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On the appearance of Eisenstein series through degeneration

Daniel Garbin, Jay Jorgenson and Michael Munn

Abstract. Let T be a Fuchsian group of the first kind acting on the hyperbolic upper half plane
H, and let M T\H be the associated finite volume hyperbolic Riemann surface. If y is

parabolic, there is an associated (parabolic) Eisenstein series, which, by now, is a classical part
of mathematical literature. If y is hyperbolic, then, following ideas due to Kudla-Millson, there
is a corresponding hyperbolic Eisenstein series. In this article, we study the limiting behavior of
parabolic and hyperbolic Eisenstein series on a degenerating family of finite volume hyperbolic
Riemann surfaces. In particular, we prove the following result. If y g V corresponds to a

degenerating hyperbolic element, then a multiple of the associated hyperbolic Eisenstein series

converges to parabolic Eisenstein series on the limit surface.

Mathematics Subject Classification (2000). 11 M36. 30F35, 11F72.

Keywords. Hyperbolic Bi«enstein series, degenerating Riemann surfaces, and counting
functions.

1. Introduction

1.1. Spectral expansions. Let M T\H be a finite volume hyperbolic Riemann
surface, realized as the quotient of the hyperbolic upper half plane M by a discrete

subgroup F of FSLgfHJ. Let A M denote the Laplacian, associated to the hyperbolic
metric, which acts on the space of smooth functions on M. For the sake of our
discussion, consider the corresponding heat kernel K\t(t: z. «;). which is a function
of t g R+ and -, w e M. If M is compact, then the heat kernel admits the spectral
expansion

where {(pu.n} is a complete orthonormal basis of eigenfunctions of the Am with
corresponding (non-negative) eigenvalues Xm,h-. If M is non-compact, then the spectral
expansion of the heat kernel takes a very different form. More specifically, let {P}
denote the finite set of F-inequivalent cusps, and /(pai-M./'G, z) be the (parabolic)
Eisenstein series on M corresponding to P. Then, in this case, the spectral expansion

m
n=0
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of the heat kernel on M is the identity

KM(t; z, w)
00

^2^'m-"'<pM.n (Z)(f>M,n (w) (2)
n=0

oo

^2 / '
' 1

(/-par: !/./''1/2 + ir, z)Evm;M,p(1/2 + ir, w) dr.
71

P -oo

Recall now that any finite volume hyperbolic Riemann surface Mo can be realized

as one component of a degenerating sequence of compact hyperbolic Riemann
surfaces In this setting, it has been shown that the hyperbolic heat kernels on
M ; converge to the hyperbolic heat kernel on Mo; see [13] and [15]. With the heat
kernel convergence result in mind, one immediately has from (1) and (2) the following

natural question: How does one see the emergence of the Eisenstein series in (2)

through degeneration? More precisely, does there exist a naturally defined sequence
of functions he(s, z) on Mi which converges to the Eisenstein series Epm-M0,p(s, -s)

on Mo?

1.2. Spectral theory on degenerating Riemann surfaces. The problem of studying

the asymptotic behavior of spectral theory on degenerating Riemann surfaces of
finite volume has received considerable attention in the literature. In [5], Hejhal
developed the theory of degenerating b-groups and obtained, among other results, the
lead asymptotics of spectral counting functions. An improvement of the error term
in the case the degenerating surfaces are compact was proved in [8]. From [2], one
has a construction of degenerating hyperbolic Riemann surfaces of finite volume by
first constructing families of degenerating algebraic curves, from which one can
utilize the uniformization theorem in order to obtain degenerating families of Riemann
surfaces of finite volume. In [9], the approach from [2] is used to study spectral invariants

associated to the canonical and Arakelov metrics. Beginning in [13], Huntley,
Jorgenson and Lundelius used the methodology from [2] to study hyperbolic spectral

theory through degeneration. These authors obtained numerous result, including:
Convergence of heat kernels [13]; asymptotic behavior of heat traces and Selberg zeta
functions [16] ; convergence of relative spectral functions [14] ; asymptotic behavior of
counting functions [15]; asymptotic behavior of weighted counting functions (Riesz
sums) [6]. In all these articles, the results apply to non-compact degenerating families
as well as compact families. Further results concerning eigenvalue and eigenfunction
convergence have been obtained by Judge in [17] and [18], and Wolpert used
degenerating techniques to study the problem of existence of L2 eigenfunctions on general
finite volume hyperbolic Riemann surfaces. More recently, in [11], it was shown that
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one can use the results from [16] to study other metrics, namely it was shown that the
metric on Teichmüller space induced from the canonical metric is not complete.

In brief, there is a vast literature addressing problems in the study of spectral
theory on degenerating finite volume Riemann surfaces. Further problems exist, and

as mathematical development demonstrates, new results are interesting for their own
sake as well as for potential applications to other fields.

1.3. The main results. Throughout this article we refer to the Eisenstein series

Epar;M,p Ov z) in (2) as parabolic Eisenstein series since each such series is associated

to a parabolic element of the uniformizing group T. In [20], the authors defined
a hyperbolic Eisenstein series £hyp;M,y (jf. Û associated to any hyperbolic element

y £ E. We will summarize both definitions in Sections 2.3 and 2.4. In addition,
as we will recall below, a degenerating family of hyperbolic Riemann surfaces M,
has two types of hyperbolic elements: Non-degenerating elements, which are those

that converge to hyperbolic elements in the Fuchsian group of the limit surface, and

degenerating elements, which are those whose associated geodesies have lengths that

converge to zero.
Precise definitions and references to all concepts will be given in Section 2 below.

However, with these comments made, we are able to state the main result of the paper.

Main Theorem. Let Mi be a degenerating family of hyperbolic Riemann surfaces
offinite volume, with limit surface Mo.

i) Let Ehyp:Me.y (s, z) be the hyperbolic Eisenstein series on Mi associated to
the hyperbolic element y. If y corresponds to a non-degenerating hyperbolic
element, then

lim Lhyp-_Mi,y(^t Z) F|i\p: ' v. 2
ty >"0

ii) Let Epar,Me,p(:s< z) be the parabolic Eisenstein series on Mi associated to the

cusp P. Then

lim EpSy,Mi,p(ß< z) EparMQ,p(s,z).
ty >0

iii) Let Ehyp:Me.y(s, z) be the hyperbolic Eisenstein series on Mi associated to the

hyperbolic element y, whose geodesic has length ly. If y corresponds to a

degenerating hyperbolic element which results in the new cusp P, then

lim ' Einp:M,\. ~ Eparp(s, z)
ty ^0

In all instances, the convergence is uniform on compact subsets of Mo bounded away
from the developing cusps, and in half-planes of the form Re(,s) > 1 + S for any
S > 0.
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Part (iii) answers the question posed above, namely to determine a naturally
defined sequence of functions on a degenerating family Mi of hyperbolic Riemann
surfaces whose limit is the parabolic Eisenstein series associated to the newly developed

cusps.

Explanation of (iii). In order to keep the statement of part (iii) manageable, we
employed a slight abuse of notation, which we now explain. If Mi has a single
pinching geodesic which is separating, then the limit surface Mq has two components,
which we denote by Mgj and Mq-2, each with a single newly formed cusp, denoted

by Pi and P2. In this case, the right-hand side of (iii) depends on the location of
the point 3: If s G Mq:\ (resp. s Mq$J, then the right-hand side of (iii) signifies
the function i) (resp. Ev^Mi).r,p2(s, £)). If Mi has a single pinching
geodesic which is non-separating, then the limit surface Mo has one component with
two newly formed cusps, denoted by Pi and Ifj, In this case, the right-hand side of
(iii) signifies the function PPar;M0,Pi (ß- z) + £par;MD,.P2 (s< Ä- To consider the general
case when Mi has several pinching geodesies, then one simply iterates the results
from the Main Theorem by pinching one geodesic at a time.

1.4. Outline of the paper. In Section 2, we establish notation and recall various
known results. Perhaps the most important ingredients for our analysis are the definitions

of parabolic and hyperbolic counting functions, and the realization that parabolic
and hyperbolic Eisenstein series can be expressed as Stieltjes integrals of these counting

functions. In Section 3, we study the asymptotic behavior of the counting functions

from Section 2 through degeneration. With these results, we conclude by proving
the Main Theorem in Section 4.

2. Background material

2.1. Basic notation. Let M be a finite volume hyperbolic Riemann surface. By this

we mean there exists a Fuchsian group of the first kind T acting on the hyperbolic
upper half plane H such that M and E\H are isometric. Hence, we write M F\H.
As is common, we realize H as {z g C ] Im(^) > 0}. Writing s =x + iy, then the

hyperbolic metric /ihyp and hyperbolic Laplacian Ahyp can be expressed as

ilx ~ + dy2 / 4" 9 2

ßhyp ^2
and AfayP

t)x~
+ dv2

Under the change of coordinates ,t ep cos 9 and y ep sin 9, the hyperbolic metric
and hyperbolic Laplacian are given by

dp2 + d92
A / 92 92 \

Mhyp " sin2 9
Ahyp " " Sm + dB2

•
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In a slight abuse of notation, we will at times in this article identify M with a

fundamental domain (say, a Ford domain, bounded by geodesic paths) and identify points
on M with their pre-images in H.

2.2. Counting functions. Let y f T be a primite hyperbolic element. As usual,

primitive means that it yo e F and y// y for some integer n, then « ±1. By
hyperbolic, one means that y can be conjugated in PSL2 (M) to a non-identity diagonal
matrix, which we write as

/ && 0 \
7 { 0

•

where iy denotes the length of the closed geodesic on M in the homotopy class

determined by y. Let Vy be the stabilizer in J* of y, and we assume that Vy is

generated by y ; it is easily shown that Vy is isomorphic to Z. Choose a realization
of F in PSI.yiK) such that y is diagonal. Then the geodesic in H hxed by y is the
line £0 {Re(c) 0} D H. For any point ; G M, which we lift to a point ; H, let
<7hyp(?, £0) denote the geodesic distance from z: to £(>. With all this, we dehne the

hyperbolic counting function as

Nhyp;M,y(T: z) Wrdöf g ry\F I ^hypi'y^. £o) < T).

Equivalently, one can count the number of geodesic paths from z & M to the closed

geodesic on M in the homotopy class determined by y ; see Figure 1. By following the

method of proof in Lemma 1.4 of [15] (see also [21] which simply utilizes elementary
hyperbolic geometric considerations, we can establish the following bound. For any
point j; G M with injectivity radius r, and any u > To > i\ we have

sinh2 — sinli2
Miyp z) < Nhyp-M,y(ToI Z.) H : 2 77 • (3)

sinlr (y
For the sake of completeness and convenience of the reader, we now give a proof
of (3).
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Let BZ(T) denote the hyperbolic ball of hyperbolic radius T centered at %, Let
{r)k} C Fy\r be a maximal collection of elements such that G Bz(u) \ Bz(Tq).
Note that

[J BnkZ(r) c B:(u + r)\ BZ(T0 - r),
k

so then

volhyp^ |^J BnkZ(r)^j < volhyplTljfu + r)) — volhyp(5|(7o — r)),
k

where volhyp denotes the hyperbolic volume. Since r is the injectivity radius at -, we
then have

^ '
volhyp (BjjkZ(r)^ < volhyp (Bz(u + r)) — volhyp(5j(7b — r.))*

k

By computing the volume of geodesic balls, in H, we have that

card{/? G Fy\r | r/z Bz(u) \ Bz(To)} 4jt sinh2(r/2)

< 4„ htah3 fcr
Since

card{/? G ry\P I p Bz(u) \ Bz(To)} card{/? G Tt\F | i)z G Bz(u)}

-card{t] g ry\r | rjz G

we get the desired result, namely the bound

card{/] G ry\r | rjz G Bz(u)}

sinlr2 f^1) - sinh2
< card in G ry\r | m g bz(t0)} +

1 1 ,'l2,r. -,sinh- (§|

thus completing the proof of (3).
Consider now a parabolic element y g T, which, by conjugation in PËL§,(R), we

may assume

/ 1 a>

1

where at is referred to as the width of the cusp associated to y. Let F^ denote the
stabilizer in T of y, and without loss of generality we may assume that y generates
Too. Choose and hx any point - G AL which we lift to a point - G 1KI. Elementary
considerations show that one can choose yo g M sufficiently large so that yo > Imi//->
for all rj g F. Let £yo be the horocyclic line in H dehned by (Inh- yo}. For any
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point z i M, which we lift to a point f H, let 4*ygJ3ï* Xyo) denote the geodesic
distance from s to £yo. With all this, we dehne the parabolic counting function
associated to y and yo to be

^par;M,p(T\ Z» 3'o) Cardio <8 ToeXr I '^hyp' rT- Xy0) ^ T}*

Observe tliat when dehning the parabolic counting function, we needed to use the

length from z to a horocyclic line £yo since the cusp is at infinite distance. Such
considerations are not necessary when dehning the hyperbolic counting function.
Finally, as with (3), hie arguments from [21] apply to yield the following bound. For

any point z e M with injectivity radius r, and any u > To > r, we have

sinlr '* * ' 1 — sinlF i ' 11

2, yo) < Nvm,m,p(T; z, yo) + - 1 2 / *.
1 2

(4)
si»h- (§)

The proof of (4) is similar to the proof of (3) given above.

2.3. Parabolic Eisenstein series. By now, the study of parabolic Eisenstein series

associated to a cusp P on a non-compact, hnite volume hyperbolic Riemann surface

M is a classical aspect of mathematics (see, for example, [4], [7] or [19]). To recall,
for any and se C with Rcu) > 1, we dehne the parabolic Eisenstein series

Epar;M,p(ßi Z) by

£par;M,pCv Z.) 0>~S ^ (Im rjzY (5)
î?erco\r

It is standard in the mathematical literature to normalize cusps so that the width a>

is equal to one. We will work slightly more generally and, as a result, include the

multiplicative factor of a>~s in (5). For any point and vp g M with Im(z) < yo,
we have that

* fM dy
_ / y0 \

^hyp (Z, X v..) — J — log I I

Jim(Z) y Vm(z)Jy

so then

(Im(z))S jfj c\p A • <7hyp(z, /' v j) •

With hais observation, we can express hie parabolic Eisenstein series (5) as a Stieltjes
integral, namely

POO

Epav;M,p{s> z) (yo/cuf I e~s" dNparM,p(u\ z, yo)-
Jo

(6)

Observe hiat the integral in (6) depends on the choice of yo through hie parabolic
counting function; however, after multiplying by y^ hie product itself is independent
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of v<). As we will see, one can use (4) and (6) to prove the well-known result that (5)

converges uniformly and absolutely for Re(ä) > 1. Though not needed in this article,
we state, for the sake of completeness, the classical differential equation satisfied by
the parabolic Eisenstein series, which is the identity

A/'.par:.U./'G. "! ïfï ~ s)Epw-M.P («, Z).

2.4. Hyperbolic Eisenstein series. Let M r\H be any finite volume, Compact
or non-compact, hyperbolic Riemann surface, and let y be any hyperbolic element
of T. As in Section 2.2, we assume that T has been conjugated by an element in
PSL2 (ffi) so that y is diagonal. We will use the change of coordinates 2 epe10

and write 0(z) 9. With this notation, we formally dehne the hyperbolic Eisenstein
series E^M^is.z) by

Ehyp;M.y(s,z) ^ (sin 9(r]z))-, (7)

The hyperbolic metric in the (p, 9 coordinates was given in Section 2.1, from which
one can easily show that

4yp(z, /•(,! I log(csc9(z) + cot 9(z))I,

which can be used to obtain the relation

sin(6»(z)) • coslui/|i,p( z. £o)) 1,

so then we can write (7) as

Ehyp;M,g 1,1 ^ '
(COSh('/|typG/Z. I.I) i)

nerr\r

We can express the hyperbolic Eisenstein series (7) as a Stieltjes integral, namely

00

Ehyp ;M,y(s>Z) J (COSll If d y(U. J). (8)

0

A by-product of the computations from Section 4 is that by combining (3) and (8),
we can show that the series defining the hyperbolic Eisenstein series (7) converges
uniformly and absolutely for Re(Y} > 1 (see also [20] and [22]). Also, using the

computations from Section 2.1, one can easily verify the differential equation

AEhyp;M,y(S' Z) ^Cl $)Ehyp;M< Z) A 'V Ehyp;M,y T 2, z). (9)

which is given in [20], [22] and [24] (Lemma 3.2).
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2.5. Degenerating families of Riemann surfaces. The discussion in this section is

taken from [16] and is repeated here for the convenience of the reader.

In [13] and [14] the authors gave a construction of a degenerating family M| of
either compact or non-compact hyperbolic Riemarm surfaces of finite volume. The

construction of the family M, allows one to dehne unambiguously various notions
such as the tracking ofpoints through degeneration and the idea ofpoints not contained

on the degenerating geodesies. The reader is referred to these articles for complete
details, which will be assumed here.

Let Me be a degenerating family of connected, hyperbolic Riemann surfaces

with p degenerating geodesies, with £ denoting a p-tuple corresponding to the lengths
of the degenerating geodesies. To say that £ approaches zero means that the length
of each degenerating geodesic is approaching zero. Although each M, is connected
when £ > 0, the limit surface Mo need not be connected and, indeed, the number of
cusps on Mo is equal to (he number of cusps on M, plus 2p.

For 1 > 0, let Gt denote the hyperbolic inlinite cylinder with simple, closed

geodesic of length I. A convenient fundamental domain for Gt in HI is

[rexp(ia) | 1 < r < exp(£), 0 < a < jt}, (10)

with hyperbolic metric induced from H and uniformizing group [exp(kl) k e Z}
which acts on EI by multiplication. For any s > 0, let G,,,* denote the symmetric
submanifold of Gt about the geodesic defined by y with total volume equal to e. A
model for Gtj> in (10) is obtained by adding the restriction

cot 'w/tdfil < a < TT — cot 11
«' /12#

An easy calculation shows that the length of each boundary component of Gt.e is

iß + v2/4)j '1. If ; I > i-o, then the distance from the boundary of Ggfl and Ge,So

can be shown to be

'/inptdC,.. dGpn) log (o I + y(e2 + 4i2))/(è0 + ^ißl+ 4£2))j.

From [23] we have that for any 0 < ß < 1/2, the surface Ge,B embeds isometrically
into Mi. The surface Mo contains 2p embedded copies of (?o,f which is the limit of
#§4 C Mf:, One can model Go,, as two copies of a symmetric neighborhood of the

origin in the punctured unit disc with its complete hyperbolic metric. From [1] we
have that the family of hyperbolic metrics converges uniformly on Mf \ Gt,,,.

2.6. A Stieltjes integral inequality. A key component in our analysis is an integral
inequality for Stieltjes integrals, which we quote from [10] and, for the sake of
completeness, we state here. Let F be a real valued, smooth, decreasing function
defined for a > 0 and let gf, g2 be real valued, non decreasing functions defined for
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u > a > 0 and satisfying gi(u) < gzM for u > a. Ilien, the following inequality
of Stielties integrals

00 00

j F(u)dgi(u) + F(a)gi(a) < j F(u)dg2.(u) + F (a) g2(a)

a a

holds, provided both integrals exist.

3. Convergence of counting functions

In this section we will establish the limiting behavior of the counting functions

Npar;Mt,P and A'hyp:on a degenerating family of finite volume hyperbolic
Riemann surfaces For simplicity, we will assume that M, has a single family of
degenerating geodesies; the more general situation is easily obtained from the
arguments presented here with only a slight modification of notation.

Throughout this article we make use of the following fundamental result which
we cite without proof from [1], stated as Theorem 8, page 37,

3.1. Proposition. With notation as above, the hyperbolic metrics on the degenerating

family Mi converge to the hyperbolic metric on Mq. Furthermore, the convergence
is uniform on compact subsets of Mq bounded away from the developing cusps.

We refer the reader to [1] for a complete proof of Proposition 3.1. Building on
this result, we consider the convergence of the hyperbolic and parabolic counting
functions through degeneration.

3.2. Lemma. With notation as above, we have thefollowing limits:

a) If y does not correspond to a degenerating hyperbolic element, then

pnt A'hypz) y(T, 2),

b) For any cusp P, we have

hmAW^Mr; z, yo) Ffpai;Mo,p(T; Z, yo).

In all instances, the convergence is uniform on compact subsets of Mo bounded away
from the developing cusps.
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Proof. Choose si sufficiently small so that the point 4 lies in Mi \ Now choose

eo < si so that the distance from the boundary of &im to the boundary of is

greater than T. Clearly, any geodesic path from t. to the non-pinching geodesic y with
length bounded by T necessarily lies entirely in the M t \ C, jTr From Proposition 3.1,

we know that the family of hyperbolic metrics converge uniformly away ort Mt\&§m,
which proves part (a).

The convergence statement asserted in (b) follows from a similar argument.

3.3. Lemma. With notation as above, let

s(,'-n=1„8(5+t/(5)a+l)

and. let y correspond to a degenerating hyperbolic element.

a) Assume e 0 is sufficiently small so that 61^ is embedded in Mi, and, for
z g Mi, let Gf denote the halfofCite closest to z. Define

-^hyp;M£,3(S|
s
(T; z) card{q Fy \T | dhyp(r,z, 3GfJ < T). (11)

Then, for any T > 0, we have

Miyp+ g(yo, I); z) Nhyp' 2).

b) For any fixed T > 0, we have that

(im 7sh\p:XI..) ' / + g(yo, f), Z) Npai;Mo,p(T, z, yo)~

Proof. For fixed i, let us identify Mt with a (Ford) fundamental domain in H such that
the lift of the pinching geodesic y lies along the line Rein) 0. Then, the boundary
dGf e

of Gl, j lies along a ray 9(z) constant. The curve 3Gf E
is orthogonal to the

geodesies which transverse the sub-cylinder C|s, so 30|f converges to a path on
Mo which is perpendicular to the geodesies which transverse a neighborhood of the

cusp, meaning 3(5^ converges to a horocyclic path Xyo in a neighborhood of the

new cusp; see Figure 2. The area of C),, equals the area on Mo above £yo by the
choice of e e(t). By direct computation, we have

[°° dxdv co
Area(region on Mo above X.

Xlj I f —y— —,Jy0 J 0 >' yo

thus we get the relation e loo/yo. We dehne g(yo- £} to be the distance from 36| gl
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Figure 2. The Riemann surfaces Hf| and Mq.

to the geodesic in fl. Using the computations from Section 2.1 and Section 2.5,

we tlien have that

which is easily evaluated, arriving at the claimed result.
Choose any t) e ry\r. By choosing the appropriate coset representative, we

may assume that rjz lies in the fundamental domain for Ft from Section 2.5, meaning
0 < log ]^x] « i* It is immediate that the geodesic path from rjz to the {Re(z) 0}nE
lies along the path p constant, which then is seen to be orthogonal to each ray
0 constant. Therefore, we have that

dhyptm, y) ^hyP(nz, 1£|+ v) dele) + g(yo< Q>- (12)

From the equation (12) it is clear that r/hypC^U y) < F + g(yo, C) if and only if
dhypivz, d@le) < T, which completes the proof of part (a).

Part (b) follows from combining part (a) with the convergence of the hyperbolic
metric on Mi away from the developing cusps to the hyperbolic metric on Mq, as

stated in Proposition 3.1.

3.4. Remark. As discussed after the proof of the main theorem, there are two cases

one needs to consider in part (b) of Lemma 3.3: When the degenerating geodesic is

separating, and when the degenerating geodesic is non-separating. If y is separating,
then the statement of (b) holds without any liberty in the notation. If y is non-
separating, however, one needs to take into account that geodesic lengths from g to y

cot 1 (.ç/:21)
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enter the cylinder about the pinching geodesic from the two different sides. Hie
proof of (b) immediately extends to show that in the non-separating case the right-
hand side is actually the sum of two parabolic counting functions corresponding to
the two newly formed cusps. With this noted, we choose to use the statement in
(b) with its slight abuse in both the separating and non-separating cases in order to

prevent burdensome notation.

3.5. Remark. As one can see, the convergence of the counting functions in
Lemma 3.2 follows directly from the convergence of the hyperbolic metrics away
from the developing cusps, as stated in Proposition 3.1. In Lemma 3.3, we have the
added feature that the hyperbolic counting function involves the distances from the

orbits of a point s to the geodesic corresponding to the hyperbolic element, but the

parabolic counting function involves distances to a chosen horocycle. Hie distances

to the geodesic associated to a degenerating hyperbolic element are growing without
bound; however, Lenuna 3.3 can be viewed as establishing a type of "regularized
convergence". To be more specific, observe that the function giyo, i) depends solely
on jo and t, and no other aspect of the family Mç. With this in mind, Lemma 3.3

states that if we "regularized" the counting functions A/hyp:,v/,.y by introducing the
factor g(yo, £), one then has convergence of the counting functions.

4. Convergence of Eisenstein series

In this Section, we prove the Main Theorem. In brief, our proof uses tire convergence
of the counting functions for fixed T (Lemma 3.2 and Lemma 3.3), the uniform
bounds for the counting functions (Section 2.2) and the Stieltjes integral inequality
(Section 2.6). As in Section 3, we present the arguments in the setting of a single
degenerating hyperbolic element y whose geodesic has length I; in order to consider
the general situation where there are a number of degenerating geodesies, one simply
needs notational changes.

4.1. Proof of the main theorem

Proofofpart (i). For any Tq > 0, write

Choose any 8 > 0 and restrict j to the half-plane Re(s) >1+3 tor some fixed

Ehyp— / (COSh II) dA^yp- .y/, y ill. Z)

(13)
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<5 > 0. Trivially, we have that

CMH

pOO p 00
/ (coshM>"S<7;V|,yp:M.-.yi" z) < / (coshu)" l+S)dNhyp:Me,y(u; z).

J n JTo

We now establish the following bound: Given any s > 0, there is a 7b To(s, 8, r),
where r is the injectivity radius at z, such that for each f > 0, we have

pOO
/ (cosh«)-" H)dNhyp.Me,y(u:z) < e. (14)

JTo

The verihcation of (14) follows the proof of Lemma 1.4 from [15], which we repeat
here. In the notation of Section 2.6, let F(u) (cosh u)~' i+,5), which evidentally is

real-valued, smooth, and decreasing. For u > To, we let

gi(ii) Nhyp;Me,y(u: z)

sinh2 (00 - sinh2 (0
g2(l<) :— ^hyp;M£,)'(7b: 2.) T

sinh2 (0

As stated in Section 2.2, we have that g\(u) < gjf'ap, and both gi and g2 are real-
valued and non-decreasing for u > To > 0. With all this, the Stieltjes integral
inequality from Section 2.6 yields the bound

pOO
I (cosh it d-Y|i\ p. \j y if,z

JTo

f°° n rsft fi+jn sinh" (^r~) - sinh2 (00 1

< / (cosh u)-{1+&)dg2(u) + (cosh T0)-{1+s) ' - '

JTo si nil (0 J

Elementary calculations and trigonometric identities imply that

sinh m +r)dsi(u)

and

sinh2 (—
2 J V 2

Using the trivial bounds sinh it < e"/2 and cosh m > e"/2, we then obtain the

sinh" I ;f ' '

— \ — sinh" ——- j sinlir sinh Tq.
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estimates

poo
I (cosh«)'

1 ' V/giu/i
JTo

001 / _,us, m _M cvsiiilir sinli Tn

<——277" / (cosh h T " ' sinh(w +r) du + (cosh 7q) +
,2/r.—2sinhz(|) Jt0 smlr(j)

2$gi- rm sinli r siiih Tq

* —TT777 / e d" + (cosh T°r{ +
,,2/smhz(|) Jtq sinh"

<^'rol - +
2'V' 2Ä sinli r

(15)

S sinh2)!) sinli2 (0

which clearly can be made smaller than any e > 0, namely, by taking

1/ 2V 2;' sinh r \ \
+ + a®

Therefore, we have proved the bound asserted in (14).
In addition to (16) let us assume, for convenience, that 7b is a point of continuity

of (VhypiMo.y ÇT; "), meaning there is no geodesic path from 7 to y on Mo with length
equal to 7b. Then, with To chosen, there is an integer N and an % sufficiently small
such that for t < to, we have N Nbyp;Me,y (To: Nhyp.Mo,y (7b; £) Let
{dkMe J L [0. 7o] be the set of lengths on M, such that for any rj > 0 we have

(Yhyp— T)', z) < ^hypT T)', Z)-

I
For simplicity, we count the elements in the set {dk,Me} with multiplicities so that we
have

-To N

(cosh it)~s dNhw_Me,y(u; z) (costiikMt)
0 tî

Witli this, we can write

/•'• /• T

/ (coshH)~s dNhyp:Mt,y(u; z) - / (coshnys dNllyp:M0,y(u; z)
Jo Jo

N

i'coshi/i. u i - (.cosh ik.M, ' '].
A*=l

Observe now that the function (coshM)_i is uniformly continuous and absolutely
continuous on [0, To]. By Lemma 3.2, which we apply for all T < To, there is an f|

losuch that for I < ft we have

«5

WkMi ~ ch,Mo\ < f°r all
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so then, £k=l}êkMe. ~ ^ By the absolute continuity of (cosh«)"
[0, 7q] we arrive at the bound

on

N

k= 1

V[(coshr/A.!M£) 5 ~ (cosh4,Mö) s]

N

< Y2 \(coshdkrMers - (coshdkMo)

(17)

< £.

k= 1

To put all this together, let us write

^hyp:Mi- .y U, Zj Mivp:/V/,i.y (7', Z)

•»
<

rio riQ
j (cosh m) -c) / (cosh //) d/Vpyp• ,p/(ly (u.zj

Jo Jo
/•OO POO

/ (cosh u)~s dNhw:Me,y(ir, z) + / (cosh«rs ^A^hyp:M0,y («:
7r0 Jr0

(18)

Idle second and third terms on the right-hand side are arbitrarily small by taking
To as in (16), and the first term on the right-hand side is arbitrarily small by (17).
With all this, the proof of part (i) of the main theorem is complete.

4.2. Remark. The referee has proposed the following alternate proof of (14). For

any given l, on the geodesic y there are finitely many points u)ij, j 1 K
which partition y into segments of length < i|. Since y is not a pinching geodesic,
we can take y, as well as the partitioning points, as lying in a subset of Mi which is
bounded away from the developing cusps. For any îj e ry\r with d(rjz, £o) < T
on Me, let wt be tire point on y such that d(r]z, wi) d{ft, Zq). Using that is

within distance 5i from some "h.j, the triangle inequality gives the bound

d(r)z, wyj) < d{rjz, wt) + <5i < T + <$i.

If we let A'V (~. m, l denote the counting function for the groups elements that move ç
within distance t from w, we then arrive at the inequality (hyperbolic lattice counting).

Nhyp ;Me,y(T ; z) < (-' mfefe T + 3l)-

j
Using hyperbolic volume considerations, one trivially shows that Nr (z. Wfj 7' + <Si)

is bounded by 0(eT+&1), and the bound is uniform for the Wkj contained in a compact
set. Therefore, we can write

Nhyp-Me,y(T;z) <<eT+Sl.
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Returning to (14), one can integrate by parts to get

I cosh u
1 s d .Vh>p: m ; z)

J To

— [(C0Sh it) Ahyp: >%«)-' • *) ]/-

+ (1 + 5) / (coshw) s sirih itNhyp:M^y(u-, z) du.

The discussion above implies that Miyp^.y ; z) is bounded by O independently

of I. It we take |j < <5, then we can easily choose 7b with the required property
that tire original integral is < e. Indeed, the first term is and the same

applies to the second since (cosh u)~2~s sinh u 0(e(_l
As noted by the referee, an important aspect of the above argument is that one

only needs the rough order of growth of AhypyMj^f (a ; z), i.e. the injectivity radius

plays no role in the formula.

Proof ofpart (ii). The proof of part (ii) follows the pattern set in the proof of part (i).
The only difference is that one is considering the function F(u) e~su, rather than
/•+(! (cosh /f i \ For the integral over [7b, oo), the essential feature from F to be

used is that \F(u)\e" is integrable. For the integral over [0, To], one needs F to be

uniformly and absolutely continuous.

Proofofpart (iii). We proceed as in the proof of parts (i) and (ii) with a few slight
modifications. To begin, we write

ïé+fflèi#

where §(>+, I) is given in Lemma 3.3. We shall multiply both sides of (19) by
2-sesgÇyo,i) aiuj iet i approach zero. For the integral over [To + g(yo< 0, oo), we first
use part (a) of Lemma 3.3 to write

The geometric argument from [15] and [21] which produced (3) and (4) immediately
extends to give tire bound

(19)

^hypZ) < ^hyp;Aff{Toi Z) +
sinh2 — sinh2

:
'

"sinh2 (§)
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for m > To > r where, as before, r is the injectivity radius of M, at c Following the

computations in (15), we arrive at the estimate

2-*s*dn,i) r (C0sh u) -sdNhw.Mtty (m z) < f' — j +1 j
Jr0+g(:»,e) smh (r/2) \S J

+ ij.
(20)

where we have written Re(.v) 1 + <5. By choosing

T0-\ - l°s f + log (^mh4v2) G + 1

we have that the upper bound in (20) is less than e

For the first integral in (19), we begin by writing

l"To+g(yo<l)
/ (COSh ll)~S dNhyp-.Mg.yUC z)

Jo

çTq
/ (cosh(a + et.vu. i))ys dNiiyp:Me>m:t 8C«î #•

Jo

Also, we observe the following elementary result: For fixed x > 0 and se C with
Re(s) > 0, we have

lim 2 Vhcoshi.v + r))-" (21)
r^oo

Furthermore, the limit (21) is uniform for all J? > 0 and Row > 1 + §, Let
f(s, I) 2~s Then, by Lemma 3.3 and the argument yielding (17), we
have, for any Tq as in (16), (he limit

/•io+g\yo,i)
lim ./'ix. t) I cosh um <INu>p:\i .yuf. z)

Ji (22)

3ö / e~su dNpàrMo,p(u; z, yo)-
Jo

We now use (20) and (22) and the triangle inequality, as in (18), in order to prove

hin fis, ' I l-hy p: m, is, j (o Epar-(s, z)< (23)

To complete the proof of part (iii), it remains to evaluate f(s, I)
Evaluation of J'is. I). As shown in the proof of Lemma 3.3, we have

———Kzoy
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from which we immediately derive the relation

f(s, £) 2-^ (o)/ey +o((caß)s) as 1-rO.

(24)
Substituting (24) into (23), then multiplying both sides by m> s, completes the proof

4.3. Remark. In the setting of part (iii) of our Main Theorem, consider the differential

equation satisfied by Ebyv:Mt,y{s, z) which, after multiplying by l~s, is the

identity

A(£ /' h\p:.l/.; (v- I I

Jp - r).(e-s'Ebyp;Mty (s, m + {sl)2{l-s-2Ehyv,MAs + 2, z)).
}

By part (iii) of our Main Theorem, we have that

lim (v(l - s)(e~S EbmM,y (s, Z)) + S2AS~2Ehyp;M,Y(s + 2, z)) • #|
3'i I S) EpM-p(s,

for all Re(/) > 1 and z bounded away from the developing cusps. The point here

is that the second term on the right-hand side of (25) vanishes through degeneration.
Heuristically, this shows that in the setting of part (iii), the differential equation for
the hyperbolic Eisenstein series limits to the differential equation for the parabolic
Eisenstein series.

4.4. Remark. In the definition of the parabolic Eisenstein series (5) we included
a multiplicative factor of co~s. Analogously, we could have included a factor of
£~s in the definition of the hyperbolic Eisenstein series (7). Let us use the term
adjusted hyperbolic Eisenstein series to denote the hyperbolic Eisenstein series from
(7) multiplied by l~s. With this factor, then part (iii) of the Main Theorem states that
the adjusted hyperbolic Eisenstein series associated to the degenerating hyperbolic
element converges to the parabolic Eisenstein series of the newly formed cusp. In
addition, the adjusted hyperbolic Eisenstein series will satisfy an equation similar to
(9), where the second term has the multiplicative factor of (sby)2, as in (25).

4.5. Remark. The concept of an Eisenstein series associated to an elliptic element
of T was first defined in [12] and has been studied in [22]. At this time, A. von Pippich
is continuing her systematic investigation of elliptic Eisenstein series, which, almost

certainly, will include convergence results as in the present paper when considering
a sequence of elliptically degenerating Riemann surfaces. This problem in under

investigation by the first named author of this paper (D.G.) and von Pippich.

of part (iii) of our Main Theorem.
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4.6. Remark. After completion and initial review of this article, Gautam Chinta
called our attention to the article [3] where the author establishes the Main Theorem
using different techniques. 'Ihe advantage of our approach is the introduction of
counting function techniques when studying Eisenstein series, both parabolic and

hyperbolic, thus reducing the main theorem to convergence questions associated to
the various counting functions.
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