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A norm compatible system of Galois cohomology classes
for GSp.4/

Francesco Lemma

Abstract. For a given de Rham p-adic Galois representation M, a conjecture of Perrin-Riou
associates a p-adicL-function forM to a norm compatible systemof Galois cohomology classes

in the projective limit limnH1 Q. pn/; M/. We construct such a norm compatible system for
the symplectic group GSp4 Our classes are cup-products of torsion sections of the large elliptic
polylogarithmpro-sheaf; we rely on its normcompatibility and onsome computations of weights
in the cohomology of Siegel threefolds of our previous work.
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Introduction

L-functions are defined as convergent infinite series of complex numbers and their
valuesat integers have an algebraic meaning, like in the analyticclass number formula
ofDedekindand Dirichlet. In particular, itshouldbe possible to find a p-adic analytic
L-function taking the same values as the archimedean one at some integers. For
example, consider two positive integers a and b prime to an odd prime number p,
and fix a system of primitive pn-th roots of unity n, such that p

n D n 1. The
numbers

a=2
n

a=2
n

b=2
n

b=2
n

are units of the rings of integers ZOE n mapped to each other under the norms
ZOE m ZOE n for njm. We owe to Kubota–Leopold and Iwasawa that to this
compatible system of units is associated a pseudo-)measure d p on Zp such that

Z
Zp

xkd p D bk ak/.1 pk 1/ .1 k/;

for anyeven positive integer k, where denotes theRiemann zeta function see[5], 4.2
for details). Via the boundary map coming from the Kummer exact sequence, these
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units should be seen as a norm compatible system of Galois cohomology classes in
the projective limit limnH1.Q. n/; Zp.1// associated to the Tate motive. Now given

any de Rham p-adic Galois representationM, a conjecture of Perrin-Riou associates
a p-adic L-function forM to a compatible system of classes belonging to the inverse

limit limnH1.Q. pn/; M/, via p-adic Hodge theory and a p-adic interpolation of
Bloch–Kato exponential maps ([17], Chapitre 4, Conjecture CP(M)).

Only few examples of such systems of cohomology classes are known: for example,

there is the one described above, and the system of Beilinson–Kato’s elements
defined as K-theoretical cup-products of modular units, and giving rise to the p-adic

L-function of elliptic modular forms ([10], Theorem 16.6 2)).
This note provides another exampleof such a norm compatible system for the

symplectic group in four variables GSp4 The main ingredient is the norm compatibility
of the large elliptic polylogarithm pro-sheaf, due to Wildeshaus, and the computations

of weights in the cohomology of Siegel threefolds of our previous work [15],
Section 2.2. Indeed, the cohomology classes considered here are the p-adic
realization of cup-products of Beilinson’s Eisenstein symbols see [11], Theorem 3.2.1),
which are torsion sections of the elliptic polylogarithm pro-sheaf. In fact, both the
system of cyclotomic units described above and the one of modular units defined in
[10], Section 2.2, can be seen as the p-adic realization of the torsion sections of the
classical and elliptic polylogarithm respectively ([21], IV, Chapter 4, Theorem 4.5,
and [12], Theorem 4.2.9).

In a forthcoming paper we expect to relate our system to the critical values of the
degree four L-function of cuspidal automorphic representations of GSp4 as predicted
by the conjecture of Perrin-Riou.

1. Conventions and notations

In this section we fix conventions and notations for the rest of the paper. We advise
the reader to consult this section only according to his needs.

1.1. In this note, we consider a fixed prime number p 3. Given a Q-scheme of
finite type X, we work in the setting of bounded derived categories Dbc X; Qp/ of [7],
where the coefficient ring is the field Qp. The category of smooth étale Qp-sheaves

naturally embeds in the heart of Dbc X; Qp/ and on the derived categories Dbc X; Qp/
we have the formalism of Grothendieck’s six functors f ; f ; fŠ; f Š;Hom; O /.

1.2. The large elliptic polylogarithm is an extension of pro-sheaves. For a given
abelian category A, the category pro-A of pro-objects of A is the category whose
objects are projective systems

A D Ai/i2I W I op A
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where I is some small filtered index category. The morphisms are

Hompro A..Ai/i; Bj/j / D limj lim iHomA.Ai; Bj/:

The category pro-Ais again abelian ([1],A4.5) and a functor F W A B is extended
to the pro-categories in the obvious way F..Ai/i/ D F.Ai//i We are interested
in the abelian category Shƒ.X/ of étale sheaves of ƒ-modules over a scheme X.
Given two pro-sheaves Ai/ and Bi /, we denote by ExtjX Ai/; Bi// the group of

j-thYoneda extensions of Ai/ by Bi/ in the category pro-A.

1.3. Siegel threefolds. We fix a four-dimensional symplectic space V4; / over Z
and denote by

G D GSp4 D fg 2 GL.V4/ j there exists g/ 2 Gm such that

gv; gw/ D g/ v; w/ for all v; w 2 V4g

1
the associated symplectic group, with center Z and derived group Sp4 D ker
Denote by K1 a maximal compact subgroup modulo the center Z.R/K0 G.R/
whereK01 is a maximal compact subgroup of Sp4.R/. The locally compact topological

ring ofadelesofQisA D R Af whereAf D Q yZand yZ D limNZ=NZ. For

every non zero integer N we consider the compact open subgroup K.N/ G.Af /
kernel of the reduction G.yZ/ G.Z=NZ/ modulo N. Given a ZOE

1 -scheme SN
we consider the set of uples fA; ; ; g made of an abelian scheme A S of
relative dimension 2, a principal polarisation i.e., an isomorphism W A AO

with the dual abelian scheme and whose dual is itself, a primitive N-th root of
unity over S and a principal level N structure, i.e., an S-group schemes isomorphism

V4=NV4 S ' AOEN with the N-torsion of A, compatible with and

in an obvious sense. For N 3, by a theorem of Mumford see [16], Chapter

7, Theorem 7.9), the functor S 7! fA; ; ; g is representable by a smooth and
quasi-projective ZOE

1
N ; N -scheme S.N/ of dimension 3. Fixing a complex

embedding of the abelian extension Q. N/ generated by N-th roots of unity, we have

S.N/.C/ D G.Q/n.G.A/=K.N/K1/ ([14], Corollary 3.3). In this note we work
with a fixed complex embedding of the field Q. N/.

2. The large elliptic polylogarithm: definition and basic properties

Let us present the definition and the basic properties of the large ellipticpolylogarithm
pro-sheaf. The following introduction follows closely Section 3 in Kings [12].

In this section S will denote a connected scheme of characteristic zero. By an

elliptic curve over S, we mean a proper and smooth S-group scheme of relative
dimension one. Let W E S be such a morphism, with unit section e W S E.
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Definition 2.1. A lisse Qp-sheaf F over E is said to be n-unipotent of length n
if it admits a filtration F D F 0 F 1 F n F nC1 D 0 such that
GriF D Gi for some lisse Qp-sheaf Gi over S.

Theorem 2.2 ([3], Proposition 1.2.6). Up to unique isomorphism, there is a unique

n-unipotent sheaf Log n/
E of length n, together with a section of the fibre at the unit

section 1.n/
W Qp e Log n/

E such that for every n-unipotent sheaf F the map

E ;F / e F mapping f to f B 1.n/ is an isomorphism.Hom.Log n/

Definition 2.3. The canonical maps Log nC1/
E

that map 1.nC1/ to 1.n/
E Log n/

define the logarithm pro-sheaf

LogE D Log n/
E /n:

By the universal property of LogE the pull-back R D e LogE is a ring with
unit .1.n//n and the ring R acts on LogE

In order to give another very simple description of the logarithm pro-sheaf,
consider the multiplication by pj which isan étale cover OEpj

W E E over S recall that
we assumed that S is of characteristic zero). As OEpj is smooth, of relative dimension
zero, we have OEpj ŠQp D OEpj Qp D Qp andbecause OEpj isfinite, hence proper, we
have OEpj Š D OEpj for every integer j. For j 0 j, we have OEpj

0

D OEpj
B

OEpj
0 j

hence the image of the counit OEpj
0 j ŠOEpj

0 j ŠQp D OEpj
0 j Qp Qp under

OEpj is a morphism trj 0j W
OEpj

0

Qp OEpj Qp. By [12], Proposition 3.4.2 and

Lemma 3.4.3, we have a canonical isomorphism of pro-sheaves

LogE ' OEpj Qp/j ; 2.1)

where the transition maps on the right are given by the trj 0j
Now let be the kernel of the augmentation map R Qp. Denote by j the

open embedding complementary to the unit section

U D X e.S/ j E
U

S:

The restriction of LogE to U will be denoted by LogU

Lemma 2.4 ([3], 1.2.8). The higher direct images of LogU are

Rn
U LogU D ´0 if n ¤ 1;

1/ if n D 1:
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By this lemma, the edge morphism in the Leray spectral sequence for R U is

U Uan isomorphism Ext1 ; LogU .1// ' HomS. ; /

Definition 2.5 ([3], 1.3.5.). The large elliptic polylogarithm

U UPolE 2 Ext1 ; LogU /
is the extension class mapping to the identity map under the above isomorphism.

It is shown in Section 3.2.3 of [12] how to extend to PolE the action of R
U; R U

on LogU and so that PolE 2 Ext1 ;LogU/ is an extension class of
R-modules.

2.1. Functoriality and invariance by torsion sections. Let f W
S0 S be a

connected scheme over S of characteristic zero. Form the cartesian square

E0 f 0

0

E

S0 f S,

and let e0
W

S0 E0 be the unit section of E0 and U0 D E0 e0.S0/. We denote with
superscripts 0 the pro-sheaves R0 D e0 LogU 0 and 0 D ker.R0 Qp/ over S0.

Lemma 2.6. We have a canonical isomorphismLogE 0 D f 0 LogE and a canonical
isomorphism R0 D f R

Proof. For every integer j 0, as OEpj is an étale cover, hence is proper, we have

the proper base change canonical isomorphism f 0 OEpj Qp D OEpj 0 f 0 Qp D
OEpj 0 Qp, where OEpj 0 denotes the multiplication by pj on E0. Using the above
description of the logarithm pro-sheaf, we get the first announced canonical isomorphism.

Now by functoriality

R0 D e0 LogE 0 D e0 f 0 LogE D f 0
Be0/ LogE D eBf / LogE D f R:

Note that the same argument shows that for any isogeny f 0
W

E0 E over S
we also have the canonical isomorphism LogE 0 D f 0 LogE A consequence of
this identity that will be useful in what follows is the invariance of the logarithm by
translation by torsion sections.

Lemma 2.7. Let t W S E be a torsion section. Then there is a canonical isomorphism

t LogE D e LogE
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Proof. Let n be the order of t and denote by OEn
W E E the multiplication by n

over S. We have

t LogE D t OEn LogE D OEn
B t/ LogE D e LogE:

Lemma 2.8. There is a canonical isomorphism of extension of pro-sheaves PolE0 Df 0 PolE

Proof. The functoriality of the logarithm Lemma 2.6) gives rise to a commutative
diagram

U U
Ext1 ; LogU .1// f 0

U 0 U
Ext1 0

0; LogU 0.1//

HomS. ; / f HomS 0 0; 0/:

As the lower horizontal arrow maps the identity to the identity, we obtain the
announced result.

2.2. Norm compatibility. This subsection is the most important for our following
application: we recall the norm compatibility property of the large elliptic polylogarithm

pro-sheaf.

Let us consider anarbitrary elliptic curve 0
W

E0 S, with unit section e0
W

S0

E0 and with complementary open U0 D E0 e0.S0/. Let f W
E0 E be an isogeny,

with kernel Z and consider zU D f 1.U /. We have a commutative diagram with
cartesian squares:

S i 0

Z
Qi

f
E0

f
U0j 0

jQ

zU

f
S

e
E

S.

U
j

U

The adjunction map LogU0.1/ jQ jQ LogU0.1/ of restriction to zU gives rise to a

map

U 0 U
Ext1 0 ;LogU0.1//

jQ
Ext1

zU U 0 ; jQ jQ LogU0.1//:

Now by adjunction

Ext1
zU U 0 ; jQ jQ LogU 0.1// D Ext1

zU
Qj U 0 ; jQ LogU0.1//

D Ext1
zU f U ; jQ LogU0.1// D Ext1U U ; f jQ LogU0.1//:
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By the functoriality of the logarithm LogU 0 D f LogU the right hand term of the
last Ext1 can be written f jQ LogU0.1/ D f f LogU .1/. As f is an étale cover
we have the trace map tr W f f LogU .1/ LogU .1/, so we finally obtain a norm
morphism

Nf D tr B jQ W
Ext1U 0 U U U0 ;LogU0.1// Ext1 ;LogU .1//: 2.2)

Proposition 2.9 ([21], III, Chapter 5, Theorem 5.2 and [13], Proposition 2.2.1). For
every isogeny f we have

Nf PolU 0/ D PolU :

2.3. Pull-backs along torsion sections. This subsection entirely relies on [12],
Section 3.5.3. We wish to associate some absolute étale cohomology classes to
pullbacks of the large elliptic polylogarithm along torsion sections.

This can be done in the following way. Let
W E S be an elliptic curve

and t W S E be a non zero torsion section of Denote by H the relative Tate

module Hom.R1 Qp;Qp/, by SymH D Lk SymkH its symmetric algebra and

by Sym nH SymH the ideal
Lk n SymkH. Identifying the symmetric algebra

SymH with the universal envelopping algebra U.H/ of the abelian Lie algebra H,
we give to it the structure of a Hopf algebra. Denote byUy.H/ D Q

Symk thek 0 H
completion of U.H/ along the augmentation ideal.

As the logarithm is translation invariant along t Lemma 2.7), we have t PolE 2
U ;R.1//. Denote by R.n/

D e Log n/Ext1 E The pro-sheaf R D R.n//n is a

Hopf algebra ([3], 1.2.10 iv) and we have an isomorphism of Hopf algebras

n
W
SymH=Sym nC1H Gr nR n/

according to [loc. cit.], Proposition 1.2.6. By the structure theorem [4], chapitre II,
paragraph 1, no. 6, the maps n lift to an isomorphism of Hopf algebras

W Uy.H/ R: 2.3)

Now consider the Koszul resolution

0
2

^H R D R.1/ H R
b

0

of the Lie algebraH, where the first map is x y y x/ u 7! x yu y xu
and the second is h u 7! hu. By [12], Lemma 3.5.8, the map

Ext1S.Qp; R.1//' Ext1S;R R; R.1//
a

Ext1S;R ; R.1//
b

Ext1S;R H R;R.1//
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has a functorial splitting Composing with the projection induced by R.1/
SymkH.1/, we get the absolute cohomology classes

t D b t PolE/k 2 H1 S; SymkH.1//: 2.4)Ek

The comparison of these classes with Beilinson’s Eisenstein symbol ([2], Theorem

7.3) is given in [8], Theorem 2.2.4.

2.4. The compatibility between 2.2 and 2.3. Let f W
E0 E be an isogeny over

S and t W S E be a torsion section. We assume that f is trivial over S, or in other
terms, that we have a cartesian square

`g2G
S ` t0

g

f
E0

f
S

t
E

where G is the Galois group of f Therefore the t0g are non zero torsion sections
of E0.

Lemma 2.10. In H1.S; SymkH.1// we have Ekt D Pg2G
Ekt 0

g
:

Proof. By the norm compatibility of the polylogarithm proposition 2.9) we have

t D b t PolE/k D b t Nf PolE0/k:Ek

Recall that the norm morphism Nf 2.2) is defined by composing the trace map

U UExt1 ; f f LogU.1//
tr

Ext1U U ; LogU .1//

with the restriction to the inverse image by f of the complementary of the zero section
of E

U 0 UExt1 0 ;LogU0.1//
jQ

Ext1
zU U 0 ; jQ jQ LogU0.1//

U UD Ext1 ; f f LogU .1//:

Bythebasechange t f f D f t 0

g f /g2G D Pg2G t 0

g wehave t f f LogE D

Pg2G
t0
g LogE 0 As a consequence

t D b t Nf PolE 0/k
D Xg2G

Ek b t 0
g PolE/k D Xg2G

Ek
t0

g
:



Vol. 85 2010) A norm compatible system of Galois cohomology classes for GSp.4/ 893

3. The norm relations

Let N 3 be an integer and let Y.N/ be the modular curve of level N: it is a

smooth affine connected curve over Q. N/ representing the functor on Q-schemes

associating to a Q-scheme S the set of isomorphism classes of triples E;e1; e2/
where

W E S is an elliptic curve over S and e1; e2/ is a basis of the N-torsion
of E see [6], IV. 2, for details). The group GL2.Z=N/ acts on Y.N / on the left: for

D
a b
c d 2 GL2.Z=N/, define : E; e1; e2/ D E;e01; e02/ where

e02 D
a be01

c d

e1

e2
:

For M;N 3, the modular curves Y.M; N/ are defined as follows: chose a common
multiple L of M and N, define the group

c d 2 GL2.Z=L/I a 1 M/; b 0 M/; c 0 N/; d 1
N(/3.1)

G D °
a b

and

Y.M; N/ D GnY.L/;
which is independentof the choiceofL. TheQ-schemeY.M; N/ represents the functor

associating to a Q-scheme S the set of isomorphism classes of triples E;e1; e2/
where

W E S is an elliptic curve over S and e1 and e2 are sections of of
order M and N respectively and such that the map Z=M Z=N E defined by

a;b/ 7! ae1 C be2 is injective. The curves Y.N / and Y.M; N/ carry a universal
elliptic curve E by their very definition.

For every two integers NjN0 there is an étale cover fN 0N W Y.N 0/ Y.N/
sending the sections e1; e2/ over Y.N0/ to N 0

N e1; N 0

N e2/. As we are working with
rational coefficients, the pull-back map

H1 Y.N /; SymkH.1// fN 0N H1 Y.N 0/;SymkH.1//

is injective. We now define some cohomology classes in
SN H1.Y.N /; SymkH.1//

as follows: let ; / be a non zero element of Q=Z/2
D SN

1
N Z=Z. Choose an

integer N such that N D N D 0, write ; / D
a
N ; b

N / 2
1
N Z=Z D Z=NZ

and define the Eisenstein class

Ek
; D Ek

ae1Cbe2/ 2 H1 Y.N /; SymkH.1//; 3.2)

e1C e2/
is the class 2.4). In the bigger space

SN H1.Y.N/; SymkH.1//,where Ek
the Eisenstein class does not depend on N.
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Lemma 3.1. Let ; / 2 Q=Z/2
f0; 0g.

i) For any 2 GL2.Z=N/ we have

Ek
; D Ek

0; 0

where 0; 0/ D ; /
2) Distribution property.) For any non zero integer a we have

; D X0; 0

Ek Ek
0 ; 0

where 0; 0/ range over all elements of Q=Z/2 such that a 0 D and a 0

D

Proof. i) By functoriality of the splitting we have

Ek
; D b e1 C e2/ PolE/k

D b e1 C e2/ PolE/k

D b 0e1 C 0e2/ PolE/k :

ii) follows by taking f D “multiplication by a” in Lemma 2.10.

In what follows, we have to consider Qp-adic étale sheaves on the Shimura varieties

associated to finite dimensional algebraic representationsof thegroupunderlying
the variety. With this end in view, let us recall the adelic description of the complex
points of the modular curves Y.N/. Let Z.R/ be the center of GL2.R/ and let

L01 SL2.R/ be a maximal compact subgroup. Write L1 D Z.R/L01 GL2.R/
for a maximal compact subgroup modulo the center. Consider the kernel L.N/ of
the reduction modulo N map GL2.yZ/ GL2.Z=NZ/. With our fixed complex
embedding ofQ. N/, we have the Shimura variety description of the modular curves

Y.N/.C/ D GL2.Q/n.GL2.A/=L.N /L1/:
Now according to 1.10) in [19], we can consider the Qp-adic étale sheaf on the
Y.N/ associated to the standard representation V of GL2 and we have a canonical
isomorphism of Qp-adic sheaves V D H.

In order to give the definition of the cohomology classes we will consider, let us

first remind about the weights of algebraic representations of GL2 and GSp4: we
choose a symplectic basis e1; e2; e3; e4/ of V4; / such that

D
0 I2
I2 0
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where I2 denotes the identity matrix of size 2. Hence we have a symplectic isomorphism

V2 °V2 ' V4 and the embedding
W

GL2 GmGL2 GSp4 the fibre product
being over the determinant, given by

c d ;
a0 b0a b
c0 d0 D 0BB@

a 0 b 0
0 a0 0 b0

c 0 d 0
0 c0 0 d0

1CCA
: 3.3)

Let T2, resp. T4, be the diagonal maximal torus of GL2, resp. GSp4 We have

T2 D °
diag. ; 1 / D

0
0 1 ; ; / 2 G2

m

and

T4

D8<:

diag. 1; 2; 1
1 ; 1

2 /
D0@

1 0 0 0
0 2 0 0

0 0 1
1 0

0 0 0 1
2

1A
; 1 m

9=;

; 2; / 2 G3 :

The group of characters X Tn/ is identified to Z
n
2C1 via k;t/ W

diag. ; 1 / 7!k
1

t and k;k0; t/ W diag. 1; 2; 1
1 ; 1

2 / 7!
k
1

k0

2
t Write 1 D 1; 1; 0/

and 2 D 0; 2;0/. Then the roots of T4 in GSp4 are R D f 1; 2; 1 C
2/; .2 1 C 2/ g and the positive roots corresponding to the standard Borel are

RC D f 1; 2; 1 C 2; 2 1 C 2 g. For T4, dominants, resp. regular weights are

the k; k0;t/ with k k0 0, resp. k > k0 > 0. Dominants, resp. regular, weights
of T2 are the k; t/ with k 0, resp. k > 0. The irreducible representation of GL2
of highest weight k; t/ is the twisted symmetric product SymkV det t

Nowlet k k0 0be two integersand fix a finitedimensional algebraic representationW

k k0
ofGSp4 whose restriction W kk0

contains the irreducible representation
SymkV Symk

0

V/ det 3, that we will simply denote SymkV Symk
0

V/.3/.
Note that W k k 0

has highest weight k; k0;3/ hence is unique up to isomorphism.
We will also denote by W k k0

the lisse étale sheaf over the Siegel threefolds
corresponding to W k k0

according to [19], 1.10). To is associated a closed embedding,
purely of codimension one

Y.N / Q. N/ Y.N / S.N /:

in the Siegel modular threefold of level N. Then, the composition of the external
cup-product

H1 Y.N /; SymkV.1// H1 Y.N /; Symk
0

V.1//

t H2 Y.N / Q. N/ Y.N /; SymkV Symk
0

V/.2//
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of the morphism induced by the inclusion SymkV Symk
0

V/.2/ W kk0

1/
and of the Gysin morphism

H2 Y.N/ Q. N/ Y.N /; W kk0

1// H4 S.N /;W k k0

/

is a morphism

H1 Y.N /; SymkV.1// H1 Y.N /;Symk
0

V.1// H4 S.N/; W kk0

/:

For any N 3, we denote by

Ek k 0

1=N;0 tEk 0

N D Ek
0;1=N / 2 H4 S.N //; W k k0

/

1=N;0 Ek
0

the image of Ek 0;1=N under this morphism.
The proof of the following proposition is very similar to the one of [10], Proposition

2.3 in the case of GL2.

Proposition 3.2. For every two integers NjN0 with the same prime factors the trace
morphism H4.S.N 0/; W kk0

/ H4.S.N /;W k k0

/ sends Ekk0

N;N 0Ek k 0

N 0 to d2 N
where

dN;N 0 D N0=N/2 is the degree of the étale cover Y.N;N0/ Y.N /.

Proof. The Gysin morphism and the trace are induced by the adjunction morphisms

Š
Š 1 and f f D fŠf Š

1 respectively, so by functoriality they commute. As a

consequence it is enough to show that Ek1=N 0;0tEk
0

0;1=N 0 is mapped to d2N;N 0Ek1=N;0t
Ek

0

0;1=N
under the trace

H2 Y.N0/ Y.N0/; SymkV Symk
0

V/.2//
H2 Y.N/ Y.N /; SymkV Symk

0

V/.2//:

Denote by pi W Y.N 0/ Y.N0/ Y.N 0/ the i -th projection. In terms of the usual
cup-product, the external cup product is given by

1=N 0;0 tEk0

Ek
0;1=N 0 D p1Ek

1=N 0 ;0 [p2Ek0

0;1=N 0 :

Then, denoting by U the Galois group of fN 0N W Y.N0/ Y.N/, we have

tr.Ek
0;1=N 0/ D tr.p1Ek

1=N 0 ;0 t Ek0

1=N 0;0 [p2Ek 0

0;1=N 0/

D X02U U

0/ p1Ek
1=N 0 ;0[p2Ek0

0;1=N 0/

OE. 0/ p1Ek
D X02U U

1=N 0;0/ [ OE. 0/ p2Ek 0

0;1=N 0/
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D X02U U

p1 Ek
1=N 0 ;0/[ p2

0 Ek0

0;1=N 0/

D p1 X2U

1=N 0;0/ [p2 X2U0

Ek
0;1=N 0

0 Ek0

1=N 0;0/ t tr.Ek0

D tr.Ek
0;1=N 0/

and we are led to show that tr.Ek1=N 0;0/ D dN;N 0Ek
1=N;0

The étalecoverfN 0N W Y.N0/ Y.N / factors asY.N 0/ Y.N; N0/ Y.N /.
By 3.1) the Galois group of the first cover is

0 1 2 GL2.Z=N0/I a 1 N/; b 0 N/ :H D °
a b

Write D N0=N. As N0 and N have the same prime factors, for any x; y/ 2
Z= /2 we can fix an element sx;y 2 GL2.Z=N0/ of the form 1CNu Nv

0 1 with
u x / and v y / and H D fsx;yI x;y/ 2 Z= /2

g. Hence the trace map

H1.Y.N 0/; SymkV.1// H1.Y.N; N0/; SymkV.1// sends Ek to
1=N 0;0

Xx;y/2.Z= /2
s x;y/E

k
1=N 0;0 D Xx;y/2.Z= /2

Ek
1=N 0

Cx= ;y= D Ek
1=N;0;

the first and the second equality follow from Lemma 3.1 i) and ii) respectively.
Now consider the second étale cover g W Y.N;N0/ Y.N / factorizing fN 0;N
In H1.Y.N; N0/; SymkV.1// we have Ek1=N;0 D g Ek

1=N;0
hence the trace map

H1.Y.N; N0/; SymkV.1// H1.Y.N /; SymkV.1// sends Ek1=N;0
to dN;N0Ek

1=N;0

Now fix an integer N and define

Ekk0

Npt D
1

Q
t

iD1
d2

Npi 1;Npi
Ekk0

Npt 2 H4 S.Np t /; W kk0

/

where dNpi 1;Npi D p2 is the degree of the cover Y.Npi 1; Npi/ Y.Npi 1/.

Corollary 3.3. The class Ek k 0

Npt is mapped to Ek k0

Npt 1 under the norm map

H4 S.Np t/; W kk0

/ H4 S.Np t 1/; W k k 0

/:

4. The final result

This section heavily relies on the computations in Section 2.2 of [15]. We wish to
showthat our classes define a norm compatible system in the projective limit of Galois
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cohomology groups

lim t 1 H1 Q. Npt /; H3 S.Npt/ xQ; W kk0

//

aspredicted by the conjecture of Perrin-Riou. But let us first recall howthe conjecture
of Perrin-Riou associates a p-adic L-function to such a norm compatible system of
Galois cohomology classes: p-adic L-functions live in a certain ring H1 which
we need to introduce first. Let Gn D Gal.Q. pn/=Q/ and G1 D limnGn. The

cyclotomic character gives an isomorphism
W G1 ' Z Let be the maximalp

finite subgroup of G1, then we have the decomposition G1 D G11 where

G11 D 1 C pZp Zp Let u be a topological generator of G11 The Iwasawa
algebra ZpOEOEG1 is identified with the ring ZpOE OEOEu 1 of formal power series

over the group algebra ZpOE in one variable u 1. For h 1, let

Hh D ° Pn 0; 2
cn; u 1/n 2 QpOE OEOEu 1 I limn jcn; jpn

h D 0;

for all 2
where j jp denotes the multiplicative valuation ofQp normalized by jpjp D

1
p Then

ZpOEOEG1 H1 H2 :

Define H1 D S
hHh. Then H1 is a ring since HiHj HiCj for any i; j 1.

For any continuous character of G1 we have a ring homomorphism H1 xQp

defined by

Xn 0; 2

cn; u 1/n
7 Xn 0; 2

cn; / u/ 1/n :

In the following we consider the usual Fontaine rings Bcrys BdR: recall that they
have a continuous action of Gal. xQp=Qp/ and that Bcrys hasa Frobenius commuting
with the Galois action. Given a p-adic Galois representation M, let DdR.M/ D
M BdR/Gal.xQp=Qp/ and let Dcrys.M/ D M Bcrys/Gal.xQp=Qp/. We say that M

is a de Rham representation of Gal. xQp=Qp/ if dimQpDdR.M/ D dimQpM.

Theorem 4.1 Perrin-Riou, see [10], Theorem 16.4). Let M be a p-adic representation

of Gal. xQp=Qp/, i.e., a finite dimensional Qp-vector space endowed with a

continuous Qp-linear action of Gal. xQp=Qp/. Assume M is de Rham. Let 2
Dcrys.M .1// where M is the dual Galois representation. Then there exists a

unique homomorphism

nH1 Qp. pn/; M/ H1L W lim

having the following properties for any integer r 1.
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i) Let n 1 and let W Gn xQp be a homomorphism which does not factor
nH1.Qp. pn/; M/, we havethrough Gn 1. Then for any x 2 lim

L x/. r 1/ D r 1/ŠG. ; pn/ 1

X2Gn

/OE exp x r;n//; p r / n / :

Here G. ; pn/ denotes the usual Gauss sum, exp denotes the dual exponential map
([10], 9.3), x r;n denotes the image of x under the composite

limnH1 Qp. pn/; M/ limnH1 Qp. pn/; M. r// H1 Qp. pn/; M. r//

where the first arrow is the product with pj/ r//j 1 and the second arrow is
the canonical projection so exp x r;n/ is an element ofQ. pn/ DdR.M. r// D
Q. pn/ DdR.M/), OE ; is the canonical pairing

Q. pj / DdR.M// Dcrys.M .1// xQp

induced by DdR.M/ Dcrys.M .1// xQp and is the Frobenius.

2) Assume D .1 p r / 0 with 0 2 Dcrys.M .1//. Then for any x 2
limnH1.Qp. pn/; M/,

L x/. r/ D r 1/ŠOEexp x r;0/; .1 p r 1 1/ 0 :

According to this theorem, once the norm compatible system x is constructed, one
has the p-adic L-function L x/ 2 H1. Then the difficult part is to show that this
p-adic L-function interpolates the special values of the usual L-function. This will
be carried over in a forthcoming paper by theexplicit computation of the image of our
norm compatible system under the dual exponential, result which is also expected to
yield the non-vanishing of our classes, which is not known for the moment.

In order to obtain first Galois cohomology classes from our elements, we would
like to show that the rank four étale cohomology H4.S.N/ xQ; W k k0

/ has no
invariantsunder the absolute Galois groupofQ. N /, and then invoke the Hochschild–
Serre spectral sequence. This relies on the following vanishing theorem of Saper: let

G be a connected reductive group over Q, let K1 be a maximal compact subgroup
of G.R/, let AG be the identity component of a maximal Q-split torus in the center
of G and let G.Q/ be an arithmetic subgroup. Write D D G.R/=K1AG and

X D nD.

Theorem 4.2 ([20], Theorem 5). Assume X is an arithmetic quotient of a Hermitian
symmetric space of dimension d. Let E be an algebraic irreducible representation
of G with regular highest weight. Then the singular cohomology Hi.S;E/ with
coefficients in E vanishes for i < d

2
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As this theorem is stated for arithmetic quotients of Hermitian symmetric spaces,

let us recall how the Siegel threefolds S.N/.C/ are a disjoint union of such: let HC
be Siegel upper half-plane

HC D f 2 M2.C/ j
t

D ; Im 0g

of complex symmetric matrices of size two whose imaginary part is positive definite.
It is known that HC is a Hermitian symmetric space. The symplectic group Sp4.R/
acts transitively on the left on HC via

C D
: D A C B/.C C D/ 1A B

Let N/ D ker.Sp4.Z/ Sp4.Z=NZ// Sp4.R/. The stabilizer of the matrix

i I2 is a maximal compact subgroup of Sp4.R/. As the center of Sp4 is f I4g, note
that HC is of the shape D as above. According to [14], Proposition 3.2, we have an

isomorphism of complex analytic varieties

S.N /.C/ D aZ=NZ/
N/nHC:

We also have a similar statement for the modular curves Y.N/ when the Siegel upper
half-space is replaced by the Poincaré upper half-space.

The proof of the following Proposition 4.4 also relies on the main theorem of [19]
that we are going to explain now in the needed particular case of GSp4

4.1. Higher direct images of p-adic sheaves in the Baily–Borel compactification.
The boundary of the Baily–Borel compactification of a Shimura variety associated
to a group G is stratified by finite quotients of) Shimura varieties associated to the
Levi subgroups of G. The main result of [19], that is stated at the end of this section,
describes the restriction to a stratum of the higher direct image in the Baily–Borel
compactification of the p-adic étale sheaf associated to an algebraic representation
of G.

Let us first describe the construction of the Baily–Borel compactification of
the Siegel threefolds. We will need the notion of pure and mixed Shimura
datum for which we refer the reader to [18], 2. Consider the pure Shimura datum
GSp4; GSp4.R/=K1/ associated to the symplectic group GSp4 For every maximal

parabolic subgroup Q GSp4 there exists a normal subgroup P1 Q underlying

a mixed Shimura datum P1; X1/ ([loc. cit.], 4.11), called a rational boundary
component of GSp4; GSp4.R/=K1/. Let W1 be the unipotent radical of P1 and

let q W P1 G1 D P1=W1 be the projection on the Levi. Denote by G1;H1/ the
quotient pure Shimura datum P1;X1/=W1 ([loc. cit.], Proposition 2.9). There are
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two conjugacy classes of maximal parabolic subgroups of GSp4 namely the ones of

Q0
D W 0 Ì Gm GL2/ D °

A A:M
0 tA 1 ; 2 Gm; A 2 GL2; tM D M ; 4.1)

Q1
D W 1 Ì GL2 Gm/ D ²

0 a b
0 0 0
0 c d

2 GSp4; D ad bc³: 4.2)

1 D W 0 Ì Gm, G0We also have, with obvious notations P0 1 D Gm and P11 D
W 1 ÌGL2, G11 D GL2 according to [loc. cit.], 4.25.

LetH D`.P1;X1/ H1, the sum running over all rational boundary components

of GSp4;GSp4.R/=K1/. We endow H with the Satake topology ([loc. cit.], 6.2).
Let

S.N / C/ D GSp4.Q/n.H GSp4.Af /=K.N //:
Then S.N / C/ is the analytification of a normal projective Q. N /-scheme S.N /
[loc. cit.], 8.2). There is an open embeddingS.N /.C/ S.N/ C/ which descends

to an open embedding

j W S.N / S.N / :

1 D gKg 1 \PnFor n D 0; 1 and every g 2 GSp4.Af / let Kn 1 Af / and

@S.N /n.C/ D Gn
1 Q/n.H

n
1 Gn

1 Af /=q.Kn
1 //:

By [loc. cit.], Section 12.3 b), the map @S.N /n.C/ S.N / C/ descends to

in W
@S.N /n S.N / :

Varying n and g we obtain a stratification of the boundary @S.N/ D S.N/ S.N/
by locally closed subschemes. For what follows, note that @S.N /n is of dimension n.

Theorem 4.3 ([19], Theorem 4.2.1). Denote by the canonical construction of étale
sheavesassociated to representationsof the groupunderlying a givenShimura variety
([loc. cit.], 1.10). Forn D 0; 1 there exists anarithmeticsubgroupHC Qn=P n

1 Q/
such that

inRmj W k k0
/ D MpCqDm

Hp HC ; Hq W n; W k k0

///

Remark. In the proof of the following proposition we will quote the results of [15]
where the computations are realized in the framework of mixed Hodge modules,
rather than in the one of étale sheaves. There, Theorem 4.3 is replaced by the
analogous theorem of Burgos–Wildeshaus see [loc. cit.], Theorem 2.1). The result is
exactly the same but on one shift that occurs in the graduation of the higher direct
images due to the perverse t-structure: for example, as @S.N/0, resp. @S.N/1, is of
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codimension three, resp. two, in S.N/ the higher direct image i0 Rmj W k k 0

/,
resp. i1 Rmj W kk0/, in the framework of mixed Hodge modules corresponds to

the higher direct image i0 RmC3j W kk0

/, resp. i1 RmC2j W k k 0

/, in our étale
setting.

4.2. The weight computation

Proposition 4.4. Assumek > k0 > 0. Then the étale cohomology space H4.S.N /
xQ;W k k0

/ has no weightzero. As a consequence, it has no invariantsunder the action
of the absolute Galois group of Q. N/.

Proof. Let

S.N / j S.N/ i
@S.N /

be theopen embeddingof S.N/ into its Baily–Borel compactification and the reduced
closed imbedding of the boundary. We have an exact sequence of Galois modules

c S.N / xQ; W k k0

H4 / H4 S.N / xQ; W k k 0

/
H4 .@S.N/ xQ; i Rj W kk0

/:

With our assumption on the weight k > k0 > 0, we can apply Theorem 4.2, which,
together with Poincaré duality and the comparison theorem between étaleand singular
cohomology, shows the vanishing of the spaceH4c S.N/ xQ; W k k0

/. So it is enough
to show that H4.@S.N / xQ; i Rj W kk0

/ has no weight zero. Now let

@S.N /1
i1

@S.N/
i0

@S.N/0

be the open embedding of the strata of dimension one and the reduced closed embedding

of the strata of dimension zero respectively in the boundary. We have an exact
sequence of Galois modules

c .@S.N /1 xQ; i1 i Rj W k k0

H4 / H4.@S.N / xQ; i Rj W k k 0

/
H4 .@S.N/0 xQ;i0 i Rj W k k 0

/:

On the one hand, because @S.N/0 is of dimension zero we have

H4 .@S.N/0 xQ;i0 i Rj W k k 0

/ D H0 .@S.N /0 xQ; i0 i R4j W k k 0

/
which has weight> 0according to [15], Lemma 2.5. On the other hand, we have the
spectral sequence

Ep;q
c .@S.N/1 xQ; i1 i Rqj W kk0

2 D Hp c .@S.N /1 xQ; i1 i Rj W kk0

/ H) HpCq /:
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Now Theorem 4.3 and Lemma 2.6 in [15] show that

i1 i R0j W k k 0

D i1 i R3j W k k 0

D Symk
0

V.3/;

i1 i R1j W k k0

D i1 i R2j W kk0

D SymkC1V.3/:
Recall that @S.N/1 is a disjoint union of modular curves. The fact that @S.N/1
is a non proper curve together with theorem 4.2 imply that the lisse étale sheaves

above have cohomology concentrated in degree one. As a consequence our spectral
sequence gives that

c .@S.N/1 xQ;i1 i Rj W k k 0

H4 c .@S.N /1 xQ; i1 i R3j W k k 0

/ D H1 /
c .@S.N /1 xQ; Symk

0

V.3//:D H1

The lisse sheaf V has weight 1, so the sheaf Symk
0

V.3/ has weight k0 6 and
the étale cohomology space H1c .@S.N /1 xQ; Symk

0

V.3// has weight smaller than
k0 6C1hence hasno weight zero. As aconsequenceH4.@S.N/ xQ;i Rj W kk0

/
has no weight zero and the proof is complete.

Corollary 4.5. Assume k > k0 > 0. Then we have a canonical isomorphism

H1 Q. N /; H3 S.N / xQ; W k k0

// H4 S.N/; W k k0

/:

Proof. Considering continuous Galois cohomology, we have the Hochschild–Serre
spectral sequence

2 D Hp Q. N /; Hq S.N/ xQ; W k k 0

Ep;q // H) HpCq S.N /; W k k 0

/
([9], Corollary 3.4). By Theorem 4.2 and the comparison isomorphism between étale
and singular cohomology, we have Hq.S.N / xQ; W k k0

/ D 0 for q < 3. Hence

Ep;q
2 D 0 for q < 3. As a consequence

E0;4
1 D ker.d W

H0 Q. N /; H4 S.N / xQ; W kk0

//
H2 Q. N/; H3 S.N / xQ; W kk0

///

1 D E1;3and E1;3 2 But Proposition 4.4 asserts that H4.S.N / xQ;W k k0

/ has no

weight zero. As a consequence E0;41 D 0 and we have a canonical isomorphism

H1 Q. N/; H3 S.N / xQ; W k k0

/ H4 S.N/; W k k0

/:
From Corollary 3.3 and Corollary 4.5 we can now deduce the main result of this

paper.

Proposition 4.6. Let N 1 be an integer. Assume k > k0 > 0. Then we have a

norm compatible system

Ek k 0

t 1 H1 Q. Npt/; H3 S.Np t / xQ; W k k 0

Npt/ 2 lim //:
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