principal, and $ has a global generator /. Note that since X has codimension > 2

we may assume that / is positive semidehnite on R3. Clearly, the special factors of

/ are the functions ft, t > 1.

Next, note that

Xe n Xf+i
{,v qgi 2 0} if I is even,

{y I - qi, z 0} if I is odd,

which is not a discrete set for all I > 1. Thus, we cannot apply Theorem 1.6 to /.
However, since X] n Xj is discrete if i j mod 2, we can apply Corollary 1.7

with the partition {/I j, /I?}, where A1 is the set of the non negative odd numbers and

A2 the set of the non negative even ones. Thus, we conclude that / is a sum of 25

squares.

Now let us construct the examples we have announced in the introduction which
are infinite sums of squares but to which we cannot apply Corollary 1.7.

Examples 3.2. (a) Let fo : R3 -> R be the special analytic function described in
Example 2.7, which is a sum of three squares in 0(R3), For each integer £ > 1

consider the analytic function /', u. y, z) /o(* — I# y — £, z), whose zero set is

Xi IJ{x k, z 0} U (J (y k. z 0}

fei A->l

Since the family {Xt}< is locally hnite, the set A [Jf X, is closed in R3, and as in
Example 3.1 there exists a positive semidehnite analytic function / : R" ->• R whose

special factors are the functions ft, £ > 1 (and each one divides / with multiplicity
one). Thus, by Theorem 1.4, / is a convergent sum of squares ofanalytic functions
on R3.

Moreover, we claim: There exist an open invariant neighbourhood U of R3 in
C3, a holomorphic extension F of f to U, and a sequence of invariant holomorphic
functions {Gk}k on U which converges uniformly to F in the compact sets ofU.

Indeed, let Uq be an open invariant neighbourhood of R3 in C3 to which we can
extend holomorphically /. We denote such extension by F. Let {Kk}k>i be an
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exhaustion by compact sets of Uq, that is, Uq Ua>i ^k an(J Kk C Fnt( /,+1 for
allA- > 1. We may assume that (1,1,0) g K\. For each k > 1 we set

Jk /•; '.()! n Kk / 0}-

We have that 1 g l| and Jk c //,-+1 for all k > 1. We write

Hk f] Fa,

iç.Jk

which is a finite product of sums of 4 squares of analytic functions; hence, Hk is a

sum of 4 squares itself. For each k > 1, the analytic function A a jj- does not
vanish on the compact set Kk. Let

s _
1 1 inf a-, IAaI

> 0F'k
2k sup^J 741 + 1 ißf%]A;A] + I

and Fa -n/Âa + sa for each k > 1. As one can check, A a + ek does not vanish on
Kk U R". Hence, Bk is holomorphic on an open set Uk C C" which contains Ka U M3.

Using that {ITa}a is an exhaustion of Uq, one can verify that there exists an open
neighbourhood U of R" in C" contained in Ha>i ft- ' he functions

Ga Bj:IIk

are sum of four squares of invariant holomorphic functions on U. Moreover, a

straightforward computation shows that the sequence {Ga}a converges to F uniformly
in the compact sets of U.

However, we do not know whether or not / is a finite sum of squares of mero-
morphic functions on R3. Note that the lines („v i,z 0} and {v i, z 0}
belong exactly to the zero set of f\,..., ft for all £ > 1. Hence, we cannot apply
Corollary 1.7 to this example.

(b) The description of (he following example requires an initial preparation. Consider

the following distribution of the natural numbers into an infinite array//////1 2 4 7

3 5 8 12

6 9 13 18

10 14 19

15 20
21
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and the finite sets .S*/, W + 1 öa + k} where ay \k{k — 1), k > I. The set

Sk corresponds to the oblique line {ait, «2J-2 &t, i} of the previous array.
For each k > 1 we also construct (inductively) a set

Tk {bkj : k - [§] < j < k - 1}

such that bkj G Sj \ U^=i Tt. We take 7j 0 and 7) {1}. By the definition of the

sets for any given j, we have % n Tk f 0 if and only if k — [|] < j < k — 1.

Thus, j + 1 <k<2j, and this means that Sj intersects exactly j of the 71-'s, which
are 7'/+i,..., T? /. Since the set Sj has j different elements then the 7/.'s can be

constructed with the desired conditions. We denote Q .S). U 7)..

Next, for each it > 1 we consider (he holomorphic function

Fi isim.T.vi + c>2isiiii;ry) + z)2 + M4 + M2{x - k)2 ]~[ (y - i)2,
ieck

where M > 0 is a positive real number such that M2 • fleecymU ~ # ^ 1 for
all j g Ck. We have that the real analytic function fk Ft}w is a special analytic
function whose real zero set is

Xk {x k.z 0} U (J {y t,z 0}.
teCk

One can check, proceeding similarly to Example 2.7, that / is a special factor.
Once again, the family {X/(}/( is locally finite; hence, the set X IJA. X/{ is closed

in M3 and there exists a positive semidehnite analytic function f : W —> ÎR whose

special factors are the functions fk, k > 1. Hence, by Theorem 1.4, / is a convergent
sum ofsquares ofanalytic functions on R3.

Proceeding as in the previous example (a), one can produce a sequence {gi}«>i
of sums of four squares of analytic functions on R3 which converges uniformly to /
(in the sense described in the introduction).

However, we have do not know whether or not / is a finite sum of squares of
meromorphic functions on R3. Note that (he lines (y 1. z 0} belong exactly
to the zero set of two ffs, and the lines {x 1, j 0} belong exactly to the zero
set of ft. Moreover, for all k > 1 the zero set X/( has finitely many irreducible

components.
Let us explain why we cannot apply Corollary 1.7 to this example. For, we have

to check that there does not exist a finite partition :? {Ay, A,} of N such that
for each j 1, ..:., r and each pair k, I Aj the intersection X/{ n X, is a discrete
set. Let £ > r be an integer. By the definition of the sets Xk, it follows that Xt shares

an irreducible component of dimension 1 with Xi+\ Xit This means that the

integers £,£ + 1, 21 should belong to different elements of the partition :?. But
this is impossible because the partition has r < I + 1 elements.
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A natural question is if it is possible to go a little bit further determining whether

or not there is a positive seinidefiriite analytic function / : R3 —> ]R to which we
cannot apply Corollary 1.7 but which satisfy the following conditions:

(i) The function / has inhnitely many special factors whose zero sets have all

finitely many irreducible components.

(ii) The special factors of / are all sums of p squares in 0(R3) for certain integer

p fci-
(iii) / is the uniform limit of a convergent sequence of analytic functions which are

sum of q squares in (9 (R for certain integer q > 1.

(iv) There exists and integer r > 1 such that the number of irreducible components
of a special factor of / is < r.

(v) Each irreducible component of the zero set of / belongs to at most the zero sets

of j of the special factors of / for the same fixed integer .v > 1.

Let / : R3 H» R be a positive semidehnite analytic function satisfying the
conditions (i) to (v) above. Let {/a-}a>i be the special factors of /, Aa 0)
and ()',},* i the irreducible components of f~ (0) Ua>i Consider the set

S Sf {(k, f) : Ye C Xk} C N2 and the projections m : S -> N, (xi, xa) -> Xt

for i 1,2. The set S has the following properties:

(1) 7ii(S) Nfori 1,2.

(2) The übers n^l(k) and have respectively less than or equal to s and r
points for all k, £ G N.

Conversely, for each set ScN2 satisfying the properties (1) and (2) above there
exists a positive semidefinite analytic function / : R3 R such that Sf S. To

check that, it is enough to proceed as in the example 3.2 (b).
Thus, the existence of an analytic function / : R3 -> R satisfying (i) to (v) above

to which we cannot apply Corollary 1.7 is equivalent to the existence of a set S c N2

satisfying the conditions (1) and (2) above and the following one:

(3) There is no finite partition :p {Ai, A,„}ofN such Üiat for all j ml m

and all &, ß g Aj, we have tiiat l(pf) n (ß» 0.

As far as we known, after consulting several specialists in the matter, this is an

open problem which seems to be difficult.

4. Proofs of the main results

The purpose of this section is to prove Theorem 1.4 and Theorem 1.6 announced in
the introduction. Before that we need some preliminary results.
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Proposition 4.1. Let U c C" be an open set and let //, (!/, : il -> C be

invariant holotnorphic functions such that the series VA Fk, Ea->i *•*? converge
in the sense of Definition 1.2 (ii), that is, Yf.-i supÄ- |F2|, Et>i suPä' K'itl < +°°
for all compact sets K c U. Then the series E/.a>i W&ï converges on U to

Jfj> i Fj • Ea>i w Ä: StfÄ. of Definition 1.2 (ii).

The proof of the proposition follows straightforwardly from the following result
whose proof is a standard exercise of the theory of convergent series that we do not
include here.

Lemma 4.2. Let (//; .y {/>••}••.; be two sequences of complex numbers such

that the series E;>i ai> Efesf converge to complex numbers a, b and the series

E,:>i NlS>l I hi I converge to non-negative real numbers a*, b*. Then the series

Jfi j>i Oibj converges to ab, that is, for all e > 0 there exists a finite subset f C N2

such that if I c N2 is a finite subset that contains I, then \

,)e/ aibj — ab\ < e.

Moreover, the series
: j |converges to a*b*.

Lemma 4.3. Let /, f : M" ^ M be two positive sefnidefinite analytic functions such

that f~l(0) //_1(0) S. Suppose that there exists a discrete set D c S such

that the meromorphic function fff is analytic on W off the discrete set D. Then,

there exist analytic functions hi, J12 : M" -> K such that ifer1 0) C D, h% is a sum of
2" + n squares and hjf h%f.

Proof. Indeed, consider the coherent sheaf if : /)<%". "Ulis sheaf is generated in a

neighborhood of each f g D by finitely many sections Si,..., 8,-y e 0 (IR" By the

standard sum of squares trick, fy/fy r)y/8y for <5 Jfk 8k and some r)y 0(lRy
Furthermore, y is an isolated zero of <5. For that, suppose that there isv f v arbitrarily
close to v with S(x) 0. Then, all 8fs vanish at x, and since the ideal (f : fx)
is generated by them, it contains no unit. This means that fx/f is not analytic, a

contradiction.
The ideals Ly (8y), y g D, glue to dehne a locally principal coherent sheaf of

ideals I of whose zero set is D. Since //' (R", Mf) 0, all locally principal
sheaves are principal, and I has a global generator A. This means that each germ
Ay/8y is a unit for all v D. This A is a non-negative analytic function on M"
whose zero set is D, and f" A2///' is analytic. Moreover f" is strictly positive
on W! \ D. Tlaus, by [BKS] there exists an analytic function A : R" M such that
A-1(0) c f"~1(0) D and A2f" is a sum of 2" + n squares. Hence,

'A Ai2/ (A2/")/'

and taking h \ A A and hj A 2 f", we are done.
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Lemma 4.4. Let U c C be an open set and let Fk: U -> M, k > 1, be invariant
holotnorphic functions such that the sum Ylk>i Jfc converges in the sense of Definition

1.2 (ii). Let Y c U be a closed set and letfT: U —* K be a real analytic function.
If Gx divides Ft.x for all k > 1 and cdl x g Y, then G divides F Jfk> j Fk in
01 W), where W is a small enough neighbourhood of Y in U.

Proof. It is enough to check that for all x G Y, Gx divides F_x. Fix x G Y, and

let Gx n;=, (lfx be the decomposition of the germ Gx into irreducible complex
factors. We take a compact neighborhood VP cU of x such that:

• G i,..., G, are holomorphic on VP, and

• G '(lb n VP is an irreducible complex analytic set in VP for all i 1r.
It is enough to see that Gdfx divides Fx for i 1 r. By hypothesis, for each

k > 1 the germ Gfx divides Fk.x, and an easy computation shows that G,,.r divides
all derivatives D'L\.X of degree |cr| < df. That means that D"Fk vanishes on the

intersection of Gfl 0.) with a small neighborhood of x (depending on A). Thus, since

Gf1 (0) n VV'A is irreducible, D"Fk vanishes on Gfl(0) Fl Wx. As tins holds for each

k > 1 and D" /•'|u"- Y,k>i Vfk* we have Ihat D" /*' | ^ a vanishes on Gk
1

(0) n VP.
Whence, Gk_x divides all derivatives D"FX with |or| < dk. This concludes the proof
up to the lemma that follows.

Lemma 4.5. Let G, F e {?} Cfci,..., zn} be analytic germs such that G is

irreducible and let d be a positive integer. Suppose that G divides all derivatives
DaF ofdegree |or| < d. Then, Gd divides F.

Proof. We proceed by induction on d. If d Î the result is clear. Suppose the result
a!°ij
Wtme for d and that G divides D" F ÇJ-- for \ o\ < d +1. By induction, G(l divides

F, jF. In particular, there exists H lC(lj,...,4Î such that F G" II.
Hence,

dF »ill? jdH— =dGl1~l — LI + Gd
&m dZi 'Pr

Since Gd divides all derivatives we see that G divides all products jfH- But

G is irreducible and cannot divide all its derivatives fr, hence G divides //. Thus,m
Gd+1 divides /•', as wanted.

Next, we proceed to prove Theorem 1.4.

Proofof Theorem 1.4. We will split the proof into several steps.

Step 1 : Preparation. By the decomposition result Lemma 1.1 we may assume that all
the complex irreducible factors {hj }jej of / are special and divide / with multiplicity
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one. As we have seen in 2.3 we may assume that there exist holomorphic extensions

Hj of hj to a Stein neighborhood Ko of M" in C".
We write Ay Hj"[(0)nW for all j G J. By hypothesis and by Proposition 1.3,

for each j there are invariant holomorphic functions Gy, Bm : Uj -» C, dehned on
an open neighborhood Uj c Ko of Xj in C", such that G'j//; > *''ie

series converging in the strong sense of Definition 1.2 (ii)) and GJ1 (0) H R" c Xj.
We write Tj GJ"1 (0) c Uj and shrinking Uj if necessary, we may assume that the

family {7)}ye/ is locally finite in C". Consider (he open set in C":

u (c* \ U CI ,« /},) U (J (llj \ IJ(Cl^ÏA) \ f10).
i I j> 1

'

k^j

A straightforward computation shows that Tj n II is closed in U for all j G J. Let
K c U n Ko be an open invariant Stein neighborhood of K" in C" such that K" is a

deformation retract of K ([Ca]). Denote again by 7) the intersections of Tj with K
which are analytic (complex) subsets of K. We denote Vj Uj n K and keep F for
the restriction of F to K, and Gj, Bjk for those of Gj, Bjk to Vj. It holds:

• Ti C vh'md
• all j) 's are closed analytic subsets of K, as well as their union T 1J; Tj.

Step 2: Extension of denominators. Fix j £ J and consider the coherent sheaf of
ideals $ dehned on K by

$>x —
Gj • Gçn,x if X £ Tj,

I Gc*,.t if« V Tj.

As it has been done before, the locally principal coherent sheaf $ is globally
principal, say generated by a holomorphic function ry- : K -> C, whose zero set is

F 110) Tj. In a small enough neighborhood of Tj we have that F, GjVj
where vj is a holomorphic unit. Hence, in that neighborhood F, o o Gj Vj o a,
and therefore Ej 1'/ o / F/ is a unit in Jf(K). Moreover, one can check that

Ej Ej o o 1. Let Ay : K —> C be a holomorphic function such that ÂJ Ej
and Ay • Ay a o 1. A straightforward computation, already done in 2.3, shows that

Gj Ty Ay is an invariant holomorphic function that generates $.
Consider also the real analytic function gj Gj| :: «. The zero set of Gj is Tj

and the zero set of gj is Tj nK" c Ay c hjHp). Now, since Gj generates $, Gj
generates $ \ y., and tliese functions are invariant, there exist an invariant holomorphic
function Qj : Vj hp such that Gj| y. QjGj. We deduce:

G'jn, QjtGjH,) Qj Y; -D4,
k k
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where Cjk QjBß, and the series Ha'C^a satisfies the convergence condition
Definition 1.2 (ii). Note moreover that the zero set of Gj is 7).

Step 3: Glueing of denominators. After the preceding preparation, we glue the
denominators G';.. Consider tire coherent sheaf of ideals $ defined on U by

a _
11 If.ve'/) Gj ' ii v e 7},

|ö: v if V f T.

As in the preceding arguments, the locally principal coherent sheaf $ is globally
principal, says generated by a holomorphic function F : U -> C, whose zero set is

r_1 (0) T. As in the previous step we can substitute F by an invariant holomorphic
function G : U -# C that generates JL Consider the real analytic function g G \ y «.

The zero set of G is T jJy Tj and the zero set of gis 1J; 7)f)K'! c U / C

Moreover, by the construction of G and Œ, we have that each G' divides G and for
all veF

G • 0C" ,j ]~[ Gj • O&jc.
i,xeTj

Step 4: Globalization of sums of squares. Here we find global sums of squares
to replace the sums Cjk, which are defined only on the Vj's, such that

their restrictions to R" vanish only at the corresponding Xj.
After shrinking V if necessary, we may assume that the connected component

of // 1

0) that intersects R* in Xj is contained in Vj (this can be done using an

auxiliary open set U similar to the one constructed in Step 1). Up to shrinking Vj,
we may assume that it is invariant and does not intersect other connected components
of (G'j2Hj)^1 (0) different to the one that intersects IFF in Xj. By Proposition 2.2,

applied to T tC'r II- r. V Vj and Ck Cjk, there exist invariant holomorphic
functions Aju : V. Hi* C, such that SnpA. \ Aju\2 <j +cx) for all compact sets

K c U, and (GfHj)2 divides Ajk - Cjk on Vj.
On Vj we have:

E 4 - Gf"i-E4 - E 4 E (4 - 4)-
k k k k

and this series is convergent on compact sets, as Jfk an(i Ha- ('p: arc so- By

construction, (G'VHj)2 divides on Vj each term Ajf. — Gjk {Ajk + Cjk)(Ajk — Cjk),
^ 9 2 2

hence it divides their sum YJ; 'Xk ~ G] Hj- Thus, if we set Ajo Gj If, there is

a holomorphic function T, : Vj C such that on Vj we have:

EAm UjGfHj, where iij 1+(1+Vj)G?Hj.
A>0
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Clearly, uj has no zeros in (Gl Hj) HO) n Vj, hence, uj is a holomorphic unit in

a perhaps smaller neighbourhood V) of '/) U (0). Moreover, the restriction of

Y2k->o Ajkt0 vanishes only at Xj, because AJq (0) n 11" Xj.

Step 5a: Glueing of sums of squares under the condition (a). Here we paste all the

sums of squares fft,- to get a single one, if the irreducible components Yj }/s/ of

Xj satisfy the condition (a) in the statement, that is, ft n Y\ is a discrete
set for i f=- k.

We may assume that / N, because if / is a finite set the result is a straightforward
consequence of Proposition 4.1. Note that each Xj is a union of some of the Yj's and

that each Yj is a subset of finitely many Xj's. This fact can be checked taking germs
at any point of Yj.

For each / e / we set J\ {j / : Yj c Xj}, which is a finite set. By
Proposition 4.1, the function J~] J Ajk2 is a convergent sum of squares

E^ I1Eajk
jeJj k

on V in the sense of Dehnition 1.2 (ii). Note that for each i g I we have Yj c
H/:. /. -Xj c I, Vj- Hence in Wj ("]jep Vj we have

E^v2 11EV n "A-n'i
i j^Ji k j Ji

2
where «1 P|/e /, uj is a holomorphic unit on Wj and /•', | |/;;/ Gl Hj. Note that

Fj divides G2F for all i e I.
For each i e I we choose a compact set Kj such that K\ f 0, K, c InK Ki+\)

and 1 L|., Kj U, that is, the family {Kj }/s/ is an exhaustion of U by compact sets.

For each i g I set

m sup
K,

GlF
Fj

E®«A|/i and fj
: k,

i
yß m

We have

E«up
K,

GLF
Yi

Fj
< Yj sup

Kj

GZF

Fj
Esupl-Ä^l < ~

0 ^

Now, let K be a compact subset of the open set U. As U c U;>t hit - m A'. J, K is
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contained in some Kilp hence in all K, for i > and so:

GLF£ sup
~1 K

Yi
F, it

ip-t

E E sun

h-
< Y>p

i l K

io-1
< J2 sup

i'o-

K

GlF
Yi ~^A',

Fi +EEsupTZf.cK
GLF

< V supti K

Yi

Yi

Yi

Ft

G2 F

i>i0

2

G2 F
Yi F

J]sup|AC l + VVsup
K „ AT,

GlF
Yi ~e^aF; it

F

G2F

Y2 s'ûp \A\2\ + Y2 nï
o K • ^ •

_ï>ï'o

F F sup |A|/] + 1 < +oo.V K

Consequently, the sum of squares

r=E („ c±lA.uy

is convergent in the sense of Definition 1.2 (ii).
For a fixed r G I, we claim: /•', rw Gr«, divides the convergent sum

W G F a'Y2
2

(G2F^%

Fi X>!

in M{Wr) for all i e /. Indeed, in IF, fl)e/r K/' we have

G2FX
2

F E*«

y?(pn gfggh • n ^ nE4V ; 1 I/-: ('/ "// jsC)/, /s/; i

=^(Fn E-E n g;4»/ n E4 n E4
\.G 1 1/.; /. /,. "/ "/ / jeJrnJi k jeJAF k
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n i; 11 v<?t"r n E4
jJr\Ji j/rn/f j Ji\Jr k

•*- n g;2"- n »/ n em
jJr\Ji j/rn/f j Ji\Jr k

Thus, /'/ divides (y2 ^jx-A'u))2 in Jtf(:Wr), as wanted.

Next, we denote by /', JJ the restrictions to M" of F', Fi for all i /. We claim:
For each r t I we have g2fx&W"x fx&m.n,x for all x e K, \ Ä«

Before showing this we summarize the following facts already proved:

(i) C2J\(:) Fr,x0e»,x for all x 6. Y, \ UfjSr Yj.

(Ü) Et K? <Fr in #r-

(iii) y2 ^~jk~ does not vanish at Yr \ 1J,^ • Hence, by (ii), we have that

/~*4 T?2 _ 772 _ fi4 772

E riyfE 4,2
,t ' ' r '•

where 4>r is an invariant holomorphic function on Wr whose restriction <b, | |g,fjg*
is positive semidehnite and does not vanish at Yr \ 1J, ^, ^ •

(iv) For all i f r we have that F, divides VL (/, <IjF A'u) Therefore, the holo¬

morphic function

ee(«xa")!
Mr £

is divisible by Fr in 0(Wr). Moreover, the quotient 0, of such division is

invariant and its restriction 0, | uyf®* is positive semidehnite on Wr fl MB.

Now, we turn to prove our claim. Let re/ and x e Y, \ jj^ Yj. We have that

E + E E (»'^vf + ciCW*
£ i Y=r t

{Fr,x<3)r,x + 'V..v ©/ ,.\ + ^tFx)^&,X

F,! 'I'r. + ©r.x) + G~tFx)®&,x

g2Fx&^
hence, our claim is true.

Thus, since//_1(0) (g2f)~1(0) |J{/ E, the meromorphic function g2f/f
is analytic on 1R" off the discrete set D IJ(: r.j 7; n Y,. By Lemma 4.3, there
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exist analytic functions A]* Agi E* -> M such that Ar1 (0) c D, Aj is a hnite sum
of squares and A\g2f Aif.

Consequently, since moreover (Aig)_1(0) c f~l(0), / is a sum of squares of
meromorphic functions on LR" with controlled bad set.

Step 5b: Glueing of sums of squares under the condition (b). In this step, we paste
all the sums of squares Ajk to get a single one if the irreducible components

Yj }/s/ of X Ujfi Xj satisfy the condition (b) in the statement, that is, each F is

a compact set.

Again, we may assume that I N because if I is hnite the result follows
straightforwardly from Proposition 4.1. Fix it/; since F is a compact set and the family

gj is locally finite, we deduce that F intersects finitely many Xfs. We dehne
./; {j g / : F H Xj f 0} which is a hnite set and

' 1! <%%
jeJi

By Proposition 4.1, the function [lg, Ajk2 is a convergent sum of squares

J2Aii 11Ü4#2
^ j^Ji k

on U in hie sense of Dehnition 1.2 (ii). We claim: Ifx e F, then A'it x2&c».x

s (0 .a Indeed, let Jx — {j g / : x i Xj} which is a subset of ./,. Recall (hat

for each j g J the restriction of W,. Ajk2 to IR" vanishes only at Xj (see Step 4). We
have that

Fi,xOe»,x J~[ (>':x2fli.xO '.v J~[ G'jx2HjXßic«wx

jeJi /•: F

J-[ Ajkix2(9<C",x J-[ Ajk,x2@<C",x

jeJx k /V./j k I

In the same way as in Step 5a, we can hnd real numbers y, > 0 such thai the sum
of squares

r G<F»+£(n^<)2
i,£

1

is convergent in the sense of Dehnition 1.2 (ii).
For a hxed r G I, we claim: /•', divides (y,- <'l.1 A':) y2 (<'rl )2 JA A'.2

for all i g I, in a small enough neighbourhood ofY, in 11. Indeed, if x g F, and
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Jx {j g / : x e Xj}, we have

:2r \ 2

>? (^) E(A«..v)2ÖC".

Vi I/: '//.V / A

n rt.n
n gv.t4^?, n

j Jx\ Ji j-JiC\Jx

n e';,s2//,, n GuHlx&msx=/).x n
7^/x j Jx\ Ji j Jx\ Ji

The last equality is a straightforward consequence of the fact that Jx c Jr. Thus,

we deduce that Fr j~[/e/r Gj2Hj divides XV (T ® a sma" enough
neighbourhood of Y, in K, as wanted.

Next, we denote by /'. fi the restrictions to M® of F', Fi for all i g I. We claim:
For each r g I we have g2fx&^n,x f'K&.-.,x for all y g Yr.

Before showing this we summarize the following facts already known:

(i) G\FxQv*,z Fr,xGç",x for all x g Yr.

(ii) X« Ku2&£"'<* Fr@c*,x f°r all x g Yr.

(iii) y,2 does not vanish at Yr. Hence, by (ii), we have that
rr

yy y,2
r?

Arrt20iq®iX Fro >:,x.

£ r

for all M £ Yr. Thus, there exist an open neighbourhood Wr of Y, in V and an
invariant holomorphic function on Wr whose restriction 4>, | uÇflU» is positive
semidehnite, such that

2G4F2 2
TV Yr

y. 2 AI > -

and it does not vanish at Yr.

G'F M \2 •

(iv) For all i f r we have that F, divides Xf (yi in a small neighbourhood
of Yr in U. Therefore, by 4.4, the holomorphic function

££{>
m

GLF
iFi
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is divisible by F, in where W'. is a small enough neighbourhood of Yr.

Moreover, the quotient 0, is invariant and its restriction 0, l is positive
semidelinite on W'r n R".

Now, we turn to prove our claim. Indeed, let re/ and x g Yr. We have that

n<> (E x^)2+EE ("?t"^I iff I
{Fr,x^r,x + "r..\ 0f..\ + ('1

('!'/. x + 0r,x) + f ' ''A" ft ' -A

G^tx0m,x-

Thus,since/,~i(Ö) (g2/)-1(0) (J,s/ K;,themeromorphicfunctiong2f/f
is analytic and positive semidelinite on R". Consequently, there exists a positive
semidehnite analytic unit u : R" -> R such that g2f f'u2, and therefore / is an
infinite sum of squares of meromorphic functions.

Remark 4.6 Note the following:
(1) In the step 5a of the proof of Theorem 1.4 we have only used the fact that

Y-, n Yk is a discrete set for i f k to apply, in a crucial way, Lemma 4.3 at tire end
of such step. However, it seems difficult to get similar results to Lemma 4.3 for a

more general situations, because if n > 3 the special irreducible factors could appear
whenever the dimension of the zero set of a positive semidehnite analytic function is

> 0. Recall that if the zero set of a special factors is not compact we do not know a

priori if it is a sum of squares of meromorphic functions.
(2) In the step 5b of the proof of Theorem 1.4 we only have used that the analytic

sets Yj are compact to have that: each Y, intersects onlyfinitely many of the Xj's.

Before proving Theorem 1.6 we need a preliminary additional result whose proof
is similar to tire one of Theorem 1.4. However, its particular delicate technical details

strongly suggest to reproduce the full proof and not only to give a patch for the one
of Theorem 1.4.

Proposition 4.7. Let q > 1 be an integer and let {,fj : R" -> R}7-e/ be a family of
positive semidefinite analytic functions such that

(a) /r1 (0) n ffl{0) is a discrete Set if j -f- k,

(b) {frl(Q)}jej is a locallyfinitefamily in R"„ and

(c) fj is a sum ofq squares with controlled bad set at f ~1 (0) for all j g J.

Then there exist analytic functions ®, g%, /, /', f" : R" R such that
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(i) /A«j Uunfrim fj,x®w\x for all x | /_1(0) \JjeJ

(ii) gj-^O) Cf-HOjfori 1,2,

(iii) f is a sum ofq squares ofanalytic functions on M",

(iv) f" is a sum of 2" + n squares ofanalytic functions on M" and its zero set, which
is contained in /_1(0), is discrete, and

(v) jf/ f"(f + g24/2).

Proo/ We will split the proof into several steps.

Step 1 : Preparation, First, we write Xj ffl(0) for all j e /. In the same way as

the Step 1 of the proof of Theorem 1.4, there exist:

• an open invariant Stein neighborhood of R" in C" such that IR" is a deformation
retract of U ([Ca]),

• open neighbourhoods Vfs of the Xj 's in K, and

• invariant holomorphic functions Gj, Fj, Bta-: Vj -> C, 1 < k < q, such that

G)Fj Tk Bjk' FJ fjkrnvj and Y} Gjl(0) n W c Xh which satisfy
the following properties:

Tj GJ1 (0) c Vj, Sj FJl(0) c Vj, and

• all 7)'s, Sj's are closed analytic subsets of K, as well as their unions

U/-S-/' U//'/-

Step 2: Extension of denominators and the positive semidefinite analytic functions.
Proceeding as in Step 2 of the proof of Theorem 1.4, for each j e / one can construct
invariant holomorphic functions G'. : K C such that Gj_1(0) Tj and

GfFi Eci-
k

where the series Cjk verihes the convergence condition (ii) on the open set Vj in
Definition 1.2.

hi a similar way, one can get invariant holomorphic functions Fj on U that extend
the functions fj to K after multiplying fj by the square of a suitable strictly positive
analytic function on R". We denote again by /•) the functions Fj and by fj their
restrictions to R8. We also denote by Gj the functions Gj.

Step 3: Glueing of denominators and the positive semidefinite analytic functions.
Proceeding as in Step 3 of the proof of Theorem 1.4, one can construct an invariant
holomorphic function G : il C such that G~l (0) U/ % wid

G (9c»,x ]"[ Gj 0(11,;,.

j.xeTj



Vol. 83 (2008) On Hilbert's 17th Problem for global analytic functions in dimension 3 97

Moreover, if g denotes the real analytic function g G Ik«, we have that g_1(0)

U j Tj n w c U/ xj c /_1(0).
Analogously, it can be obtained an invariant holomorphic function F on U such

that f F\la« is a positive semidehnite analytic function on M? and

F 0((y ,;x Y\ for all x &S.
j.xeSj

Step 4: Globalization of sums of squares. Here we find global sums of Squares

J2l=i Ajk to replace the sums C2k, which are defined only on the Vfs.

Up to shrinking Vj, we may assume that V) is invariant and does not intersect
other connected components of (Gj2Fj)~1(0) different to the one that intersects R"
in Xj. By Proposition 2.2, applied to $ (Gj2Fj)2, V Vj and Ca- 'here
exist invariant holomorphic functions Ap : U -> C, 1 < k < q such that (Gj2Fj)2
divides Ajk — Cjk in M(Vj).

In Vj we have:

Ê4- - e?F, É4 - E4 É (4 - 4)-
A*=l A=1 A=1 A=1

By construction, (Gj
2
Fj )2 divides in M{Vj each term A2k—C2k t A /a • '-k i /\ n

\2
jk

function 4; : fj C such that on V/ we have
Cjk). hence it divides their sum J2l=i — Gj2Fj. Thus there is a holomorphic

É4?- C'fl'j + "jG/Fj, where Uj 1 + 4>jGj2Fj.
S3

Clearly, uj has no zeros in (Gj2Fj)'1 (0) Cl Vj, hence, Uj is a holomorphic unit in a

perhaps smaller neighbourhood Vj of Ffl(0) U Tj.

Step 5: Glueing of sums of squares. Here we paste all the sums of squares Ä2k

to get a single one. We may assume that / N since the case where J is a finite set
is similar but easier.

Let {Kj}jej be an exhaustion of V. by compact sets (indexed using the set J).
Dehne, for each j g /:

Mj max { sup
1 j

g2f
GjFj

2
I An

and Yj sjtt: On the compact set Kj we have

1

< —- 2A
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Then, each infinite sum of holomorphic functions on K

/ q2 p \2
Ak Yyj\jj2j7) k =1 •

j j j

is a well-dehned holomorphic function on U. Next, on Vj one writes

nA'A*+**G1r'

where Ay and Ap are holomorphic functions on Vj. This is because G2 Fj
j J

divides fffa for j -f- L Hence, on V,

<>A2>2 E 4- + aPL PAL + a/°P>ct«.
k= 1 A*=l

where A; V/ l(27/AjdMAM + A2kG4Fj).
Thus, if x G Ay \ / Af for some j G / we deduce that

f'x®w& 8j,xfj,x$Wl,x g2xfx®W,x,<

Next, we considerf+ g4f 2 which is a sum of q +1 squares of analytic functions
on M" and satisfies the same properties as /' for the germs at the points ofXj \HJ|j., Af
for all j G /. Since (/'+ g4/2)_1(0) (g2/)_1(0) U/e/ Ay, the meromorphic
function g2f/(f'+g4f2) is analytic onM" off the discrete set D IJy.^y^ Ay H A1,

By Lemma 4.3, there exists analytic functions Ai, Ay: M" -> M such that A"1 (0) c
D, A2 is a sum of 2" + n squares and A2g2/ Ai{f + g4f2).

Finally, we write f" A2, gi Aig and g2 g, and taking account of the fact
that (Aig)_1(0) c y—1 (0) we are done.

Now, we are ready to prove Theorem 1.6.

Proofof Theorem 1.6. First, by Lemma 1.1 there exist analytic functions fa, f\, fa,
fa : W -> M such that fa, fa, fa are positive semidehnite, / /g/1/2/3 and

• /f1 (0) is a discrete set,

• ft is a sum of two squares of analytic functions on R", and

• All the irreducible complex factors of fa are special and divide fa with
multiplicity 1. In fact, the special factors of / are the same that the ones of fa.
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Next we claim: There exist analytic functions gi, gz, Jf» ff ' IF ® such that

(i) gfUO) C J\ '.Oi

(ii) fi is a sum of2,1+r~1 squares ofanalytic functions on IF,

(iii) ff is positive semidefinite and its zero set, which is a subset of /3_1(0), A
discrete, and

(iv) gj fî ff(fi + Tiff.
We begin with some preparation. We say that two elements j\, fi É J are equivalent

j\ y'2 if and only if Xjx Xi:. The previous relation gives and equivalence
relation in /. Consider the quotient set A Jf For each a m A we set Xa X
for any j c a. The set Xa is well defined because if ji, h & a, then Xjl XJ2.

Since the family {Xj}jej is locally hnite, each a A is a finite set.

At this point, we recall that the general Pfister's theory says that if K is a field of
zero characteristic and a h c K arc sum of 2"' squares in K then ab is also a sum of
1d squares in K (see [Pf], [L, XI.1.9]),

Let Hjeahj, which is a sum of 2' squares of meromorphic functions
on a neighborhood of Xa because each hj's is a sum of 2* squares of meromorphic
functions on a neighborhood of Xa. By Proposition 1.3, we have that fj,a is a sum
of 2'+n_1 squares of meromorphic functions on a perhaps smaller neighborhood of
Xa with controlled bad set. Now, the claim follows straightforwardly from Proposition

4.7.

Next, we have that

gff gi/0/1/2/3 /o2/2/igî/3 (fimfifi'Hfi+éfh
where

• jf) A Ö a sum of 2 < 2"+r squares of analytic functions on M"

• /1 ff is positive semidefinite and its zero set is discrete, hence by [BKS] a sum
of 2" +11 < 2'1+r squares of meromorphic functions on K" with controlled bad

set, and

• (Jj + gj.ff) is a sum of 2n+r~l + 1 < 2n+r squares of analytic functions on
IF.

Thus, g\f is a finite product of sums of 2"+r squares of meromorphic functions on
IF ; hence, it is a sum of 2n+r squares of meromorphic functions on IF.

Remark 4.8 We cannot, however, guarantee that for such expression of /, as a sum
of 2"+r squares of meromorphic functions on IF, the bad set is controlled. To control
the bad set we should apply again Proposition 1.3, which produces a new controlled
increase in the number of squares.
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