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Irreducibly represented groups

Bachir Bekka and Pierre de la Harpe*

Abstract. A group is irreducibly represented if it has a faithful irreducible unitary representation.
For countable groups, a criterion for irreducible representability is given, which generalises a

result obtained for finite groups by W. Gaschiitz in 1954. In particular, torsipnfree groups and

infinite conjugacy class groups are irreducibly represented.
We indicate some consequences of this for operator algebras. In particular, we characterise

up to isomorphism the countable subgroups A of the unitary group of a separable infinite
dimensional Hilbert space M of which the bicommutants A" (in the sense of the theory of von
Neumann algebras) coincide with the algebra of all bounded linear operators on M.

Mathematics Subject Classification (2000). 22D10, 20C07.

Keywords. Group representations, irreducible representations, faithful representations, infinite

groups, von Neumann algebras.

1. Gaschiitz Theorem for infinite groups, and consequences

Define a group to be irreducibly represented if it has a faithful irreducible unitary
representation and irreducibly underrepresented1 if not. For example, a finite abelian

group is irreducibly represented if and only if it is cyclic (because finite subgroups of
multiplicative groups of fields, in particular finite subgroups of *, are cyclic). It is a

straightforward consequence of Schur's lemma that a group of which the centre
contains a non-cyclic finite subgroup is irreducibly underrepresented. For finite groups,
there are also standard examples of groups without centre which are irreducibly
underrepresented (see Note F in [Burnsll]); moreover, there exists a criterion due to
Gaschiitz who states for finite dimensional representations over algebraically closed
fields of characteristic zero the equivalence of Properties (i), (iv), and (v) in Theorem 2

below (see [Gasch54], as well as [Hupp98], § 42, and [Palfy79]).

*The authors are grateful to the Swiss National Science Foundation for its support.
1 On the day of writing. Google shows 29 000 000 entries for represented groups, 2 390 000 for imderrep-

resented groups, 641 000 for "represented groups", 670 000 for "underrepresented groups", and zero entry for
"irreducibly underrepresented groups". In some sense at least, what we have to say is new.
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The purpose of the present paper is to extend Gaschütz' result to infinite groups and

unitary representations; for the particular case of finite groups, our arguments provide
a new proof of the main result of [Gasch54] (at least for complex representations).
For a generalisation of Gachütz' result of a rather different kind, see [Tushe93].

Since our arguments use measure theory, it is convenient to avoid the difficulties
connected with non-standard spaces, so that we assume systematically that the groups
involved are countable (see also Example VII in Subsection 5.1 below). Moreover and

from now on, we write "representation" for "unitary representation" and, similarly,
"character" for "unitary character".

To formulate our results, we need the following preliminaries. Let F be a group.
Let N be a normal subgroup of F. A representation a of N is said to be F-faithful

if aer ker(oy {<?}, where e denotes the unit element of the group and where

aY denotes the representation n m- o(yny~] namely the conjugate of er by y. For

example, if V denotes the normal subgroup of order 4 in the symmetric group Sym(4)
on four letters, any character of V distinct from the unit character is Sym(4)-faithful
(even though V does not have any faithful character).

If !Si}iei is a family of subsets of F, we denote by j .S", J, e/ the subgroup of F
generated by U«a/ <St> Following [Remak30], we dehne a foot of F to be a minimal
normal subgroup of F, namely a normal subgroup M in F such that M f {<?}, and

any normal subgroup of F contained in M is either M or {<?}. We denote by Iff the

set of hnite feet of F. The minisocle of F is the subgroup M S V of F generated
by the union of its hnite feet; it is a characteristic subgroup of F. Let Ar denote the
subset of Mr of abelian groups, and let Mr be the complement of Ar in Iff We
dehne MA{T) and MH (F) to be the subgroups of F generated by U/ie.Ar A and

Uh e. H respectively ; both are characteristic subgroups of T contained in M S T

By the usual convention, M S (V) \e j if lf\- is empty, and similarly for MA(T)
and MH(T).

Proposition 1. Let F be a group, and let the notation be as above.

(i) Each A e Ar is isomorphic to (Fp )" for some prime p andsome positive integer
n (depending on A).

(ii) There existsasubset{Ai}iei ofAr suchthatMA{T) ®/g/ A,-. In particular
the group MA{T) is abelian.

(iii) For each H e Mr, the feet S\ .S> of H are conjugate in F, and simple.
Moreover H S\ ® f S^.

(iv) We have mmVj ®HeXr H

(V) m have MS(V) MA{T) ® MH(T).

For some examples of minisocles, see Section 5.1. Here is our hrst main result.
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Theorem 2. Let T be a countable group. Let MA(T) ®/l=/ At and MS(T)
MA(V) © MH{T) be as above. The following properties are equivalent:

(i) F is irreducibly represented;

(ii) MA{T) has a T-faithful character;

(iii) MS(r) has a T-faithful irreducible representation;

(iv) for every finite subset E of I, there exists an element x$ in MAE(T)
A{ such that the T-conjugacy class ofxe generates MAE{r);

(v) for every pair offinite subsets Eel and F c Jfr- exists an element

ze,f in MSef(Y) (®/6^ Ai) © H) such that the F -conjugacy
class ofzE,F generates MSe,f(r).

In particular, a countable group F has a faithful irreducible representation as soon
as MA{T) {<?}, and a fortiori as soon as MS{ T) {<?}.

Hie next corollary is a straightforward consequence of Theorem 2. Recall that a

group is icc if it is not reduced to one element and if all its conjugacy classes distinct
from {e} are infinite.

Corollary 3. For a countable group to be irreducibly represented, any of the three

following conditions is sufficient: (i) the group is torsionfree, (ii) the group is ice.

(iii) the group has a faithful primitive action on an infinite set.

Ilie case of icc groups is well known, sometimes with a different proof. Indeed, a

group is icc if and only if its von Neumann algebra is a factor of type IIi (Lemma 5.3.4
of [ROIV]); it is then a standard fact that the reduced C*-algebra of an icc group has

a faithful irreducible representation, so that a fortiori the group itself has a faithful
irreducible representation (see for example Proposition 21 of [Harpe()7]).

For a group F which has a faithful primitive action on an infinite set X (see

[GelG108]), observe that any normal subgroup of F not reduced to {e} is transitive

on X and therefore infinite, so that A/.S(r) {<?}.

Theorem 2 does not state anything on the dimensions of the representations which
can occur in (i). Before providing some information, let us recall that a group is

virtually abelian if it has an abelian subgroup of finite index.

Theorem 4. Fora countable group F, the two following properties are equivalent:

(i) T has an infinite dimensionalfaithful irreducible representation;

(ii) F has the properties of Theorem 2 and is not virtually abelian.

In other words, the following properties are equivalent:

(iii) F has a faithful irreducible representation, and all its faithful irreducible rep¬
resentations are finite dimensional;
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(if) F has the properties of Theorem 2 and is virtually abelian.

Let M be a von Neumann algebra. We denote by K(M) the unitary group
{X e M I X*X XX* 1} of M and by S" the double commutant of a subset S

of M. Recall that M is afactor if its centre is reduced to a factor of type I if there
exists a Hilbert space X such that M FAX). and a factor of type Iœ ht case X
is infinite dimensional (moreover, we assume here that Hilbert spaces are separable).
For factors of type I, we write U(X) instead of V.(M%

Corollary 5. Let M X(X) be a factor of type I00. For a countable group P. the

following two properties are equivalent:

- there is a subgroup A of U(X) isomorphic to F such that A" M ;

- F has the properties of Theorem 2 and is not virtually abelian.

It would be interesting to have some information of this kind for other factors. In
particular, we do not know any analogue of Theorem 4 for any given finite dimension

n > 2, nor of Corollary 5 for the finite dimensional factor £(Cn). We do not
know any solution to the a priori easier problem to characterise the countable groups
which have at least one finite dimensional faithful irreducible representation.

The proof of Proposition 1 uses standard arguments (compare with Section 4.3

of [DixMo96]). For the convenience of the reader, we give details in Section 2.

Theorem 2 is proved in Section 3. Theorem 4 and Corollary 5 are proved in Section 4.
We formulate a few remarks in Section 5: on examples of socles and minisocles,
on the comparison between minisocles and periodic FC-kernels, on a theorem of
Gelfand and Raikov, on tensor products of faithful representations, and on countable

groups with primitive maximal C*-algebras. The final Section 6 is devoted to a

generalisation of Theorem 2 concerning a countable group F given together with a

group of automorphisms G which contains the group of inner automorphisms.
Understanding groups of a given class includes understanding their faithful actions

of various kinds, and the setting of linear (or unitary) actions is only one among several
others. For example, in the case of finite groups, the questions of classifying multiply
transitive actions and primitive actions which are faithful have been central in group
theory for more than hundred years; faithful primitive actions for infinite groups have

been addressed in [GelG108]. Faithful amenable actions are the subject of [GlaMo07].
Our initial motivation has been to ask some of the corresponding questions for linear
actions.

We are most grateful to Yair Glasner for explaining us his work [GelG108] and

for his contribution to the setting out of the present work, to Yehuda Shalom for a

useful observation, and to Yves de Cornulier and John Wilson for their remarks on a

preliminary version of this paper.
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2. Proof of Proposition 1

We prepare the proof of Proposition 1 by recalling two lemmas.

Lemma 6. Let F be a group. Let M be a minimal normal subgroup ofT and N a
normal subgroup ofT. Then either M c N or {M, N) M © N.

Proof. We can assume N f [e j. Since M Hi N is both in M and normal in F, either
M D N M, and M c N, or M Fl N {e}, and (M, N) M © N.

Lemma 7. Let A be a group and let (Si)ieI be afamily ofnonabelian simple groups;
set S Ä © (©/e/ Si). Let M be a minimal normal subgroup of S.

Then either M S^for some I e I, or M c A.

Proof. Assume that M f S( for all I. Choose i e I ; by Lemma 6 applied to
M and N Sj the groups M and Si commute. It follows that M is a subgroup of
the centraliser of ©ie/ «St in S, namely a subgroup of A.

ProofofProposition 1. (i) Let A e A r. By the structure theory of finite abelian

groups, there exist a prime p and an element a e A of order p. Let A* denote the

set of elements of order p in A. Then A* U {<?} is a characteristic subgroup of A, and

therefore a normal subgroup of T. By minimality of A, we have A* U \e\ A, so

that A is isomorphic to (Fp )" for some n • 1, as claimed.

(ii) Let L be the set of subsets \A(\fL of Ar such that {{At}teL) ©£eL Af,
we order it by inclusion. Hie crucial observation is that the ordered set it is inductive,
so that we can choose a maximal element, say j .4, J,g/. Suppose that ©.g; .4, is

strictly contained in MA(T); we will arrive at a contradiction.
Choose 5 e Ap such that B is not contained in ©;g/ A/. By Lemma 6 applied

to M B and W — ©*•<£/ we have either B c ©18/ Ai, which is mied out
by die choice of B, or (B, j .4, J;g/) B © (©;g/ A/), which is mied out by the

maximality of I. This is the announced contradiction.

(iii) Let H e M'\-. Choose a minimal normal subgroup S in H (this is
possible since H is finite). For each x e F, the subgroup 'X$x- is minimal normal

in H. Choose a set Si,.... of such conjugates of S in F which is such

that («Si Sjc) ,S"| 0 • • • © Si, and which is maximal for this property. Set

N (Sis Si)i it is a normal subgroup of H.
We claim that ,v.S.v~ ' c N for each x e T, so that N is normal in F. Indeed,

by Lemma 6 applied to M xSx-1 and N in H, either (xSv-1, «Si %}
A'.S.v-1 © .Sj © • • ® Sif, but this is mied out by the maximality of the set {Si,,.., S©
or xSx-1 c N, and this establishes the claim.

Since N is normal in F and N C H, we have N H by minimality of H.
Observe that, for each i e \\,... ,k\, any normal subgroup of .S, is normal in H ; it
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follows that S{ is a simple group. Finally, the set {Si,. t Sk} coincides with the set

of all minimal normal subgroups of H by Lenuna 7.

(iv) The same argument as for (ii) shows that there exists a subset {Hk}keK of
Mr such that ©^e^- Hk MH{T), and Lemma 7 implies that Hk !keK — 3tr-

(v) Again by the same argument as for (ii), there exists a subset j M| }le! of Mr
such that 0i g/ Mi MS(T), and Lemma 7 implies that {Mi}teL contains Mr-

3. Proof of Theorem 2

We will prove successively that

(i) s=ä* (ii) & (iii) (see Lemma 9),

(iii) =y (i) (Lemma 10),

(ii) (iii) (Lemma 13),

(ii) (iv) (Lemma 14),

The equivalence (iv) <=> (v) is straightforward, since nonabelian feet are direct
products of simple groups. Recall that we write "representation" for "unitary
representation".

Given a representation jt of a countable group F in a Hilbert space M, there
exist a standard Borel space Q, a bounded positive measure fi on ©, a measurable
held co jt,,) of irreducible representations of F in a measurable held o> hs- Moi of
Hilbert spaces on G, and an isomorphism of M with/® M0>dii(o>) which implements
a unitary equivalence

jt(y) «Ö / jr0)(y)dp{co)

for all y e F. See [Dix69C*, Sections 8.5 and 18.7.6]. (Such decompositions in
irreducible representations carry over to continuous representations of separable locally
compact groups, and more generally of separable C*-algebras. They are applications

of hie reduction theory for von Neumann algebras [Dix69vN, Chapter II]). Hie
following lemma is standard, but we haven't found any appropriate reference.

Lemma 8. Let F be a countable group. Let G be a measure space with a positive
measure p. Letco be a measurablefield ofrepresentations of F in a measurable

field ofHilbert spaces co M(0 over and let y e T.
Then {co e Q | ,T,„( y) I} is a measurable subset of Q.

Proof. Let be a fundamental sequence of measurable vector helds

(see [Dix69vN, Chapter II, Number 1.3]). For j > 1, consider hie set

={weQ\ {nw{y)^\co)^\co)) (f\co)^\co))).
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Observe that

{&> g £2 I Jifoiy) /} 12ij.
i,j> i

Therefore it suffices to show that each set 12;y is measurable.

For fixed ij ' 1, the functions

© and * My)^\co),^\co))
are measurable, by dehnition of a measurable vector held and of a measurable held
of representations. Flence 12;j is measurable and the proof is complete.

Let us now recall a general fact which can be seen as a weak form of Clifford
theorem for inhnite dimensional representations. (For a version of Clifford theorem

concerning hnite dimensional representations but possibly inhnite groups, see

Theorem 2.2 in [Dixon71].)

Lemma 9. Let F be a countable group, N a normal subgroup, jx an irreducible
representation of F in a Hilbert space X, and a the restriction of n to N. Identify
o to a direct integral of irreducible representations

er jt\n / oa)dp{a>)
JQ

as above.

If the representation jt is faithful, then the representation am is F -faithful for
almost all m a 12.

Proof. If N {<?}, there is nothing to prove. We assume from now on that N is not
reduced to one element.

Denote by {C,} g f the family of F-conjugacy classes in N distinct from {<?}. For
each j e J, denote by Ay the subgroup of N generated by Cj ; observe that each

Nj is normal in T, and that the family [Ay \
.ç

is countable (possibly hnite) and

nonempty. Set

12/ {&> e 12 j Nj c ker ((J) an(l ^ I. J % •

yer jeJ

For w e 12, observe that o0) is not F -faithful if and only if the kernel of ©yep of,

contains one of the Ay ; Üius O is the subset of 12 of the points (» such that o(0 is

not F-faithful. Each 12j is measurable in 12 as a consequence of Lemma 8; as ./ is

countable, 12 is also measurable.
To end the proof, we assume that p (12) > 0 and we will arrive at a contradiction.
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As the family J is countable, there exists f el such that /A£2( > 0. Hence
the unit representation of the group Nt is strongly contained in the restriction
of a to Ni, so that the subspace of 3t of A|-invariant vectors is not reduced to {0}.
Since N(. is normal in F, this subspace is invariant by jr(r); by irreducibility of n,
this subspace is the whole of IK. In other words, the restriction of n to N(, is the unit
representation. The last statement is a contradiction, since n is faithful.

Hie particular case of Lemma 9 for which N MA(T) [respectively N
MSXT)] shows that (i) implies (ii) [respectively (iii)] in Theorem 2. The implication
(iii) => (i) follows from the next lemma applied to A MS(T since, by definition,
there does not exist any finite foot M of T such that M n MS(T) {e}.

Lemma 10. Let F be a countable group, N a normal subgroup, o an irreducible
representation of N in a Hilbert space ,K, and n Ind^(er) the corresponding
induced representation. Let n jQ jrwdp{oo) be a direct integral decomposition
of n into irreducible representations. Assume that there does not exist anyfinite foot
M in F such that M FI A7 {<?}.

If the representation o is F -faithful, then the representation nw is faithful for
almost all m in £2.

Proof. In the model we choose for induced representations, jt acts on the Hilbert
space X of mappings / : T —> X with the two following properties:

(1) /(y) fiy) for all y e F and n e N,

(2) E < °°'
r/N

(The notation of (2) indicates a summation over one representative y e F of each

class in T/N.) Then (jt{x) f) (y) f(x~1y) for all x, y e T.
Denote this time by {C/}je/ the family of conjugacy classes of F distinct from

{<?}. For each j e J, denote by r, the Subgroup generated by C,, which is a normal
subgroup of F not reduced to \ e J ; set

Qj {a> e £2 I Fj c ker(jrÖJ)} and £2 £2^.

i'e/

As in the proof of Lemma 9, £2 is (he set of points m such that jt0) is not faithful, and

it is measurable. To end the proof, we assume that /u (£2) > 0, so that there exists

I e J for which ß (£2y) > 0, and we will arrive at a contradiction.

Continuing as in the proof of Lemma 9, we observe that there exists a nonzero
t m

vector /: F —> JC in K jQ dfodp io)) which is supported in £2( (as a measurable
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section of the field of Hilbert spaces co \-+ 3tm underlying the field of representations
o> m* 7t0) and which is such that n(x)f / for all s F/ -

Let yo e F be such that f(yfl) 7^ 0; set f Using (1), we find

(3) I /(y0_1) /(*~Yb :1) f{yöl(rox~lyö1)) viyoxyf1^ om(x)Ç

for all X e F^ n N.

Claim 1. F| Fl IV -= {«}. Denote by -Kr'n,v the subspace of X of vectors invariant
by (7Vo(Ti Fl /V This is a aYo (At)-invariant subspace of X, since rj n /V is a

normal subgroup of N. Now t7Cr'n'v f {0} by (3) and ,7Cr'nAF JC because eryo

is irreducible. Thus Ft fl N is inside the kernel of the representation aY0 of At; as

Ft n At is normal in F, the group F^ n At is also inside the kernel of the representation
0Y of At for all y e F. As a is F-faithful, Tf n At {e}, as claimed.

Claim 2. The subgroup Ft of F is finite. Consider the function

<p: F —*R+, y * Il /"(y II •

We have

(4) HYo1) # 0-

(5) (p is constant under right translations by elements of At,

(6) I^(f)|2 < Ü-
r/N

(7) (p is invariant under left translations by elements of

It follows from (4) to (7) that the image of Vt.Yo in F/N is finite. The image of
yf' rf:y() r, in T/'/V is also hnite, so that the index of /V in Tt /V is hnite. Claim 2

follows since FtN is isomorphic to the direct sum F^ © At by Claim 1.

Any subgroup M of Ft which is normal in F and minimal for this property is a

hnite foot of F, and M D N \ej by Claim 1. This is in contradiction with one of
the hypotheses of the lemma.

The particular case N {<?} is of independent interest.

Proposition 11. Let F be a countable infinite group which does not contain anyfinite
foot, and letXr Jq ^u>dß{w) be a direct integral decomposition ofthe left regular
representation Ar into irreducible representations. Then 1xw isfaithfulfor almost all
a> e Q.

Next, we show that (ii) <=> (Iii) in Theorem 2. This will be a consequence of
Lemma 13, for the proof of which we will call upon the following lemma.

For a Hilbert space X, we denote by iL X its algebra of bounded 1 inear operators.
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Lemma 12. Let be two Hilbert spaces. Let Sx e £(-K\ S2 e L{M2) be

such that Si <g> S2 e lL(Mi <g) X%J A a non-zero multiple of the identity operator.
Then Si and S2 are multiples of the identity.

Proof. Let A e C* be such that Si <g> S2 AI. Let jç, J,6/ be a Hilbert space basis

of M\. Since S2 7^ 0, there exist rn. r/2 e M2 such that

92.) 7^ 0.

For every £ e Jfi, we have

{(Si (g) S2)(£ <g> ??i),ff (g) rj2) (Si(^).^j){S2(r]i), r)2)

and hence

(SitÈUô \—r((Si <g s2)(£ ® //i).ç( ® m)
\S2\P 1). 92)

A
(t ® 9l ® 9s)

{Sl(Vl)'h2)
Hnu^i) i-tt

for all i e /. It follows that

iel
Hftumf

{s%(ni"hm) m
Hii,m)

{S%(pi), pi)

for every | Hi-, Showing that Si is a multiple of the identity. A similar argument
applies to S2.

Lemma 13. Let F be a group and let N be a normal subgroup of F. Assume that
N A® S, where A is an abelian normal subgroup of F and where S is the direct
sum of a family (S;)ig/ offinite simple nonabelian normal subgroups of S. The

following properties are equivalent:

(i) N has a F-faithful irreducible representation;

(ii) A has a F -faithful character.
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Proof. Assume first that there exists a r -faithful irreducible representation n of N.
Since the factor A of N A © S is abelian, and in particular a type I group, there

exist a character / of A and an irreducible representation p of S such that it g <g> p
[Dix69C*, Proposition 13.1.8]. Since ker(/y ker ((jty)\a for all y e F, the
character / of A is T-faithful.

Assume now that there exists a F-faithful character / of A. We claim that there
exists an irreducible representation p of S such that, for every y e S, y F e. the

operator p(y) is not a multiple of the identity operator. Lemma 12 will then imply
that the exterior tensor product / M p is a F -faithful representation of A A © S.

For every i e I, let fii be an irreducible representation of Sjr distinct from the unit
representation, in some Hilbert space -If. Choose a unit vector ry e Mi. Consider
the inhnite tensor product p 0/g/ pt of the family (p/ j/ei with respect to the

family e /. Recall that p is the representation of S defined on the inhnite tensor

product M Miel (Mi. ry of the family of Hilbert spaces (Mj ),e/ with respect to
the family (ry),e! by

p(öO«/)((®5/)®( (g) i»)) «g> MfQb) & 0 ^)-
feF ieI\F feF ieI\F

for every finite subset F of I, element (y, ); 6 / S with y, 1 whenever i e I \ F,
and decomposable vector (£/)/6f e H'c representation p is irreducible,
since the pi's are irreducible. For all this, see for example [Guich66], in particular
Corollary 2.1.

Let us check that, for y (yi)iej e S. y f e, the operator p(y) is not a multiple
of the identity operator. Choose jet such that y7 f c. Observe that the set

{<5 e Sj : pj (S is a multiple of the identity operator}

is an abelian normal subgroup of Sj and is therefore reduced to {<?} since Sj is

simple and nonabelian. rFhe operator pj (fj is therefore not a multiple of the identity
operator. Denote by p'j the tensor product of the family {Pt)tei\{j}> defined on

x'j $/</•.:/: (Mi, rj(- We can then write

M Mj M Mj and p pj <g> p'j.

Lemma 12 implies that p(y is not a multiple of the identity operator.

It remains to show that (ii) <$==> (iv) in Theorem 2. This will be a consequence
of the following lemma.

We are most grateful to Roland Lötscher, who pointed out a mistake at this point
in a first version of our paper; we are also grateful to Jacques Thévenaz for a helpful
discussion on modular representations.
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Lemma 14. Let F be a countable group; set A MA (V). Let {Ai}iej be a set of
finite abelian feet of F as in Proposition 1, so that A ®/g/ At. For each finite
subset B of if set Ae ® ,• eß Ai, which is afinite abelian group. Let A, Ae denote
the dual group of A, Ae respectively. The following properties are equivalent;

(i) A has a F -faithful character;

(ii) there exists a character x E A such that the subgroup generated by yr {jv \

y e T} is dense in A;

(iii) for everyfinite subset E of /, the finite group Ae has a F -faithful character;

(iv) for everyfinite subset E of I, there exists y e Ae such that Ae is generated by
the T-orbit of y ;

(v) for every finite subset E of I, there exists xe 6 Ae such that Ae is generated
by the F -conjugacy class ofxE-

Proof. Equivalence of (i) and (ii) and equivalence of (iii) and (iv). Let N he a

normal abelian subgroup of T. Let y e /V. Denote by H the closed subgroup of
N generated by y1 By Pontrjagin duality, the unitary dual of the compact abelian

group NJff can be identified with the subgroup

PI1- {a e N : ijr{a) 1 for all fi e H\;

observe that

H1- {a e N : fi(a) 1 for all f e yr} Q ker(yy).
yeT

Thus y is dense in N if and only it H1 {e}, namely if and only it y is T-faithful.

Equivalence of (ii) and (iii). It is clear that (ii) implies (iii). Let us assume that

(iii) holds; we have to check that this implies (ii). For every finite subset E of I,
denote by pe : A —Ae the canonical projection. Consider the subset

Mm {/ A I the F-orbit of pe(x) generates Ae\.

Since the group Ae is finite, the subset Xe of A is closed. For a finite family

Ei,...,Ee of finite subsets of /, the intersection Xex Fl Fl XEk contains
MEi U--U Ek • By Condition (iii), Xe is non empty for any finite subset E of I. Since

A is compact, it follows that

H Xe 7^0,
E

where E runs over all finite subsets of I. Let / efjg Me- ft is easily checked that

y is F -faithful.
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Equivalence of (iv) and (v). Consider a finite subset E oi I. Recall that each

Aj is a finite dimensional vector space over a prime field for a prime number

Pi. For each prime p, denote by Vp the direct sum of those Ai with i e E which
are vector spaces over Fp, and denote by P the set of primes p such that Vp f {0}.
We have Ae 0,„e/< Vp. Since the 0's are subgroups of Ae of pairwise coprime
orders, every subgroup H of Ae is a direct sum 0;,,= pi H Hi 1-0. The dual group

Vp of Vp can be identified with the dual vector space V* ; as before, each subgroup

H* of A e is a direct sum 0/)g/, (H* HI Vp). It follows that, in order to prove the

equivalence of (iv) and (v), we can assume that P consists of a single element p. We

can also assume that T is a subgroup of GL(0).
Let F0F] denote the group algebra of F over Wp. Observe that Vp is a semi-

simple Fp[r]-module, since Vp is a direct sum of minimal normal subgroups of T.
(A module is semi-simple if it is a direct sum of simple modules; other authors use
the terminology completely reducible.)

Under the identification of Vp with V*, the T-action on Vp corresponds to the

dual (or contragredient) action of F on V*. Observe that V* is a semi-simple 0..[F]-
module. Indeed, if W is submodule of V*, then its annihilator W1 has a complement
Z in Vp and Z1 is a complement of W in V* (compare with Lemma 6.2 in [Landr83]).

Observe also that there exists x e Vp such that Vp is generated by the F-conjugacy
class of x (respectively, there exists / e Vp such that Vp is generated by the F-orbit
of /) if and only if Vp (respectively V*) is isomorphic, as [F]-module, to a quotient
of the left regular module ¥p [F]. To conclude the proof, we show that Vp is isomorphic
to a quotient of Fp [F] if and only if V* is isomorphic to a quotient of Fp [F],

We first show that every semi-simple submodule of F;, [ V\ is isomorphic to a

quotient of F/;,[F|. Indeed, let 100] ®/6/ Pj be a direct sum decomposition
of Fp[F] into indecomposable submodules Pj. Every 0 contains a unique simple
module 0-. Moreover, Sj is isomorphic to a quotient of Pj and M © e/ 0 is

the sum of all simple submodules of Fp[F]. For the standard facts on representation
theory of finite groups, see for example [Landr83], in particular Theorem 6.8. Let N
be a semi-simple submodule of 0,| F|. Then A is a submodule of M and is therefore

isomorphic to (BjeJ' % 'or a subset J' of J. Flence, N is isomorphic to a quotient
of ©;6// Pj- Since © r Pj is a direct summand of Fp[F], it follows that N is

isomorphic to a quotient of F;„ [F ] and this proves our claim
Assume that Vp is isomorphic to a quotient of F,, [F], Then V* is isomorphic

to a submodule of F0F]*. Now, it is standard that 00® is isomorphic to ®|F]
as a Fp[T]-module (see [Landr83, Theorem 6.3]). Hence, V* is isomorphic to a

submodule of F0F], By what we have seen above, it follows that V* is isomorphic
to a quotient of F0F]. Similarly, if V* is isomorphic to a quotient of F„ [F], then Vp

is isomorphic to a quotient of Fp [F].
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4. Finite and infinite dimensional representations

Our proof of Theorem 4 uses the following elementary lemma, which is well known.
To our surprise, we haven't been able to find a convenient reference.

Lemma 15. Let £2 a standard Borel space and p a bounded positive measure on 12.

(i) Let A be a separable C*-algebra, n_ a representation of A, and

a direct integral decomposition ofj£ with respect to a measurablefield co jr_M

of representations ofA. Then is weakly contained in jyfor almost all mini2.

(ii) Let T be a countable group, it a representation ofT, and

a direct integral decomposition of it with respect to a measurablefield whjtw
of representations of P. Then nw is weakly contained in it for almost all co e 12,

Proof, (i) By definition of "weak containment", we have to show that ker(jr) c
ker(jrm) for almost all co e 12. Since A is separable, so is ker(jr), and we can choose

in this kernel a countable dense subset, say C For any M i A, recall from the theory
of direct integrals that ix(x) j is the essential supremum (on co e 12) of the norms
|| (x) jj, so that II re-(x) I! < || jr(x) || for almost all co e 12; in particular, any x e C
is in kerCr^) for almost all w e 12. Since C is countable, we have also C c kerCr^
for almost all co e 12, and this implies tire announced conclusion.

(ii) Any representation it of T corresponds to a representation jt of the maximal
C*-algebra A Cn*ax(T) of the group. For two representations tt, tt2 of the group,
it i is weakly contained in n2 if and only if ker(jr2) c ker(jr1); moreover, a direct

integral decomposition it JQ 7Twdp{co) at the level of F corresponds to a direct
„m

integral decomposition jr jQ amm) at tlie level of C*ax(r), with the same

space 12 and the same measure //. Thus (ii) is a consequence of (i).
(More generally, botli (ii) and its proof hold verbatim for representations of

separable locally compact groups.]

To prove Theorem 4, it is clearly enough to show that Conditions (i) and (ii)
there are equivalent. The implication (i) => (ii) is a straightforward consequence
of [Thoma64, Korollar 1], according to which eveit irreducible representation of a

virtually abelian group is finite dimensional.
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End ofproof of Theorem 4, namely of (ii) =>• (i). We assume that F has Property

(ii), and we split the proof in two cases.
Assume first that F is not amenable. Let a be a F -faithful irreducible representation

of M S (V): set jx I iid^ S( r :i a. By Lemmas 10 and 15, some (in fact almost

every) irreducible representation jto which occurs in some direct integral decomposition

of jx is faithful and is weakly contained in jr. As M S (V) is amenable, it
is weakly contained in the left regular representation of F, and therefore the same
holds for jiq As F is not amenable, ir0 cannot be finite dimensional, so that F has

Property (i).
Assume now that F is amenable. Assume furthermore, by contradiction, that

F does not have Property (i). Then F lias a finite dimensional faithful irreducible
representation, by the first part of (ii). In particular, F can be viewed as a subgroup
of the compact unitary group U(n% for some integer n > L By Tits' alternative

[Tits79], there exists in F a soluble subgroup A of finite index. Let R denote the
closure of A in il(n) and let R° denote its connected component; then R" is of finite
index in R (because R is a compact Lie group, see for example [Helga62, Chapter II,
Theorem 2.3]) and an abelian group (because a coimected compact group is soluble

if and only if it is abelian, see for example [Bourb82, Appendice I]). Thus A Pi R° is

an abelian subgroup of Unite index in T ; but this contradicts the hypothesis that F is

not virtually abelian, and this ends the proof.

Proposition 16. Let F be a countable group.

(i) If there exists a factor M and an injective homomorphism it : F -> U(M)such
that ^(T)" M, then F is irreducibly represented.

(ii) If T is irreducibly represented, then there exists a factor M of type I
and a faithful representation jt: F —> \l{fK) such thatJxfT)" Z{X).

Proof. Let jx be as in (i). If M is an algebra of operators on some Hilbert space

K, then jx is in particular a factorial representation of F in -K. It corresponds to a

C*-representation, say jt : C*ax(r) —> -L(IK). By a result of Dixmier (Corollary 3,

page 100 of [Dix60]), there exists an irreducible representation p of C*ax(r) such
that jx_ and p have the same kernel. Hie restriction p of p to F is therefore a faithful
irreducible representation.

In view of Schur's lemma, (ii) is nothing but a reformulation of the definition of
"irreducibly represented".

Corollary 5 is a straightforward consequence of Theorem 4 and Proposition 16.

Short of knowing how to answer the questions which follow Corollary 5, let us
record the following elementary remark.

Observation. If F is a countable group which has a finite dimensional faithful
irreducible representation, then MH{T) is a finite group.
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Proof. Consider the following properties of a group F :

(a) F lias a finite dimensional faithful irreducible representation;

(b) MS(V) has a finite dimensional F -faithful irreducible representation;

(c) MA(T) has a F -faithful character and M //(F) has a finite dimensional faithful
irreducible representation;

(d) MA{T) has a F -faithful character and MH{F) is a finite group.

Property (a) implies Property (b) by Lemma 9, Properties (b) and (c) are equivalent
because M S (V) M A (V) © MH(T), and Properties (c) and (d) are equivalent
because MH(Y) is a direct sum of finite simple groups.

[Observe that, however, Property (b) does not imply Property (a): if F is an
icc group which does not have any finite dimensional faithful representation, for
example the group of permutations of finite support of Z, then F has Property (b)
since MS(Y) {<?}, but does not have Property (a). ]

About Conditions (ii) and (iv) of Theorem 4, let us moreover recall the following
facts. For countable groups, and more generally for separable locally compact groups
and for separable C*-algebras, there is a notion of being of type I, defined in terms of
the von Neumann algebras generated by the images of appropriate representations.
It is then a theorem of Thoma that a countable group is of type I if and only if it is

virtually abelian, if and only if all its irreducible representations are finite dimensional.
See |Thonia64| and [Glimm611.

5. Remarks

5.1. Minisocles, socles, and examples. The socle of a group F is the subgroup
SXT) generated by the union of the minimal normal subgroups (finite or inlinite).
Here are some examples of socles and minisocles.

(I) For a prime p and an integer n > 1, the socle of the hnite cyclic group Z/ //'Z
is isomorphic to Z//?Z. The socle of the hnite symmetric group Sym(n) is the

corresponding alternating group if n 3 or n >5, and the Vierergruppe if ti 4,

If F is a 2-transitive subgroup of Sym(» then ,S"( F is either of the form (11© )m or
a hnite simple group. More generally and more precisely, if Y is a primitive subgroup
of Sym(«), the O'Nan-Scott Theorem (1980) provides detailed information on the
socle of F ; in particular, 5"(r s» S'" for some hnite simple group S and some integer
m. See for example Chapter 4 in [DixMo96].

(II) Free abelian groups Z", n > 1, and nonabelian free groups have socles reduced

to one element.
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(III) For n > 3, the socle of SI ,n 1)} is reduced to one element or is of order two*
if n is odd or even respectively (because any noncentral normal subgroup of SL„ (Z)
contains a congruence subgroup, and consequently is never minimal).

(IV) Let F be a lattice in a connected semisimple Lie group G with bnite center

Z(G) and without compact factor. It is an easy consequence of the Borel density
theorem that, if the centre of F is {<?}, then F is icc, so that MS(T) (<?}; more
generally, MS(T) F n Z(G).

The minisocle of a just infinite group is reduced to one element (by definition).
In particular, the minisocle of the Grigorchuk group is reduced to one element.

(V) If T is a direct sum of a family of infinite simple groups, then M S {V) {<?}

and S(T) T. If T is a direct sum of a family of finite simple groups, then

MS(T) F.

(VI) The socle of a nilpotent group F is contained in the centre Z(V) of F, because

N D Z(F) Je J for any normal subgroup N ^ {<?} of F.

(VII) Let F be an abelian torsion-free group with cardinal strictly larger than that
of the real numbers, for example a direct product of copies of Z indexed by R. Then

MS(Y) is reduced to one element, and F does not have any faithful character, so that
the equivalences of Theorem 2 do not hold for F.

(VIII) Let H be a group, p a prime number, U a vector space over the prime held
with p elements, ix\ H —* G 1.(6') a faithful representation which is semi-simple
(namely which is a direct sum of irreducible representations), and F H k U the

corresponding semi-direct product. Then U is the socle of F.
Indeed, let N a minimal normal subgroup of F. If N G U Z j()|, then N C U,

and moreover N is a //-invariant subspace of U which is irreducible, by minimality;
these jV's generate U. If one had /V n U {0}, then N and U would commute
(being two normal subgroups of F), so that N would act trivially on U, and this is
ruled out by the faithfulness of n.

Let U be of the form U (0/g/ L © 0/g/ Wj), with each 1) a //-invariant
irreducible Unite-dimensional subspace of U, and each IL) a //-invariant irreducible
infinite-dimensional subspace of U. Then the mini-socle of F is ©, e/ K

The construction carries over to the case where each I) and IL) is a vector space
over a prime held of which the number of elements depends on i and j.

5.2. Minisocles, FC-kernels, and P. Hall's theorems. The FC-kernel of a group
F is the subset IV of F of elements which have a finite conjugacy class. It is a

characteristic subgroup of F.
The periodic FC-kernel of F is the subset F|§ of rr of elements of finite order.

It is also a subgroup of F, indeed a locally finite subgroup (Dicman's Lemma, see
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e.g. [Tomki84]). It follows from the definitions and from Dicman's Lemma that

MS(F) c lfg
(the inclusion can be strict, as it is for example the case if F is cyclic of order four).

Any subgroup of a restricted direct product of finite groups is a periodic FC-

group which is residually finite, and any quotient of a periodic FC-group is a periodic
FC-group. For countable groups, Philip Hall has established in 1959 the converse

implications:

any countable periodic FC-group which is residually finite can be embedded in
a restricted direct product of finite groups, and any countable periodic FC-group
is isomorphic to a quotient of a subgroup of a restricted direct product of finite

groups
(Theorems 2.5 and 3.2 in [Tomki84])t

A hoof of a group T is a foot of a foot. Thus, with the notation of Proposition 1,

the subgroups IF), and .Si are hooves of F.
Let F be a group which lias a finite Jordan-Holder sequence (for example a finite

group); if a simple group S is a foot of F., then S is isomorphic to a quotient of some
Jordan-Holder sequence of T (Bourbaki, Algèbre, nouvelle édition, 1970, chap. I,
§ 4, no 7). But the converse does not hold: the group of order 3 is a simple quotient
of a Jordan-Holder sequence of the alternating group Alt(4) of order 12, but Alt(4)
has a unique foot which is the Vierergruppe, of order 4.

5.3. Recall of a theorem of Gelfand and Raikov. Recall the following basic result
of the theory of group representations, due to Gelfand and Raikov (see [GelRa42], as

well as Corollary 13.6.6 in [Dix69C*]):

for any y e r, y ^ e, there exists an irreducible representation nY such that

Xyiy)^ Xy(e).

lliis holds for any group F, countable or not; indeed, this holds for any locally compact
group, with Tiy a continuous representation. There are two main ingredients of the

proof: the group has a faithful representation which is the left-regular representation,
and any representation has some description in terms of irreducible representations
(via functions of positive types and a theorem of the Krein-Milman type).

For a countable group F which has the properties (ii) to (v) of Theorem 2, we
have shown that tty can be chosen independently ofy.

5.4. Recall on tensor powers of faithful representations. Let F be a group and

let it be a faithful representation of F. For integers m, n > 0, consider the tensor

power Ttm n
TT®"' (g It®", where tt denotes the representation conjugate to jt and

TT®'" the tensor product of m copies of ir. Then the left regular representation of F is

weakly contained in the direct sum 0m n>0 Trm n (see Example 1.11 in [BeLaS92]).
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This is a generalisation, with weak containment replacing strong containment, of a

well-known fact about finite groups (and compact groups, see [Cheva46], Chapter VI,
§ VII, Proposition 3). Thus, if, in addition, F is amenable, then every representation
of F is weakly contained in n,,,.,,. (All this carries over to locally compact
groups.)

For a countable group F which has the properties (ii) to (v) of Theorem 2, the

representation n can be chosen to be faithful and irreducible.

5.5. Primitive group C*-algebras. Denote by C*d F the reduced C*-algebra, and

as above by C*^(r the maximal C*-algebra of a group F. A representation of either
one of these algebras is irreducible if and only if its restriction to F is irreducible. It
follows that, ifone ofC*d(F), CI^ax(r) isprimitive, then F is irreducibly represented.

Many examples of countable groups are known for which C'r*d F is simple
|Harpe07], and a fortiori primitive. These groups are in particular irreducibly
represented. Concerning the properties of F and Cr*d(r), consider the three following
conditions:

(NF) T does not have any finite normal subgroup besides {e};

(NA) F does not have any amenable normal subgroup besides {<?};

(C*S) C*d(r) is simple.

It is straightforward that (NF) is a rephrasing of the condition M S (V) {e}, and

that it follows from (NA). It is elementary to check that (NA) follows from (C*S),
but we recall that it is not known whether the converse holds (see [BekHaOO] and

[Harpe07]>.
If F is amenable, the C*-algebras C *d(T) and C'n*ax(T) are isomorphic. They are

primitive if and only if T is icc [Murph03].
If F is a nonabelian free group, it is a result of Yoshiwaza that C*ax(r) is primitive

(see [Yoshi51], as well as |Choi80]). See the discussion around Problem 25 in
[Harpe07],

6. A generalisation of Theorem 2

Consider a countable group F and a subgroup G of the automorphism group of F
which contains all inner automorphisms. There is an obvious notion of G-faithful
representation, which coincides with that of F -faithful representation in case G
coincides with the group of inner automorphisms. Observe that MS(r), MA(T), and

MH{T) are G-invariant subgroups of F, since all three are characteristic.
We define a G-foot to be a minimal G-invariant subgroup of F. Let 0' denote

the set of finite G-feet of F ; it is the union of the set Aa{- ot abelian finite G-feet and
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of its complement My • The G-minisocle of F is the subgroup MSG{T) generated
by its G-feet, and we have as in Section 1 subgroups MAG(T) and

Proposition 17. Let T and G be as above.

(i) Each B e eAp is isomorphic to (¥p)n for some prime p and some positive
integer n (depending on B).

(ii) There exists a subset j B, |,e/ of AG such that MA°{T) ®/e/ B,. In par¬
ticular, the group MAc'fT) is abelian.

(iii) For each H e My thefeet Si ofH are conjugate under G, and simple.
Moreover H Si © & $k-

(iv) We have MHG(F) ®HeXo H.

(v) We have MS°{T) MAG{T) © MHG(T).

Theorem 18. Let F, G, and MAG(T) ®,e/ BL be as above. The following
properties are equivalent:

(i) F has a representation which is irreducible and G-faithful;

(ii) MA(Tj has a G-faithful character;

(ii') /V/,46 (T has a G-faithful character;

(iii) /\7.S"(T) has a G-faithful irreducible representation;

(iii') MSa(V) has a G-faithful irreducible representation;

(iv) for every finite subset E of I, there exists an element xp in MAcf(Y)
Bj such that the G-orbit ofxe generates MA^fT).

In particular, a countable group F has a G-faithful irreducible representation as

soon as MAG(T) {e}, a fortiori as soon as MSG(T) {e}.

For example, let F ®.4/ be a countable infinite direct sum of groups At
indexed by the natural numbers, each of them isomorphic to a given finite cyclic
group, and let G be the group of permutations of N, identified in the natural way to
a group of automorphisms of F. Then F is irreducibly underrepresented, but has a

G-faithful irreducible character, for example the projection onto A i followed by the
natural isomorphisms of A i with the appropriate group of roots of unity.

Proposition 17 and Theorem 18 can be proved by essentially the same arguments
as in Sections 2 and 3.

Lemmas 9 and 10 should be reformulated for a G-invariant subgroup /V of F; in
the new Lemma 9, the G-faithfulness of it implies that o0l is G-faithful for almost
all o) e 12; in the new Lemma 10, if we assume that er is G-faithful and that there
does not exist any finite G-foot M such that M Fl N {<?}, then jt0) is G-faithful for
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almost all œ e 12. In the new Lemma 13, the groups N, A, S should be G-invariant,
but Si normal (not necessarily ©-invariant) and simple (not necessarily G-simple);
the conclusion is that N has a G-faithful irreducible representation if and only if
A has a G-faithful character. In the new Lemma 14, both A and the A/ should be

G-invariant, and /r should be replaced by /'. The other (minor) modifications, as

well as the formulation of one more claim analogous to Claim (v) of Theorem 2, are

left to the reader.
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