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1. Introduction

In this paper we show that rotation cycles on S1 for a proper holomorphic map

f W
share several of the analytic, geometric and topological features of

simple closed geodesics on a compact hyperbolic surface.

Dynamics on the unit disk. Let D fz 2 C W jzj < 1g. For d > 1 let Bd Šd 1/ denote the space of all proper holomorphic maps f W
of the form

f z/ D z

d 1

Y1
z ai
1 Nai z

;

jai j < 1. Every degree d holomorphic map g W
with a fixed point in the disk

can be put into the form above, by normalizing so its fixed point is z D 0.
The maps f 2 Bd have the property that f jS1 is measure-preserving and jf 0j >

1 on the circle. Moreover, there is a unique marking homeomorphism f W
S1 S1
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724 C. T. McMullen CMH

thatvaries continuouslywith f conjugatesf topd z/ D zd and satisfies f z/ D z
when f D pd We define the length on f of a periodic cycle C for pd by

L.C; f / D log j.f q/0.z/j; 1.1)

where q D jCj and f z/ 2 C.
The degree of a cycle C is the least e > 0 such that pd jC extends to a covering

map of the circle of degree e. We say C is simple if deg.pd jC/ D 1; equivalently,
if pd jC preserves its cyclic ordering. A finite collection of cycles Ci is binding if
deg.

S
Ci/ D d and if

S
Ci is not renormalizable §7).

In this paper we establish four main results.

Theorem 1.1. Any cycle with L.C; f / < log2 is simple. All such cycles Ci have the
same rotation number, and pd

jS
Ci preserves the cyclic ordering of

S
Ci

Theorem 1.2. Every f 2 Bd has a simple cycle C with L.C; f / D O.d/.

Theorem 1.3. Let Ci /n1 be a binding collection of cycles. Then for anyM > 0, the
set of f 2 Bd with

P
n
1 L.Ci; f / M has compact closure in the moduli space of

all rational maps of degree d.

Theorem 1.4. The closure E S1 of the simple cycles for a given f 2 Bd has
Hausdorff dimension zero.

See Theorems 4.1, 5.8, 7.1 and 2.2 below.

Hyperbolic surfaces. The results above echo the following fundamental facts about
compact hyperbolic surfaces X of genus g > 1:

1) The closed geodesics on X of length less than log.3 C 2p2/ are simple and

disjoint.

2) There exists a simple closed geodesic on X with length O.log g/.

3) If i /n1 is a binding collection of closed curves, then the locus in Teichmüller
space Tg where

P
L. i; X/ M is compact for anyM > 0.1

4) The union of the simple geodesics on X D is a closed set of Hausdorff
dimension one.

See [Bus, §4, §5], [Ker, Lemma 3.1] and [BS] for proofs. Thus simple cycles behave

in many ways like simple closed geodesics.

1 A collection of closed curves is binding if their geodesic representatives cut X into disks.
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Rotation numbers and slopes. Next we formulate a more direct connection
between short cycles and short geodesics. Suppose f 2 Bd satisfies D f 0.0/ D
exp.2 i / ¤ 0. The action of hf i on with the orbitof z D 0 removed) determines
a natural quotient torus, isomorphic to

X D C=.Z ° Z / Š C Z:

Let L.p=q;X / denote the length of a closed geodesic on X in the homotopy
class p; q/, for the flat metric of area one. The slope p=q mod 1 which minimizes

L.p=q; X / depends only on f 0.0/ 2 The regions T.p=q/ where a given
slope is shortest rest on the corresponding roots of unity, and form a tiling of see

Figure 1).

1/3

2/3

2/5

1/2
1/0

0/1

Figure 1. Tiling of according to the slope of the shortest loop on the torus C Z.

In §6 we will show:

Theorem 1.5. For any f 2 Bd with f 0.0/ 2 T.p=q/, there is a nonempty collection
of compatible simple cycles Ci with rotation number p=q such that

1

L.p=q; X 2/ X L.Ci; f /
1

L.p=q;X /2 C O.d/;

and all other cycles satisfy L.C; f / > d > 0.

Compatibility is defined in §2.) This result implies Theorem 1.2 and gives an

alternate proof of Theorem 1.1 with log2 replaced by d ); it also yields:
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Corollary 1.6. If a sequence fn 2 Bd satisfies L.C; fn/ 0, then f 0n.0/
exp.2 ip=q/ where p=q is the rotation number of C.

On the other hand, we will see in §3:

Proposition 1.7. If fn 2 Bd and f 0n.0/ exp.2 i / where is irrational, then

L.C; fn/! 1for every cycle C.

Thus the cycles of moderate length guaranteed by Theorem 1.2 may be forced to
have very large periods.

Petals. The proof of Theorem 1.5 is illustrated in Figure 2. Consider a map f 2 B2
with f 0.0/ D exp.2 i / 2 T.1=3/, D 1=3 C i=10. The dark petals shown in the
figure form the preimage AQ of an annulus A in the homotopy class OE3 1 on
the quotient torus for the attracting fixed point at z D 0. Any two adjacent rectangles

within a petal give a fundamental domain for the action of f The three largest petals

join z D 0 to the repelling cycle on S1 labeled by C D .1=7;2=7; 4=7/. Thus a copy
of A embeds in the quotient torus for the repelling cycle as well; by the method of
extremal length §5), this gives an upper bound for L.C; f / in terms of L.1=3; X /
The lower bound comes from the holomorphic Lefschetz fixed-point theorem.)

Figure 2. Petals joining z D 0 to the .1;2; 4/=7 cycle on S1.

Rational maps. Here is a related result from §5 for general rational maps f W
yC

yC. Let L.f / D inf log j j, where ranges over the multipliers of all repelling and

indifferent periodic cycles for f
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Theorem 1.8. If fn 2 Ratd and L.fn/! 1, then the maps fn have fixed points zn
with f 0.zn/ 0.

Questions. We conclude with some natural questions suggested by the analogy with
hyperbolic surfaces.

1) Let C be a simple cycle. Is the function L.C; f / free of critical points in Bd
2) Let Ci/ be a binding collection of cycles. Does

P
L.Ci; f / achieve its mini¬

mum at a unique point f 2 Bd
3) Let QBd denote the space rational maps of the form

f z/ D z
d 1

Y1

z ai
1 bi z

such that
Qjai j

< 1,
Qjbi j

< 1, and J.f / is a Jordan curve. Each f 2 QBd
can be regarded as a marked quasiblaschke product, obtained by gluing together
a pair of maps f1; f2 2 Bd using their markings on S1.

Does there exist an d > 0 such for all f 2 QBd all cycles of length shorter
than d are simple?

4) Suppose the cycles C1; C2/ are binding. Does the set of f 2 QBd with
L.C1; f1/ C L.C2; f2/ M have compact closure in the moduli space of all
rational maps of degree d?

The analogous questions for hyperbolic surfaces and quasifuchsian groups are known
to have positive answers [Ker, §3], [Ot], [Th, Theorem 4.4].

Notes and references. This paper is a sequel to [Mc4] and [Mc5] in which we
construct aWeil–Petersson metric on Bd and an embedding of Bd into the space of
invariant measures for pd z/ D zd

Simple cycles in degree two play a central role in the combinatorics of the
Mandelbrot set [DH], [Ke], and are studied for higher degree in [Gol] and [GM]. Extremal
length arguments similar to those we use in §5 are well-known both in the theory of
Kleinian groups [Bers, Theorem 3], [Th, Proposition 1.3], [Mc1, §6.3], [Pet1], [Mil2]
and rational maps [Pom], [Lev], [Hub], [Pet2]. The quotient Riemann surface of a

general rational map is discussed in [McS]; other aspects of the dictionary between
rational maps and Kleinian groups are presented in [Mc2]. See [PL] for a related
discussion of spinning degenerations of the quotient torus.

2. Simple cycles

In this section we discuss the combinatorics of periodic cycles for the map pd t/ D
d t mod 1, and prove the closure of the simple cycles has Hausdorff dimension zero.
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Degree and rotation number. Let S1 D R=Z. Given a ¤ b 2 S1, let OEa; b S1
denote the unique subinterval that is positively oriented from a to b. We write
a < c < b if c 2 OEa; b The length of an interval is denoted jI j.

Let f W S1 S1 be a topological covering map of degree d > 0, and suppose

f X/ D X. The degree of f jX, denoted deg.f jX/, is the least e > 0 such that

f jX extends to a topological covering g W
S1 S1 of degree e.

Note that deg.f jX/ D 1 iff f preserves the cyclic ordering of X, in which case

f jX also has a well-defined rotation number f jX/ 2 S1. If X is finite then

f jX/ D p=q is rational and the orbits of f jX have size q.

Example. Suppose X D fx0; x1; : : : ;xn D x0g in increasing cyclic order, and f jX
is a permutation; then we have

deg.f jX/ D

n 1

X0
jOEf xi/; f xiC1/ j:

Indeed, an extension of f jX of minimal degree is obtain by mapping OExi; xiC1
homeomorphically to OEf xi /; f xiC1/ The degree is thus a variant of the number
of descents of a permutation see e.g. [St, §1.3]).

The model map and its modular group. Now fix d > 1, and let pd t/ D d

t mod 1. Any expanding map f W
S1 S1 of degree d is topologically conjugate

to pd [Sh].
The modular group Modd Aut.S1/ is the cyclic group of rotations generated

by t 7! 1=.d 1/ Ctmod 1; it coincides with the group of degree one) topological
automorphisms of pd Note that Modd acts transitively on the fixed points of pd

Simple cycles. A finite set C S1 is a cycle of degree d if pd jC is a transitive
permutation. As in §1, we say a cycle is simple if deg.pd jC/ D 1. Simple cycles

C1; : : :; Cm/ are compatible if deg.pd
jS

Ci/ D 1.
It is elementary to see:

Proposition 2.1. Thesimple cycles C1; : : : ; Cm/ are compatible iff they are pairwise
compatible.

We let Cd denote the set of all cycles of degree d, and Cd p=q/ Cd the simple
cycles with rotation number p=q.

Portraits of fixed points. The fixed-point portrait [Gol] of a simple cycle C 2
Cd p=q/ is the monotone increasing function

W f1; : : :; d 2g f0; 1; : : : ; qg
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given by

j/ D jC \ OE0; j=.d 1//j:
This invariant specifies how C is interleaved between the fixed points of pd which
are all of the form j=.d 1/ mod 1.

Basic properties. The following results are immediate from [Gol] see especially
Lemma 2 and Theorem 7).

1) A simple cycle C 2 Cd p=q/ is uniquely determined by its fixed-point portrait

j /, and all possible monotone increasing functions j / arise.

2) The number of simple cycles of degree d and rotation number p=q is dCq 2
q

3) The number of cycles of period q grows like dq, while the number of simple
cycles is O.qd 1/; so most cycles are not simple.

4) Cycles C1; C2 2 Cd p=q/ are compatible iff their fixed-point portraits satisfy

1.j/ 2.j / 1.j / C 1

for 0 j d 2, or the same with 1 and 2 reversed.

5) Every maximal collection of compatible cycles has cardinality d 1.

From portraits to cycles. A simple cycle C 2 Cd can be reconstructed explicitly
from its rotation number p=q and its fixed-point portrait as follows. Let be the

‘transpose’ of namely the monotone function
W f0; 1; : : : ; q 1g f0;1;: : : ;

d 1g given by

i/ D jfj W j / igj; 2.1)

and let

0.i/ D i/C´0 if 0 i < q p, and

1 otherwise;

where i is taken mod q. Then the periodic point given by t D 0: 0.0/ 0.p/ 0.2p/ : : :
in base d generates C; indeed, t is the ‘first point’ in the cycle C.

Examples. To simplify notation, let p1=q; : : : ;pm=q/ D p1; : : :; pm/=q, and let

D n1 :: : nd 1 denote the function with values j / D nj
Degree d D 2. In the quadratic case, is trivial and hence there is a unique

simple cycle C.p=q/ for each possible rotation number; e.g.

C.1=2/ D .1;2/=3;

C.1=3/ D .1;2; 4/=7;

C.2=5/ D .5;10; 20; 9; 18/=31:
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The only cycle of period 4 which is not simple is C D .1; 2; 4; 3/=5. For period
5 there are two such, namely C and C where C D .3; 6; 12;24; 17/=31. Any two
distinct quadratic simple cycles are incompatible.

Degree d D 3. In the cubic case pd has two fixed points, 0 and 1=2, and three
cycles of period two, given by

C.1=2; 0/ D .5; 7/=8;

C.1=2; 1/ D .1; 3/=4

and

C.1=2; 2/ D .1; 3/=8:

The first and last are incompatible, while the other pairs are compatible. In general
there are q C 1 cubic simple cycles with rotation number p=q, whose fixed-point
portraits are given by .1/ D 0; 1; : : : ; q. Only the pairs with adjacent values of .1/
are compatible.

Degree d D 4. In the quartic case there are six cycles in C4.1=2/, generated by

t D p=15 with p D 1; 2; 3; 6; 7 and 11. The compatibility relation between these
cycles is shown in Figure 3. The four visible triangles give the four distinct triples
of compatible simple cycles with rotation number 1=2. Note that the modular group
Mod4 Š Z=3 acts by rotations on this diagram.

00

0201

D

11 12 22

Figure 3. Compatibility of degree 4 cycles of the form C.1=2; /

In general Cd p=q/ can be identified with the vertices of the q-fold barycentric
subdivision of a d 2/-simplex, with the top-dimensional cells corresponding to
maximal collections of compatible cycles.

Sample computation in degree d D 5. To compute C.3=7;013/, we first use

equation 2.1) to compute the ‘transpose’ D 1223333 of D 013. Note that
the graphs of and shown in white and black in Figure 4, fit together to form a

rectangle. Evaluating 0 D 1223444 along the sequence ip mod q, i D 0; 1; 2; : : :
we obtain the base 5 expansion t D 0:13424245 D 6966=19531 for a generator of C.
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1

1

2

2 3

3

4 5 6
0

0
C

Figure 4. The degree 5 simple cycle with rotation number 3=7 and D 013.

The cycle C, along with the four fixed points of p5, is drawn at the right in
Figure 4. Note that D 013 gives the running total of the number of points of C in
the first three quadrants.

Comparison with simple geodesics. The simple cycles for pd jS1 behave in many
ways like simple closed geodesics on a compact hyperbolic surface X D of
genus g, with compatible cycles corresponding to disjoint geodesics. For example,
every maximal collection of disjoint simple closed curves on X has 3g 3 elements,
just as every maximal collection of compatible cycles for pd has d 1 elements.

It is also known that the endpoints of lifts of simple geodesics lie in a closed set

E S1 of Hausdorff dimension zero [BS]. The analogous statement for simple
cycles is:

Theorem 2.2. The closure E of the union of all simple cycles C S1 of degree d
has Hausdorff dimension zero.

Proof. Let us say a finite set P S1 is a precycle if it is the forward orbit of
preperiodic point x 2 S1 under pd We say P is simple, with rotation number

p=q, if pd jP extends to a continuous, monotone increasing map f W
S1 S1 with

rotation number p=q. Then q n and the periodic part C of P is a simple cycle.
Let Pd n; p=q/ denote the set of all simple precycles of length n and rotation

number p=q. The argument that shows jCd p=q/j D O.qd 2/ can be adapted to
show that jPd n; p=q/j D O.nd 2/ as well.

Now fixN > 0. We claim that every x 2 E lies within distance O.d N / of a

simple precycle P with jPj N. To find this precycle, simply increase x continuously

until two of the points among x;f.x/; : : : ;f N x/ coincide. This requires
moving x only slightly, since j.f N /0.x/j D dN

Thus E is contained in a neighborhood of diameter O.d N / of the union EN
of all simple precycles with jPj N. Since jENj D O.NdC2/ grows only like a

polynomial in N, this implies dim.E/ D 0.
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Proof of Theorem 1.4. The Hölder continuous conjugacy f between f and pd
preserves sets of Hausdorff dimension zero.

Remark: Invariant measures. The basic properties of simple cycles can also be
developed using the correspondence between invariant measures and covering
relations established in [Mc5]. For example, any union D D S

Ci of compatible cycles

in Cd p=q/ arises as the support of an invariant measure for pd jS1. Invariant
measures, in turn, correspond bijectively to covering relations F; S/ of degree d. In
the case at hand, F.t/ D t Cp=q mod 1 and S is a divisor on S1 of degree d 1. By
perturbing S so its points have multiplicity one, we obtain a nearby invariant measure

0 whose support D0 D is a maximal union of exactly d 1/ compatible cycles
property 5) above).

The compactification of the space of Blaschke products by covering relations

F; S/ is discussed in the following section.

Question. Is there a useful notion of intersection number for a pair of cycles?

3. Blaschke products

This section presents basic facts about marked Blaschke products, their derivatives
and their images in the moduli space of all rational maps. See [Mc5] for related
background material.

Blaschke products. Identify S1 D R=Z with the unit circle in the complex plane,

using the coordinate z D exp.2 i t /. Let D fz W jzj < 1g be the unit disk, and
n/ its n-fold symmetric product.
Givend > 1, letBd Š

d 1/ denote the space ofBlaschkeproductsf W

of the form

f z/ D z
d 1

Y1

z ai
1 Naiz

with ai 2 Note that f extends to a rational map on the whole Riemann sphere,

and f jS1 is a covering map of degree d.
A proper holomorphic map g W of degree d > 1 is conjugate to some

f 2 Bd iff g has a fixed point.

Derivatives and measure. By logarithmic differentiation, any f 2 Bd satisfies

jf 0.z/j D 1 C
d 1

X1

1 jaij
2

jz aij
2

3.1)
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for z 2 S1. In particular, f jS1 is expanding.
More importantly, f jS1 preserves normalized Lebesgue measure on the circle;

equivalently, f dz=z/ D dz=z, as can be verified by residue considerations. This
means

Xf.w/Dz
jf 0.w/j

1
D 1 3.2)

for any z 2 S1.

Markings. All f 2 Bd are topologically conjugate to the model mapping pd z/ D
zd. A marking for f the choice of one such conjugacy, i.e. the choice of a degree
one homeomorphisms

W
S1 S1 such that

f z/ D
1

B pd B z/:

There isaunique marking f whichvaries continuously in f andsatisfies f z/ D
z when f D pd ThusBd can be regarded as the space of marked Blaschke products.

The modular group Modd Š Z=.d 1/ acts on Bd by ai / 7! ai / where
d 1

D 1. Its orbits correspond to different markings of the same map. Thus

f1; f2 2 Bd are conformally conjugate on iff they are in the same orbit of the
modular group.

Lengths. The canonical marking allows one to label the cycles of f by the cycles
of pd We define the length on f of a cycle C 2 Cd of period q by

L.C; f / D log j.f q/0.z/j
for any z 2 S1 with f z/ 2 C.

Limits of lower degree. The space of Blaschke products has a natural compactification

Bxd Š x.d 1/, whose boundary points ai/ can be interpreted as pairs F; S/
consisting of a Blaschke product

F.z/ D z Yjai j<1

z ai
1 Nai z YjaijD1

ai /

and a divisor of sources

S D XjaijD1

1 ai 2 Div.S1/;

satisfying degF C degS D d. It is easy to see:
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Proposition 3.1. A sequence fn 2 Bd converges to F; S/ 2 @Bd iff

i) fn.z/ F.z/ uniformly on compact subsets of yC supp S, and

ii) the zeros Z.fn/ converge to Z.F / C S as divisors on yC.

More generally, the space Ratd of degree d rational maps f W
yC yC has a

compactification Ratd Š P2dC1, whose boundary points F;S/ are pairs consisting
of a rational map F and an effective divisor S 2 Div. yC/ with deg.F /Cdeg.S/ D d.
We have fn F;S/ in Ratd iff their graphs satisfy

gr.fn/ gr.F / C S yC

as divisors of degree .1; d/ on yC yC cf. [D, §1]).

Radial bounds onf 0.z/. The following elementary observation is useful for studying

limits as above.

Proposition 3.2. For any proper holomorphic map f W
and 2 S1, we have

sup
r2OE0;1

jf 0.r /j 4jf 0. /j:

Note that we do not require that f .0/ D 0. This bound is sharp, as can be seen

by considering f z/ D z C a/=.1 C az/ as a 1

Proof. We can write

f z/ D e i
d

Y1
Mi z/; 3.3)

where Mi z/ D z ai /=.1 Naiz/ and ai 2 Composing with a rotation, we can
also assume that D 1. For r 2 OE0; 1 we have

M0i r/
M0i .1/ D

j1 aij2

j1 rai j
2 ;

and therefore

jM0i r/j 4jM0i .1/j;
since the distance from 1 to ai is never more than twice the distance from 1 to rai
Differentiating the product 3.3) andusing the fact that

jQj¤i Mj r/j 1, we obtain:

jf 0.r/j XjM0i r/j 4
XjM0i .1/j D 4jf 0.1/j:
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Corollary 3.3. If fn F; S/ 2 Bxd zn 2 S1, zn z and jf 0n.zn/j D O.1/, then
lim fn.zn/ D F.z/.

Proof. Suppose sup jf 0n.zn/j D M; then for any r < 1 we have

lim supjfn.zn/ F.z/j lim sup jfn.rzn/ F.z/j C 4M.1 r/
D jF.rz/ F.z/j C 4M.1 r/I

now let r 1.

Irrational rotations. As a sample application, we prove the following result stated

in the Introduction:

Corollary 3.4. If fn 2 Bd satisfies f 0n.0/ exp.2 i / where is irrational, then

L.C; fn/! 1for every cycle C.

Proof. Suppose to the contrary that L.C; fn/ is bounded for some cycle C. Let
Cn S1 be the corresponding periodic cycle for fn. Pass to a subsequence such
that fn F; S/ 2 @Bd and Cn D S1 in the Hausdorff topology. Then

F.z/ D exp.2 i /z and by Corollary 3.3 we have F.D/ D D, contradicting the
irrationality of

Variants. Here are two useful variants of the results above:

Proposition 3.5. For any proper holomorphic map f W H H and x 2 R, we have

sup
y jf 0.x C iy/j f 0.x/:

Proposition 3.6. Assume fn 2 Ratd converges to F; S/ 2 Ratd zn z, and

kDfn.zn/k D O.1/ in the spherical metric on yC. Then we have

fn.zn/ F.z/

provided zn belongs to a circle Tn with f 1
n Tn/ D Tn, and infn diam.Tn/ > 0.

Proofs. The first result follows directly from the representation f z/ D a0zCb0C

P
d 1
1 ai bi z/ with ai > 0 and bi 2 R, and the second follows by the same

argument as Corollary 3.3.
The maps fn.z/ D 1=.1Cnz2/ satisfy f 0n.0/ D 0 and lim fn.0/ D 1 ¤ F.0/ D

0; thus some extra hypothesis is needed to interchange limits as in Proposition 3.6.
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Moduli space of rational maps. Let MRatd D Ratd Aut.yC/ denote the moduli
space of holomorphic conjugacy classes of rational maps of degree d > 1. A pair
of Blaschke products are conjugate iff they are related by the modular group or by

z 7! 1=z; thus we have an inclusion

Bd Modd ËZ=2/ MRatd :

The next result shows this inclusion is almost proper.

Theorem 3.7. If fn F; S/ 2 @Bd but OEfn remains bounded in MRatd then

F.z/ D z and suppS is a single point. In particular, we have f 0n.0/ 1.

Proof. Pass to a subsequence such OEfn OEg 2 MRatd and fn F; S/ 2 @Bd
Then there are conjugates hn D AnfnA 1

n g. Since fn diverges in Bd An! 1

n

in Aut. yC/. On the other hand, the measures of maximal entropy satisfy hn/
g/ and fn/ F; S/, by [D, Theorem 0.1] see also [Mc5]). Since g/ is

nonatomic, this implies F;S/ D lim A hn// is supported at a single point. But
supp F; S/ is F -invariant and includes supp S; thus F.z/ D z and supp S D fsg
is itself a single point.

Example. The sequence fn.z/ D z.z C an/=.1 C anz/, with an D 1 1=n, is
divergent in B2 but convergent in MRat2. To see this, normalize so the origin is
a critical point instead of a fixed point; then fn.z/ is conjugate to hn.z/ D z2 C
bn/=.1 C bnz2/, and bn D an=.2 C an/ 1=3 as an 1.

4. The thin part of f.z/

Let us define the thin part of f 2 Bd by

S1thin.f / D fz 2 S1
W jf 0.z/j < 2g:

In this section we will show:

Theorem 4.1. For any f 2 Bd the map f jS1thin.f / extends to a degree one
homeomorphism of the circle.

Corollary 4.2. All cycles of f with L.C; f / < log 2 are simple and compatible.

Visual angles. The derivative of

f z/ D z
d 1

Y1

z ai
1 Naiz
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can be conveniently analyzed using the hyperbolic visual angle, defined for a; z 2 x
by

z; a/ D 2 arg.z a/ arg.z/:

This is theangle ata of the hyperbolic geodesicaz. Forz 2 S1 we have arg.1 Naz/ D
arg.z/ arg.z a/, and thus

arg.f z// D arg.z/ C
d 1

X1

z; ai /: 4.1)

Note this simplifies to arg.f z// D 2arg.z a1/ when d D 2.) Letting D arg.z/
and P D d d we then obtain

jf 0.z/j D 1 C
d 1

X1

P z;ai / 4.2)

for z 2 S1.

The visual density. The visual density P z; a/ is essentially the Poisson kernel; for
a D r 0 it is given by

P z; r/ D
1 r2

1 C r2 2r cos
; 4.3)

where D arg z. Geometrically, P z; a/=2 / d is the hitting measure on the circle
for a random hyperbolic geodesic starting at a.

For fixed z 2 S1, the level sets of
P z; a/ are horocycles resting on z. Thus

J.a/ D fz 2 S1
W P z; a/ < 1g

is the large arc cut off by the chord perpendicular to 0a. This follows from the fact
that the horocycle resting on one of the endpoints of J.a/ and passing through 0 also
passes through a see Figure 5).

Proposition 4.3. The visual density P z; a/jJ.a/ is strictly convex, and decreases as

a moves radially towards the circle. In other words, we have

« z; a/ > 0 and
d
ds P z; sa/

sD1 < 0

for all z 2 J.a/.
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J.a/
0 a

Figure 5. The arc J.a/ where P z; a/ < 1.

Proof. To verify convexity, consider the case where a D r 2 OE0; 1/. By 4.3), in
this case we have

P D .1 r2/=u where u D 1 C r2 2r cos We may assume

2 .0; / Cross-multiplying and differentiating, we obtain

Pu D 1 r2;
RuC P 2r sin / D 0; and

«uC R 4r sin / C P 2r cos / D 0:

Since r; u and sin are all positive, we have P > 0 and
R < 0. Comparing the last

two equations, we find the sign of « is the same as the sign of the determinant

D D det 2r sin u
2r cos 4rsin D 8r2 sin2 2ru cos :

We claimD > 0 when z 2 J.r/, i.e. when u D jz rj
2 > 1 r2. The claim is

evident if cos is negative, so assume 2 .0; 2/; then

u D jz rj
2

jz 1j
2 2.Im z/2 D 2 sin2 :

We also have cos D Re.z/ < r for z 2 J.r/, and thus:

D 4r2u 2r2u > 0:

The proof of the density decreasing property is straightforward.

Properties of the thin part of f We can now show that f jS1thin.f / acts like a

rotation. We first observe:

Proposition 4.4. For any f 2 Bd
i) the map f jS1thin.f / is injective,

ii) we have S1thin.f /
T

J.ai /,
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iii) S1thin.f / consists of at most d 1/ disjoint open intervals, and

iv) S1thin.f / increases as the zeros ai of f move radially towards the circle.

thin.f /, then jf 0.x1/jCjf 0.x2/j >Proof. Iff x1/Df x2/ for two distinctpoints inS1
1=2 C 1=2 D 1, which violates the measure-preserving property 3.2) of f ; thus

f jS1thin.f / is injective. Equation 4.2) implies ii). Since
S

S1 J.ai// has at

most d 1/ components, so does I D T
J.ai /. By Proposition 4.3, jf 0.z/j is

locally convex on I ; thus the intersection of S1thin.f / with any component of I is
connected, and iii) follows. The density decreasing property stated in Proposition
4.3 implies iv).

Proof of Theorem 4.1. By moving the points ai/ radially to the circle, we obtain
a smooth 1-parameter family of maps ft 2 Bxd t 2 OE0; 1 with f0 D f and

f1 D F; S/. Since deg.S/ D d 1, we have deg.F/ D 1. Proposition 4.4 implies
that ft jTt D S1thin.ft / is injective, Ts Tt when s < t, and supp S \ Tt D ;. Thus
for any three distinct points xi 2 S1thin.f /, the triple ft x1/; ft x2/; ft x3// moves

by isotopy as t increases from 0 to 1, and converges to F.x1/;F.x2/; F.x3// as

t 1. Since F is a rotation, it preserves the cyclic ordering of the points xi /, so the
same is trueof f Consequentlyf extends from S1thin.f / to an orientation-preserving
homeomorphism of the circle.

5. Bounds on repelling cycles

In this section we show that every f 2 Bd has a simple cycle with L.C; f / D O.d/,
and obtain related results for general rational maps.

Moduli and tori. We begin by summarizing some well-known facts about extremal
length on tori.

Any point 2 H determines a complex torus

X D C=.Z°Z /
with a flat metric inherited from the plane, and a distinguished basis h1; i for its
fundamental group. Factoring the covering map C X through the map

W C
C Š C=Z given by z/ D exp.2 iz/, we have

X D C Z

where D / satisfies 0 < j j < 1. The same construction can be made when

2 H; then j j > 1.
Given a slope p=q 2 Q[ f1g, let p=q X denote the simple closed geodesic

obtained as the projection of the line R p=q/ from C to X Its preimage Qp=q
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in the intermediate cover C consists of q arcs joining 0 to 1, cyclically permuted
with rotation number p=q by z 7! z.

Any annulus A is conformally equivalent to a right cylinder, which is unique up

to scale. The ratio mod.A/ D h=c between the height and circumference of this
cylinder is the modulus of A.

The maximum modulus of an annulus A X homotopic to p=q is given by

mod.p=q; X / D
area.X /

L. p=q; X /2 D
j Im j

jq pj2
5.1)

assuming gcd.p; q/ D 1). This maximum is realized by taking A D X n p=q. The
set of 2 H with mod.p=q; X / m is a horoball of diameter 1=.mq2/ resting on
the real axis at p=q. For p=q D 1=0 we have

mod.1; X / D jIm j:

The intersection inequality

r s

2

mod.p=q; X / mod.r=s;X / det p q
5.2)

is easily verified by considering the determinant of the lattice Z.q p/°Z.s r/.
This inequality implies:

There is at most one slope with mod.p=q; X / > 1.

On the other hand we have:

Proposition 5.1. For any 2 H, there exists a slope p=q 2 Q [ f1g such that

mod.p=q; X / p3=2:

Proof. Since the statement is invariant under the action of SL2.Z/ on H, it suffices
to verify it when lies in the fundamental domain j j 1, j Re j 1=2; and in this
case, we have mod.1;X / D Im p3=2.

Rational maps. Now let f W yC yC be a rational map of degreed > 1. If z 2 yC

is a point of period q, its multiplier is given by D f q/0.z/. The grand orbit of z
is the set

Si;j>0 f i
B f j z/.

Suppose f has a fixed point at z D 0 and a periodic point w ¤ 0 with period q.
We say w has rotation number p=q relative to z D 0 if there are arcs ii/q 1

0 yC

joining z D 0 to f i.w/, meeting only at z D 0, which are cyclically permuted by f
with rotation number p=q.
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Theorem 5.2. Let f be a rational map with an attracting fixed-point at z D 0, with
multiplier

D f 0.0/ D exp.2 i /¤ 0:

Let e be the number of grand orbits of critical points in the immediate basin of

z D 0. Then for each p=q 2 Q, there exists a repelling or parabolic periodic point
w 2 @ such that

1) the rotation number of w relative to z D 0 is p=q; and

2) its multiplier has the form D f q/0.w/ D exp. 2 i / where D 0 or

Im

j j2
mod.p=q;X /

e
5.3)

In particular, we have

mod.p=q; X /

e

j j exp
2

5.4)

Proof. Let denote the immediate basin of z D 0 with the grand orbits of all
critical points in and of z D 0 deleted. Then f W

is a covering map.
Moreover, the holomorphic linearizing map

z/ D lim nf n z/

is defined for all z 2 and satisfies f z// D f z/. Consequently descends
to an inclusion of the space of grand orbits Y D hf i into the torusX D C Z,
making the diagram

C

hf i D Y X D C Z

commute. By assumption we have jY X j D e.
For a given p=q 2 Q, the geodesics parallel to p=q passing through the punctures

of Y cut it into e parallel annuli, one of which satisfies

mod.A/ mod.p=q; X / e: 5.5)

Let i A be the core curve of A, and i0 one of its lifts which is incident to

z D 0. Let ii D f i i0/. By construction, the arc i0 is invariant under f q, and f q
ji0

is a bounded translation in the hyperbolic metric on Consequently i0 must join
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z D 0 to another fixed point w of f q in @ By the Snail Lemma [Mil1, Lem. 16.2],

w is repelling or parabolic.
We have seen that the preimage of p=q on C consists of q arcs, cyclically

permuted with rotation number p=q by z 7! z. Since is a homeomorphism near

z D 0, the arcs i0; :: : ; iq 1 are also cyclically permuted with rotation number p=q
by f In particular w has rotation number p=q relative to z D 0.

Now suppose w is repelling, with multiplier Choose an injective branch of

f q defined on a punctured neighborhood U of w such that f q
W U U and

Z D U hf
qi Š C Z

D X ;

where D log. 2 i /. There is a unique choice of the logarithm such that the
invariant arc i0 \ U descends to a loop isotopic to 0 on X

By construction, A Y is covered by a strip A0 which retracts to i0, and
hence we have an inclusion

A Š A0=hf
q

i Z Š X
in the same homotopy class as 0. This implies

mod.0; X / mod.A/;
and the bound 5.3) follows from equations 5.1) and 5.5).

Corollary 5.3. If f 2 Ratd has an attracting fixed point with multiplier satisfying

j j > exp. p3/ D 0:0043 : : : ;

then it also has a repelling or parabolic cycle with multiplier satisfying

j j exp.4 p3/2d 2 14162d 2 :

Proof. The lower bound on j j implies Im. / D mod.1; X / < p3=2, where

D log / 2 i Hencemod.p=q; X / p3=2 for some p=q 2 Q, byProposition
5.1. Now apply equation 5.4) and note that e 2d 2.

Corollary 5.4. If a map f 2 Ratd has an attracting fixed point with multiplier
then it also has a repelling or parabolic cycle with multiplier satisfying

j j exp.4 p3/=j j
2d 2

:

Proof. Choose D log / 2 i D x C iy with x 2 OE 1=2; 1=2 The previous
corollary shows the desired bound holds when y <p3=2. For y p3=2 we have

m D mod.0;X / 1 x2 C y2

y
1

2p3 Cy <
2

p3 C y;

which impliesexp.2 m/ exp.4 p3/=j j; thus by 5.4) the desired bound holds
in this case as well.
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The bottom of the spectrum. Here is a qualitative consequence of the preceding
corollary.

Let the spectrum S.f / C be the set of all multipliers that arise from periodic
points of f 2 Ratd and let

L.f / D infflog j j W 2 S.f / and j j 1g:

By the fixed-point formula for rational maps [Mil1, Theorem 12.4], the multipliers
of f at its fixed points satisfy

X
1

j 1 D 1; 5.6)

provided no j D 1; in particular, j jj d C 1 for some j Thus if f has no

attracting fixed points, it satisfies

L.f / log.d C 1/:

Combining this observation with Corollary 5.4, we obtain:

Corollary 5.5. Let fn 2 Ratd be a sequence of rational maps with L.fn/ 1.
Then the maps fn have fixed points with multipliers n 0.

Examples. It is easy to that fn.z/ D z2 C n2 satisfies L.fn/ 1as n 1,
since its Julia set lies close to n. Of course fn has a fixed point at infinity with
multiplier n D 0.

Parabolics must be included in the definition of L.f / to obtain Corollary 5.5. In
fact, if we let L f / D infflog j j W 2 S.f /; j j > 1g, then fn.z/ D z 1=z Cn
satisfies L fn/! 1even though fn has no attracting fixed point. The map fn.z/
behaves like the Hecke group hz 7! 1=z;z 7! z C ni; cf. [Mc3, Theorem 6.2].)

Question. Does Corollary 5.5 remain true if only parabolic and repelling multipliers
are included in the definition of L.f /?

Blaschke products. We now return to the setting of a proper map f W
fixing

z D 0. In this case formula 5.6) implies:

Proposition 5.6. The multipliers i /d 1
1 of f 2 Bd at its fixed points on the circle

satisfy
d 1

X1

1

i 1 D
1 j j2

j1 j2
;

where D f 0.0/.
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Corollary 5.7. If j j < 1=2, then f has a repelling fixed point with multiplier
satisfying 1 < 1 C d 1/=3.

Theorem 5.8. Every f 2 Bd has a simple cycle with L.C; f / D O.d/.

Proof. Combine Corollaries 5.4 and 5.7.

6. Short cycles and short geodesics

In this sectionwe use the fixed-point formula for rational maps to obtain the following
more detailed connection between the short cycles for f and the short geodesics on

its quotient torus.

Theorem 6.1. Given f 2 Bd with f 0.0/ D exp.2 i / choose p=q 2 Q to
maximize mod.p=q; X / Then there exist compatible simple cycles Ci with rotation
number p=q, such that

1) their lengths satisfy

mod.p=q; X / XL.Ci; f / 1 mod.p=q; X / C O.d/I 6.1)

2) all other cycles satisfy L.C; f / > d > 0; and

3) for any r > 0, the multipliers of f r at its repelling fixed points satisfy

1

r X
0 1

j 1 D O.d/; 6.2)

where the prime indicates that fixed points in
S

Ci are excluded.

In qualitative terms, the construction shows:

Corollary 6.2. All cycles with L.C; f / < d arise from short geodesics on the
quotient torus for f
Tiling of The slope p=q mod 1 appearing in the theorem above depends only
on D f 0.0/ 2 Figure 1 of the Introduction shows the regions T.p=q/
where a given slope maximizes the value of mod.p=q;X / D mod.p=q;C= Z/.

This picture is nothing more than the image, under the covering map
W H

given by / D exp.2 i / of the tiling of H by SL2.Z/ translates of the Dirichlet
region

F D f 2 H W j nj 1 8n 2 Zg
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for the cusp D 1. The tile T.1/ D F/ lies in a ball of radius exp. p3/
1=230 about the origin. In this tile the short curve is 1 X which lifts to a loop
around z D 0 rather than a path connecting z D 0 to a periodic point. Thus the length
of 1 can go to zero without any cycle getting short.

Each remaining tile T.p=q/ contains a horocycle H resting on the root of unity
exp.2 ip=q/ 2 S1. Within a still smaller horocycle H0 H, p=q becomes very
short, and hence f has a very short cycle with rotation number p=q.

Moduli and multipliers. We begin the proof of Theorem 6.1 by connecting
Diophantine properties of 2 to lengths of geodesics on C Z.

Lemma 6.3. For any D exp.2 i / 2 and q > 0, we have

sup
p

mod.p=q; X /
gcd.p; q/2 D q

1 j
q
j
2

j1
qj

2 C O.1/:

Proof. First consider the case q D 1, and assume is chosen so j Re j 1=2. Then
we have 2 i 1 when either side is small, and hence

sup
p

mod.p; X / D
Im

j j2 D
1 j j

2

j1 j2
C O.1/:

The general case follows using the fact that

mod.p=q; X /
gcd.p;q/2 D

mod.p; Xq /
q

:

Proof of Theorem 6.1. Choose p so that mod.p=q; X / is maximized. As in Theorem

5.2, by cutting the torus X open along e d 1 geodesics parallel to p=q we
obtain annuli A1; : : : ; Ae Y with

mod.p=q; X / DX
mod.Ai /:

Each annulus Ai when lifted to the unit disk, connects z D 0 to a simple cycle Ci
for f with rotation number p=q and multiplier i > 1.

The lifts of the annuli Ai are disjoint, so the cycles Ci are compatible. Assume
for the moment they are also distinct. Since two copies of Ai embed in the quotient
torus C Z

i one for the inside of the disk and one for the outside), we have

2mod.Ai/
2

log i D
2

L.Ci; f /

The combination of these inequalities yields:

mod.p=q; X / XL.Ci; f / 1:
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This lower bound also holds when the cycles are not distinct; then we simply have

more annuli Ai embedded in a given torus C Zj
For the upper bound, let j / denote the multipliers of the repelling fixed points

of f q. Note that each cycle Ci contributes q fixed points, each with multiplier i
Combining Proposition 5.6 and Lemma 6.3, we obtain:

1

qX
1

j 1 D
1

qX
0 1

j 1 CX
1

i 1 D
1 j qj

2

qj1
q j2

D 1mod.p=q; X / C O.1/:

Again, the prime indicates fixed points in
S

Ci are excluded.) Since the cycles Ci
are compatible, there are no more than d 1 of them, and hence

i 1 DX
1

X
1

log i
C O.1/ D XL.Ci/ 1

C O.d/:

This yields the upper bound in 6.1); and it also implies

1

qX
0 1

j 1 D O.d/:

That is, equation 6.2) holds for r D q.
To obtain 6.2)forother valuesof r, recall thatby 5.2) we have mod.s=r;X / < 1

whenever s=r ¤ p=q. Thus if q does not divide r, Lemma 6.3 implies

1

r X
0

j 1/ 1 1 j r
j
2

rj1 rj2
sup

s
mod.s= r; X / C O.1/ D O.1/I

while for r D nq we obtain

1

r X
0 1

j 1 C
q

r X
1

n
i 1 D

1 j
r
j
2

rj1 rj2 D
mod.p=q;X /

n2 C O.1/;

which again implies 6.2), since 6.1) gives

q

r X
1

n
i 1 D

1

n X
1

nL.Ci; f / C O.1/ D
mod.p=q; X /

n2 C O.d/:

Finally note that equation 6.2) implies L.C; f / > d 1=d > 0, since any
cycle C of period r and multiplier not among the Ci contributes 1=. 1/ to the

sum .1=r/X
0

j 1/ 1.
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7. Binding and renormalization

We conclude by proving the following compactness result.

Theorem 7.1. Let Ci /n1 be a binding set of cycles of degree d. Then for anyM > 0,
the set of f 2 Bd such that

Pi L.Ci; f / M has compact closure in MRatd

Corollary 7.2. The set of f 2 Bd such that
Pi L.Ci;f / M and jf 0.0/ 1j

1=M is compact.

Proof. By Theorem 3.7, the only way a sequence fn can diverge in Bd but remain
bounded in MRatd is if f 0n.0/ 1.

Definitions. Sets A; B S1 are unlinked if they lie in disjoint connected sets;
equivalently, if their convex hulls in the unit disk are disjoint. A map f W X X
with X S1 is renormalizable if there is a nontrivial partition of X into disjoint,
unlinked subsets X1; : : : ; Xn, such that every f Xi/ lies in some Xj

We say a collection of degree d cycles C1; : : : ; Cm is binding if deg.pd
jS

Ci/ D
d and pd

jS
Ci is not renormalizable.

Proof of Theorem 7.1. Suppose to the contrary that we have a sequence fn 2 Bd
with

Pi L.Ci; fn/ M that is divergent in moduli space. Let

Dn D
1

fn [Ci S1

be the finite fn-invariant set corresponding to the binding cycles. Since fnjS1 is
expanding, we have jf 0

nj eM on Dn.
Next we conjugate the entire picture by an affine transformation depending on n,

so that 0 2 Dn and diam.Dn/ D 1. Then S1 goes over to a circle Tn Dn invariant
by fn, and we still have jf 0

njDnj eM.
Pass to a subsequence such that fn F; S/ 2 Ratd Since fn diverges in

MRatd, we have deg.F/ < d. Passing to a further subsequence, we can find a finite
set D containing zero and a circle T yC such that Dn D and Tn T in the
Hausdorff topology. Note that jDj > 1 since diamD D 1.

By Proposition 3.6, the map fnjDn converges to F jD. But if jDj D jS
Ci j, the

map F j.D T / is combinatorially the same as pd j.S
Ci S1/, contradicting our

assumption that deg.pd
jS

Ci / D d. Similarly, if jDj <
jS

Ci j, then the collapse
of Dn to D provides an invariant partition for

S
Ci contradicting our assumption

that pd
jS

Ci is not renormalizable.
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Examples. ThesinglecycleC D .3; 6; 12; 24;17/=31 in degree2 is alreadybinding,
as is any cycle of prime order with deg.pdjC/ D d.

The first renormalizable cycle in degree 2 is C D .1; 2;4; 3/=5. Although
deg.p2jC/ D 2, L.C; fn/ remains bounded as fn 2 B2 diverges along the sequence
specified by f 0n.0/ D 1C1=n. Indeed, f 2

n can be renormalized so thatC converges

to the cycle of period 2 for G.z/ D z 1=z [Ep]; and thus L.C; fn/ log 9. For
more details, see [Mc6, §14].
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