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The rational homotopy Lie algebra of function spaces

Urtzi Buijs and Aniceto Murillo*

Abstract. In this paper we fully describe the rational homotopy Lie algebra of any component of
a given (free or pointed) function space. Also, we characterize higher order Whitehead products
on these spaces. From this, we deduce the existence of //-structures on a given component of a

pointed mapping space JRJA, Y ; /) between rational spaces, assuming the cone length of X is
smaller than the order of any non trivial generalized Whitehead product in ir+ (Y).

Mathematics Subject Classification (2000). 55P62, 54C35.
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1. Introduction

Starting with the work ofThom [15 ] and followed by that of Haefliger [9], the rational
homotopy type of function spaces has been extensively studied. However, there is

no explicit and complete description of the homotopy Lie algebra structure of such

spaces, and only special cases are known.
Denote by IF(X, Y) (resp. A, Y)) the space of free (resp. based) maps from

X to Y. From now on, X and Y are assumed to be nilpotent complexes with X
finite and Y of finite type over Q. In this way the components of both .F<X, Y) and

F* (A, Y are nilpotent CW-complexes of finite type over Q and can be rationalized
in the classical sense.

If dim A < conn Y (so that .F (A, Y) is connected) M. Vigué [16] showed that
the homotopy Lie algebra (A, Y) (resp. tt*F*(A, f| is isomorphic as Lie
algebra to H*(A; Q) 0 ttj Y (resp. II ' A: Q) 0 zr^ÇJ^gp. Later on, Y. Félix [6]
used essential properties of this homotopy Lie algebra to show, among other deep
results, that the Lustemik-Schnirelmann category of the mentioned components is

often infinite. It is also important to remark that in [5], F. Da Silveira describes a

Lie model for any component of the space of sections of a given hbration which, in
particular, yields a Lie model for function spaces.

* Partially supported by the Ministerio de Ciencia y Tecnologia grant MTM2004-60016 and by the Junta de

Andalucia grant FQM-213 and FQM-02863.
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Following the Brown-Szczarba approach [3] to the Haefhger model of function

spaces [9], we first obtain a natural description of its rational homotopy groups in
terms of derivations. Then we give a full and explicit description of the homotopy
Lie algebra structure of F(X, Y)q and F*(X, 7)<gj. Let us be more precise:

Let (A V, d) be a Sullivan model, not necessarily minimal, of Y, i.e., a cofibrant
replacement of a commutative differential graded algebra (CDGA henceforth) homotopy

equivalent to C* Y ; Q), and let B be a finite dimensional CDGA of the homotopy
type of C*(X; Q). Then there is a model of F (X: Y) of the form (A(V <g> B,), d)
(see the next section for proper definitions and details). By a model of a non
connected space (or a map between non connected spaces), we mean a Z-graded CDGA
(or a CDGA morphism), whose simplicial realization has the homotopy type of the

singular simplicial approximation of the chosen space or map.
Moreover, given a map / : X -> Y, there is a standard procedure [13] to

produce a Sullivan model (A S$, d) (in fact, the Haefliger model) of the nilpotent space

F(X, Y: /}, the path component of F(X, Y) containing /.
Our first result is that the space of the indécomposables of this model (5$, Q(d j)

is isomorphic as differential vector space to (Der(AF, B\ % the ^-derivations
from AV to B, where (p: AV —* B is a model of /. From this, via the classical
characterization of rational homotopy groups in terms of the indécomposables of a

cofibrant model [2, Theorem 12.7], we immediately obtain:

Theorem 1. (i) For n > 2:

Y; H„(Dei(AY, B: <j>), 8),

7r„(F*(X, Y : ./•) //„(Der)A V, B+: </;), <5).

(ii)Forn 1;

F(7ri(F(X, 7: /)n) 77i(Der(AK B;4>h%

F(7ri(F,(X, 7: /)!) 77i(Der(Ay, B+, cf>), 8).

Remark 2. (i) For a given nilpotent space Z, Y(tz\%4$ denotes the rational vector

space
m

(J) 1';/ F; ri 0 Q,
i=l

where

ttiZ ri d r2 d ••• d rrn {1}

is the lower central series of m\Z. In particular, dim T{tz\Z«f) rk n\Z.
(ii) The extended version of this theorem in Corollary 7 includes as particular

cases the main results in [11, Theorem 2.1] and [12, Theorem 1],
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Then we proceed to fully and explicitly describe the Lie bracket on jt* IF (X, Y ; /),
and n^FffX, Y ; /) in terms of derivations:

Theorem 3. The differential linear map of degree 1

[ ] : Der*(AT, B: fi) <g> Der*(AT, B\ fi) —» Der*(AK B\ fi).

defined by

Iv • f\(v) • ..Vi ..Vj...vk)<p(vi)fi(vj)y

in which dv m ».. vk and e is the sign defined in Remark 11 below, induces the
Whitehead product in homology. Moreover, the restriction to

I ]: Der*(AT, B+: fi) ® Der*{KV, B+: fi) —> Der*(AT, B+: fi),

also induces the Lie bracket in n^FffX, Y : /)q.

A similar result gives also an explicit description of higher order Whitehead products

(see Theorem 15),
As an immediate application we generalize the result of Vigué stated above: If we

denote by * : A' > )' the constant map, jrn cf (X, Y ; fi)q) (resp. (JFffX, Y : *)n))
is isomorphic as Lie algebras to H*(X: Q) ® nffYq) (resp. H+(X; Q) ® 7f*(figj).

Finally, from Theorem 3 we may generalize [8] and [10, Theorem 1.2], For a

given space Y, denote by dl Y the least n (or oo) for which there is a non trivial
Whitehead product of order n in 7r*( L (see Section 3 for more about this invariant).

Theorem 4. Ifcl Xq < dl fik then TfiffX,, Y : f)q is an H-spacefor all f. Equivalents,

its rational cohomology algebra is free.

Flere, cl X denotes the cone length of the space X which is a well-known numerical
invariant [4], It coincides with the strong LS-category, and therefore, it is bounded

by cat X and cat X + 1.

We thank Professor Barry Jessup for very helpful advise.

2. Basics of rational homotopy theory of function spaces

We shall be using known results on rational homotopy theory for which [7] is a

very good and standard reference. We now recall some specific facts on the rational
homotopy type of a function space F {X, Y) starting by its Brown-Szczarba model.

Consider A (AV, d) Api(Y) a Sullivan model, not necessarily minimal, of
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Y and B App(X) a quasi-isomorphism with B a connected finite dimensional
CDGA. Let B* hoiui/L©) be the differential graded coalgebra dual of B, and

consider the Z-graded CDGA A (A 0 By) with the natural differential induced by the

one on A and by the dual of the differential of B. Now, consider the differential ideal

/ c A (A 0 IL) generated by 1 0 1* — 1 and by the elements of the form

aw 0 ß - '(öl 0 ßj')(p-2 0 ßi'%
j

a\, ci2 G A, ß g /i*, and Aß ßj' <H> ßj". Then, the composition

p : A(V 0 ß*) c A(A 0 ß*) *- A(A 0 ß*)/7

is an isomorphism of graded algebras [3, Theorem 1.2], and therefore, considering
on A(T 0 By die differential d p~ldp, p is also an isomorphism of CDGA's.
Then, (A(V 0 />'.). d) is a model of F(X, Fg) [3, Ifieorem 1.3]. In other words,

5*F (X, f<j) and the simplicial realization of (A(V 0 B*), d) are homotopy equivalent.

In order to explicitly determine d on v 0 ß g V 0 By, calculate (dv) 0 ß +
(—\)\y\v®dß and then use the relations which generate the ideal I to express (dv)®ß
as an element of A(F 0Ut).

We now explain how to obtain Sullivan models (in fact the Haefliger models) of
die different components of F (X, Y [3], [9], [13]. For this we need some algebraic
tools: let (AW, d) be a CDGA in which W is Z-graded, and let m : AW ^ Q be an

augmentation. Given T> c/ T, c/ g (A + W°)andW G A W^°), we denote by <\>/u

die element r(p)*f, Define a linear map 3 : W° -»• W1 as follows: given w g W°,
write dw Y>0 + + $2, with <b0 g (A+W<0) • (AW), $1 g (A+W°) • W1,

T>2 ^ W't and define 3 (w) <Y\/u + <î>2 -

Call W1 a complement of the image of this map, W1 3 W° © W1, and define

the CDGA (AW1 © W^2, d) as follows:
Given w g A(WJ © W-2) write dw T>o + ^1 + ^2 + in which <f>o

A+W<0 _AW, Y>i g A+(3W°) • AW-°, <b2 6 (A+W0) • A1W1 © W^2) and

$3 G A(W] © W-2). Define dw + T>3.

Note that if we have in W a basis {w, } for which dWi g A W<;-, dien the image

of this basis in (AW1 © W-2, d) makes it a Sullivan model. However, even when
d is decomposable in AW, d might not be, i.e., (AW1 © W-2, d) is not necessarily
minimal. This depends on u. In fact, as we just remarked, for each w g W, (\>ifu
could contain a linear part.

Next, consider (A V 0 5*), d) the model of the function space F (X. Y and let
(p : (AT, d) —> B be a model of a given map f: X -* J", The morphism rj> clearly
induces a natural augmentation which shall be denoted also by (p : A V 0 B* d) ->
Q. Applying the process above to this particular case yields a CDGA A S,/,, d)
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(A V <g> b\ © (V 0 />', J. d) which turns out to be a Sullivan model of T(X, Y: f).
Moreover, the CDGA morphism

cwq : (AW d) (AS*> d) (AVWbI © (V 0 B*)-2,d),

<m(v) v ® 1 ' if V e V-2, or its projection over V ® ß\ if v V1, is a Sullivan
model of the evaluation at the base point a>o : 3r(X, Y: f —> F [13, Corollary 22],

While ù)q(v) could vanish if \o\ 1, when (AC, d) is 1-connected,

a>o; [ A V.J', « iAS,,.J).

is a KS-extension or a relative Sullivan algebra. The fibre, which is of the form

(AOV V), d) ^ (Al'© © V ® /.'. I 2. d),

is a Sullivan model of the fibre of a>o : 3F (X, f; />-* Y, i.e., of F*(X. Y ; /).
Finally, we set some notation: for any pair V, B of Z-graded vector spaces, denote

by X(V, B) {JL„(V, 5)}„>o the graded vector space of its homomorphisms. In
particular, the dual of a given object (except for B.t) shall be denoted by X( -. ©).
There is a natural isomorphism

0: X(V. B) X(V ® 5*,Q), ®(d)(v ® ß) (-1 )mw+mß(9(v)).

Given a CDGA morphism (ß : A h* B, call (Der(A, B: j). |) the differential
graded vector space where Der„(A, B: 4>) are the ^-derivations of degree n, i.e.,
linear maps 6: A* —> B*~" for which 9(ab) Q(a)(f)(b) + (—1 )"^(f)(a)d(b). The
differential is defined as usual 86 d o 9 + (—1 )"+1Ö » d. Note that when A A V,
Der(A V,B\(p) Li F, B) as graded vector spaces via the identification 0 Ms 9 |y.
We shall denote also by

0: Der(AT. B: <p) - X(V ® BQ)
the isomorphism above under this identification.

3. Rational homotopy groups of function spaces

In this section we prove Theorem 1 and extract some consequences. Hereafter, and

to avoid excessive notation, given any nilpotent space Z, whenever we write w\Z we
shall mean F(7i\Z) (see (i) of Remark 2).

With this in mind, consider the Sullivan model (ASp,3) of !F(X,Y\ f and

recall that [2, Theorem 12.7] 7inX(X. Y ; f)<q is naturally isomorphic to the dual of
H" (V Qui)), n > 1, with S# X (LAW) =AS4,/(A+Si> • A+.S^] being the space
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of indécomposables. In other words, the rational homotopy of the /-component of
the function space is encoded in the dual of the homology of the following complex:

n t7 ^ p
1 ÄÜ5 «ra i> \2 0m. w o, A QW

0 V 0 B* *- IV 0 />%) IV <8> a*) *- • • •

However, as (F 0 B*)1 !)<V 0 If.)0 © F 0 //. ', this is exactly the homology
of this slightly different complex:

/XT T) \0 ^ (XT x-x T) 1 0^5 Q {(I /XT T) \2 /XT 7~) ,3 Ö (7)
(V 0 />. ~ (V 0 /)'.!' « \V 0 /)'..! (V 0 If »

Our main result in this section is that the dual of the complex above is isomorphic
to (Der (A V. B: <•/>). 8) via the map 0 defined in Section 2. We prove:

Theorem 5. The following diagram commutes:

(oeQ(d))*£o(V 0 B*.

0

:£|i V 0 B*.

0

Der0(AF, B: /) - Deri (AT, B; /)

/AO' <S>

©

Der2(AF, B; <p)

mm*

Proof. Here, for simplicity in the notation, we write Q(d)* instead of X( Q(d), Q),
For the same purpose we shall omit signs and write just ±. However, a careful use

of Koszul convention leads to proper sign adjustments.
We first show that, for n > 2, the square

£n(V ® B*,'

Der„(AF, B; </>)

am* £n+l(V 0 B*, <

Der„+i(Ay, B: cf>)

commutes. On one hand, given 0 £ l)er/!+i (A V. B: <j>) and u 0 ß e (V 0 ///
t 00 % r 0 ß) ±ß(8Ö(v)) ±ß(d(6(vf)) ± ß($(dv)).

On the other hand,

(Q(dfm){V 0 ß) ±9B(Q(d)(v 0 ßii : 0'A(,/r 0 ß j : ,-0 dß")

±m({dv 0 /}) ± (dß)(6(v)) ±96({dv 0 ß}) ± ß(d(ß{v))).

(*)

(**)

Here {dv 0 ß} denotes the indecomposable part of the image of [ d v 0 ß | through
the morphism

A 0 B*// A(V 0 B*) AÇf ® 5/ © (V 0 /»'. 0 AS#.
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To effectively compute {dv 0 ß) use first the relations which generates I to write
[dv 0 ß I as an element of A i V 0 B,, Then, cancel all elements of negative degree
and their derivatives, and replace any element of degree zero by the corresponding
scalar via (p. Finally, keep die linear part.

At the sight of (*) and (**), it will be enough to prove:

Lemma 6. Given <b e AT, ß e and 9 g Der*(AF, B: </>), (00)({<b 0 ßj)
(—1 1^ I( I191+1 ^ I)

(6> (<3>)

Proof. Denote by Fb : B 0 B* -> Q and F«®« (B 0 B) 0 (If 0 5*) -> Q the

maps dclinedrespectively by F«(h0/T) — and Fßß,B(h®ltri8)ß®fl')
(_\fb\\b |+|i>|+|fc \ß(b)ß'(h'f Then, if /r is multiplication in B, it is easy to see tiiat
the following diagram commutes:

(B 0 II) 0 />'. />' }) B.

Fb

(B 0 B) 0 ill. 0 />'. i -
To prove the lemma, assume that d> AkV and argue by induction on k. For k 1,

<b u g V and {u 0 ß} o 0 ß for which die lemma holds by définition of ©.
Assume now d> • v with T g Ak~lV. Again, to avoid excessive notation, we
shall omit signs:

ß(9(xv. v)) fiipmm
±FB(em(p(v) 0 ß) ± FB((pm9(v) ®ß)

: /•/,> ;.«("I'1'1 0 (p(v) 0 Aß)rfc /•« :.«o/;i^! 0 9(v) 0 Aß)
(a) + (b).

On the other hand,

(00){ib • « 0 ß} («3j J2 ±0^ ® ßjK» ® ß$
j

with Aß YJ ßj 0 ß'!. By definition of {,}, we may keep only diose summands

for which one of the factors is of degree zero. Hence, the above equality becomes

(©(F){ J2 ±w®ßj)(v®ßj')\ + (m{ E
t#t+!Jf]=a bl+l/t/l=o

(e) + (f).
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Using definition and induction hypothesis we get

(/) ±m)w®ß'jYP (v » ßj)
\v\ + \ß"\=0

E ±ß'j{om)ß';{<p(v))
\v\+\ßj\=0

y ±FBSB(0(ih)®0(u)0/î; y
\v\+\ß"\=0

±FbobW(^). ®f(v) 0 Aß) (a).

Using repeatedly a similar argument one checks that (b) (é) and the proof is

complete.

Finally, we see that

Xo{¥®B^m —- oCiCv® .yQidi]' £2(V®BtM

Der0(AU, B; # - Deri (AU. B: f) -— Der^AU, B; f)
commutes. For it note that given v 0 ß G (V ® B*)°, d(v 0 ß) {dv ® ß} +
(—1 )Iu' u 0 dß. Hence, using Lemma 6, and following exactly the above argument:

(<) (-)!!•'/!( li" :'(-)m{,/r®/!l • ' li''•»<//!) (0oS )(d)(v®ß),

which gives the commutativity of the left square. For the right square, write w g

i V ® B*)1 as a sum.r + v ® ß, x g 3(U ® />'. F', u 0 ß g V ® B*1. Then,

((0© Q(d))*o®){e)(w) (—1 )m+\m{Q(d)(v ® ß))

(-l)|e|+1(00)({Bu ® ß) + (—l)|l,|u 0(7/3)

(&o§)(0)(w).

and the proof of Theorem 5 is completed.

ProofofTheorem 1. The free case of (i) and (ii) is immediate from Theorem 5. For
the based case consider the Sullivan model (A(S<p/V),d) of T,,(X, Y: f recalled
in the past section, and observe that Ffyri (TUA, T; /)q) and n„ y(X, Y ; /)o),
« > 2, are tlien isomorphic to the dual of the homology of the following complex:

1 /t/ o d u eel) /T/ ^ D >3 mA0 U 0 B+ (V ® B_|_) (V ® B_k)

To hnish, restrict Theorem 5 to the dual of this complex.
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We now check that the above isomorphism is natural and respects the evaluation

map at the base point. Fix a map / : X -> Y between nilpotent complexes of finite

type over Q and let Z be a finite nilpotent complex. Let A (A W, d) Apl(X)

and (A 7, d) — Api(Y) be Sullivan models (again not necessarily minimal!) of

X and f respectively, let C AppiZ) be a quasi-isomorphism with C connected

finite dimensional, and let f : (A 7, d) (A W, d) be a Sullivan model for /. Debne

fï (Ai V «T.).,/) i Ai U' 0 (', i.di. i'd'Sc) />
1

Iff /• J) r |.

(A(V ® £%], d) and (A(W ® (', i. </j being the models of .A (Z, 7) and A (Z, X)
respectively, andp : (A(W®C+), d) -^4 (A(A®C+), d)/I the CDGAisomorphism
described in Section 2. In other words, to compute effectively § (c®c) use the relations
which dehne I to express f (u) ® c as an element of A(F ® ('. For instance, if
On wi W2 and Ac V. c\ &<". |(c®c) ® c\)(w2 ®cf).

Finally, let <j> : A W. d) C and r/> o c : A V, d) -* C be models of g : Z X
and / o g ; Z —* Y respectively. Then [13, Theorem 24], the diagram

• A.S',: / W'.d)

(A S^d)

m

(A W,d) «

is a Sullivan model of

A*(Z, X; g) m

(A SM/V,d)

i A S.i, d

a>0

(A V,d)

A.iZ. 7; / o g)

A (Z,X;g) (/>*
A(Z, 7; / o g)

®0

A

Hence in view of Theorem 1, the following corollary, which includes in particular
the main results in [11, Theorem 2.1] and [12, Theorem 1], is an easy exercise:
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Corollary 7. (1) For n > 1, tt„ (/*.)© : tt„ F(Z,X; g)q > tt„ F (Z, ./' gkg is
naturally equivalent to

flu.) : //„Der* (AW, C; c/>) —- //ftDer*(A V, C; <f> o f),
(2) Moreover

7inF*(Z, X:

tt„F(Z, X;

Un (-F)|j

{ f TT,,F*(Z, Fj J '

7TtlF(Z, F; /

TT,, (F)0

Is equivalent to

//„(Der*(A WA C+: 0))

//„(Der*(AW, <"';#))

H(et)

am

am

//„(Der*(AW, Q; D)

Z/„(Der*(Ay, C+: 0 o <)>

//„(Der*(Ay,C;0o^))

* //„ (Der* (A V. <Q; e)).

Remark 8. Note that (Der*(AL, <Q>; e), 8) ((X(V. Q), Q(d)*) and therefore

//„ (Der*( A V. Q; e)) is isomorphic to the dual of H*(V, Q{d)).

4. The Lie algebra structure

This section is devoted to the proof of Theorem 3 and its consequences. For that, the

following remark is essential:

Remark 9. Let (A V, d) be a Sullivan model of a nilpotent space X. Recall that d can
be written as the sum d JA>i with djiV) c A! V. The linear part d\ Q(d)
induces a differential on AT. The differential d' induced by d on H*(AV, d\
A H*{V, d I has no linear term and (A H*( V, d\). d') is the minimal model of X.
The quadratic part, d'2 is then a differential which can be identified as the Lie bracket

on tt*(Zq)) 114.11.6.(16)]. More precisely, given the natural isomorphism tt i A";

<£*(//*(AT, d\ O) and the multilinear map

<; ,): a2//*(AV,T/!) xtt*(Xcq) XTT*(Xq) - <Q>,
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(a Aß\ y0, n) yi(a)yo(ß) + (-Y)mw]yo(a)yi(ß),

it turns out that
[yo. yi] (a) (-1 )p+q~l (d'2a\ yo, yi).

in which a G H*(A V, d\), y0 G 7r/;('Xr;)„ y\ G ^(Xq),
In the same way, given the multilinear map

; : ' V x V '
x • • • x V ' Q,

(i>i ...vj;y0,.,.,yj) ^ Sh,ajyx(vh)... yßv^),
ii,

where <5,y, is the expected sign induced by the Koszul convention, the higher order
Whitehead products on tt+(X / can be identified with the j-tli part of d, via

[» YjW) (-1 )Pl+ "+pj~ {djV\ yi yj),

each y(; being of degree pj [1, Theorem 5.4] or [14, V.7(3)].

Consider now the component F(X, Y; f) of a given function space and let

(ASq, d) be its Sullivan model defined in Section 2. We shall need a "quadratic"
analogue of Lemma 6. Given $ t A7 and ß g 5*, denote by (T> ® ß}j the

quadratic part of the image of [<b ® ß] through the morphism

A ® BJI A(V ® AL® A*1 © (V ® B*f-2.

To effectively compute {T 0 ß )i use first the relations which generates I to write
IT ® ß I as an element of A f V ® Bf]g Then, cancel all elements of negative degree
and their derivatives, and replace any element of degree zero by the corresponding
scalar via (p. Finally, keep the quadratic part.

Lemma 10. Let F mt v.% G AkV, ß g 5* and <p. \ji <; Der^(AF, B: cp) of
strictly positive degrees. Then,

({# ® ß}j\ ®<p, ©Iß)

(_i)l/?KI'?l+!'i'!+hf I) ^2 eß((p(vi vi Vj Vk)<p(m)f(Vj)).
fAr

where e is the sign produced by the Koszul convention and, for completeness, it is

explicitly given in Remark 11 below.

Proof. As in Lemma 6, to be clear in presenting our argument, we shall write ± instead

of proper signs, and leave to the reader the straightforward task that the equality above

holds with the given signs.
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We proceed by induction on k. Let o \ i >2, assume Aß ß'r 0 ß'* and

denote by F the sum of all terms of 0ßQ(P% 0 ß'ß) in which at
least one of the two factors is of degree 0. Then

!''] I'2 0/M2: ®<P, ; ±Ot 0 ß'r)ßv2 0 ß" 1 - F ; (-)(, (-) <;'/}.

r

However, as </>, k are of positive degree, (F: (-)</>, 0i\r) 0 and the formula above
becomes

X><(0 ®ßr){V2®ßr)\®<P, ®t)
r

J2 : 0</ "'| 0 2 » /V ' ± «'''"'I ® ß'r '«</ ' 0 »
r

£±#Crt*i»#f<Kö2)) ± fiw(v0ltf&(v2l)
r

/•«;:«((/ H'l i 0 i/f(u2) 0 A/:') ± /y; 0 f{U2) 0 A/!)
: /!(</ i i'| Î1'/ r2 • /;(.// i i>| iv c/'2

which is the expected expression for A- 2.

Assume tlie lemma holds for k — 1 and let <F i>i v:k. On the one hand,

E : ß {</>(V 1 Vk)(p(Vi)f(Vj))
i¥=j

J Ô • • • Vk-\)<p(Vk)f(Vj)
j¥=k

+ V ±j§(0CWi ...Vi rk I Syi 1'; il;'/ 1'i

Ï

+ 2^ ±ß{4>(v\ Vi Vj Vk)(p{Vi)f {;Vj)) (I) + (II).
W

iJ¥&

On the other hand,

({aj vk 0 ß}z\ &cp, &f) ^2 ±({(«1 • • • Or-l 0 ß'r)(Pk 0 ß"Al'- ©<A @f).
r

In this formula, whenever vk 0 ß'ß is of degree 0, we can replace it by the scalar

4>(pk 0 ß'r resulting in

22 ±0 (Vk 0 K) ÏÎPi Vk-l 0 ß'r))2; ftp, &f)
I fi" 1=0

+ V ±({Vl • vk-i 0 ß'r}(vk 0 #0; 0f, f#) (IF) + (I'):.



Vol. 83 (2008) The rational homotopy Lie algebra of function spaces 735

Applying induction we get

(II') ^2 ...Vi ...Vj rk I !(/1 f.- (b i Cj t </>i B§

S +j,r

Y1 ' ...vi vj vk-i)<p(vi)f(vj) ®cKvk) <E> ß'r » ßfj

>J :rbFß®ß(0(ui Vj Vk-i)(p(Vi)f (;Vj) ï)'!>Wk\ @ Aß)
i^j

• • • Ô ...Vj Vk-l)ç(Vi)<IHVj)(f>(Vk)) ® ß)
îAi

±ß{<l>(v 1 ...Vi Vj Vk-l)(ß(vk)<p(Vi)ß(Vj)) (II).
i^j

hj¥=&

On the other hand,

(f) J2 ±@w({v,i... vk-i ® ß'r})&f(vk ® ß;.'i

r

+ ^2 : (-)•// f [n a I ® 7y ))(-)(/ (/'i }) ß").
r

Applying Lemma 6 to this formula gives the following:

J2 ±ß',MV\ n I
1 )ß'r (' ' A 1 + J] ±$(#(«1 • • • »*-iJ}#fc(»fc))

r r

V (^(»1 Vk-l) ® iß(üA-) <S> ß'r ® ß")
r

± Fb0B{Hvi Vk-l) ® </?('ÙA) ® # ® #')
: /•« ;,«('/ "'l • • • Wfc-lJ » t(vk) ® Aß)

± Aßsß(iß(ui uA._i) <g> q>{vk) <g> Aß)

±ß{(ptv\ vk-i) f(vk)) ±ß{tjf(ül rk I )</ t * A

Finally, as <p and iß are <ß-derivations, this last equation results in

ß (//"'• I m vk-i)ç(vi)tj/(vk))
i ^k

+ Y2±ß{(Hvi vj... n i ''' /'vl'y ') (I)
jj^k

and the proof is complete.
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Remark 11. The sign e ofLemma 10 clearly depends on I, j, q>, fwi,..., va. To

make it explicit consider thefollowing notation: for each set ofindices F c {1 k}
write

Pr V |u„|.
n jfr

For instance, p<ij denotes |u,+iH HFlN F |«aI ifi < j or\vl+\ \ -\ b| va-I

ifi > j. Then,

e — _p}Pi,j\<P\+Pj\t\+P<i,j\Vi\+Pi.,*j\Vi\

Proofof Theorem 3. Let<p, A g Der (A F, B; <p) be homogeneous derivations of
positive degrees p and q respectively. In view of Theorem 1 and Remark 9, it is enough
to show that, for any v 0 ß G .S'^„

®[<p, f ](v®ß) (-1 )p+q~l{d2(v® ß);&ip, ©I/f),

where, as always, d? denotes the quadratic part of the differential in (AS^, d). But
this holds by noting that q> and A are of positive degree, and applying Lemma 10.

Indeed:

(d2(v <g> fi); S<p, 0l/r>

(-\)p+q-l{{dv®ß}2; S(p, &f)
(-i)P+4-i £ {{VI... VA ® ßh: ®<P,&f)

IF • ' 1 I,'" / ' / ' '

/)'((/nr| ...A...iy vkMd)^))
' Ai

(-L)^+«+M+])ß([p, |SL) g[pi 0 ß).

Exactly the same argument can be used to conclude that the suitable restriction of the
bracket induces the Lie structure on it„ (F*(X, Y ; f)o).

Remark 12. (i) To show that the restriction to

[ ]: Der*(AF, B+: f) <g>Der*(AT, B+: <p) —^ Der*(AT, B+: <p),

also induces the Lie bracket in nn (F* (X, Y ; when choosing the patli component
of the constant map, one may also proceed as follows: as the iibration

FJX, Y: *) —> F(X, Y: *) Y

has a section, the exact sequence on rational homotopy induces an extension of Lie
algebras

0 —> X. —> s; :f (X, Y: *)© —> —> 0.
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Hence, the Lie bracket on Y : *)q 7/* Der (A V, B+; </>)) is the restriction
of the one in n+T (X, Y ; *)q*= 7/*(l)er( A V. B: <-/>}).

(ii) At the sight of tlie proof above, which heavily relies on Remark 9, the fact that

[ ] : Der*(AV, B> <$) g Der*(AV, B: <p) —> Der*(AV, B: <p)

commutes with differential automatically holds. This is far from trivial if one uses

only differential homological algebra tools.

As a first and inunediate application of Theorem 3 we describe the Lie algebra
structure ort (X, Y ; *)q and Y ; * s when considering the constant map
*: X Y, recovering in particular Vigué's result [16] stated in the introduction.

Theorem 13. 7in(!F {X, Y\ *}q) (resp. Jini^iX, Y : *)©)) is isomorphic as Lie
algebra to 77* (X; Q) 0 7r*(Fo) (resp. 77+(X; Q) 0

Proof. In this case, <fi: (AT, d) B annihilated V. In view of Theorem 3,

[<p, A ]!,.•) +
i

with dpv up;". Via the isomorphism 0 of Theorem 5, this is taken to the Lie
bracket induced by J2 on 77* (V 05*, Ji However, this is precisely the V 0 ll ' i B)
with the usual Lie bracket.

We may extend Lemma 6 to calculate in 77* (Der(A V. B;<p)) Whitehead products
of higher order.

Definition 14. Given fj, xpj g Der, (A V, B: f). of strictly positive degrees

Pi pj, define [cp\. tpj] G Der (A V, B\ <{>) by

l</-i <Pj](v)

(-1 )Pi+~+Pj~1 ^2 écp(vi vh || vk)(pi(vh) Vjivij)),

d v Y1 • • • °k and e being the suitable sign given by the Koszul convention which,
with the notation of Remark 11, can be explicitly described as ('— 1 )" where

a Pi\...ijW\ + Ph—ijlwil + ' ' ' + Pij\(Pj\

+ P<h,h I + P<h>L,-,ij IvhI + ' * ' + P<ij\vij\-
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Then, the exact analogue of the proofofLemma 6 shows that given T> ft e
AkV and ß G B*,

<f®!ß}ji ®V\,

(-l)W^+-+Pj+\®\^^2eß((/)(vl ...Vij vk)çi(vh)ç2(vh) •• -<Pj{vij))-

Again, {<& ® ß}j is defined as the j-th part of the image of | T 0 ß] through the

morphism

A 0 £*// K(V 0 /Li -> A(V0 5*)1 ©(70 /LP".

Thus, as in the proof of Theorem 3, we get the following which, in view of Remark 9,
describes 7-order Whitehead products on 71* F (X, Y ; /)jg and Y ; /}qi:

Theorem 15. É>[§j (Pj](v0ß) —1 )PlH hA_1 (dj(v 0ß); &<pi, ®q>j).

From this, we immediately deduce Theorem 4. For a given a space X, recall that
dl X (dl stands for differential length) is the least n, or 00, for which there is a non
trivial Whitehead product of order n on tt,., (' A7; This coincides with the least n for
which dn, the //-ill part of the differential of tire minimal model of X is non trivial.
Another geometric description of this invariant is given in [8] in terms of the Ganea

spaces of X.

Proofof Theorem 4. Assume cl A m. Then, by a deep result of Cornea [4], X
has a finite dimensional model B for which any product of length greater than m of
elements of B+ vanishes. Flence, for j > m and for all v 0 ß, given q>\,.. .,q>j e
Der (A V7, B+ : f), ßpj,., |i r 0 ß) g B *"' 0. However, as dl % > rn, in
view of Theorem 15, this implies that dj vanishes for all j > 2. This means that the

differential on the minimal model vanishes and the theorem follows.
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