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Abstract. The puipose of this paper is to provide a concrete description of the "Whitehead
group" W(k, G) := G{k)/ G(k)+ for the simply connected triality forms G of A'-rank 1, and to

use this description to prove that if k is a global field, then the Knesei-Tits problem for these
forms has an affirmative solution.
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1. Introduction

Let G be a semi-simple simply connected algebraic group defined, simple, and

isotropic over a field k. Let G(k)+ be the normal subgroup of G(k) generated
by the ©rational elements of the unipotent radicals of parabolic ©subgroups of G.
The Kneser-Tits problem is the question whether G(k)+ G(k), or, equivalently,
whether G(k) is projectively simple (i.e., the only proper normal subgroups of G(k)
are central). In [8] it has been shown that the Kneser-Tits problem has an affirmative
solution for all semi-simple simply connected groups defined, simple, and isotropic
over k, if and only if, the problem has an affirmative solution for every such group of
A--rank 1.

It is known that for all G as above, the Kneser-Tits problem has an affirmative
solution if k is a local field (see [8]); if k is a global field, then for all G as above of
A-rank © 2, the Kneser-Tits problem has an affirmative solution. In fact, the only
absolutely simple simply connected isotropic groups over global fields for which a

solution of the Kneser-Tits problem does not exist in the literature are the triality
forms 3'6D| r, and the outer form 2 if3» we have used here the notation for indices
introduced in [14], this notation will be used throughout the paper. (Though the groups
of type

2
are not included in [15] among the groups for which the Kneser-Tits

problem was known to have an affirmative solution, Skip Garibaldi pointed out to me
that in [16] Veldkamp has shown that for every absolutely simple simply connected
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group of type 2over an arbitrary field of characteristic different from 2 and

3, the Kneser-Tits problem has an affirmative solution. For a modern rendition of
Veldkamp's proof, see [4], We note here that over a global function held, groups of
type 2A)29, do not exist since Harder's Galois-cohomology vanishing theorem implies
that over these fields the only absolutely simple anisotropic groups are of (inner or
outer) type An for some n.)

The purpose of this paper is two fold. First, in §2, we provide a concrete description

of the "Whitehead group" W(k, G) := G(k)/G(k)+ for the simply connected

triality forms G of A--rank 1. Next, in §3 we use this description to prove that if k is a

global held, then for a simply connected triality form G/k of A-rank 1, G (A)+ G (A)

(Theorem 3.1). Theorem 3.1 settles the Kneser-Tits problem for the triality forms

over global helds in the affirmative. It was proved jointly with M. S. Raghunathan in
the late eighties but that proof has not been published.

We note here that over any held A, a triality form of A-rank > 1 is quasi-split (and
is actually of A-rank 2). It is known (due to C. Chevalley and R. Steinberg, see [15])
that for a semi-simple simply connected quasi-split A-group H, H(k)+ H(k).

2. Description of G (A)/ G (A)+

In this section, A is an arbitrary infinite held and G is an absolutely simple simply
connected algebraic group of type 3'6L>4 dehned over A and of A-rank 1.

Let S be a nontrivial A-split torus of G, M Zg(S) its centralizer, and M'
[M. M] hie commutator subgroup of M. Let P M k U and P~ M x U~
be hie two minimal parabolic A-subgroups of G containing M. It is known (see,

for example, [1, 6.2(v) and 6.1 l(i)]) thai G(A)+ (f/(A), t/"(A)), i.e., G(A)+ is

generated by U(k) and U~(k), and G (A) {P(kjr P"(A)> M(A)G(A)+. Let
M(A)+ M(k) n G(A)+. Then W(k, G) G(A)/G(A)+ M(A)/M(A)+.

From the description of G as the Galois-twist of the corresponding simply
connected quasi-split group by a 1-cocycle taking values in a parabolic subgroup
corresponding to P in hie adjoint group of hie quasi-split group, we see that there exists

a quaternion division algebra D, whose center K is a separable cubic extension of
A, and whose constriction1 to A is trivial, such that M is the inverse image of the

unique 1-dimensional A-split torus GLi,a contained in Rk/Ic(GLf) GL| under
Nrd

the reduced norm map GLp# >- GLi?J^; M is a connected reductive it-group of

^For a description of the corestriction Br(Ä') —Br(fc), from the Brauer group Br(Ä') of K to the Brauer

group Br(£) of k, see [2, §8]. The following is an alternate description of this corestriction. If we identify Br(K)
(resp., Br(k)) with the Galois-cohomology group H^(K, GLi) H^(k, Rk/Ic(GLi)) (resp., H^(k, GLi)),
then the corestriction is the homomorphism H^(k, R%/^(GLi)) —H^(k, GLi) induced by the norm map
NK/k- RK/k(GLl) GLi.
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dimension 10 and M* SL| /;. From this description of M it is obvious that

Mik) {x I I) I Nrdt.v) e

Remark 1. If k is a local held and K is a Separable cubic extension of k, then the
corestriction to k of the unique quaternion division algebra with center K is nontrivial
(see [7, Proposition 6.14]). Hence, over a local held k, any k--isotropic triality form
is quasi-split.

In particular, if v is a place of a global held k, kv is the completion of k at «, and

Kv := K ®i; kv is a held, then G is quasi-split over kv.

Remark 2. A quaternion division algebra D with center K contains an element

x G D x K such that x2 g K. (In fact, for any separable quadratic extension L
of K contained in I), by the Skolem-Noether theorem there is x g I) such that

conjugation by x keeps L stable, and restricted to L it coincides with the nontrivial
automorphism of L/K. Then x2 g K.) This implies that there does not exist a

quaternion division algebra whose center is a perfect held of characteristic 2. Now if
k is a perfect held, then so is its separable cubic extension K, and we conclude that
there does not exist a triality form of rank 1 over a perfect held k of characteristic 2.

Let

Dit := {£y I £ is a separable quadratic extension of k contained in I)).

Our goal in this section is to prove that 9Ti is contained in M(k)+, and diese two

groups are equal if, for example, k is not of characteristic 2. As Ml is clearly a

normal subgroup of I) it would follow, in particular, that if char(k) ^ 2, then
M(k)+ <] D> We begin witii the following:

Proposition 2.1. Given a separable quadratic extension I ofk contained in I), there
is an absolutely simple simply connected k-subgroup H of G of type

2 A2 which
contains S and which is quasi-split over k, so that T(k) Èy, where T (c M) is the

Centralizéf of S in H.

Proof Let T be the Zariski-closure of Ix (c M(kf) in M. Then /' is a 2-dimensional
torus containing S, and it splits over L We now observe that since D @/v-1 is a matrix
algebra over the held K ®a- M is quasi-split over I and /' is a maximal (-split torus
of M. Hence, there exists a Borel subgroup B of M dehned over I and containing
the centralizer Z of T in M. Note that Z is a maximal torus of M, and hence also

of G, and it is dehned over k since T is. Moreover, T is clearly the maximal (-split
subtorus of Z.

We now work with the ordering 011 the root system of G, with respect to the maximal

torus Z, determined by hie Borel subgroup B x U of G. Let {a,;, (=0,1,2,3}
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be the set of simple roots enumerated so that for all nonzero I, a-, is trivial on S. Then

ai, at and at, and their negatives, are the roots of M with respect to Z. Let L be the

splitting held of Z over k; L contains f since Z contains T. Let F be the Galois group
of L/k and F' be the (normal) subgroup of F of index two consisting of the elements
which fix I pointwise. F' fixes the root ao and acts transitively on the set (a), at, «3}.
Also, since U is defined over k, the set 0 of positive roots a Y '=() m ; w, such that

m0 is nonzero, which is the set of roots of U with respect to Z, is stable under F.
The roots o?q, Y1i=d a'< and the highest root 2»o + J2'i=i ai arc the only roots in the

set 0 which are fixed under F', and the highest root is actually fixed by all of F.
We conclude that the set {«o, Y^=o Uj is stable under F. Hence the subgroup II
of G generated by the 1-dimensional unipotent root subgroups corresponding to the

roots cfo, 0 a< » + ELi ai » ai'd their negatives, is a connected subgroup of G
defined over k, split over t, and it is clearly of type A%. It can be easily checked that
H is simply connected. As it contains the subgroup generated by the root subgroups
corresponding to the highest root 2a<) + ]T ;

| a\ and its negative, which is a group
k-isomorphic to SL2, we conclude that II is of Ä-rank 1 and hence it is a quasi-split
special unitary group in three variables defined in terms of the quadratic extension i.
As T is the maximal f-split subtorus of Z, T is contained in // and it equals the

centralizer of S in H.

Proposition 2.2. 5UÎ c M(k)+.

Proof. Let & be a separable quadratic extension of k contained in D, and H and T be

as in the above proposition. Since H is quasi-split over k and is simply connected,
11(h) H(k)+ c G(k)+. 'lhis implies that ty> T(k) c M(k)+, which in turn
implies that 201 c M (k)+.

Notation 2.3. For u e U(k) \ {1}, let u f(u)n(u)g(u) be the Bruhat decomposition

of 11 (with respect to P~), with /(«)< 8M U~(k) and n[n) e Nik), where N
is the normalizer of S in G. Note that as G is of fc-rank 1, N(k)/M(k) is of order 2,
and n(a) e N'(k), where Nr — N % M.

Let a be the generator of the character group of S which is a root of U with
respect to S. Then ±a, ±2a are the roots of G with respect to S. Let Ih, denote the
connected unipotent root subgroup corresponding to the root b g {±a, ±2«}. It is

easy to see that U±a are 9-dimensional, U±ta are 1-dimensional, and so Ua/Uta is

an 8-dimensional M-module defined over k; U Ua, U~ U-a.
From a consequence of Proposition 1.8 of [3], stated in the hrst sentence on p. 311

of that paper (note that the notation used in [3] is different from ours), we at once
obtain that

M(k)+ {n(u)n{v)-1 [ u G Ua(k) K U2am, v G U^k) {!}). (*)
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Let il denote tlie set of elements u g Ua(k) x such that there is an

absolutely simple simply connected quasi-split A-subgroup H(u) of G of type
2 A

containing S, U±2a, and the element u (and hence also n (u We note that if T
(C M) is the centralizer of S in H(u), and & is the separable quadratic extension of A

over which T splits, then the A-subalgebra of D generated by T(k) is isomorphic to
£ and will be identihed with it. With this identification, T(k) ty Hence, for all
v g U2a(k) \ {1}, G T(k) ly c 931.

We will now prove (he following:

Proposition 2.4. 931 'nui uni
1

[ u Gil, v G U2a(k) \ {1}>.

Proof. To prove the proposition, it would suffice to show that given a separable
quadratic extension £ of A contained in I), the group generated by {n(u)n(v)'] \

u g II, v G U2a(k) \ {1}} contains £> According to Proposition 2.1, there is an

absolutely simple simply connected A-subgroup H of G of type
2 Ay, which contains

S and which is quasi-split over k, so that if T is the centralizer of S in H, then
T (k) P. 'Hiis subgroup is ^-isomorphic to the special unitary group SU(/?) of the
hermitian form h on £3 given by

h (x, y, z) Xz, + xz + yy for x, j, s g £,

where for k g £, X denotes its conjugate over k. We identify II with SU(7? in terms
of a b-isomorphism which carries T(k) onto the diagonal subgroup of SU(h)(k).

It is obvious that H(k) D (Ua(k) \ C il (for every u g H(k) D (Ua(k) \
U2a Ik)), we can take 11(h) appearing in the dehnition of il to be II). We easily see,

by a direct computation in SU(h)(k), for any field k, that the elements n(u)n(v)~
as u varies over H(k) D (Ua(k) x Uzaik)) and v varies over H(k) D (U2a(k) x {1}),
generate T (k) P This proves the proposition.

It follows from Theorem 5.1 of Raghunatlian [9] that given an element u g
I (ok) x U2a(k), u2 1, as U2a is 1-dimensional, there is an absolutely simple
simply connected quasi-split A--subgroup H H(u), of type 2A2, containing the

subgroups S, U±2a, and the element u. Thus il d {« g Ua(k) x U2a(k) \ u2 f 1}.

In particular, if char (A) P 2, then as every nontrivial element of Ua(k) is of order at
least 3, il Ua(k) \ U2a(k). Now combining this with the description of Tl given
by Proposition 2.4 and that of M(k)+ provided by (*), we conclude the following.

Theorem 2.5. If the characteristic ofA-is different from 2, then M (A)+ 931. Hence,

W(k,G) M(k)/m.

The following remark is due to Andrei S. Rapinchuk.
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Remark3. If the Whitehead group W(k, G) M(£)/M(A()+)ishniteandM(A-)+
9JÎ, then W(k, G) is solvable. In fact, M(k) and M(k)+ SUt) are normal subgroups
of /> and the conjugation action of Dy on M(k) and M(k)+ induces an action of
I) on M(k)/M(k)+. Let C be the kernel of this action. Then C is subgroup of D
of finite index, and it clearly contains M(k)+. Hence, according to the main theorem
of [11], the group D /(' is solvable. This implies, in particular, that M (k)/CC\M(k)
is solvable. On the other hand, the commutator subgroup \M(k), C] is contained in
M(k)+, andhence, (C.nM(k))/M(k)+ is abelian, and we conclude that M (k)/M (k)+
is solvable.

For the proof of Theorem 3.1, the following proposition (Proposition 2.7), which
is an immediate consequence of Raghunathan's result mentioned above, suffices.
For the sake of completeness, we give its proof which was obtained with help from
Rapinchuk.

Let k be an arbitrary held. The central A:-split torus S of M acts on the 8-dimen-
sional M-module V := II„/ Wza by homotheties by the nontrivial character a. Over

die algebraic closure k of k, M' [M, M] is the direct product of three copies of SL2,

M' M[kM'2xM'v where M\ SL2 for i <t 3. Over k, as an A/'-module, V is the

tensor product V\ ® Vi ® Vj, where V; is the standard 2-dimensional representation
of M- SL2), and S acts faithfully on V by homotheties.

We fix a basis {e|!), e'y '} of Vi, and let be the maximal torus of M- represented
by diagonal matrices with respect to this basis; we will denote diag(t, t~l) by S(t),
Set

^ ®ef.

Lemma 2.6. The identity component of the isotropy subgroup Me of e in M
coincides with

T := {i'M/1 ». 5(r2), 5(/3)) g /j x x Tx \ /]/2/3 1},

and the annihilator of e in the Lie algebra of M is precisely the Lie algebra of the

two dimensional torus T. Consequently, the M-orbit Q := M e ofe is a Zariski-

open subvariety of V Ua/U2a, andfor any k-rational element v of fü, the identity
component of the isotropy subgroup Mv is a 2-dimensional torus defined over k
and contained in M'.

Proof. It is easy to see that to prove the first assertion, it is enough to show that

\I' : A) x ,\2 X A3. (<>!

where Ni is the normalizer of 3J in VI'. Assume that (O) does not hold. Then there

exists an i g {1, 2, 3} such that TZ\{M'e) f_ Nj, where tt; : M' M- is the natural
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projection. Since tt, (Mip z> (T) 7], we see that ïq (M'e) contains either an upper
or lower triangular element. Then, by considering commutators of elements of Ml
with appropriate elements of T, we see that M'e contains the subgroup that has the

full upper or lower unitriangular group as the i -th and the identity as the remaining
two components. But it is obvious that such a subgroup cannot fix e, and so we have

proved the first assertion.
Since dim M c 10 — 2=8 dim V, the orbit M • e is open in V.
Tire annihilator of e in the Lie algebra of M can be easily computed and shown

to be equal to the Lie algebra of T. The assertion that for a A-rational element v of
Çl M e, M° is defined over A follows now from the fact that the Lie algebra of
Mv coincides with the annihilator of v in the Lie algebra of M.

Since the M-orbit Q M e, being an open subvariety of the A-vector space V,
contains a A-rational element, we conclude that Q is in fact defined over k. Let U be

the open A-subvariety of Ua consisting of the elements whose image in V lies in the

open subvariety 12. Now let u m U(k) and v be its image in V. Then Tv := M° is a

torus of dimension 2 which is defined and anisotropic over A. The derived subgroup
H(u) of the centralizer of Tv in G is an absolutely simple simply connected quasi-
split A-group of type

2 A2 which contains S, H±2n, and the element u. Thus we have

proved the following.

Proposition 2.7. Let U be the nontrivial open k-subvariety of Ua defined above.

Then U(k) cil

3. The Kneser-Tits problem for triality forms over global fields

The purpose of this section is to prove the following result.

Theorem 3.1 (Prasad and Raghunathan). Let A be a globalfield (i.e., either a number

field, or the function field of a cur\>e overfinite field) and G be an absolutely simple
simply connected algebraic k-group of type 3'6Ö4 ofk-rank 1. Then G(k)+ G(k).

We will continue to use the notation introduced in §2, however, henceforth A will
denote a global field. For a global field L, and a place w of L, we will denote by Lw
the completion of L at m. For a place v of A, we will denote D (2>k kv by Dv in the

sequel.
As observed at the begimiing of §2, we may identify M(k) with {x g I) \

Nrd(x) G A*}. In particular, SL\(D) c M(k) c G(k). To prove Theorem 3.1, we
must show that M(k)+ M(k% Our first goal is to show that SLi (71) c M(k)+.
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3.2. Let T be the finite set of places of A where G is not quasi-split. Let v y T.
Then K 0a kv cannot be a held, for if it is a held, then G is a triality form over kv,
and according to Remark 1, it is quasi-split at v. Hence, there are only hie following
two possibilities.

(1) There are three distinct places w\,w% and wj of K lying over v, i.e., K 0/Ay
Km 0 Kw2 © KW}, and each Km is equal to kv. As the corestriction of Dv to kv is

trivial, />, D 0a kv I) 0^ (K 0a Ay) Mjikv) © <0 © <0, where <0 is the

quaternion division algebra with center kv. In this case, over Ay, G is an inner-form
of rank 2 of hie simply connected Chevalley group of type £>4,

From the description of M as an algebraic A-group given in §2, it is obvious that

an element (v, y, z) 6 />.: GL2(Au) x <© ' x Dy is in M(kv) if and only if
det(v) Nrd(y) Nrd(z).

(2) There are exactly two places vy of K lying over v, i.e., K 0a Ay

Km © KW1, we can assume hiat KWI A,., and KW2 is a separable quadratic extension
of Ay. In this case, K is not a Galois extension of A, G is of type

6 D4 over A and

of type 2L>4 over Ay. As the corestriction of Dv to Ay is trivial, Dv D 0a kv

D 0k (K 0a k„ <®i © <02» where <0, is a quaternion division algebra with center

KW{, i 1, 2. In particular, v is necessarily nonarchimedean in this case.

From the description of M as an algebraic A-group given in §2, we see that M(Ay
is the set of elements (.v, y) />„ 0, x 02 such that Nrd(v) Nrd(y)

Lemma 3.3. For every place v g T, we have \ I);. M(Ay)] SLilD^).

Proof. The lemma can be proved easily using the description of /•>/, and M (Ay given
above and the following well-known results: (i) [SLi^y), SL2(Ay)] Sly (A,.). For

any central division algebra D over a local held I, (ii) [£> x. 22®] SLi (22) (this is a

theorem of Matsushima and Nakayama), (iii Nrd(22 K1 tK if I is nonarchimedean,
(iv) [SLi (22), SLi (22)] is the hrst congruence subgroup of SLi (22) (see the corollary
in §5 of [13]). (v) If case (2) of 3.2 occurs and K„,2 is an unramified extension
of Ay, then in the quaternion division algebra -02 we can find a uniformizer which
normalizes an unramified quadratic extension of KW1 contained in £>2 and whose

square is an element of Ay.

Let Gj Iluer G(kv)- We will think of G(A) as a subgroup of Gr in terms of
its diagonal embedding in the latter. The T-adic topology on a subset of G(A) is the

topology induced on it by the product (locally compact Hausdorff) topology on Gy.
Now we observe that the map U (A)\{1} -» N'(k), which maps u onto n (u| (see

Notation 2.3), is continuous in the T-adic topology. To see this, we note that G' :=
U~N'IJ~ is an open A-subvariety of G, G'f A) contains U(k) \ {1}, and the product
morphismf/-x N'xU~ G is an isomorphism onto G'. The inverse of the product
morphism induces a homeomorphism from Q'r := \\vef U~(kv)N'(kv)U~(Ay)
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onto JlueT V~{kv) x ]~[uf N'(kv) x ]~[uf P»t« Let v be the composite of this

homeomorphism and the projection onto the middle factor. Then the map u n (u)
is simply the restriction of v to U(A) n {1}, and hence it is continuous in the T-adic
topology.

Lemma 3.4. (1) G(k)+ is dense in Gf Tirer G(kv).
(2) M(k)+ and 931 are dense in My := fl u er ^ ^ ' '•

Proof. (1): It is known that G has the weak approximation property (Theorem 7.8

of [7]) and hence G(k) embedded diagonally in Gr is dense in the latter. As G is

A-isotropic, G (Ay) does not contain any proper noncentral normal subgroups (Theorems

7.1 and 7.6 of [7]). This implies that the noncentral normal subgroup G(A)+ of
G (A is also dense in Gf.

(2): Since G(k)+ is dense in ]~[1!ër G(kv), it follows that G(A)+ D Qj
I oku Mi k D G(k)+)U~(k) is dense in the open Bruhat-cell

% UveT U(kv)M(kv)U-(kn).

Projecting on the middle component we conclude that M(A)+ M (A D G(A)+ is
dense in My ["f^r M(kv),

Now to prove that 931 is dense in Mr, it suffices to show that it is dense in
M(k)+ in the T-adic topology. Let U be the nontrivial open k-subvariety of II,, as

in Proposition 2.7. Then according to that proposition U(k) c it, which implies that
the subset it of II„ (k) \ U%a(k) is dense in the latter in the T-adic topology. Now
the density of 931 in M(k)+ is a consequence of the description of 931 provided by
Proposition 2.4, the description of M (A)"1" given by (*), and the continuity of the map
u h> n(ii) established above.

Proposition 3.5. SL| (73) c 931.

Proof. Consider the subgroup M [D> 931] of 931. Since I)' is dense in Tlu6r -'T

and 931 is dense in | | M(kv) (Lemma 3.4 (2)), J( is dense in ]~[VeT • M(kv)]
]~[usr SLi(Du) (where the last equality is given by Lemma 3.3). Therefore,

,H is dense in SLi(D) in the T-topology. However, -K is a noncentral normal
subgroup of SLi (D), so it is T-adically open (and hence closed), see [5], and for A of
characteristic 2, see [10]; note that any place w of K such that D ®k Kw is a division
algebra lies over a place v of A contained in T. This implies that IK SLi (D). O

Let now
A NrdD/K(M(k)) c V\ kB Nrd£./^(931).

Since SL| D) c 931 c M(A)+, to prove Theorem 3.1, it is enough to show that
kB A (this will also imply that 931 M (A)).
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Lemma 3.6. An element a g i* lies in A ifand only ifa is positive in Ay Rfor
all real places v g T.

Proof. Ulis follows from the norm theorem of Hasse, Schilling and Maass (see

Theorem 33.15 of [12]) which asserts that for a finite dimensional division algebra A
with center a global held K, an element x g K is the reduced norm of an element
of Ay if and only if r is positive at all real places w of K such that A 0 k Kw is a

division algebra.

Lemma 3.7. Suppose Usa separable quadratic extension ofAsuch thatfor all v g T
for which case (1) of 3.2 occurs, I 0a kv is afield, andfor v g T for which case (2)
of 3.2 occurs, I 0a Ay is afield which is not isomorphic to KW1 over kv. Then the

composite K I, and so also t, is embeddable in D.

Proof. Recall that a quadratic extension L of K is embeddable in I) if and only if for
all places w of K such that D Kw is a division algebra, L 0k Kw is a held (see

[12]).
Let L — K I and let w be a place of K such that D 0k Kw is a division

algebra. Then w lies over a place of k belonging to T. Now we observe that
L ®k Kvl> f <S>a K 0k Kw =s I 0a Kw. Thus it would suffice to show that I 0a Kw
is a held for any place w oi K lying over a place v g T.

Givenaplaceu g T lor which case I of 3.2 occurs, lor the places Wj, / 1, 2, 3,

of K lying over v, KWi is isomorphic to kv, so | 0a KWj is a held by hypothesis.
On the other hand, if v is a place of k for which case (2) of 3.2 occurs, then wi, i/o
mentioned there are the places of K lying over v, Km is isomorphic to Ay,, and hence

again, by hypothesis, i 0a Km is a held. Finally, as I 0a kv is a held which is not
isomorphic to KW2,1 0a KW2 is a held as well.

We will also need the following well known result of local class held theory.

Lemma 3.8. Let X be a localfield. Then

(1) The correspondence JL m- Nx/x(<Ly is a bijection between the set ofseparable
quadratic extensions £ ofX and the set ofopen subgroups X of Xv of index 2.

(2) X /i-K ' r is a direct sum ofat least two copies of Z/2Z, furthermore, if the

characteristic of the residuefield ofX is 2, then it is a direct sum ofat least three

copies ofZ/2Z. (X fiX r is infinite ifand only ifX is ofcharacteristic 2.)

Let Too be the set of archimedean places in T, and let Tq be the set of nonar-
chimedean places v e T for which 3.2 (2) holds and the characteristic of the residue
held of Ay is odd. To show that an element of A belongs to kB we will use:
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Lemma 3.9. Let a g A and assume that for each v g To, there exists a separable
quadratic extension X(v) ofkv such that X(v) is not isomorphic (over kv) to thefield
Km of 3.2 (2), and such that a is the norm ofan element of /'um. Then there exists
b g k such that the polynomial x2 — bx. + a is irreducible, separable and its splitting
field £ is embeddable in D.

Proof. For any real place v e T, let bv 0, so that by Lemma 3.6, x2 — bvx + a
is irreducible over kv K, and its splitting beld, which we denote by X(v), is equal
to C.

For a nonarchimedean place v e T \ To, let X(v) be a separable quadratic
extension of kv such that a is the norm of an element of X («), and moreover if 3.2 (2)
holds, then X(v) is not isomorphic to the quadratic extension KW2 over kv. Note
that if v is a nonarchimedean place lying in T To such that 3.2(2) holds, then
the characteristic of the residue held of kv is 2, and as according to Lemma 3.8 (2),
ky /(kf)2 is a direct sum of at least three copies of Z/2Z, (here exists a separable
quadratic extension X(v) Of kv which is not isomorphic to KW1 over kv and such that

a is a norm of an element of X(v).
For v g To, let X(v) be as in the statement of the lemma. For v g T,

nonarchimedean, let bv be the trace of an element of X(v) \ kv whose norm is a (not all
elements of norm 1 in /'( r) are contained in kv, so there is an element in X(v) \ kv

whose nonn is a). rIhe splitting held of x2 - bvx + a over kv is X(v),
Choose b g k which approximates bv so closely, for all v g T, that by Krasner's

Lemma the splitting held of x' -bx + a over kv is isomorphic to X(v).
Let t be the splitting held of xz — bx + a over k. Then the above choice of b

guarantees that I satishes the hypothesis of Lemma 3.7 and hence it is embeddable

inD.

Now to prove that 33 A, we will use Lemma 3.9. This lemma implies that
under certain circumstances, an element a g A is actually the norm of an element
of a separable quadratic extension i of k contained in D, and hence it belongs to 33.

We would like to show that such elements generate A. For this purpose, we need the

following lemma.

For v g To, let Ku,2 be the held as in 3.2 (2), and let -Ay c kf be the subgroup of
norms of elements of Kif2.

Lemma 3.10. Consider the following condition on an element x g kx.

For v g To, either x 4 33v or x g pifj2. (-)

Then for each a & A, there are elements a\ ,02 g A, satisfying condition (<?), such

that a a\a2.
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Proof. Let a £ A. Then for v g TV. a is positive in kv K, Observe now that for
m 6 Tq, Mv is an open (and hence closed) subgroup of index two in kf. So it contains
the subgroup (kf)2 and kf \ Mv is open; moreover, (kf)2 is an open subgroup of
k;, since (for all v g 7"o) the characteristic of the residue held of kv is odd.

Consider the open subset

* := n r n n

of IlueToUTix. Since k is dense in the latter group, it follows that 0 contains an

element a\ g k' Let ay a$4i. Then it is easy to check that both a\ and ay satisfy
condition (c). Also, for all v g fjg, a,; is positive in kv K, for i 1,2. According
to Lemma 3.6, both a\ and 02 lie in A and we are done.

We can finally prove

Proposition 3.11. 33 A.

Proof. Let a g A. In view of Lemma 3.10, we may assume that a satisfies (•:).
We claim that a is the norm of an element in a separable quadratic extension I of k

embeddable in I). To prove this claim, it suffices to show that a satisfies the hypothesis
of Lemma 3.9. By condition (• :), for v g To, either a ^ -V,. or a c (kf )2. and using
Lemma 3.8, we can find an open subgroup Mv of kf of index 2 which contains a but
is different from W„. Then the quadratic Galois extension JL(v) of kv determined by
Mv is not isomorphic to KW2 and a is the norm of an element in X(v).

Proposition 3.11 completes the proof of Theorem 3.1.
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Note added in proof. Philippe Gille has recently proved that for an absolutely simple
simply connected isotropic triality form G over an arbitrary held k, the Whitehead

group W(k, G) is trivial, i.e., G(k)+ G(k). He has also settled the Kneser-Tits
problem for the last remaining case over global fields of absolutely simple simply
connected groups with Tits-index 2E\\ in the affirmative. See the write-up of his
Séminaire Bourbaki talk "Le problème de Kneser-Tits" delivered in November 2007.
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