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Abstract. Let K be a function field of a p-adic curve and l a prime not equal to p. Assume that

K contains a primitive l th root of unity. We show that every element in the l-torsion subgroup
of the Brauer group of K is a tensor product of two cyclic algebras over K.
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Introduction

Let k be a field and l a prime number not equal to the characteristic of k. Let l be
the group of l th roots of unity and l.m/ the tensor product of m copies of l. For
n 0, let Hn.k; l/ denote the nth Galois cohomology group with coefficients in

l Let k D k n f0g. We have an isomorphism k k l H1.k; l /. For a 2 k
let a/ denote its image in H1.k; l/. For a1;: : : ; am 2 k the cup product gives
an element a1/ a2/: : : am/ 2 Hn.k; l.m//, which we call a symbol.

Assume that k contains a primitive l th root of unity. Fix a primitive l th root of
unity 2 k. Then we have isomorphisms l l.m/ of Galois groups. Hence we
have isomorphisms Hn.k; l.m// Hn.k; l/. A symbol in Hn.k; l/ is simply
the image of a symbol under this map.

A classical theorem of Merkurjev ([M]) asserts that every element in H2.k; 2/
is a sum of symbols. A deep result of Merkurjev and Suslin ([MS]) says that
every element in H2.k; l/ is a sum of symbols. By a theorem of Voevodsky ([V]),
every element in Hn.k; 2/ is a sum of symbols. Suppose that k is a p-adic field.
Local class field theory tells us that every element in H2.k; l/ is a symbol and

Hn.k; l/ D 0 for n 3. If k is a global field, then the global class field theory
asserts that every element in Hn.k; l/ is a symbol.
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Question 1. Do there exist integers Nl.n/.k/ such that every element in Hn.k; l/
is a sum of at most Nl.n/.k/ symbols?

Of course, the answer to the above question is negative in general. It can be shown
that for K D k.X1; : : : ; Xn; : : : /, there is no such Nl.n/.K/ for n 2. However we
can restrict to some special fields. It is well-known that if Nl.n/.k/ exist for k, then

Nl.n/.k..t/// exist. We ask the following

Question 2. Suppose that Nl.n/.k/ exist for some field k. Do they exist for k.t/?

This is an open question. However we can restrict to fields of arithmetic interest.
For example we consider the p-adic fields. The most important result in this direction
is the following

Theorem Saltman, [S1], cf. [S2])). Let k be a p-adic field and K=k.t/ be a finite
extension. Suppose that l ¤ p. If A is a central simple algebra over K representing
an element in H2.K; l/, then ind.A/ divides l2.

Let K be as in the above theorem. Suppose p ¤ 2. Let 2 H2.K; 2/ and A a

central simple algebra over K representing Then by the above theorem, we have

ind.A/ D 1; 2;4. If ind.A/ D 1, then is a trivial element. If ind.A/ D 2, then it is
well known that is a symbol. Assume that ind.A/ D 4. By a classical theorem of
Albert ([A]), is a sum of two symbols. For H3.K; l /, we have the following

Theorem ([PS2], 3.5, cf. [PS1], 3.9)). Let k be a p-adic field and K=k.t/ be a finite
extension. Suppose that l ¤ p. Every element in H3.K; l / is a symbol.

Let k and K be as above. The field K is of cohomological dimension 3 and

Hn.K; l/ D 0 for n 4. By the above theorem, Nl.3/.K/ D 1 and the only case

where Nl.n/.K/ is to be determined is for n D 2. It is known that Nl.2/.K/ 2
cf. [S1], Appendix). In this article we prove the following

Theorem. Let k be a p-adic field and K=k.t/ be a finite extension. Suppose that

l ¤ p. Every element in H2.K; l/ is a sum of at most two symbols; in other words,

Nl.2/.K/ D 2.

1. Some preliminaries

Inthissection we recall a fewbasic facts about Galois cohomologygroupsanddivisors
on arithmetic surfaces. We refer the reader to ([C]), ([Li1]), ([Li2]) and ([Se]).
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Let k be a field and l a prime number not equal to the characteristic of k. Assume
that k contains a primitive l th root of unity. Let 2 k be a primitive l th root of unity.
Let l be the group of l th roots of unity. Since k contains a primitive l th root of unity,
the absolute Galois group of k acts trivially on l. For m 1, let l.m/ denote the
tensor product of m copies of l By fixing a primitive l th root of unity in k, we
have isomorphisms of Galois modules l.m/ l Throughout this paper we fix a

primitive l th root of unity and identify l.m/ with l
Let Hn.k; A/ be the nth Galois cohomology group of the absolute Galois group

of k with values in a discrete -module A. The identification of l.m/ with l
gives an identification of Hn.k; l.m// with Hn.k; l /. In the rest of this paper we
use this identification.

Let k D k n f0g. For a;b; c 2 k we have the following relations in H2.k; l/.
1) a/ bc/ D a/ b/ C a/ c/;
2) a/ b/ D b/ a//;
3) a/ bl/ D 0;

4) a/ a/ D 0.

If l 3, we have a/ a/ D a/ 1/la/ D a/ a/ D 0.
Let K be a field and l a prime number not equal to the characteristic of K. Let

v be a discrete valuation of K. The residue field of v is denoted by v/. Suppose
char. v// ¤ l Then there is a residue homomorphism @v W Hn.K; l.m//
Hn 1. v/; l.m 1//. Let 2 Hn.K; l.m//. We say that is unramified at v
if @v. / D 0; otherwise it is said to be ramified at v.

LetX be a regular integral scheme of dimension d, with function fieldK. LetX1
be the set of points of X of codimension 1. A point x 2 X1 gives rise to a discrete

valuation x on K. The residue field of this discrete valuation ring is denoted by
x/. The corresponding residue homomorphism is denoted by @x. We say that an

element 2 Hn.K; l.m// is unramified at x if @x. / D 0; otherwise it is said to
be ramified at x. We define the ramification divisor ramX. / D P x as x runs over
points in X1 where is ramified. Suppose C is an irreducible subscheme of X of
codimension 1. Then the generic point x of C belongs to X1 and we set @C @x.
If 2 Hn.K; l.m// is unramified at x, then we say that is unramified at C. We
say that is unramified on X if it is unramified at every point of X1.

Let k be a p-adic field and K the function field of a smooth projective geometrically

integral curve X over k. By the resolution of singularities for surfaces cf. [Li1]
and [Li2]), there exists a regular projective modelX of X over the ring of integers Ok
of k. We call such anX a regular projective model ofK. Since the generic fibre X of

X is geometrically integral, it follows that the special fibre SX is connected. Further
if D is a divisor on X, there exists a proper birational morphism X0 X such that

the total transform of D on X0 is a divisor with normal crossings cf. [Sh], Theorem,
p. 38 and Remark 2, p. 43). We use this result throughout this paper without further
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reference. If P 2 X is a closed point and f 2 K is a unit at P, then we denote the
image of f in the residue field at P by f P/.

Let k be a p-adic field and K the function field of a smooth projective geometrically

integral curve over k. Let l be a prime number not equal to p. Assume that

k contains a primitive l th root of unity. Let 2 H2.K; l/. Let X be a regular
projective model of K such that ramX. / D C C E, where C and E are regular
curves with normal crossings. We have the following

Theorem 1.1 Saltman [S1]). Let K, X, C and E be as above and P 2 C [E.
Let R be the local ring at P. Let ;i 2 R be local equations of C and E respectively
at P.

1) If P 2 C n E or E n C), then D
0

C / u/ or D
0

C i/ u/) for
some unit u 2 R, 0 2 H2.K; l / unramified on R.

2) If P 2 C \E, then either D 0C. / u/ C.i/ v/ or D 0C. / uii/
for some units u; v 2 R, 0 2 H2.K; l/ unramified on R.

Let P 2 C \ E. Suppose that D 0 C / u/ C i/ v/ for some units
u; v 2 R, 0

2 H2.K; l/ unramified on R and i are local equations of C and E
respectively. Then u.P / D @C / P / and v.P/ D @E. / P /. Note that u.P/ and

v.P/ are uniquely defined modulo l th powers. Following Saltman ([S3], §2), we say

that P is a hot point of if u.P/ and v.P/ do not generate the same subgroup of

P/ P / l
We have the following

Theorem 1.2 Saltman ([S3], 5.2). Let k, K, X be as above. Then is a symbol
if and only if there are no hot points of

2. The main theorem

Let k be a p-adic field and K=k.t/ be a finite extension. Let l 3 be a prime
number not equal to p. Assume that k contains a primitive l th root of unity. Let

2 H2.K; l/ and X a regular proper model of K. Let W X0 X be a blow-up
such thatX0 is a regular proper model of K and ramX0. / D C0CE0, where C0 and
E0 are two regular curves with normal crossings cf. §1 or [S1], Proof of 2.1). Let
Q 2 C0 \ E0. Let C01 C0 and E01 E0 be the irreducible curves containing Q.
Let R0 D OX 0;Q be the regular local ring at Q and mQ its maximal ideal. We have

mQ D 0; i0/, where 0 and i0 are local equations of C01 and E01 at Q respectively.
Let C 0

1
and E 0

1
be the discrete valuations on K at C01 and E01 respectively.

Let P D Q/. Let R be the regular local ring at P and mP its maximal ideal.
We have the induced homomorphism W R R0 of local rings, which is injective.
Let ; i 2 R be such that mP D ; i/.
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Lemma 2.1. Suppose that D 0C.f 0/ g0/ for some f 0;g0 2 K and 0 unramified
on R0. Then Q is not a hot point of

Proof. Since 0 is unramified on R0, the ramification data of on R0 is same as that

of f 0/ g0/. Since f 0/ g0/, being a symbol, has no hot points ([S3], cf. 1.2), Q
is not a hot point of

Lemma 2.2. Suppose that D 0 C i/ gv/ C f / g/, where 0 is unramified
on R0, f 2 R is not divisible by i and v; g 2 R are units with g.P/ D v.P/. Then

Q is not a hot point of

Proof. We have mQ D 0; i0/ and has ramification on R0 only at 0 and i0. Since

R=mP R0=mQ, we have g.Q/ D g.P/ D v.P/ D v.Q/. If C01 or E01 is the
strict transform of a curve onX, then either i is a local equation of C01 or C 0

1 i/ D 0.
In fact, if C01 is the strict transform of C1 on X, then C1 i/ D C 0

1 i/ and i itself
being a prime in R, the assertion follows.

Suppose that C01 and E01 are strict transforms of two irreducible curves on X. If
i is not a local equation for either C01 or E01 we claim that i/ gv/ is unramified on
R0. In fact, since g and v are units in R, i/ gv/ is unramified on R except possibly
at i. Since f is not divisible by i, f / g/ is unramified at i. Since is ramified
on R0 only at 0 and i0 and i is not one of them, i/ gv/ is unramified on R0. By
2.1), Q is not a hot point of Assume that i is a local equation for one of them,

say C01 Since i does not divide f we have @C
0

1 / D vg and @E 0

1 / D Qg
E0

1 f /,
where bar denotes the image in the residue field of C01 and tilde denotes the image
in the residue field of E01 Since is ramified at E01 E 0

1 f / is not a multiple of l
We have @C 0

1 / Q/ D v.Q/g.Q/ D g.Q/2 and @E 0

1 / Q/ D g.Q/ E0

1 f /. Since

l ¤ 2 and E 0

1 f / is not a multiple of l g.Q/2 and g.Q/ E 0

1 f / generate the same

subgroup modulo l th powers. Hence Q is not a hot point of
Suppose that C01 is a strict transform of an irreducible curve on X and E01 is an

exceptional curve on X0. We have @E 0

1 / D gQv/
E0

1 i/
gQ

E 0

1 f /. Since E01 is an

exceptional fibre in X0, the residue field of R is contained in the residue field at E01

Hence @E 0

1 / D g.P /v.P // E 0

1 i/g.P/ E0
1 f /

D g.P/
2 E 0

1 i/C E0

1 f /. Since is
ramified at E01 2 E 0

1 i/C E 0

1 f / is not a multiple of l Suppose i is a local equation

of C01 at Q. Since i does not divide f and C 0

1 i/ D 1, we have @C0
1 / D gv. Thus

@C 0

1
/ Q/ D g.P/v.P/ D g.P/2. Since l ¤ 2 and 2 E 0

1 i/ C E 0

1 f / is not a

multiple of l the subgroups generated by g.Q/2 and g.P/
2 E0

1 i/C E 0

1 f / are equal
modulo l th powers. HenceQis not a hot point of Suppose i is not a local equation

of C01 at Q. We have @C 0

1 / D Ng
C 0

1 f /. Since is ramified at C01 C 0

1 f / is not a

multiple of l Thus as above Q is not a hot point of
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The case E01 is a strict transform of an irreducible curve on X and C01 is an
exceptional curve in X0 follows on similar lines.

Suppose that both C01 andE01 are exceptional curves inX0. Then as above we have

@C 0

1
/ D g.P/

2 C 0

1 i/C C 0

1 f / and @E0

1
/ D g.P/

2 E0

1 i/C E 0

1 f /. Since is ramified

at C01 andE01 2 C 0

1 i/C C 0

1 f / and 2 E0

1 i/C E 0

1 f / are not multiplesof l. In

particular, the subgroups generated by g.P/2 C
0

1 i/C C
0

1 f / and g.P/
2 E0

1 i/C E 0

1 f /

are equal modulo the l th powers. Thus Q is not a hot point of

Lemma 2.3. Suppose that D
0 C. / u/ C.i/ v/, where 0 unramified on R0

and u;v 2 R units with u.P/ D v.P/. Then Q is not a hot point of

Proof. Since is ramified at C01 either C 0

1 / or C
0

1 i/ is not divisible by l. In
particular their sum C

0

1 i/ is non-zero. We have

@C 0

1
/ Q/ D u.P/ C 0

1
/v.P/ C 0

1
i/

D u.P / C 0

1 i/
:

Suppose that C 0

1 i/ is a multiple of l Since 0

C1 i/ is non-zero, C01 is an

exceptional curve. As in the proof of 2.2), we see that @C 0

1 / D u.P/ C 0

1 i/
D 1.

Which is a contradiction, as is ramified at C01 Hence C 0

1 i/ is not a multiple of

l Similarly, we have @E 0

1 / Q/ D u.P / E 0

1 i/ and E 0

1 i/ is not a multiple of l
Hence u.P / C

0

1 i/ and u.P / E 0

1 i/ generate the same subgroup of P/ modulo

P/ l and Q is not a hot point of

Theorem 2.4. Let k be a p-adic field and K=k.t/ be a finite extension. Let l be a
prime number not equal to p. Suppose that k contains a primitive l th root of unity.
Then every element in H2.K; l/ is a sum of at most two symbols.

Proof. If l D 2, then, as we mentioned before, by ([A]), is a sum of at most two
symbols. Assume that l 3. Let 2 H2.K; l /. Let X be a regular proper model
of K such that ramX. / D C C E, where C and E are regular curves with normal
crossings.

Let P 2 C [ E be a closed point of X. Let RP be the regular local ring at P on

X and mP be its maximal ideal.
Let T be a finite set of closed points ofX containing C\E and at least one closed

point from each irreducible curve in C andE. LetAbe the semi-local ring atT onX.
Let 1; : : : r; i1; : : :; is 2 A be prime elements corresponding to irreducible curves

in C and E respectively. Let f1 D 1 : : : r i1 : : : is 2 A. Let P 2 C \ E. Then

P 2 Ci \ Ej for unique irreducible curves Ci in C and Ej in E. Then D i and

i D ij are local equations of C and E at P. Wehave D 0C. / uP/C.i/ vP/
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or D 0 C / uPii/ for some units, uP ; vP 2 R and 0 unramified on R ([S1],
cf. 1.1). By the choice of f1, we have f1 D iwP for some wP 2 A which is a unit
at P. Let u 2 A be such that u.P / D wP P/ 1uP P / for all P 2 C \ E. Let

f D f1u 2 A. Then, we have f / D C CE CF where F is a divisor on X which
avoids C, E and all the points of C \ E. Further, for each P 2 Ci \ Ej, we have

f D iijwij for some wij 2 A such that wij P / D uP P /.
By a similar argument, choose g 2 K satisfying

1) g/ D C CG, where G is a divisor onX which avoids C, E, F and also avoids
the points of C \E, C \F E \F ;

2) if P 2 E\F and D 0C.i/ v/ for some unit v 2 RP and 0 is unramified
at P, then g.P/ D v.P/.

Since C \E \F D ;, such a g exists.
We claim that D C f / g/ is a symbol.
Let

W
X0 X be a blow up of X such that X0 is a regular proper model of K

and ramX0. / D C0CE0, where C0 andE0 are regular curves with normal crossings.
To show that is a symbol, it is enough to show that has no hot points ([S3],

cf. 1.2). Let Q 2 C0 \ E0. Let P D Q/. Then P is a closed point of X,
R D OX;P OX 0;Q D R0 and the maximal ideal mP of R is contained in the
maximal ideal mQ of R0. Let mQ D 0; i0/, with 0 and i0 be local equations of C0

and E0 at Q respectively.
Suppose that P 62 C [E. Then is unramified at P and hence unramified at Q.

By 2.1), Q is not a hot point of
Assume that P 2 C [E.
Suppose that P 2 C \ E. Let and i be local equations of C and E at P

respectively. Then mP D ; i/. By the choice of f and g, we have f D iw1 and

g D w2 for some units w1; w2 2 R. In particular, is ramified on R only at
and i. Suppose that D

0

C / u/ C i/ v/ for some units u; v 2 R and 0

unramified on R. We have

D C f / g/
D

0

C / u/ C i/ v/ C iw1/ w2/

D 0 C / u/ C iw1/ v/ C w 1
1 / v/ C / w2/ C iw1/ w2/

D
0

C w 1
1 / v/ C / u w2/ C iw1/ w2v/

D
0

C w 1
1 / v/ C / uw2/ C iw1/ w2v/

D
0

C w 1
1 / v/ C w2v/ uw2/ C w 1

2 v 1/ uw2/ C iw1/ w2v/

D
0

C w 1
1 / v/ C w 1

2 v 1/ uw2/ C w2v/ uw2i 1w 1
1 /:

Since 0 C w 1
1 / v/ C w 1

2 v 1/ uw2/ is unramified on R, by 2.1), Q is not a

hot point of
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Suppose that D 0 C. / uii/ for some units, u;v 2 R and 0 unramified on

R. Then we have

D C f / g/

D
0

C / uii / C iw1/ w2/

D
0

C / uii / C iw1w 1
2 / w2/

D
0

C / uii iw1w 1
2 / 1/ C iw1w 1

2 / w2/

D
0

C / i i 1uw 1
1 w2/ C iw1w 1

2 / w2/:

If i D 1, then D 0 C / uw 1
1 w2/ C iw1w 1

2 / w2/. Since, by the choice
of f u.P/ D w1.P /, by 2.3), Q is not a hot point of Assume that i > 1. Then
1 i 1 < l 1. Let i 0 be the inverse of 1 i modulo l. We have

D
0

C / i i 1uw 1
1 w2/ C iw1w 1

2 / w2/

D 0 C i1 iu 1w1w 1
2 / / C iw1w 1

2 / w2/

D
0

C i.u 1w1w 1
2 /i

0

/1 i/ / C i.u 1w1w 1
2 /i

0

/ w2/

C u 1w1w 1
2 / i 0

/ w2/ C w1w 1
2 / w2/

D
0

C u 1w1w 1
2 / i 0

/ w2/ C w1w 1
2 / w2/

C i.u 1w1w 1
2 /i

0

/1 i / 1 iw2/:

Since 0 C..u 1w1w 1
2 / i 0

/ w2/ C.w1w 1
2 / w2/ is unramified on R, by 2.1),

Q is not a hot point of
Suppose that P 2 C n E. We have D

0 C / u/ for some unit u in R and
0 unramified on R. We also have f D f1 for some f1 2 R which is not divisible

by We have

D C f / g/

D
0

C / u/ C f1/ g/

D
0

C f 1
1 / u/ C f1/ u/ C f1/ g/

D
0

C f 1
1 / u/ C f1/ gu/:

If f1 is a unit in R, then 0 C.f 1
1 / u/ is unramified on R, by 2.1), Q is not a hot

point of Assume that f1 is not a unit in R. Then P 2 C \ F and g D g1 for
some unit g1 2 R. We have

D C f / g/

D
0

C / u/ C f1/ g1/

D
0

C g1/ u/ C g 1
1 / u/ C f1/ g1/

D
0

C g 1
1 / u/ C g1/ u. f1/ 1/:
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Since 0

C g 1
1 / u/ is unramified on R, by 2.1), Q is not a hot point of

Suppose that P 2 E n C. Then D 0 C i/ v/ for some unit v 2 R and

f D if1 for some f1 2 R which is not divisible by i. Suppose that f1 is a unit in R.
Then, as above, Q is not a hot point of Assume that f1 is not a unit in R. Then

P 2 E \F and g is a unit in R. We have

D C f / g/

D
0

C i/ v/ C if1/ g/

D
0

C i/ vg/ C f1/ g/:

Since 0 is unramified on R and by the choice of g, g.P/ D v.P/, by 2.2), Q is not
a hot point of

By ([S3], cf. 1.2), is symbol. Thus D f / g/ is a sum of at most two
symbols.
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