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Complete minimal surfaces and harmonic functions

Antonio Alarcón Isabel Fernández and Francisco J. López

Abstract. We prove that for any open Riemann surface N and any non-constant harmonic
function hW N R, there exists a complete conformal minimal immersion X W N R3

whose third coordinate function coincides with h.
As a consequence, complete minimal surfaces with arbitrary conformal structure and whose

Gauss map misses two points are constructed.

Mathematics Subject Classification 2010). 49Q05; 30F15, 53C42, 32H02.

Keywords. Complete minimal surfaces, harmonic functions on Riemann surfaces, Gauss map,
holomorphic immersions.

1. Introduction

Conformal minimal immersions of Riemann surfaces in R3 are harmonic maps. This
basic fact has strongly influenced the global theory of minimal surfaces, supplying
this field with powerful tools coming from classical complex analysis and Riemann
surfaces theory.

If X D X1; X2;X3/ W N R3 is conformal and minimal, the holomorphic
1-forms j WD @Xj j D 1; 2; 3, satisfy the equation 2

1 C
2
2 C

2
3 D 0. As

a consequence, any conformal minimal immersion is uniquely determined up to
translations) by any two of its harmonic coordinate functions. On the other hand,

it is reasonable to think that the family of conformal minimal immersions with a
prescribed coordinate function is in general vast. However, the construction of this
kind of surfaces turns out to be more complicated than expected under completeness
assumptions. A pioneering result in this direction can be found in [AF], where a

Supported by Vicerrectorado de PolíticaCientífica e Investigación de la Universidad de Granada. Research
partially supported by MCYT-FEDER research projects MTM2007-61775 and MTM2011-22547, Junta de

Andalucía Grant P09-FQM-5088, and the grant PYR-2012-3 CEI BioTIC GENIL CEB09-0010) of the MICINN
CEI Program.

Research partially supported by MCYT-FEDER research project MTM2010-19821 and Junta de Andalucía
Grant P09-FQM-5088.

Research partiallysupported by MCYT-FEDER research projects MTM2007-61775 and MTM2011-22547,
and Junta deAndalucía Grant P09-FQM-5088.



892 A. Alarcón, I. Fernández and F. J. López CMH

satisfactory answer in the simply connected case is given. The aim of this paper is to
extend this result to the more general setting of arbitrary open Riemann surfaces.

Our main theorem asserts that:

Theorem I. Let N be an open Riemann surface, let hW N R be a non-constant
harmonic function and let pW H1.N; Z/ R3 be a group morphism such that the
third coordinate of p. / coincides with Im

R

@h, for all 2 H1.N; Z/.
Then there exists a complete conformal minimal immersion

X D X1; X2; X3/W N R3

with X3 D h and flux map pX D p.
Recall that the flux map of a conformal minimal immersion X W N R3 is given

by pX. / D Im
R

@X, for all 2 H1.N; Z/.
As a consequence of Theorem I, we obtain some interesting results concerning the

Gauss map of minimal surfaces, the Calabi–Yau problem, holomorphic null curves
in C3 and maximal surfaces in the Lorentz–Minkowski space R31

The study of the Gauss map is one of the fundamental problems in the theory of
minimal surfaces. Fujimoto [Fu] showed that the number of exceptional values of
the Gaussian image of a complete non-flat minimal surface is at most four, improving
some classical results by Osserman [Os1] and Xavier [Xa]. Since Sherk’s minimal
surfaces omit four points, then Fujimoto’s theorem is sharp. However, the number
of exceptional values strongly depends on the underlying conformal structure. For
instance, by Picard’s theorem there are no conformal non-flat minimal immersions
of the complex plane in R3 whose Gauss map omits three points. So it is natural
to wonder whether any open Riemann surface admits a complete conformal minimal

immersion with Gauss map omitting two points. We answer affirmatively this
question, proving considerably more:

Theorem II. Let N be an open Riemann surface, and let pW H1.N; Z/ R3 be a
group morphism.

Then there exists a complete conformal minimal immersion X W N R3 whose
Gauss map omits two antipodal points and pX D p.

Calabi–Yau conjectures deal with the existence problem of complete minimal
surfaces with bounded coordinate functions. There is large literature on this topic,
see [JX], [Na], [CM], [FMM] for a good setting. From Theorem I follows that a

necessary and) sufficient condition for an open Riemann surface to admit a complete
conformal non-flatminimal immersion into an open slabofR3 is to carry non-constant
bounded harmonic functions see Corollary 4.3).

Likewise, by Theorem I, ifN is an open Riemann surface and f W N C a
nonconstant holomorphic function, there exists a complete null holomorphic immersion

F1;F2; F3/W N C3 and so a complete holomorphic immersion F1; F3/W N
C2) with F3 D f The family of open Riemann surfaces admitting non-constant



Vol. 87 2012) Complete minimal surfaces and harmonic functions 893

bounded holomorphic functions is particularly interesting from several points of view.
This space contains examples of arbitrary open topological type, and as above any
such surface admits a complete null holomorphic immersion in C2 D and so a

complete holomorphic immersion in C D). We have compiled these ideas in the
following result for the construction of proper complete null curves in C2 D and

proper complete holomorphic curves in C D see Corollary 4.4):

Corollary III. Let M be an open orientable surface. Then there exists a complete
minimal surface homeomorphic to M all whose associate surfaces are well defined
and contained in a slab of R3.

Complete minimal surfaces properly immersed in an open slab of R3 of arbitrary
topological type can be found in [FMM] see also [JX], [RT], [Lo1], [Lo2], [MM],
[AFM] for a good setting). The problem of constructing bounded complete null
holomorphic curves in C3 has been solved in [AL2].

Finally, Theorem I provides weakly complete conformal maximal immersions in
the Lorentz–Minkowski 3-spacetime R31 with singularities and prescribed spacelike
or timelike coordinate functions the notion of weakly complete maximal surface

with singularities was defined in [UY]). See Corollary 4.6 for more details.
In a forthcoming paper [AL2], the authors will extend these results to the nonorientable

setting.

2. Preliminaries

Fora topological surfaceM, we will denote as @.M/ the one dimensional topological
manifold determined by the boundary points of M. Given S M, Si and xS will
denote the interior and the closure of S inM, respectively. A Riemann surfaceM is
said to be open if it is non-compact and @.M/ D ;.
Remark 2.1. In the sequelN will denote a fixed but arbitrary open Riemann surface,

W N an open connected subset of finite topology, and S W a compact set.

For a proper subsetM ofN we will denote by 0.M/ as the space ofholomorphic
1-forms on an open neighborhood of S in N, whereas 0 M/ will denote the space

of complex 1-forms of type .1; 0/ that are continuous on M and holomorphic on

Mi. As usual, a 1-form onM is said to be of type .1; 0/ if for any conformal chart
U; z/ in N, jU\M D h.z/dz for some function hW U \M C.

Definition 2.2 Admissible set). A compact subset S W is said to be admissible
in W if and only if:

W S has no bounded components inW by definition, a connected component

V of W S is said to be bounded in W if xV \ W is compact, where xV is the
closure of V in N),
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MS WD Si consists of a finite collection of pairwise disjoint compact regions in
W with C0 boundary,

CS WD S MS consists of a finite collection of pairwise disjoint analytical
Jordan arcs recall that a compact Jordan arc in N is said to be analytical if it is
contained in an open analytical Jordan arc in N), and

any component ofCS with anendpointP 2 MS admits ananalytical extension
in W such that the unique component of with endpoint P lies in MS.

Observe that if S is admissible in N then it is admissible in W as well, but the
contrary is in general false.

With the previous notation, a function f W S C defined on an admissible set S
in W is said to be smooth if f jMS admits a smooth extension f0 to an open domain

V W containing MS, and for any component of CS and any open analytical
Jordan arc in W containing f admits an smooth extension f to satisfying
that f jV \ D f0jV \Likewise, a 1-form 2 0 S/ is said to be smooth if, for any closed conformal
disk U; z/ on W such that S\U is admissible in W dz is smooth in the previous
sense.

Given a smooth function f W S C holomorphic on Si, we set df 2 0 S/ as

the smooth 1-form given by df jMS D d.f jMS/ and df j \U D f B /0.x/dzj \U
where U; z D xCiy/ is a conformal chart onW such that \U D z 1.R\z.U//.
Obviously, df j t/ D f B /0.t/dt for any component of CS, where t is any
smooth parameter along A smooth 1-form 2 0 S/ is said to be exact if D df
for some smooth f W S C holomorphic on Si, or equivalently if

R
D 0 for all

2 H1.S; Z/.
The following lemma and its corollaries will be required to approximate minimal

immersions by immersions definedon largerdomains possibly withhigher topology).

Lemma 2.3 ([AL], Approximation Lemma). Let S be an admissible compact set

in W and ˆ D j /jD1;2;3 a smooth triple in 0 S/3, such that
P

3

jD1
2
j D 0,

P
3

jD1 j j j
2 never vanishes on S, and ˆjMS 2 0.MS/3.

Then it is possible to uniformly approximate ˆ on S by a sequence fˆn D
j;n/jD1;2;3gn2N in 0.W /3 satisfying

i)
P

3

jD1
2
j;n D 0,

ii)
P

3

jD1 j j;nj
2 never vanishes on W and

iii) ˆn ˆ is exact on S, for all n 2 N.

Recall that a 1-form 2 0 S/ is said to be uniformly approximated on S by

1-forms in 0.W /, if there exists f ngn2N 0.W / such that f n
dz gn2N 0

uniformly on S \ U, for any conformal closed disc U;dz/ on W
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Corollary 2.4 ([AL], Corollary 4.8). The sequence fˆn D j;n/jD1;2;3gn2N in the
above lemma can be obtained such that 3;n D 3 for all n 2 N, provided that 3

extends holomorphically to W and never vanishes on CS.

Corollary 2.5. The sequence fˆn D j;n/jD1;2;3gn2N obtained in Lemma 2.3 can
be chosen such that 3;n never vanishes on W for all n 2 N, provided that 3 never
vanishes on S.

Remark 2.6. Although Corollary 2.5 is not explicitly stated in [AL], it can be deduced

from the proof of the Approximation Lemma in [AL]. Indeed, the 1-form 3;n is
defined as 3;n D efn n, where fn is a holomorphic function on W and n 2

0.W / never vanishes on W provided that 3 does in S, n 2 N.

2.1. Minimal surfaces. As remarked in Section 1, the coordinates functions of a

conformal minimal immersion X D X1; X2; X3/ W
W R3 are harmonic. If we

denote @ as the global complex operator given by @jU D
@ dz for any conformal

@z
chart U;z/ on W then the corresponding 1-forms j D @Xj j D 1; 2; 3, are
holomorphic on W Moreover, X and its pull-back metric are given by

X D Re Z 1; 2; 3/; 2.1)

and

ds2
X D

3

XkD1
j kj

2 2.2)

respectively. As a consequence, the triple ˆ D 1; 2; 3/ satisfies the following
properties:

i) k have no real periods, k D 1; 2;3,

ii)
P

3

kD1
2
k D 0,

iii) k, k D 1;2; 3, have no common zeroes.

Conversely, given a vectorial holomorphic 1-form ˆ D 1; 2; 3/ on W satisfying
i) to iii), then 2.1) determines a conformal minimal immersion X W W R3.

The triple ˆ is said to be the Weierstrass representation of X. A remarkable
fact is that the stereographic projection of the Gauss map of X is the meromorphic)
function g D

3
1 i 2

In particular, the poles and zeros of g coincide with the zeros

of 3 with the same order see [Os2]).
The flux of X along a closed curve in W is defined as pX. / D

R
s/ds,

where s is the arclength parameter of and s/ is the conormal vector of X at s/
i.e., the unique vector such that fdX. 0.s//; s/g is an orthonormal positive basis

of the tangent plane of X at s/). It is easy to check that pX. / D Im
R

@X and

that the flux map pX W H1.M; Z/ R3 is a group morphism.
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As we will deal with admissible sets, a suitable notion for minimal immersions on
admissible sets will be required. This is the aim of the following definitions.

Let S be a admissible subset inW and X W S R3 a smooth map such that XjCS
is regular, i.e., Xj is a regular curve for all CS). By a smooth normal field
along CS respect to X we mean a field$ W CS R3 such that, for any analytical arc

CS,$ B is smooth, unitary and orthogonal to X B /0,$ extends smoothly to
any open analytical arc in W containing and $ is tangent to X on \S. The
normal field $ is said to be orientable respect to X if for any component CS
with endpoints P1, P2 2 @.MS/, and for any arclength parameter s along Xj the
basis Bi D f.Xj /0.si/;$.si/g of the tangent plane of XjMS at Pi i D 1; 2, are

both positive or negative, where si is the value of s for which si/ D Pi i D 1; 2.

Definition 2.7. Given a proper subset M N, we denote by M.M/ the space

of maps X W M R3 extending as a conformal minimal immersion to an open

neighborhood of M in N. On the other hand, for an admissible set S in W we call

M S/ as the space of marked immersions X$ WD X;$/, where

1) X W S R3 is a smooth map,

2) XjMS 2 M.MS/,

3) XjCS is regular, and

4) $ is an orientable smooth normal field along CS respect to X.
We will endow M.M/ resp. M S/) with the C0 topology of the uniform

convergence on compact subsets of M resp. uniform convergence of maps and normal
fields on S).

The notions ofWeierstrass data and flux map can be also extended to immersions
in M S/. Indeed, given X$ 2 M S/, let @X$ D Oj/jD1;2;3 be the complex
vectorial 1-form on S given by @X$ WD @.XjMS /, and for any component of CS,
@X$ WD dX. 0.s// C i$.s/, where s is the arclength parameter of Xj such that

fdX. 0.s0//;$.s0/g is positive provided that s0/ 2 @.MS/.
The triple ŷ WD @X$ will be called the generalizedWeierstrass data of X$. It is

clear that ŷ 2 0 jD1 O2S/3 and is smooth. Notice also that
P

3

jD1 j Oj j
2

j D 0,

P
3

never vanishes on S and Real. Oj / is an exact real 1-form on S, j D 1; 2; 3, hence

we also have X.P/ D X.Q/ C Real
R

P
Q Oj/jD1;2;3, P, Q 2 S. In particular, since

XjMS 2 M.MS/ then j /jD1;2;3 WD Oj jMS /jD1;2;3 are the Weierstrass data of

XjMS
The group homomorphism

pX$ W H1.S; Z/ R3; pX$. / D ImZ @X$;
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is said to be the generalized flux map of X$. Obviously, pX$Y D pY jH1.S;Z/
provided that X D Y jS and$Y is the conormal field of Y 2 M.W / along any curve
in CS.

3. The completeness lemma

Given a compact subset M N and a map X D X1;X2; X3/ W M R3, we

denote kXk WDmaxM
° P

3

jD1
X2 1= 2 as the maximum norm of X on M.jThe following lemma concentrates most of the technical computations required

in the proof of the main result of this paper.

Lemma 3.1. Let U, V be two compact regions in N such that U V i and V i U
has no bounded components in V i. Consider a non-constant harmonic function

hW V R, an immersion X D X1;X2; X3/ 2 M.U / and a group morphism

pW H1.V; Z/ R3 such that X3 D hjU pX D pjH1.U;Z/ and the third coordinate
of p. / is Im

R

@h, for all 2 H1.V;Z/.
Then, for any P0 2 U and > 0, there exists Y D Y1; Y2;Y3/ 2 M.V /

satisfying the following:

i) kY Xk < on U,

ii) Y3 D h,

iii) pY D p and

iv) distY P0; @.V // > 1=

Here distY denotes the distance on V in the intrinsic metric of the immersion Y

Proof. We will prove this lemma by induction on minus) the Euler characteristic of
V i U recall that, since we are assuming that V i U has no bounded components
in V i, then V i U/ 0). The induction process is enclosed in the following two
claims.

Claim 3.2. The lemma holds if V i U/ D 0.

Proof. The argument we use now is analogous to the one employed in Lemma 1 of

[AF]. WriteV i U D S
k
jD1 Aj whereAj arepairwise disjoint openannuli. Oneach

component Aj we define the following labyrinth of compact sets. Let zj W Aj C
be a conformal parametrization, and consider a compact region Cj Aj such that Cj
contains no zeros of @h, zj Cj / is a compact annulus of radii rj and Rj where rj <
Rj and zj Cj / contains the homology of zj Aj/. Write 3 D @X3 D fj zj /dzj
with jfj j > 0 on Cj Let be a positive constant with

< minfjfj P/j j P 2 Cj; j D 1; : : : ; kg:
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Fix a natural number N to be specified later) such that 2=N < minfRj rj j j D
1; : : : ; kg. For any n 2 f1; : :: ; 2N2g, consider the compact set in Cj :

Kj;n D ²p 2 Aj j sn C
1

4N3 jzj p/j sn 1
1

4N3
;

1

N2
arg.. 1/nzj p// 2

1

N2 ³;

where sn WD Rj n=N3. Then, define

Kj D
2N2

[nD1

Kj;n and K D
k

[jD1
Kj :

Define ˆ 2 0.U [K/3 by

ˆjU D @X; ˆjK D
1

2

1

M
M 3; i

2

1

M CM 3; 3 ;

whereM > 2N4 is a constant.
By Corollary 2.4 applied to S D U [K,ˆ and an open tubular neighborhood of

V we can infer the existence of ‰ 2 0.V /3 giving rise to a well-defined conformal
minimal immersion Y D Y1; Y2;Y3/ 2 M.V / fulfilling i), ii) and iii), and whose
metric ds2

Y satisfies

ds2
Y >

M CM
2

1

4

1 2
jdzj j

2 > N 8 2
jdzj j

2 on Kj; j D 1; : : :; k: 3.1)

To finish the claim it remains to check iv). Taking into account that ds2
Y

j 3j
2 > 2

jdzj j
2 on Cj and 3.1), it is not hard to check that there exists a positive

constant j depending neither on nor N such that

lengthds2Y / > j N

for any curve in Cj joining the two components of @.Cj /. Thus, we can choose N
large enough such that j N > 1= for any j D 1; : : : ; k. In particular, iv) is
achieved.

Claim 3.3. Let n > 0. Assume that the lemma holds if V i U/ < n. Then it
also holds for V i U/ D n.

Proof. Since V i U/ > 0, there exists O 2 H1.V; Z/ H1.U; Z/ intersecting
V i Ui in a Jordan arc with endpoints P1; P2 2 @.U/ and otherwise disjoint from
@.U/, and such that S WD U [ is an admissible set in an open tubular neighborhood

W of V in N. Moreover, we take O such that @h never vanishes on
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Take F$ 2 M S/, F D F1; F2; F3/, satisfying F jU D X, F3 D hjS, the third
coordinate of @F$ is @hjS, and pF$. O/ D p. O/.

By Corollary 2.4 applied to the generalized) Weierstrass data of F$, S and W
we obtain a compact tubular neighborhood W 0 of S in V i and Z D Z1;Z2; Z3/ 2
M.W 0/ such that kZ Xk < 2 on U, pZ D pjH1.W 0 ;Z/, and Z3 D hjW 0 Since

V i W 0/ < n, the induction hypothesis applied to Z and 2 gives the existence
of an immersion Y satisfying the conclusion of the lemma.

The proof is done.

4. Main results

In this section we prove the results stated in the introduction and obtain some
corollaries.

Theorem 4.1. Let hW N R be a non-constant harmonic function and let

pW H1.N; Z/ R3 be a group morphism such that the third coordinate of p. /
coincides with Im

R
@h, for all H1.N; Z/.2

Then there exists a complete conformal minimal immersion

X D X1; X2; X3/W N R3

with X3 D h and pX D p.

Proof. Consider an exhaustive sequence fVngn2N N of compact regions such that

V1 is simply connected, Vn 1 V in and V in Vn 1 has no bounded components in
V in n 2.

Let Y1 2 M.V1/ be theconformal minimal immersion withWeierstrass datagiven
by 3 D .@h/jV1 and g D 3=dz, where z is a conformal parameter on V1.

Fix a point P0 2 V i1 and apply recursively Lemma 3.1 to obtain a sequence

fYngn2N, Yn 2 M.Vn/ satisfying that:

a) jjYn Yn 1jj < 1=n2 on Vn 1,

b) distYn P0; @.Vn// > n2,

c) pYn D pjH1.Vn;Z/, and

d) the third coordinate function of Yn coincides with hjVn

for all n 2 N. Here distYn denotes the distance on Vn in the intrinsic metric of the
immersion Yn. Since N D Sn2N

Vn, property a) gives that fYngn2N converges
to a harmonic limit map X D X1;X2; X3/ W N R3 uniformly on compact sets

Harnack’s theorem). Moreover, from Hurwitz’ theorem and the fact that @Yn never
vanishes we infer that either X degenerates on a point or has no branch points.



900 A. Alarcón, I. Fernández and F. J. López CMH

From d) follows X3 D h which is non-constant and so the first possibility can not
occur. On the other hand, properties b) and c) give that X is complete and pX D p,
respectively.

Any open Riemann surface carries regular harmonic functions, that is to say,

harmonic functions with never vanishing differential. As a consequence, any open
Riemann surface admits a conformal complete minimal immersion in R3 whose
Gauss map misses two antipodal values. For completeness we include a detailed
proof of all these facts based in Corollary 2.5.

Theorem 4.2. Let pW H1.N; Z/ R3 be a group morphism.
Then there exists a complete conformal minimal immersion X W N R3 such

that its meromorphic Gauss map has neither zeros nor poles and pX D p.

Proof. Take fVngn2N N an exhaustive sequence of compact regions such that

V1 is simply connected, Vn V inC1
V inC1

Vn has no bounded components and

V inC1
Vn/ D 1. Let F 2 M.V1/ be a conformal minimal immersion with

Weierstrass data ‰ D 1; 2; 3/ such that 3 never vanishes on V1.

Fix > 0. The key step in the proof is the construction of a sequence fYngn2N,
Yn 2 M.Vn/ withWeierstrass data ˆn D f. j;n/jD1;2;3g satisfying that:

a) kYn Yn 1k < n2 on Vn 1,

b) pYn D pjH1.Vn;Z/ and

c) 3;n never vanishes on Vn,

for all n 2.
Indeed, choose Y1 D F and assume that we have constructed Y1; :: : ;Yn. Then

the immersion YnC1 is defined as follows. Let O 2 H1.VnC1; Z/ H1.Vn; Z/
intersecting VnC1 V in in a Jordan arc with endpointsP1; P2 2 @.Vn/andotherwise
disjoint from @.Vn/, and such that S WD Vn [ is an admissible set in an open

tubular neighborhood W of VnC1 in N. Then extend Yn to a marked immersion

Z$ 2 M S/ satisfying that pZ$ D pjH1.S;Z/ and the third coordinate of @Z$
never vanishes on Applying Corollary 2.5 to the generalized Weierstrass data

of Z$, S and W and integrating the resulting 1-forms we get YnC1 2 M.VnC1/
satisfying the desired conditions.

By a), Harnack’s theorem and Hurwitz’theorem, the sequence fYngn2N converges

1nD1

uniformly oncompact sets to a conformal minimal immersionY W N R3, provided
that is small enough. Labelˆ D 1; 2; 3/ as itsWeierstrass data. It is clear that

p D pY let us check now that 3 never vanishes. Indeed, assume 3 has a zero at a

point in Vn0 for n0 2 N. Since 3;n never vanishes in Vn0 for all n n0, then 3
vanishes identically on Vn0 Hurwitz’ theorem) and so in N. However, from a) we
infer that kY Y1k P

1=n2 D 2=6 and so the third coordinate of Y is
non-constant provided that is small enough, a contradiction.
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Set hW N R by h.P / D Re
R

P
P0 3, where P0 is an arbitrary fixed point in N.

Applying Theorem 4.1 to h and p we obtain acomplete conformalminimal immersion
X D X1; X2;X3/ W N R3 such that pX D p and X3 D h. As @X3 D 3 never
vanishes on N then the meromorphic Gauss map of X has neither zeros nor poles,
concluding the proof.

Open Riemann surfaces carrying non-constant bounded harmonic functions are
hyperbolic, but the reciprocal is false in general. However, in the case of finite topology

both statements are equivalent. Even more, if N is biholomorphic to a compact
Riemann surface minus a finite collection of at least two pairwise disjoint closed
discs, then there exists proper harmonic maps hW N .0; 1/. As a consequence,

Corollary 4.3. Any of the following statements holds:

a) N carries a non-constant bounded harmonic function if and only if there exists
a conformal complete non-flat minimal immersion of N in a horizontal slab
of R3.

b) If N is hyperbolic and of finite topology, then there exists a conformal complete
non-flat minimal immersion of N in a horizontal slab of R3.

c) If N is biholomorphic to a compact Riemann surface minus a finite collection
of at least two pairwise disjoint closed discs, then N admits a proper conformal
complete non-flat minimal immersion in an open horizontal slab of R3.

In addition, in any case the first two coordinates of the flux map can be prescribed.

Ifh is the realpartofanon-constant holomorphic function andp D 0, Theorem4.1
also gives that:

Corollary 4.4. Any of the following statements holds:

d) The following assertions are equivalent:

N carries a non-constant bounded holomorphic function.

There exists a full complete null immersion of N in C2 D.
There exists a full complete holomorphic immersion of N in C D.

e) If N is hyperbolic and of finite topology, then there exists a full complete null
immersion of N in C2 D and a full complete holomorphic immersion of N
in C D.

f) If N admits a proper holomorphic function into the unit disk, then N admits a

full proper complete minimal immersion in C2 D and a full proper complete
holomorphic immersion in C D, where D is any simply connected planar
domain the case D D C is proved in [AL]).

A complex curve in Cn is said to be full if it is not contained in a linear complex subspace.
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Remark 4.5. The familyof Riemann surfaces involved in item d) and so in item a))
contains examples with any open orientable topological type.

The family of Riemann surfaces concerning item f) is also very vast. For instance,
it includes all the finitely sheeted ramified coverings of the unit disc.

Although the first statement of the above remark is well known, for completeness
we sketch a proof based on Scheinberg approximation results [Sc]. LetN be an open
Riemann surface, and consider two compact regionsM, V N such thatM V i,

V i M/ D 1 and V i M has no bounded components in V i. Take also

> 0 and a non-constant holomorphic function f W M D. Consider a Jordan
arc V i M with endpoints in @.M/ and otherwise disjoint from @.M/ such
that V i M [ // D 0 and V i M [ / has no bounded components in V i.
For simplicity write S D M [ Construct a continuous function fOW S D with

fOjM D f and use Scheinberg approximation theorem to find a compact tubular
neighborhood Mz of S in V i and a holomorphic function fQW Mz D such that

V i Mz/ D 0 and kfQ f k < on M. Applying recursively this argument,
we can find sequences fVngn2N of compact regions in N and holomorphic functions

ffn W Vn Dgn2N, such that:

Vn V inC1
V inC1 Vn/ D 1, V inC1

Vn has no bounded components in
V inC1

and N WD
Sn2N

Vn is homeomorphic to N, and

kfnC1 fnk < 2 n 1 on Vn for all n, where D maxV1 jf1j minV1 jf1j > 0.

The sequence ffngn2N converges uniformly on compact subsets of N to a
nonconstant bounded holomorphic function uW N C. The proof is done.

We finish by proving a Lorentzian version of Theorem 4.1 for weakly
complete maximal surfaces in the Lorentz–Minkowski 3-spacetime R31 with signature

;C; C/. Recall that a conformal maximal immersion X W M R31 with singularities

is said to be weakly complete if the metric
P

3

jD1 j j j2 is complete onM, where

ˆ D 1; 2; 3/ are theWeierstrass data of X see [UY]).

Corollary 4.6. Let hW N R be a non-constant harmonic function.
Then there exist weakly complete conformal maximal immersions

Y D Y1; Y2; Y3/ W N R3
1

and Z D Z1;Z2; Z3/W N R31 with Y1 D h D Z2.

Proof. Let X D X1;X2; X3/W N R3 be the immersion in Theorem 4.1 associated

to h and the group morphism pW H1.N; Z/ R3, p. / D .0; 0; Im
R

@h/ for
all 2 H1.N; Z/. Labeling X as the conjugate harmonic function ofj Xj j D 1;2,

then Y D X3;X ;X / W N R31 and Z X ; N2 1 D 1 X3; X2/W R31 satisfy the
conclusion of the corollary.
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