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Gehring-Hayman Theorem for conformal deformations

Pekka Koskela and Päivi Lammi*

Abstract. We study conformal deformations of a uniform Space that satisfies the Ahlfors
ß-regularity condition on balls of Whitney type. We verify the Gehring-Hayman Theorem
by using a Whitney covering of the Space.
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1. Introduction

Given x, y £ i?^(0,1), the hyperbolic geodesic [x, y] is essentially the shortest curve
joining x to y in 2?^(0,1). More precisely

whenever y is a path that joins x to y in i?^(0,1). This simple fact is an instance of a

theorem of Gehring and Hayman in [GH]: If /:7?^(0,l)^£2cCisa conformal
mapping and y is a path joining points x and y, then

whereC > 1 is an absolute constant. The density p(z) |/'(z)| satisfies a Harnack

inequality

whenever z £ i?^(0,1) and u; £ i?(z, (1 — |z|)/2). It also satisfies the area growth
estimate

^y])<^(y)

(i.i)

— < p(uO < ^p(z)

*Both authors were supported by the Academy of Finland, grant no. 120972.
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where i?p(z, r) refers to the ball with centre z and radius r in the path metric

where the infimum is taken over all curves y joining points x and y.
In [BKR] the Gehring-Hayman inequality (1.1) was extended to i?"(0,1), a > 2,

for conformal deformations of the Euclidean metric. By a conformal deformation
(a conformal density) p we mean a continuous function p: i?"(0,1) -> (0, oo) that
satisfies a Harnack inequality with a constant A > 1,

5 p(w) 5 ^P(^) for all u; e i?(z, (1 — |z|)/2) and all z g i?"(0,1),
/i

and a volume growth condition with a constant i? > 0,

with respect to a-dimensional Lebesgue measure m„.
Subsequently, Herron showed in [Hl] that i?"(0,1) can be replaced by any uni-

form space (£2, c?) of bounded geometry. In this setting conformal densities are
defined by conditions analogous to those given above - see Section 2 for details.
Here uniformity is a Substitute for the "roundness" of i?"(0,1). The assumption
of bounded geometry includes two conditions. First, it requires that £2 carries a

Borel regulär measure /x that satisfies the (AZzZ/crs) ß-regw/anTy condzY/on an Z?aZZs

a/W/zzYney /ype for some 2 > 1- That is, there is a constant Ci > 1 such that if
r < d(z, 3£2)/2, then

Secondly, it requires that balls i?(z, J(z, 3£2)/2) allow for nice lower bounds for the

g-modulus (see e.g. [HK], [BHK]). In fact, the g-regularity condition on balls of
Whitney type is not explicitly stated in [Hl] but it follows from the other assumptions.
The precise definition of a uniform space is given in Section 2 below. This concept,
introduced in [BHK], generalizes the notion of a uniform domain introduced by Jones

[Jo] and Martio and Sarvas [MaSa], see also [GO]. The volume growth condition for
p then refers to integrals of p^ with respect to the measure /x. For predecessors of
the results in [Hl], see [HN], [HR]. For connections to Gromov hyperbolicity, see

[Gr], [BHK] and [BB],
In this paper we show that, surprisingly, lower bounds on the g-modulus are not

needed to prove the Gehring-Hayman inequality.

p" for all z G fi"(0,1) and all r > 0,

Cj < /x(i?(z,r)) < Cir^.

Theorem 1.1 (Gehring-Hayman Theorem). 2 > 1 an<i Ze£ (£2, <i,/x) Z?e a

nan-carapZete nm/arra space egn/ppezZ w/Z/z a raeasnre ^Zzctf Zs ^ Z?aZZs
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0/ WA/toey Zype. //"p: £2 -> (0, oo) Zs <2 con/ArraßZ densi/y on £2, zAen zAere A <2

consZ^nZ C > 1 ZA<2Z ^fepernZs on/y on zAe <i<2Z<2 assöcAzted w/zA £2 <2nd p swcA ZA<2Z

wAenever [x, y] Zs <2 gwßs/AyperAoZ/c g£6><i£s/c <2nd y Zs <2 cwrvejoZnZng x Z0 y Zn £2.

The definition of a quasihyperbolic geodesic is given in Section 2 and the proof
of the theorem is in Section 4. Especially Subcase D of the proof is the novelty,
that allows us to avoid the use of lower bounds for the <2-modulus. The previous
arguments [BKR], [Hl], [HN] and [HR] rely on modulus estimates.

The Gehring-Hayman Theorem was a central tool in [BHR], [BKR], [Hl] and

[H2]. We expect that Theorem 1.1 will allow one to remove the use of modulus
bounds in [BHR], [BKR], [Hl] and [H2] and thus extend large parts of those papers
to a much more general setting. A very simple example of a space that satisfies the

assumptions of Theorem 1.1 but does not support lower bounds for the 2 -modulus
is

£2 {(x,y) g : |y| < |x|, —1 < x < 1}

equipped with the path metric and Lebesgue measure.

2. Preliminaries

Let (£2, rZ) be a metric space. A cwrve means a continuous map y: [<2, A] -> £2 from
an interval [<2, A] C 1 to £2. We also denote the image set y([<2, A]) of y by y. The
ZengzA (y) of y with respect to the metric rZ is defined as

where the supremum is taken over all partitions <2 Zo < Zi < • • • < Z^ A of
the interval [<2, A]. If </(y) < 00, then y is said to be a reczZ/Z<zAZe cwrve. When the

parameter interval is open or half-open, we set

where the supremum is taken over all compact subintervals [c, rZ]. For a rectifiable
curve y we dehne the arc ZengzA 5: [<2, A] -> [0, 00) along y by

Next, let us assume that p: £2 -> [0, 00] is a Borel function. For each rectifiable
curve y: [<2, A] -> £2 we dehne the p-Z<?ngzA Z^(y) of y by

m—1

^(K) sup ^ d(y(*;)> y0i+i))>

O(y) suprf(y|[c,</]),

s(0 0(y|[a,f])-
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If £2 is recd/zaZdy connected - that is, every pair of points in £2 can be joined by a

rectifiable curve - then p determines a distance function

dp(x,j) inf ^p(y),

where the infimum is taken over all rectifiable curves y joining x, y E £2. In general,
the distance function dp need not be a metric. However, it is a metric - called a

p-nzetezc - if p is positive and continuous. If p 1, then Zp(y) (y) is the length
of the curve y with respect to the metric d. Furthermore, if Z^(y) d(x, y) for
some curve y joining points x, y E £2, then y is said to be a geodeszc. If every pair
of points in £2 can be joined by a geodesic, then (£2, d) is called a geodeszc spoce.

Let (£2, d) be a locally compact, rectifiably connected and non-complete metric

space and denote by £2 its metric completion. Then the Zzonndnry 9 £2 := £2 \ £2 is

nonempty. We write

d(z) dist^(z, 9£2) inf{d(z,x) : x £ 9£2}

for z E £2. If we choose

P(z) -jhr,
J(z)

we obtain the gnnsz'ZzyperZzoZzc nzetezc Z in £2. In this special case we denote the metric
dp by Z and the quasihyperbolic length of the curve y by (y). That (y) Zp (y)
is shown in [BHK], Appendix. Moreover, [x, y] refers to a quasihyperbolic geodesic

joining points x and y in £2.

Given a real number D > 1, a curve y: [n, Zz] -> (£2, d) is called a D-nnz/ornz
cz/rve if it is gnnszconvex:

O(y) < y(0)> (2-1)

and

min{0(y|[a,f]),^(y|[f,6])} < ö^(y(0) (2-2)

for every £ e [a, Z?]. A metric space (£2, d) is called a D-nnz/ornz spoce if every pair
of points in it can be joined by a D-uniform curve.

If (£2, d) is a uniform space, then by Proposition 2.8 and Theorem 2.10 of [BHK]
the quasihyperbolic space (£2, Z) is complete, proper (closed balls are compact), and

geodesic. Furthermore, each quasihyperbolic geodesic [x, y] is a D'-uniform curve
for every x, y E £2, where D' D'(D) > 1. Quasihyperbolic geodesics are also

ZocnZZy D'-nnz/ornz cz/rves - that is, every subcurve [zz, c] C [x, y] is a D'-uniform
curve - because [zz, i>] is a quasihyperbolic geodesic as well. We also have an estimate
for a quasihyperbolic distance of every pair of points x and y in the D -uniform space
(£2, rf) (see [BHK], Lemma 2.13):

fc(s, y) < 42Vlog (l + (2.3)
V min{d(x),d(y)}/
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Let us consider a continuous function p: ^2 —> (0,oo), called a density The
metric dp is then well defined. We use the subscript p for metric notations which
refer to dp, and similarly for A and d. For example, i?p(ty, r), 2?fc(a, r) and (o, r)
are open balls with centre a and radius r in metrics dp, A and d. Furthermore, we
abbreviate the "Whitney ball" ^(X)) to

Let ty be a Borel regulär measure on (£2, d) with dense support. We call p a

con/brraoZ density provided it satisfies both a //amad type ZnegnoZ/ty, HI(^4), for
some constant ^4 > 1:

- £ 5 ^4 for all jc, v g 5, and all z e £2, HI(^)^ pGO

and a voZnrae growdz cond/don, VG(2?), for some constant i? > 0:

typ(2?p(z, r)) < for all z e £2 and r > 0. VG(2?)

Here typ is the Borel measure on £2 defined by

/ip(£) /. p^ dty for a Borel set £ C £2,

and 2 is a positive real number. Generally 2 will be the Hausdorff dimension of our
space (£2,d).

We defined in the introduction the concept of 2-regularity on balls of Whitney
type. The immediate consequence is that the measure ty is also dowAZ/ng on AoZZs o/
WAzYney type: there exists a constant C2 > 1 such that

/r(^(z,2r)) < C2p(ß,*(z,r)) (2.4)

for every z e £2 and every 0 < r < £d(z).

3. Whitney covering

In this section we assume that (£2, d, ty) is a locally compact, rectifiably connected,
and non-complete metric measure space such that the measure ty is doubling on balls
of Whitney type. Let r(z) d(z)/50. From the family of balls {^j(z, r(z))}^e^
we select a maximal (countable) subfamily {2?</(z/, r(z;)/5)}/e/ of pairwise disjoint
balls. Let 23 where 5/ 2?</(z/,r/) and r; r(z;). We call the

family 23 the WAzYney covenng of £2. Let us list a few facts concerning the Whitney
covering. The last property is a consequence of the doubling on balls of Whitney
type property of the measure ty. For more properties of the Whitney covering, see

e.g. Theorem III. 1.3 of [CW], Lemma 2.9 of [MaSe], Lemma 7 of [HKT], and [BS],
Theorem 5.3 and Lemma 5.5.
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Lemma 3.1. TTzere isJVgN swcZz ^Zzotf

(i) feaZZs (z/, r/ /5) are pa/nv/se JAjom/,

(ii) £2 U,g^ £rf(zi,r,-),

(iii) 5«/(z,-,5r,-) C £2,

(iv) E~i Xßrf(z,-,5r,)W < Af/ora/Zx e £2.

The family T> has the same kind of properties as the usual Whitney decomposition
W of a domain ^ C 1" and next we prove a couple of them. In addition to the

assumptions above, we assume that for each pair of points in i? G T> for every i? G T>

can be joined by a Z)-uniform curve in £2.

Lemma 3.2. x,y G (£2,<i,/x) and d(x,y) > d(x)/2. T/zere A a
C C(C2, D) > 0 sncZz

C"W(x,j)<Ä:(X,3;)<C1V(X,3;),

wZzere ZV(x, y) A dze nnraZ?£r <9/Z?aZZs i? G T> /nter^cdng a gnas/Zzy/?£rZ?6>Z/c g£6>d£s/c

Proo/ Letx,y G £2 be points so that d(x, y) > d(x)/2. Since24diam</(i?) < d(z)
for every i? g T> and for every z G i?, then the basic estimate (2.3) implies

diam^(ß) < 4/Vlogfl +
diam^(g) \ ^ 4/52 j ^** '- 24 diam^(ß)/ *24

Thus

*<>.*> Ä*.4Z)2 log ||
Lemma 3.1 (iv) says that there are only ZV balls i? G T> that contain x. Fix one

of them and denote it by 2?i. A ne/gZzZwnr of the ball i?i is a ball i? G T> which
intersects the ball 5^i i?j(zi,5ri) ^(^i>^(^i)/10). Because the measure

/x is doubling in every ball i?j(z, r) with radius 0 < r < d(z)/4, the ball i?i has

a uniformly bounded number of neighbours. Let this number be ZV' G N and let

yi G [x, y] be the first point such that yi does not belong to any neighbour of 2?i.

This choice is possible because d(x, y) > d(x)/2. The geodesic [x, yi] intersects at

most ZV' balls i? G T> and

f 1 f 10
fc(*,J>i) / ——— > / 77-77—7 ^

«/[x,vil "U) «/55i n[x,vil ll«Ul)
>

10 /^(zi) J(zQ\ _
4

11J(zi)V 10 50 7 55
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Let i?2 £ be a ball such that e ^ and i?2 n i? 7^ 0 for some neighbour
i? £ 23 of $1. Again there are only A' balls i? £ 23 which are neighbours of i?2- Let

32 £ [-A 3] be the first point so that 32 does not belong to any neighbour of i?2- Then
the geodesic [3^1, 3^2] intersects at most A' balls i? £ 23 and £(33, 32) > by the

same way than in inequality (3.1). We continue this process until we end up with a

ball 5^ whose neighbours contain [3^-1, }>]• This process really ends and m < 00,
because [x, 3] is compact. We may Start doing this process from every ball i? that
contains x. Thus we obtain the upper bound to the number of balls that intersects the

quasihyperbolic geodesic [x, 3]:

55
W(x,>0 < -JAW£(x, j).

Fix a ball i?o from the Whitney covering 23 and let zo be its centre point. For
each 5/ £ 23 we fix a geodesic [zo,z;]. Furthermore, for each 5/ £ 23 we set

{i? £ 23 : i? f! [zo, z/] 7^ 0} and dehne the s/zadmv of a ball i? £ 23

by

S(Ä)= IJ 5,-.

For n£Nwe set

{ß, e 23 : h < fc(zo,z,-) < « + 1}.

The next two lemmas are metric space analogues of [KL], Lemma 2.1 and

Lemma 2.2.

Lemma 3.3. y a gwaszTzyperfeoZ/c zn £2 Pförring oT zq. TTzen

A ß C C(C2, D) > 0 swc/z eac/z « £ N,

#{ße\:ßny^0}<C.
Proo/ Put

:= #{i? £ 23^ : 5 n y 7^ 0} < oo.

Let £ 23„ be the balls intersecting y, ordered so that if /: < /, then there
exists X£ £ i?£ D y such that for every z £ 5/fly,we have £(zo, x^) < £(zo, z). We

may assume that d(xi, x^„) > d(xi)/2, otherwise x^ £ and we get the result

by doubling on balls of Whitney type. Thus by Lemma 3.2, £(xi, x^) > Since

£(z/, x/) < ^ < 1 for all z 1,..., we may compute

— < fc(Xi,Xa„) ^(Zo,XÖ„) -^(Zo,Xi)

< Ä:(Zo,Za„) +^(Zö„,Xa„) - (fc(Zo, Zi) - fc(Xi, Zi))

<(« + + !— « + 1 3.

Hencea^ < 3C.
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Lemma 3.4. TAere zs a C C(C2, D) > 0 swcA £Aa/,/<9r eacA «gN,

r. i?s(s)W < c
5G!B^

wfeMverx G £2.

Proo/ Let x G £2. The number of balls i? G T> containing x is bounded, so we may
assume that there is a unique ball, denote it by i?i, in T> such that x G 2?i. Let [zo, zi]
be the fixed geodesic joining zo to zi. Then x G *S(i?) for i? G T>„ if and only if
[zo,zi] H £ ^ 0. By Lemma 3.3, the number of balls i? G T>„ is bounded by a

constant that is independent of

4. Gehring-Hayman Theorem

We begin with 's Lmma. First we recall the definitions of the Hausdorff
measure and the weighted Hausdorff measure.

Let (X, J) be a compact metric space. Let 0 < s < oo and 0 < 5 < oo. We set

2^(20 inf{^~ i c,- diam</(£;)'® : < £,• <9'A£,. Q > 0, diam</(£,-) < 5}.

The wezgAted of X is

A*(X) lim AJOO.
5^0

In the special case, where c; 1 for every z 1,2,..., we set 3T§(X) A^(X),
and we obtain the

IK'CY) lim IKf (Jf).

The -content of X is

dC^(A0 inf{E~ i diamd(£/)' : X C U~ i £.'}•

By Lemma 8.16 of [Ma] we know that 3T*(X) < 30*2/(20, but in fact from the

proof of that lemma one obtains that

1X305 (W) — 30^A^(X) for every 0 < <5 < 00.

In particular

!K^(X) < 30*A^(X).

The following formulation of Frostman's Lemma (cf. [Ma], Theorem 8.17, and [BO],
Theorem 2) is suitable for our purposes.
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Theorem 4.1 (Frostman's Lemma). Lbr any s > 0 zs a Padon raeaAwre &> on
X awcZz ^ZztfT

*>00 A^(X)
<2/26?

£ü(i?) < diam^(£')^ /oraZZ £cl.
7n par/fcz/Za/; wZzen s 1 <2/26? X za connected, we ofetezn

«(Ar) > L
V 7 _ JO OOV 7 _ 00

In this paper we apply the version of Frostman's Lemma, where X is connected
and a 1.

For the rest of the paper we assume that (£2,d,p) is a locally compact, non-
complete and Z) -uniform metric measure space such that the measure p is 2 -regulär
on balls of Whitney type for some 2 > 1. Let p be a conformal density such that the
number 2 in the definition VG(P) coincides with the previous 2 > 1-

Proo/o/ PZzeorera 1.1. Let x and y be points in £2 and let [x, y ] be a quasihyperbolic
geodesic in £2 joining points x and y. Because quasihyperbolic geodesics are D'-
uniform curves, [x, y] is rectifiable in the metric d.

Let y be another rectifiable curve in £2 joining points x and y. Let <2 e [x, y]
be the point such that </([x,a]) Z^([<2,y]), and write p d(x,n). Moreover,
for each y 0,1,2,, write ^4y (2?</(x, 2~^p) \ 2?</(x, 2~^ + ^p)) D £2. Let
[xy + i, xy ] C [x, <2] C [x, y] be a subcurve, where xy + i is the last point of [x, y] in

P(x, 2~^ + *)p) andxy is the last point of [x, y ] in P (x, 2 ^ p), and set yy y D ^4y.

We may clearly assume that yy is connected. By summing and symmetry it suffices

to prove that

^P([-*7+i >-*7]) — (4.i)

for every y 0,1,2,
Let y 0,1, 2, From the definition of the curve yy it follows that

^(y,-)>2-ü+V (4.2)

From the definition of the quasihyperbolic geodesic [xy + i,xy] and from the local
Z)Luniformity of the curve [x, y], we have that

X/([*y + l,*/]) £ Z)V(xy + i,Xy) < + (4-3)

2 *4 + ^p < Z^([x,z]) < Z)'d(z) for every z G [xy + i,xy], (4.4)
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and

£(-*7+1,*/) / - —2-'+^^([xy+i,xy]) < 4D^. (4.5)
«/[xy + i,xy] "(X)

The proof consists of two parts: the "easy part", Case A, and the "hard part",
Case B. Furthermore, Case B is divided into two parts, Subcase C and Subcase D.
Here Subcase D is the hardest part and the novelty of our proof.

Case A. We first prove that inequality (4.1) holds when the curves [xy + i, xy] and yy

are "close" to each other in the quasihyperbolic metric Let

* > max
log 2 log 2

where ci > 0 is a sufficiently small constant depending on A, Ci, Z) and 2. and

let us assume that dist^Qxy + i,xy], yy) < M. Let yy G [xy + i,xy] and yy G yy be

points such that £(yy, yy) < M. Let us show that we may estimate the p-length of
the quasihyperbolic geodesic [xy + i, xy] from above by 2~^ pp(yy) in the following
way

Cp([*/+i'*/]) 5 ^D'p(}>y)2~-'+V> (4-6)

where & 4^20^ and C2 C2(Ci, D) > 0 is the constant from Lemma 3.2.

If there exists z G [xy + i,xy] suchthat [xy + i,xy] C ^ 2?</(z, d(z)/2), we
obtain from HI(A) and (4.3)

£p([X/ + i,X/]) < x4p(y/)£</([Xy + i,X/]) < ^D'p(^)2~^ +V-

Otherwise we may assume that <i(xy + i,xy) > <i(xy+ i)/2. From Lemma 3.2 and

inequality (4.5), it follows that

!V(x/+i,Xy) £ 4C2Ö'* =:

where the constant C2 ^(Ci, D) > 0 is the constant from Lemma 3.2. Then by
HI(A), every z G [xy+i,xy] satisfies

p(z) < x4^p(jy).

This with (4.3) gives us inequality (4.6)

£p([X/ + i,X/]) < x4^p(jy)£^([Xy + i,Xy])

< x4^Z)'p(jy)2->+V-

Next we estimate the p-length of the curve yy from below by 2~^pp(yy). If
[xy + i, xy] PI 7^ 0, we easily get from HI(A) an estimate for p(yy):

Mx/) > 7^tp0vK/(}7 n %). (4.7)
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Furthermore, for every z e [xy + i,xy] fl 2?y., using inequalities (4.2) and (4.4) it
holds that

0(,;nn,.)> ,,3 3
»WC»»- (48)' ^ 2(5^)) - 45^ if Ky £ 5^..

In this case, combining (4.6), (4.7) and (4.8) we obtain the desired result (4.1)

^([xy + i,xy])<y^+l^^.^
Thereforewemayassumethat[xy + i,Xy]D^^. 0. This implies that J(yy, jy) >

<2(jy)/2. By Lemma 3.2 there are at most /z := MC2 balls in the Whitney covering
23 that intersect [yy, jy ] and hence, by HI(^4),

P(jy) < (4-9)

On the other hand, by HI(^4) and (4.2),

(4.10)
4 (2^^(37)^(37)

If yy C 2?jy, again we obtain the desired inequality (4.1) by combining inequalities
(4.6), (4.9) and (4.10). If yy 2?^., then (4.10) with (4.9) gives

By elementary inequalities in [GP], Lemma 2.1, and [BHK], Inequality (2.4), we
obtain

V min{d(jy),
and further,

1 -1< (4.12)
^(37) <*07 >37)

Moreover, the assumption <2(yy, jy) > <2(jy)/2 gives us

^(jy) < d(37> 37) + ^(jy) < 3^(jy,jy).

This, along with inequalities (4.11), (4.12) and (4.4), yields an estimate for the p-
length of yy:

_ 1 _ 1

(4,3,
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Now combining (4.6) and (4.13) we obtain

^([xy+i,xy]) < 24(e^ -
Thus (4.1) is proven when the curves [xy + i, xy] and yy are "close" to each other in
the quasihyperbolic metric.

Case B. By Case A we may assume that dist£([xy + i,xy], yy) > M. Let wy G

[xy+i, xy] satisfy d(x, wy) 3 • 2~^+^p. Let r := ^p(yy) and let u; G yy. Let us
consider the p-ball i?p(u;, 2r).

Subcase C. If dist^wy, i?p(u;, 2r)) < Af, there exists w G i?p(u;,2r) such that

£(u;y, w) < Af and hence p(wy) < A^p(w) (cf. inequality (4.9)). We may assume
that yy D 0. Otherwise dist^Qxy+i, xy], yy) < M + 1 and replacing Af with
M + 1 we obtain the result by the case A. As we have assumed yy D 2?^ 0,

2^p(yy) 2r > distp(w, yy)

HI(yl) 1

(4.9) 1

> -p(u)y)J(M)2^+

(*) 1

(4.4) 2"^ + ^
> -p(wy)2y4^+iZ)'e^'

— g^Zi+/z+ly)/2^M + 1 ' */])•

The inequality (*) above follows from the elementary estimate ([GP], Lemma 2.1,

[BHK], Inequality (2.3))

log
ö?(ipy)

J(^)
< £(u;y, w) < M.

Again we find a constant C > 1 such that p([xy + i, xy]) < C£p(yy). So (4.1) is

satisfied.

Subcase D. By Subcase C we may assume that the p-ball i?p(u;, 2r) is "far away"
from the quasihyperbolic geodesic [xy + i, xy]. More precisely, we may assume that

dist^(u;y, i?p(u;, 2r)) > M. Our plan is to prove that the volume growth condition
VG(i?) does not hold for such a p-ball. This is done by considering subcurves of
p-length r of quasihyperbolic geodesics [z, uy] with z G yy and "averaging over yy"
with respect to a suitable Frostman measure.

Let for every z G yy, [z, ipy] be a quasihyperbolic geodesic which joins z and

ipy. Cover [z, ipy] with balls {2?i,..., £«(>)} C !B ordered so that if m < «, then
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there exists z^ G 5^ PI [z, ipy] such that for every z g 2?^ fl [z, ipy], we have

£(z,z^) < £(z,z). Recall that«(z) < oo.
Let [z,u;^] C [z,ip/], where is the first point which does not belong to

ßp(w,2r). Thus fp([z,%]) > r. Let {ßi,..., ß„,.(z)} C {ßi,..., ß„(z)} be
those balls which cover [z, u;^]. So by HI(A) and by the local D'-uniformity (quasi-
convexity) of quasihyperbolic geodesics we obtain

r < £p([z, w^]) < ^ ,4/?(z,-)X/([z, Wz] n ß;)

(4.14)
«r(^)

< 4Z>' p(z,)dianv(ß;).
/ 1

We next provide a tool that will be used to estimate the /Xp-measure of the p-ball

i?p(u;,2r). Weclaimthatif^ G 23intersectsi?p(u;,2r),theni? C 2?p(u;, (2+^-)r).
To show this, it suffices to prove that if i? G 23 intersects i?p(u;, 2r) then

^42

diamp(^) < —r. (4.15)
6

Consider such a ball i? G 23. It follows from HI(A) that

^4

diamp(ß) < ^p(zß) diam^ (ß) —p(zß)J(zß)

for each i? G 23, where z# is the centre of iL Hence it actually suffices to prove that

p(zß)c/(zß) < ^Lr. (4.16)
o

Let j G ß fl ßp(iD, 2r). If u; ^ i?^g, then there exists a curve y, which joins points
u; and y and

2r > /, p(z) r/s > ^p(z#)£j(y D 2?zg)

> - T)2p(zß)^(zß) 2Tp(zß)</(zß),

and the inequality (4.16) is proven.
Let us assume that u; G i?^g. The elementary estimate (2.3) implies

M < fc(u>y,u>) < 4Z)^ log (l + •
V minjrffioj), a(u;)}/

Along with the assumption that Af > 4Z)2'og^ + 1, we see that

min{J(u;;), </(«;)} < < 2">+i-^-^V (4.17)
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The assumption Af >
^

+ 1 and (4.4) give us

2(M-1)/4I)2
</(„,,) > Z-2-0 + 1) 2-7 + 1-(M-1)/4D2

Z)'~ " ^ 22Z)' (4.18)

> 2-y+i-(M-i)/4Z)2

Thus it follows from inequality (4.17) that

</(u;) < 2-2+i-^-D/^^ < 2^'+V
Hence, from the definition of the curve yy and inequality (4.2) we know that yy cannot
be a subset of Then by HI(^4)

p(z) > ^(Z5)J(») > ^p(ZB)d(Zß),r /
and (4.16) is proven.

Now we know the

Then by HI(^4), Lemma 3.1 (iv) and <2-regularity on balls of Whitney type, we have
Now we know that if i? e 23 intersects i?p(u;, 2r), then i? c 2?p(u;, (2 + ^yP)r).

Atp(5p(w,(2 + 5^)r)) /*
7^p(u;,(2+4^42)^)

BeB (4.19)
5n5p(u;,2r)^0

> E
5Pl5p(u;,2r)^0

where C3
^VCjylß'

Let us choose the basepoint zo to be wy. According to Frostman's Lemma (Theo-

rem 4.1) there is a Radon measure supported on yy such that &>(yy) >
^

and &>(E) < diam^(E) for every £ c yy Then with (4.14) we obtain (a version of
Fubini's theorem)

/» «rO)

ft)(yy)r < / y] p(zi)diam^(ß,)^®(z)
«/y# v_i1=1

(4 20)
< v4D' E E p(zg)diam4(ß)w(S(ß) n )/y).

/7 M-l
5n[z,^]^0

zey,-
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By Hölder's inequality we obtain that

(X)

E E p(zß)diam^(ß)ft)(5(ß) n y/)
/7 M -1

5n[z,^]^0
zey;

CXJ

E E p(zg)ö diam^(ß)ö)
/7 M-1

5n[z,w;,]#
zeyy

oo 6-1

£ £ a>(,S(ß)nyy)5=T)
®

/7 M-1
5n[z,%]/0

zey,

Combining this with (4.20), (4.19) and the assumption dist^wy, 2r)) > Af
we obtain the estimate

2^ ^

<w(y/)r < ,4D'(3-/ip(ßp(w;, (2 + ^)r))j ^

LXJ 1

£ £ «(S(ß)nyy)^)"
6-1

/7 M-1
5n[z,w;j]^0

zeyy

(4.21)

6-1
C4(/Xp(ßp(«;,(2 + ^»))e( jP E «(^)nyy)Ä)

/7 M — 1

5n[z,uij]^0
zeyy

L 1

wherec4 2^D'cj ® 2(JVCi)^^Z>'.
In order to estimate the measure of the shadow of the ball i? G 23^, let us make

a couple of preliminary estimates. For every u G 2? fl [z, wy], where i? G 23 and

z G ]/j, we have by uniformity (quasiconvexity) and inequality (4.3) that

<2(u;y, v) < </([u;y, v]) < </([u;y,z]) < Z)'<2(u;y,z) < 2

In the same way as in inequalities (4.17) and (4.18), we obtain from inequality (4.4)
^ that for every u G 2? fl [z, wy]and the assumption « > M — 1 > 4Z) ^ ^ that for every u G 2? fl [z, u;y ], where

2? G 23„ and z g yy, it holds that

<*(") < 2^'+i-"^z)2^,
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Furthermore, for every centre point e 5 G B„, such that 2? fl [z, wy] 7^ 0 for
some z e yy, it holds that

£ 2-^+1-"/^^^. (4.22)

Also from the uniformity of the space (£2, <2) and inequality (4.22) it follows that
there exist a constant C5 C5(Ci, D) > 1 such that for every 2? e 23„, so that
2? D [z, wy] 7^ 0 for some z e yy, it holds

diam*(S(5)) < C5diam^(ß) < 2->+2-»/4D^^^__ ^3)
Now for every « > Af — 1 it holds by Lemma 3.4, Frostman's Lemma and

inequality (4.23) that

£ a>(S(ß)nyy)Ä
5!Bn

zeyy

< max a;(S(2?) D yy) ö-i E ®(S(Ä) n ]/y)

ßn[z,«;-']#0
„ f^®"
^n[z,u;d^0

zeyy

< C6ö)(y/) max a;(S(2?) D yy) ß-i

5n[z,«),]^0
zeyy

< C6ö)(yy) max diam</(S(2?) D yy)^~*

5n[z,«),]^0
zeyy

where C6 Cö(Ci D) is from Lemma 3.4. Furthermore, using this we may compute
that

50Z)'

CXJ

£ £ ä>(S(5) n )/y)Ä
77—A/—1

i?n[z,u;~]^0
zeyy

<
/200D'cs\st

49
/7 M — 1

-Af
< C7ö)(yy)/?ß-i2ß-i24^(ö-
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^ 1 24X)2(ß 1)

where C7 i • Thus with (4.21) we have
24Z)2(ß —1) _ X

ft»(}/y)ßrö < cfc^"Vp(-ßp(w, (2 + i^^)r))ft>()/y)ö~'2"^"^^

Furthermore &>(y/) > and this gives us

1 2^ + 5^2
Pp(Pp(u>, (2 + ±X)r)) > to(yy)-y-örr ^

C4 cf P

2"^"V 1 2 4Z>2

> r ß
60 P

24£>2

49 • 24^~V24Ö2(Ö-1) — l)^~*
where rq ^ •

12000c57VCi(2.42)Ö£)'Ö+icö-i

This is a contradiction because when Af is sufficiently big, the volume growth
condition VG(i?) will not hold. Consequently, if £([x/ + i, x/], y/) > Af then our p-
ball is in the quasihyperbolic metric Z so big that dist^wy, 2r)) < M. Thus
the conclusion is that Zp([x/+i,x/]) < CZp(y/), where C C(A, Ci, Z), 2)-

There is nothing special about the constant ^ in condition HI(A) and the constants

^0 and 5 in Whitney covering. The only restriction in the Whitney covering is that

if Ai^j(zi, J(zi)/A2) H Aii?j(z2, ^fe)/^2) 7^ 0, then Ai^j(zi, <Z(zi)/A2) must
be included in some ball i?</(z2, ^(z2)/^3) on which the measure /x is doubling.
Otherwise one can choose the constants as desired.
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