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Equivariant CW-complexes and the orbit category

Ian Hambleton, Semra Pamuk and Ergtin Yal¢in™

Abstract. We give a general framework for studying G-CW complexes via the orbit category.
As an application we show that the symmetric group G = S5 admits a finite G-CW complex
X homotopy equivalent to a sphere, with cyclic isotropy subgroups.
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1. Introduction

A good algebraic setting for studying actions of a group G with isotropy in a given
family of subgroups ¥ is provided by the category of R-modules over the orbit
category I'¢ = Org G, where R is a commutative ring with unit. This theory was
established by Bredon [6], tom Dieck [10] and Lick [20], and further developed by
many authors (see, for example, Jackowski—-McClure—Oliver [17], §5, Brady—Leary—
Nucinkis [5], Symonds [34], [35], Grodal [14], Grodal-Smith [15]). In particular,
the category of RI'¢-modules is an abelian category with Hom and tensor product,
and has enough projectives for standard homological algebra.

In this paper, we will study finite group actions on spheres with non-trivial isotropy,
generalizing the approach of Swan [32] to the spherical space form problem through
periodic projective resolutions. A finite group is said to have rank k if k is the largest
integer such that G has an elementary abelian subgroup Cp, X -+ x Cp, of rank k for
some prime p. A rank | group G has periodic cohomology, and Swan showed that
this was a necessary and sufficient condition for the existence of a finite free G-CW
complex X, homotopy equivalent to a sphere.

The work of Adem—Smith [1] concerning free actions on products of spheres led
to the following open problem:

Question. If G is a rank 2 finite group, does there exist a finite G-CW complex
X ~ S§" with rank 1 isotropy ?

*Research partially supported by NSERC Discovery Grant A4000. The third author is partially supported by
TUBITAK-BDP and TUBA-GEBIP/2005-16.
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If G isafinite p-group of rank 2, then there exist orthogonal linear representations
V' so that S(V) has rank 1 isotropy (see [12]). If ( is not of prime power order,
representation spheres with rank 1 isotropy do not exist in general: a necessary
condition is that G has a p-effective character for each prime p dividing |G| (see
Theorem 47 in [18]). In Proposition 48 of [18] it is claimed that this condition is also
sufficient for an affirmative answer to the G-CW question above, but the discussion
on p. 831 of [18] does not provide a construction for X.

Our main result concerns the first non-trivial case: the permutation group G = S5
of order 120, which has rank 2 but no linear action with rank 1 isotropy on any sphere,
although it does admit p-effective characters for p = 2,3, 5.

Theorem A. The permutation group G = Ss admits a finite G-CW complex X = §7,
such that X ¥ # @ implies that H is a rank 1| subgroup of 2-power order.

Remark 1.1. It is an interesting problem for future work to decide if the group
G = §5 can act smoothly on §” with rank 1 isotropy.

In order to prove this result we develop further techniques over the orbit category,
which may have some independentinterest. A well-known theorem of Rim [29] shows
that a module M over the group ring Z G is projective if and only if its restriction
Resg M to any p-Sylow subgroup is projective. Over the orbit category we have a
similar statement localized at p (see Theorem 3.9).

Theorem B. Let G be a finite group and let R = Z,). Then an RI'g-module M
has a finite projective resolution with respect to a family of p-subgroups if and only if
its restriction Resg M has a finite projective resolution over any p-Sylow subgroup

P =G,

Remark 1.2. For modules over the group ring R(G, those having finite projective
resolutions are already projective. Over the orbit category, these two properties are
distinct.

Another useful feature of homological algebra over group rings is the detection
of group cohomology by restriction to the p-Sylow subgroups. Here is an important
concept in group cohomology (see for example [33]).

Definition 1.3. For a given prime p, we say that a subgroup H € G controls p-fusion
provided that

(i) pt|G/H], and

(ii) whenever 0 C H is a p-subgroup, and there exists g € G such that Q% :=
g 1Qg C H, then g = ch where c € Cg(Q)and h € H .
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One reason for the importance of this definition is the fact that the restriction map
H*(G;Fp) - H*(H;F)p)

is an isomorphism if and only if / controls p-fusion in & (see [25], [33]). We have
the following generalization (see Theorem 5.1) for functors of cochomological type
over the orbit category (with respect to any family F).

Theorem C. Let G be a finite group, R = Z(p), and H < G a subgroup which
controls p-fusion in G. If M is an RI'g-module and N is a cohomological Mackey
functor, then the restriction map

Resg : Ext'}{FG (M,N) — Extpr,, (Resg M, Resg N)

is an isomorphism forn = 0, provided that the centralizer Cg(Q) of any p-subgroup
O < H, with Q € F, acts trivially on M(Q) and N(Q).

The construction of the G-CW complex X for G = S5 and the proof of Theorem A
is carried out in Section 9. We first construct finite projective chain complexes C(#)
over the orbit categories RI, with R = Z (), separately for the prime p = 2,3,5
dividing |(7|. In each case, the isotropy family ¥ consists of the rank 1 subgroups of
2-power order in G.

The chain complexes C) all have the same dimension function (see Defini-
tion 8.2). We prescribe a non-negative function n: ¥ — Z, with the property that
n(K) < n(H) whenever H is conjugate to a subgroup of K. Then, by construc-
tion, each complex C{?) has the R-homology of an n-sphere: for each K € F, the
complexes C)(K) have homology H; = R only in two dimensions i = 0 and
i = n(K). In other words, the complexes P are algebraic versions of tom Dieck’s
homotopy representations ([10], I1.10).

In the case p = 2, we start with the group /I = §4 acting by orthogonal rota-
tions on the 2-sphere. A regular f7-equivariant triangulation of an inscribed cube or
octahedron gives a finite projective chain complex over Ry . Then we use Proposi-
tion 6.4, a chain complex version of Theorem C, to lift it to a finite projective complex
over RI'g. For p = 3 and p = 5, the p-rank of S5 is 1, and there exists a periodic
complex over the group ring RG (see Swan [32], Theorem B). We start with a peri-
odic complex over RG and add chain complexes to this complex, for every nontrivial
subgroup K € ¥, to obtain the required complex C? over RIg.

We use the theory of algebraic Postnikov sections by Dold [11] to glue the com-
plexes together to form a finite projective Z I'g chain complex (see Section 6). We
complete the chain complex construction by varying the finiteness obstruction to ob-
tain a complex of free Z [ z-modules, and then we prove a realization theorem (see
Section 8) to construct the required G-CW complex X ~ §".

Throughout the paper, a family of subgroups will always mean a collection of
subgroups which is closed under conjugation and taking subgroups. Also, unless
otherwise stated, all modules are finitely generated.
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2. Modules over small categories

Our main source for the material in this section is Liick [20], §9, §17 (see also §1.10,
§L.11 in [10]). We include it here for the convenience of the reader.

Let R be a commutative ring. We denote the category of R-modules by R-Maod.
For a small category I' (i.e., the objects Ob(I") of I form a set), the category of
right RI"-modules is defined as the category of contravariant functors I" — R-Mod,
where the objects are functors M(—): I’ — R-Mod and morphisms are natural
transformations. Similarly, we define the category of left R I"'-modules as the category
of covariant functors N(—): I' — R-Mod. We denote the category of right RT"-
modules by Mod-R I and the category of left R/"-modules by RI"-Mod.

The category of covariant or contravariant functors from a small category to an
abelian category has the structure of abelian category which is object-wise induced
from the abelian category structure on abelian groups (see [23], Chapter 9, Proposi-
tion3.1). Hence the category of RI"-modulesis an abelian category where the notions
submodule, quotient module, kernel, image, and cokernel are defined object-wise.
The direct sum of R/ -modules is given by taking the usual direct sum object-wise.

Example 2.1. The most important example for our applications is the orbit category
of a finite group. Let G be a finite group and let ¥ be a family of subgroups of G
which is closed under conjugation and taking subgroups. The orbit category Or(G)
is the category whose objects are subgroups H of G or coset spaces G/H of G, and
the morphisms Mor(G/H, G/ K) are given by the set of G-maps f: G/H — G/K.

The category I'¢ = Org G is defined as the full subcategory of Or((G) where
the objects satisfy H € ¥ . The category of right RI¢-modules is the category of
contravariant functors from Orgz G to R-modules. A right R g-module M is often
called a coefficient system [35]. We will sometimes denote M(G/H ) by M(H ) if the
group G is clear from the context. When ¥ = {e}, RI'G-Mod is just the category of
left RG-modules and Mod-R [ is just the category of right RG-modules. U

Now, we will introduce the tensor product and Hom functors for modules over
small categories. Let I" be a small category and let M € Mod-RI" and N € RI'-
Mod. The tensor product over RI" is given by

M®rrN= P Mx) &N/~
x€0b(I)
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where ~ is the equivalence relation defined by ¢*(m) ® n ~ m ® @, (n) for every
morphism ¢ : x — y. For RI"-modules M and N, we mean by Homgpr (M, N) the
R-module of RI'- homomorphisms from M to N. In other words,

Homgr(M,N) S €5 Homg(M(x), N(x))
x€0b(IM)

is the submodule satisfying the relations f(x)o@* = ¢* o f(y), for every morphism
@: x — Y. We sometimes consider a second tensor product, namely the tensor
product over R, which is defined for RI'-modules M and N which are both left
modules or both right modules. The tensor product M ®p N is defined by the
formula

[M @r N](x) = M(x) ®r N(x)

on objects x € Ob(7") and on morphisms, onehas [M Qr N|(f) = M{(f)RrN(f).
The tensor product over RI" and Hompgr are adjoint to each other. This can be
described in the following way:

Proposition 2.2. Given two small categories I' and A, the category of RI'-RA-
bimodules is defined as the category of functors I' X A°® — R-Mod. For a right
RI'-module M, an RI'-RA-bimodule B, and a right R A-module N, one has a

natural transformation
Homgs(M @grpr B, N) = Homgr(M,Homg4(B, N)).

Proof. See 9.21 in [20]. O

We will be using this isomorphism later when we are discussing induction and
restriction.

2A. Free and finitely generated modules. For a small category I', a sequence
M —-M-—>M
of RI'-modules is exact if and only if
M(x) - M(x) — M"(x)

is exact for all x € Ob(I"). Recall that a module P in Mod-RT is projective if the
functor
Homgpr(P,—): Mod-RI" — R-Mod

is exact. For an object x € I", we define a right R/ -module RI"(?, x) by setting

RI(?, x)(y) = RMor(y, x)
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for all y € Ob(I"). Here, R Mor(y, x) denotes the free abelian group on the set of
morphisms Mor(y, x) from y to x. As a consequence of the Yoneda lemma, we have

Hompgpr(RI(2,x), M) = M(x).

So, foreach x € Ob(I"), the module RI'(?, x) is a projective module. When working
with modules over small categories one uses the following notion of free modules.

Definition 2.3. Let I be a small category. A Ob(7")-set is defined as a set § together
withamap f: § — Ob(I"). We say a RI'-module M is free if it is isomorphic to a
module of the form
RT(S) = DRI 2. (D))
bhes
for some Ob([")-set S. A free module RI"(S) is called finitely generated if the set
§ is finite.

Note that for every RI"-module M, there is a free RI'-module RI'(S) and a
map f: RI'(S) — M such that f is surjective. We can take such a free module by
choosing a set of generators Sy for the R-module M(x) for each x € Ob(I"), and
then taking S as the Ob(I")-set which has the property f~1(x) = Sy. A free module
RI(S) which maps surjectively on M is called a free cover of M. A RI"-module is
called finitely generated if it has a finitely generated free cover.

It is clear from our description of free modules that an R /" -module M is projective
if and only if it is a direct summand of a free module. This shows that the module
category of a small category has enough projectives. We will later give a more detailed
description of projective RI"'-modules.

Example 2.4. For the orbit category I" = Or(G), the free modules described
above have a more specific meaning. For any subgroup K < G, the RI"'-module
RI'(?, G/K) is given by

RI(2,G/K)YG/H) = RMor(G/H,G/K) = R[(G/K)T]

where R[(G/K)™]is the free abelian group on the set of fixed points of the H action
on G/K. Because of this, we denote the free module RI"(?, G/K) by R[G/K ?].

If ¥ is a family of subgroups, and I'¢ = Org G, we obtain free RIg-modules
R[G/K ?] by restriction whenever K € F. The constant RI'g-module R defined
by R(H) = R, for all H € ¥, is just the restriction to R of the module R =
R|G/G"]. This shows that the constant module R is projective if G € F. More
generally, if K € ¥, a non-empty fixed set

(G/K)? ={gK|g "Hg C K} # 0

implies H € ¥, since ¥ is closed under conjugation and taking subgroups. There-
fore, R[G/K ?|(H) = Ofor H ¢ F, whenever K € F.
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2B. Induction and restriction. We now recall the definitions and terminology for
these terms presented in Liick [20], 9.15. Let I" and A be two small categories. Given
a covariant functor /' : A — I', we define an R A-R " -bimodule

R, F()): AxTI'" - R-Mod
on objects by (x, v) — R Hom(y, I'(x)). We define the restriction map
Resp: Mod-RI" — Mod-R A
as the composition with F. The induction map
Indg: Mod-RA — Mod-RI”

is defined by
Indp (M)(??) = M @ra R(M, F(7))

for every RA-module M. For every right RI"-module N, the R A-module

Hompr(R(??, F(?)). N)
; o ; F N ;5
is the same as the composition A — I' — R-Mod. So, by Proposition 2.2, we can
conclude the following:

Proposition 2.5. Induction and restriction are adjoint functors: for any RI -module
M and R A-module N, there is a natural isomorphism

Hompr(Indp M, N) = Homps(M,Resg N).

The induction functor respects direct sum, finitely generated, free, and projective but
it is not exact in general. The restriction functor is exact but does not respect finitely
generated, free, or projective in general.

Now we will define functors which are special cases of the restriction and induction
functors. Let I be a small category. For x € Ob(["), we define R[x] = R Aut(x) to
be the group ring of the automorphism group Aut(x) and denote the category of right
R|x]-modules by Mod-R[x]. Let Iy denote the full subcategory of I" with single
object x and let F : I'x — I be the inclusion natural transformation. The restriction
functor associated to F gives a functor

Res; : Mod-RI™ — Mod-R|x]

which is called the restriction functor. This functor behaves like an evaluation map
Resx(M) = M(x). In the other direction, the induction functor associated to F
gives a functor

E,: Mod-R[x] - Mod-RI”
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which is called the extension functor. For a R[x]|-module M, we define £, (M )(y) =
M ®pg[x] R Mor(y, x) for every y € Ob(I"). They form an adjoint pair: for every
R|x|-module M and an RI"-module N, we have

Hompr(E,M,N) = Hompg[,(M,Res, N).

By general properties of restriction and induction, the functor Resy is exact and
E . takes projectives to projectives. In general, £ is not exact and Resy does not take
projectives to projectives. But in some special cases, we can say more. For example,
when I is free, i.e. R Mor(y, x) is a free R[x|-module for all y € I', then it is easy
to see that ', is exact [20], 16.9.

Example 2.6. Inthe case of an orbit category I'g = Org G, we denote the extension
function for H € ¥ simply by Egy and the restriction functor by Resg. In this
case, the automorphism group Aut(G/H ) for H € ¥ is isomorphic to the quotient
group Ng(H)/H. The isomorphism Ng(H)/H = Aut(G/H) is given by the
isomorphism nH — f,, where f,(gH) = gn~1H forn € Ng(II) (see [10],
Example 11.2). This isomorphism takes right R[x]|-modules to right R[Ng (H)/H |-
modules, so given a right RI™-module M, the evaluation at H € ¥ gives a right
R[Ng(H)/H]-module.

It is easy to see that the morphism set Mor(G/ K, G/ ) is afree [Ng (I)/ H |-set,
s0 Org G is free in the above sense ([20], Example 16.2). Therefore, the functor g
is exact and preserves projectives, whereas Resy is exact but does not necessarily
preserve projectives. For example, the module Z[G/G ?] is free over Z Or(G) by
definition, but Resy Z[G/ G '] = Z is not projective whenever Ng(H )/H # 1.

2C. Inclusion and splitting functors. We will introduce two more functors. These
are also special cases of induction and restriction, but they are defined through a
bimodule rather than just a natural transformation . We first describe these functors
and then give their interpretations as restriction and induction functors.

Let I" be an El-category. By this, we mean that /™ is a small category where every
endomorphism x — x is an isomorphism forall x € Ob(/"). This allows us to define
a partial ordering on the set Iso(7") of isomorphism classes X of objects x in I". For
x,y € Ob(I"),wesay X < y if and only if Mor(x, y) # @. The El-property ensures
that x <y < x impliesx = y.

For each object x € I', and M € Mod-R|[x], the inclusion functor,

I, : Mod-R|x] — Mod-RI"

is defined by

el

M @gix RMor(y,x) if y
{0} '

._.
iy

A

ol
=1

IxM(y) = {
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In the other direction, we define the splitting functor
Sy Mod-RI™ — Mod-R|[x]

by Sx(M) = M(x)/M(x)s; where M(x), is the R-submodule of M(x) which is
generated by the images of M( f): M(y) — M(x) forall f: x — ywithx <y
and X # y.

There is a RI™-R[x]-bimodule B defined in such a way that the inclusion functor
I can be described as M — Hompg[,(B, M) and the splitting functor Sy is the
same as the functor M — M ®@grr B (see [20], p. 171, for details). So (S, ) is
an adjoint pair, meaning that

Hompg(Sx M, N) = Homgr (M, I, N)

for every RI'-module M and R|x|-module N .

From general properties of induction and restriction, we can conclude that 7, is
exact and 5 preserves projectives. Some of the other properties of these functors are
listed in Lemma 9.31 of [20]. Itis interesting to note that the composition Sy o Ey
is naturally equivalent to the identity functor. Also, the composition S, o £y is zero
when X # y. These are used to give a splitting for projective RI™-modules.

Theorem 2.7. let P be a finitely generated projective RI"-module. Then

Px P E:S«(P)

x€lso(I)
Proof. For the proof see [20], Corollary 9.40. (|

In the statement, the notation €5, enso(r) Means that the sum is over a set of
representatives x € Ob([") for x € Iso([").

2D. Resolutions for RI'-modules. Let ' be an El-category. For a non-negative
integer / we define an /-chain ¢ from x € Ob(7") to y € Ob(I") to be a sequence

C:X=Xpg<X1 <~ <X =Y.

Define the length /(y) of y € Ob(I") to be the largest integer / such that there exists an
/-chain from some x € Ob(x) to y. The length /(") of I" is max{/(x) | x € Ob([")}.
Given an RI"-module M, its length /(M ) is defined by max{/(x) | M(x) # 0} it M
is not the zero module and /({0}) = —1.

We call acategory I finite if Iso(I") and Mor(x, y) are finite forall x, y € Ob(I").
Denote by m(I") the least common multiple of all the integers | Aut{x)]|.

Given an RI -module M, consider the map

¢: P ExResy M > M
x€lso(I)
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where for each x € Ob([I"), the map ¢ : E, Resy M — M is the map adjoint to the
identity homomorphism. It is easy to see that ¢ is surjective. Let

and let KM denote the kernel of ¢: EM — M. Note that if x is an object with
[(x) = [(M), then Res, = S, which also gives that

Resy ¢: Resy Ex Resy M — Resy M

is an isomorphism. Note that this implies /(KM) < /(M) which allows one to
proceed by induction and obtain the following:

Proposition 2.8. If I' is a finite El-category, then every nonzero M has a finite
resolution of the form

00— EK'M - ---—> EKM - EM - M — 0
where t = [(M).

Proof. See [20],17.13. Here K°M = M and K°M = K(K*"'M). O

From the description above it is easy to see that

EKM := @ E,Res, KM

x€lso(I)

where Resy K°M is isomorphic to a direct sum of R[x]|-modules
M(c) == M(xy) ®@pr[x,] R Mor(x1, Xo) @R[x,]" " @R[x,_,;] R Mor(x, xs_1)

over representatives in Ob(7") for all the chains of the formc: X < X;—1 < --- < Xp
(see [20], 17.24). Note that if I is a finite, free El-category, then the resolution given
in Proposition 2.8 will be a finite projective resolution it M(c) is projective as an
R[x]-module for every chain c¢. This gives the following:

Proposition 2.9. Let M be RI'g module where I'c = Org G for some finite group
G and R is a commutative ring such that |G| is invertible in R. Suppose also that
M(H) is projective as an R-module for all H € F. Then, M has a projective
resolution with length less than or equal to [(I).

Proof. See [20], 17.31. ]

In particular, if R = Z,) with p t |G| and if M is a RI"-module such that
M(H) is R-torsion free for all H € ¥, then M has a finite projective resolution of
length less than or equal to /(M ).
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3. The proof of Theorem B

The main result of this section is Theorem 3.9, which is an orbit category version
of a well-known result of Rim [29]. We first collect some further information about
induction and restriction for subgroups.

Let G be a finite group and let /7 be a subgroup of . Given a family of subgroups
F of GG, we consider the orbit categories I'¢ = Org G and I'y = Org H, where
the objects of I'y are orbits of H with isotropy in ¥y = {K < H|K € F}.
Let F: I'y — Ig be the functor which takes H/K to G/K and sends an H-map
f: H/K — H/L tothe induced G-map

nd%(f): G/K = G xyg H/K - G xg H/L = G/L

for every K,L € ¥y. Note that if f is the map which takes eX to 2L, then
Indg( f)(gK) = ghlL. The restriction and induction functors (see Proposition 2.5)
associated to this functor gives us two adjoint functors

Res$ : Mod-Tg — Mod-Ty

and
Ind% : Mod-Iy — Mod-T.

The restriction functor is defined as the composition with F. So, for a R['g-module
M, we have (Resg M)(K) = M(K), forall K € ¥g. For the induced module we
have the following formula:

Lemma 3.1. et N be a RI'y-module and K < G. Then,

(Ind$, N)(K) = D N(K?®)
gHeG/H, K8<H

where K& = g7 1Kg.

Proof. For a (right) RI'y-module N, the induced module Indg N 1is defined as the
direct sum

b V(L) ®r RMor(G/K. G/ L)

L<H
modulo the relations n @ ¢ f ~ ¢*(n) @ f wheren € N(L), f € Mor(G/K,G/L")
and ¢ = Indg (¢) for some ¢: H/L' — H/L. Every morphism G/K — G/L
which satisfies the condition L < H can be written as a composition ¢f, where
¢: G/K® — G/L isinduced from an -map and f,: G/K — G/K?* is given by
xK — xgK¥é, forsome g € G.

This shows that every element in the above sum is equivalent to an element of the

formn ® fg wheren € N(K®) and f,: G/K — G/K? is as above with K* < H.
There is one summand for each gH satistying K% < H . U
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Note that we can also express the above formula by
(Indf; NY(K)= €D  N(K?¥).
gHe(G/H)K

If J < K, then the argument above can be extended to show that restriction map

(Ind¥ N)(K) — (Ind% N)(J)
is given by the coordinate-wise restriction maps N(K¢) — N(J#). Note that if
gl € (G/H)X, then gH € (G/H)’. Similarly, the conjugation map

(Ind$ N)(K) — (Ind$ N)(*K)
can be described by coordinate-wise conjugation maps. From these, it is easy to see

that Indg R = R[G/H ?]. A generalization of this argument gives the following:

Lemma 3.2 ([35], Corollary 2.12). Let G be a finite group and let H be a subgroup
of G. For every RI'g-module M, we have Indg Resg M =M ®g R|G/H"].

We also have the following formulas:

Lemma 3.3. Let G be a finite group and let H be a subgroup of G.
(i) Forevery K < H, we have Indg RIH/K'] = R[G/K’].
(ii) Forevery K < G, we have Resg R[G/K "] = Dx\g/u RIH/(H NEK) "L

Proof. Part (1) follows from the fact that Indg Indg = Ind% which is a consequence
of a more general formula Indr Indps = Indp.F’. We can prove this more general
formula by using adjointness and the formula Resgr Resp = Respops. For (ii),
observe that the definition of R[G/H ?| can be extended to define a RI'g-module
R[S ?] for every G-set S, by taking

R[S*|(G/K) = RMaps(G/K, S) (3.4)

for every K € ¥, where Mapg;(G/K, §) denotes the set of G-maps from G/K to
S. For G-sets S and 7', we have an isomorphism R[(S | |7)?] = R[S ?] & R[T *].
By the definition of restriction map, we get

(Res$ R[S *|)(H/K) = RMapg(G/K,S) = RMapy (H/K,Res$ S).
It is easy to see that this induces an R/ -module isomorphism
Res? R[S '] = R[(Ress $)].

Since
Resfj(G/K)= [] H/(HN®K)
H\G/K
as G-sets, we obtain the formula given in (ii). [
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Example 3.5. Let G = S5 be the symmetric group on {1,2,3,4,5} and H = S,
be the subgroup of symmetries that fix 5. Let C; = {(12)) and C35 = {(345)). The
formula in Lemma 3.3 (ii) gives

Resfy R|G/(C2 x C3)°| = RUH/C,"| @ RIH/*C5” |
where #C3 = {(123)). From this expression we obtain
R[G/(C2 x C3)"|(G/C2) = R[H/Cy"|(H/C2) = R[NH(C2)/Ca).

as an Ng(C,)/Cy-module, where Ny (C,) = C; x C,. Note that Ng(Cy) =
C> x 83 and as an Ng(Cz)/Ca-module R[G/(Cy x C3) ' |(G/C3) is isomorphic to
R[CzXS3/C2XC3]. ]

We can give a more general formula for R[G/H *](G/K) as follows:

Lemma 3.6. Let G be a finite group, and H and K be two subgroups of G. Then,
as an R|Ng (H)/H|-module

RIG/K')(G/H) = D R[NG(H)/Nex(H)]
v(H,K)

where the sum is over the set v(H, K) of representatives of K -conjugacy classes of
subgroups H¥ such that H® < K.

Proof. This formula can easily be proved by first determining the orbits of Ng(H)
action on (G/K)? = {gK | H# < K}, and then by calculating the isotropy sub-
groups for each of these orbits. A similar computation can be found in the proof of
Theorem 4.1 in [8]. [

Proposition 3.7. Both Resg and Indg are exact and take projectives to projectives.

Proof. The fact that Resg 1s exact and Indg preserves projectives follows from
the general properties of restriction and induction functor associated to a natural
transformation /. The fact that Indg is exact follows from the formula given in Lem-
ma 3.1. Finally, to show that Resg takes projective to projectives, itis enough to show
it takes free modules to projective modules. An indecomposable free R g-module
M is of the form R[G/K *] for some K € . By Lemma 3.3, Res% (R[G/K "))
will be projective if H N¥K isin F forall HgK € H\G/K. But this is always true
since the family ¥ is closed under conjugation and taking subgroups. L

A result of Rim [29] relates projectivity over the group ring ZG to projectivity
over the p-Sylow subgroups.
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Proposition 3.8 (Rim’s theorem). Let G be a finite group, and M be a finitely
generated 7.G-module. Then M is projective over LG if and only ifReSg M is
projective over Z P for any p-Sylow subgroup P < (.

Proof. A module M is ZG-projective if and only if Ext‘IZG(M ,N) = 0 for every
Z.G-module N. Therefore M is projective if and only if Z(,) ®z M is projective
over ZpyG for all primes p dividing the order of G.

For any p-Sylow subgroup P < G, the permutation module R[G/P] = RPN
splits when R = Zp). Therefore, if M is any RG-module, M ®g R|G/P]| =
M®(M@rN). Since M @r R|G/P] = Indg Resg M, the projectivity of M is
equivalent to the projectivity of Resg M. U

Here is an orbit category version of this result.

Theorem 3.9 (Rim’s theorem for the orbit category). Let G be a finite group and let
M be a RI'G-module where R = Z(,). Suppose that ¥ is a family of p-subgroups
in G. Then M has a finite projective resolution if and only szeSg M has a finite
projective resolution for any p-Sylow subgroup P of G.

Proof. One direction is clear since Resg is exact and takes projectives to projectives.
For the other direction, we will give the proof by induction on the length /(M) of
M. Without loss of generality, we can assume that M(H) is R-torsion free for all
H € ¥. Suppose M is a RI'g-module with /(M) = 0. Then, we can regard M as
an RG-module. If Resg M has a finite projective resolution, then Resg M must be
projective (see [20], p. 348). Then, by Rim’s theorem, M is a projective R(G-module,
hence has finite projective length.
Now, assume M is an R g-module with /(M) = s > 0. Let

O—>Pn—>---—>P0—>Reng—>O

be a projective resolution for Resg M . We can assume that /( P;) < s forall ;. Then,
for Q € ¥ with/[(Q) = s, we have

SQPI' = RGSQ P,' == P,(Q)
Since S¢ takes projectives to projectives, the resolution
0— Pp(Q) — - = Po(Q) — (Resg M)(Q) — 0

is a finite projective resolution of (Resg MY(Q) = M(Q) as an R[Np(Q)/0Q]-
module. This gives that M(Q) is projective as an R[Np(Q)/Q]-module.

Lemma 3.10. For every p-group Q, there is a p-Sylow subgroup P of G such that
Np(Q) is a p-Sylow subgroup of Ng(Q).
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Proof. Let § be a p-Sylow subgroup of Ng(Q), and pick a p-Sylow subgroup P
of GG containing §. Since Np(Q) = Ng(Q) N P is a p-subgroup of Ng(Q), we
have |Np(Q)| < |S|. But S < P and § < Ng(Q) implies § < Np(Q). Therefore
S = Np(Q). O

We can assume P is a p-Sylow subgroup which has this property. Then, by the
p-local version of Rim’s theorem, we can conclude that M( Q) is projective as an
R[Ng(Q)/Q]-module. Now, consider the map

Y= (Yo): @ FEgoResoM — M
Qelso(lI'g). H{Q)=s

where yrg : EgoResg M — M isthe mapadjointtotheidentity mapid: Resg M —
Resg M. For every K € ¥ with [(K) = s, the induced map ¥ (K) is an isomor-
phism. This is because

(Eg oResg M)(K) = Resg EgResg M = SgEgResg M = M(K)

if K is conjugate to Q and zero otherwise. So, we have /(coker y) < s. Therefore,
there is a finitely generated projective RI'g-module P with /(P) < s, and a map
a: P — M such that ¥ & « is surjective. If K is the kernel of ¥ & a, we get an
exact sequence of RIg-modules

0-K—=Po& @ EgoResp M - M — 0
gelso(lI'g), I(Q)=s

where the middle term is projective as an RI'g-module, and /(K) < s. Note that
Resg K must have a finite projective resolution by Lemma 11.6 of [20]. So, by
induction, X has a finite projective resolution, and hence M has a finite projective
resolution as well. O

Remark 3.11. The inductive argument we use in the above proof is similar to the
argument used by Liick to prove Proposition 17.31 in [20]. By this result, any module
M over a finite El-category I" which has a finite projective resolution, admits a
resolution of length < /(M) provided that M(x) is R-projective for all x € Ob([I").

L

It is not clear to us how to generalize Theorem 3.9 to integer coefficients. For
R = Zp), the following example shows that the result does not hold for an arbitrary
family ¥ .

Example 3.12. Let G = S5 and R = Z(3) , and take F as the family of all 2-sub-
groups and 3-subgroups in G. Consider the RIg-module M = R[G/(Cy x C3) "]
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where C; and (5 are as in Example 3.5. It is clear that the restriction of M to a 2-
Sylow subgroup is projective (since its restriction to f = §4 is already projective),
but M does not have a finite projective resolution as an R I'g-module.

To see this, suppose that M has a finite projective resolution P — M. Then,
P((C3) will be a finite projective resolution for M (C5) over R[Ng(C3)/Cs]. This is
because C3 = {(123)} is a maximal subgroup in ¥ . This implies

M(C3) = R[S3 X Cz/C3 X Cz] = R[Cz]
is projective as an R[Ng(Cs)/Cs]-module. But,
R[NG(C3)/C3] = R[S3 x C2/ (3] = R[C2 x (],

and it is clear that R[] is not projective as an R[C; x C3]-module. So, M does not
have a finite projective resolution. L

On the other hand, the following holds for modules over orbit categories:

Proposition 3.13. let G be a finite group, and ¥ be a family of subgroups of G.
Then, a Z.1g-module M has a finite projective resolution if and only if Z.(py @z M
has a finite projective resolution over Ly I'G, for all primes p dividing the order

of G.

The proof of this statement follows from Propositions 4.4 and 4.5 in the next
section. We end this section with some corollaries of Theorem 3.9.

Corollary 3.14. Let G be a finite group and R = Z (). Suppose that ¥ is a family
of p-subgroups. Then, R[G/H "] has a finite projective resolution over RIg if a
p-Sylow subgroup of H is included in ¥ .

Proof. If a p-Sylow subgroup of  isin F, then Resg R|G/H ?]isafree R p-mod-

ule for any P € Syl,(G). So, by Theorem 3.9, it has a finite projective resolution.
O

As a special case of this corollary, we obtain the following known result (see (6.8)
in [4], [35] (2.5 and p. 296), [17], [14]).

Corollary 3.15. Let G be a finite group and R = Zpy. Then, R has afinite projective
resolution over RIg relative to the family of all p-subgroups of G.

Proof. This follows from R = R[G/G *]. O
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4. Mackey structures on Ext} I (M, N)

The notation and results of the previous sections will now be used to establish some
structural and computational facts about the Ext-groups over the orbit category. Our
main sources are Cartan—Filenberg [7] and tom Dieck [10], §11.9 (see also [17], [ 14]).

We have seen that the category of right R/ -modules has enough projectives to
define the bifunctor

Extp (M, N) = H*(Homgr (P, N))

via any projective resolution P — M (see [20], Chapter 111, §17, [23], Chapter I11.6).
The following property is also useful (see Liick [20], 17.21).

Lemma 4.1. If I is a free El-category, then

Extpr(ExM, N) = Extpp, (M, Resy N).

Proof. Take a projective resolution P of M. Since [ is free, the extension functor
E, is exact [20], 16.9. In addition, £ preserves projectives and is adjoint to the
restriction functor Resy by Proposition 2.5. Therefore

e b P> - E P E.Py—- ExM — 0
is a projective resolution of £, M, and applying Hom over the orbit category gives

Extp - (ExM,N) = H"(Homgrr(E,P, N))
= H"(Hompg[x(P.Res, N)) = Ext’}a[x](M, Res, V). O

In the rest of this section, we assume that [l = Org G for a finite group G,
where ¥ is a family of subgroups in G. Note that ['g is both finite and free as an
El-category. If there are two groups I < G, we use the notations I'g = Org G
for the orbit category with respect to the family ¥, and I'y = Org H for the orbit
category with respect to the family fg = {H N K | K € F}.

Proposition 4.2. Let M and N be two Z I'g-modules, where M(H ) is Z-torsion
free for all H € ¥ . Then for everyn > (M), the groups Ext%FG (M, N) are finite
abelian, with exponent dividing some power of |G7|.

Proof. This follows from the Lemma 4.1, Proposition 2.8, and the corresponding
result for modules over finite groups. L

Note that the Ext-groups in lower dimensions are not finite in general. But, it 1s
still true in all dimensions that the Ext-groups over Z /[ vanish if and only if they
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vanish over Z ;) I'g, for all primes p. To see this, we note that tensoring over Z with
Z.(py preserves exactness, and hence

Extyr, (M, N) ®7 Zp) = Exty (M ®z Ly, N @z L).  (43)

We also have the following:

Proposition 4.4. Let M and N be two ZI'g-modules, where M(H ) is Z-torsion free
forall H € ¥ . Then, for everyn > (M), there is an isomorphism

Ext)p, (M, N) = (D Exty (M, Np)
sIIG]

where My, = 7,y @z M and Np = Z ) @z N.

Proof. From Proposition 4.2 we know that Ext7 7% (M, N) is a finite abelian group
with exponent dividing some power of |G|, whenn > /(M ). Now the flatness of Z )
over 7 implies as above that Exty .. (M, N) is the direct sum of its p-localizations,
forall p | |(G|. We then apply the isomorphism (4.3). O

To complete the proof of Proposition 3.13, we also need the following standard
result in homological algebra (see [ 7], Chapter VI, 2.1, for the case of modules over
rings):

Proposition 4.5. A right RI'g-module M admits a finite projective resolution if and
only if there exists an integer £o = 0 such that Ext'}eFG (M,N) =0, foralln > £
and all right RI'g-modules N.

Proof. 1 M admitsafinite projective resolution of length &, then Extz - (M, N) = 0
forn > k and any RIg-module N. Conversely, if Ext'}{FG (M,N)=0forn > {
and any N, then consider the kernel Z,, of the boundary map 9,,: Py — FPy—1 in
the projective resolution P of M. It follows that

Extzr, (Zm. N) = Bxtzfo(M.N) =0

for any RI'g-module N, provided m + 2 > £y, and so Z,, is projective if we take
m = £y — 1. This gives a finite projective resolution of length £y over RIg. 0

We now recall the definition of a Mackey functor (following Dress [13]). Let G
be a finite group and D(G) denote the Dress category of finite G-sets and (z-maps.
A bivariant functor

M= (M" M,): D(G) - R-Mod
consists of a contravariant functor

M*: D(G) - R-Mod
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and a covarnant functor

M, : D(G) - R-Mod.
The functors are assumed to coincide on objects. Therefore, we write M(S) =
M, (S) = M*(S) for a finite G-set S. If f: § — T is a morphism, we often use
the notation f, = M.(f)and f* = M*(f). f § = G/H and T = G/K with
H <Kand f: G/H — G/K is given by f(eH) = eK, then we use the notation
f+ = Ind¥ and f* = Resk.

Definition 4.6 (Dress [13]). A bivariant functor is called a Mackey functor if it has
the following properties:

(M1) For each pullback diagram

et
|
S

of finite G-sets, we have fi, o g* = k™ o fi.

(M2) The two embeddings S — S| |7 «— T into the disjoint union define an
isomorphism M*(S | |T) = M*(S) & M*(T).

"‘]'<W—"'<

—_—
S

Remark 4.7. There is a functor Or(G) — D(G) defined on objects by H +— G/H
for every subgroup I < (7, and as the identity on morphism sets. By composition,
any contravariant functor H(G) — R-Mod gives a right R -module, with respect
to any given family of subgroups ¥ of G.

In the statement of Theorem 4.11 we will use the examples R[S ]: D(G) —
R-Mod, defined in (3.4) for any finite G-set S.

The following example and lemma will be used in the proof of Theorem 5.9.

Example 4.8. Let QO € ¥ andlet V be aright R[Wg (Q)]-module, where W (Q) =
Ng(0Q)/ Q. Then we define abivariant functor Dg (V) : D(G) — R-Mod onobjects
by setting

Do (V)(S) = Homrpwg (on(RIS?]. V)
forany finite G-set.S. Forany G-map f: S — T wehaveaWg(Q)-map f9: §¢ —
T ¢, which induces a homomorphism

J* 2 Hom giwg()(RIT €], V) — Hom g () (RIS€], V)

by composition. To define the covariant map £, let ¢s: R[SY¢] — V be an
R|Wg(Q)]-homomorphism, and define f.(¢s) = ¢r by

felos)) =er() = > osls)

s€S, f(s)=t
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It is not hard to verify that Do (V) is actually a Mackey functor. The axiom (M1)
follows because the ()-fixed sets in a pull-back diagram of (r-sets give again a pull-
back diagram. The axiom (M2) is immediate.

Definition 4.9. For any R 'g-module N, we define DN = ZQEISO(F(;) Do(N(Q))
and define j : N — DN as the direct sum of the adjoints of id: N(Q) — N(Q), for
each Q € Iso(Ig). Let CN denote the cokernel of j. For k = 0, define inductively
CON = N and C¥N = C(C*"1N), together with the induced maps C¥ — DC¥*.

Here is a dual construction to the E-resolution given in [20], 17.13.

Lemma 4.10. For any RIg-module N, the finite length sequence

0> N2 DN—=DCN—-— DC”"N — 0

is an exact coresolution of Mackey functors, for some m = 0.

Proof. For any RI'g-module N, the map j: N — DN defined above is injective,
so we have a short exact sequence

0> N> DN—>CN->0
Iterating the above process, we obtain
0—CN — DCN - C’N -0

and so on. By splicing, we get an exact sequence, or coresolution:

0N DN-=DCN— = DC*'N = DC*N = ... .

When N is a RIg-module of a finite length, which is the case in our situation, this
coresolution has a finite length. To check this, we use the definition of Dg(V) in
Example 4.8 to get

Do (V)(K) = Hompgpw, (o) (RI(G/K)¥], V)

forany R[Wg(Q)]-module V. Therefore D o (V)(K) is only nonzerofor (Q) < (K),
and at (Q) = (K) the R[Wg(K)|-module D g(V)(K) is isomorphic to I, via the
isomorphism Wg (Q) = We(K) induced by conjugation. This shows that the length
of the module C¥ N is properly smaller than the length of CF=!N forallk > 1. O

We will prove Theorem 5.1 by showing that /7 — Ext} ry, (M. N) has a coho-
mological Mackey functor structure which is conjugation invariant. First we describe
the Mackey functor structure on Hompgr, (M, N).
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Theorem 4.11. Fora right RI'g-module M and a Mackey functor N, let
Hompgr,(M,N): D(G) — R-Mod

denote the function defined by S + Hompgr, (M ®g R[S 7], N) for any finite G -set

S. Then Hompgr, (M, N) inherits a Mackey functor structure.

Proof. We first define the induction and restriction maps to see that Homgp, (M, N)
is a bifunctor. For f: § — T a G-map, the restriction map

f*: Homgr, (M ®g R[T '], N) — Homgrs (M ®g R[S ], N)
is the composition with M @z R[S | ﬂ M @g R[T*| where f denotes is the
linear extension of the map induced by f. Since the functors R[S ?] satisfy axiom
(M2), so does Hompgr, (M, N).
For f: § — T a G-map, we define the induction map

fu: Hompry, (M ®g R[S "], N) — Homgr, (M ®g R[T"]. N)

in the following way: let os: M @ R[S?] — N be given. We will describe the
homomorphism g7 = fi(@s).

er(V)(x ® @) = Fy(ps(U)(F*(x) ® B))
forx e M(V)andw: V — T, where U, f and F are given by the pull-back

ULS

ol
V——>T,
It is easy to check that this formula for g7 gives an R g-homomorphism, using the

assumption that N is a Mackey functor.
We need to check axiom (M1) for Hompp, (M, N). For a given pull-back square

g 5

T

ST’T

we need to show that 2,0 g* = k™o fi. Lety: V — Y be any G-map, and consider
the extended pull-back diagram
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The maps @ = k oy and § = g o § may be used to compute f,(¢s) as above, and
the left-hand square may be used to compute /..
For any element ¢5: M Qg R[S?] — N, we have

(k™ o fulesN(V)(x @ y) = (fules) o (d @ K))(V)(x @ ¥)
= files)(V)(x ® (ko y))
= Fulps(U)(F*(x) ® (g 8))

forany x € M(V)and y: V — Y. On the other hand,
(hs 0 g7 (@s NV (x @ y) = Fi((g7ps)(U)(F™(x) @ §))
= Fulps(U)(F*(x) ® (g 2 9))
forany x € M(V)and y: V — Y, so the formula (M1) is verified. O

As an immediate consequence, for any subgroup H < K the G-map f: G/H —
G/K induces a restriction map

Resg: Hompr, (M,N) — Hompgp,, (M. N)
defined as the composition of the map
f*: Homprs (M ®@g R[G/K '], N) — Homgrs (M ®g R|G/H |, N)
with the ‘Shapiro’ isomorphisms:
Hompgr. (M ®@g R|G/H ], N) = Homgr, (M, N)

and
Hompgr, (M ®@g R|G/K "], N) = Homgr, (M, N)

given by Corollary 2.12 of [35] and the adjointness property (compare [2], Lem-
ma 2.8.4). Similarly, we have the induction map

Indgz Hompgpr, (M, N) - Homgr, (M, N)

defined by composing the Shapiro isomorphisms with f,.

Remark 4.12. Since Resg preserves projectives, we see that P ®g R[G/H "] is
projective over Rl whenever P is projective over Rl (check the categorical
lifting property directly or apply Lemma 3.2).

Proposition 4.13. Let C be a chain complex of right RI'g-modules and N be a
Mackey functor. Then, the cochain complex

C* = HOI‘an_,(C, N)

with the differential§: Hompgr,(C;, N) — Hompgr,(Ciy1, N) givenby 6(¢) = ¢od
is a cochain complex of Mackey functors.
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Proof. We have seen that each C* = Hompgp,(C;, N) is a Mackey functor by Theo-
rem4.11. We just need to show that the coboundary maps are Mackey functor maps.
Given f: § — T we need to show the following diagram commutes:

9 8 ?
Hompgr, (C; ® R[S *], N) —> Homgr, (Cit1 & R[S ], N)

f*Tlf; f*Tlf;

2 8 2
Hompgr, (C; ® R[T ?], N) —Hompgr, (Ci+1 ® R[T *], N).

The proof of commutativity for f* is easy. In this case, it follows from the commu-
tativity of the following diagram:

2 I®i 2
C; @ R[S?] <22 €y ® R[S

lid@f lid@f

C; @ RIT <24 i @ R[T?.

For f. we check the commutativity directly: let ¢gs: C; ® R[S’] — N be an
RIg-map. Forx € Ci((V)anda: V — T, we have

|87 © fo)os](x @ o) = (fags)(Ix @ )
= Filos (F*(9x) ® B)]

where

B
R

U
|
v

N——t
&.ﬂ

[
o
on the other hand,

[(fs 0 8s)es](x ® a) = Fi[(§ses)(F*(x) @ B)]
= Filps o (8 @ id)(F"(x) ® B)]
= Filps(dF"(x) @ p)]

since 0F* = F*9, we are done. O
Corollary 4.14. let M be an RI'g-module and N be a Mackey functor. Then,
Extpp, (M, N)

has a Mackey functor structure. As a Mackey functor Extp, (M, N) is equal to the
homology of the cochain complex of Mackey functors Hompgr, (P, N) where P is a
projective resolution of M as an RIg-module.
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Proof. To compute the Ext-groups, note that S — P @g R[S 7] is a projective
resolution of the module § — M ®g R[S ?], for every finite G-set §. 0

Remark 4.15. It follows that a version of the Eckmann—Shapiro isomorphism
Extyr (M @ R|G/H"|,N) = Extyr, (Res? M, Res? N)
holds for the Ext-groups over the orbit category (compare [2], 2.8.4).

Remark 4.16. If N is a Green module over a Green ring ‘¢, then the Mackey functor
Extp r, (M, N) also inherits a Green module structure over . The basic formula is
a pairing

5(S) XHOmRF?(M XRp R[SQ],N) — HOII‘IRF?(M @R R[S?],N)

induced by the Green module pairing § x N — N. Forany z € §(5), x € M(V),
anda: V — §, we define

(z-s)(VNx @) = o™(2) - s (V) (x ® @)

forany s (V): M(V)®@gr RMor(S, V) — N(V). The check that this pairing gives
a Green module structure is left to the reader. L]

5. The proof of Theorem C

The main purpose of this section to prove the following theorem.

Theorem 5.1. Let G be a finite group, R = Zypy, and ¥ be a family of subgroups
in G. Suppose H < G controls p-fusion in G. Then,

Resg . Extpp (M, N) — Extgr, (Resg’, M, Resg’, N)

is an isomorphism for n = 0, provided that M is an RIg-module and N is a
cohomological Mackey functor satisfying the condition that Cg(Q) acts trivially on
N(Q) and M(Q) for all p-subgroups Q < H, with Q € ¥.

Certain Mackey functors (called cohomological) are computable by restriction to
the p-Sylow subgroups and the conjugation action of G (see [7], Chapter XII, §10,
[19D).

If i < G is a subgroup, and n € Ng(H) then the G-map f: G/H — G/H
defined by f(eHl) = nH has an associated conjugation homomorphism ¢, (h) =
n~'hn € H,forall h € H. For an arbitrary R 'g-module M, the induced maps f*
need not be the identity on M(G/H ) evenifc, = id (e.g. it n € Cg(H)).
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Definition 5.2. We say a Mackey functor is cohomological (over ¥ ) if
Ind® ResX () = |K: H| -u

forallu € M(K),andall H < K (forall K € ). An RI'g-module M with respect
to a family ¥ is called conjugation invariant it Cq(Q) acts trivially on M{(Q) for
all Q € ¥. A Mackey functor is called conjugation invariant if it is conjugation
invariant as a functor over the corresponding orbit category.

The following lemma will be used in the proof of Theorem 5.9.

Lemma 5.3. Let O € ¥ andlet V be a right R[Wg(Q)]|-module. If ¥ is a family
of p-subgroups, and R = Fp, then Dg(V): D(G) — R-Mod is a cohomological
Mackey functor over ¥ . If Ca(Q) acts trivially on V, then Do (V) is conjugation
invariant.

Proof. Since all subgroups in ¥ are p-groups, for the first part we only need to show
that the composite Indg Resg () = p-u,for K € ¥ and H < K a normal of
index p.

Let f: G/H — G/K be the G-map given by gH +— gK. Consider the induced
map f9: (G/H)? — (G/K)?. Taket € (G/K)2. If there isno s € (G/H)?
such that f(s) = ¢, then the transfer is trivially zero. Suppose that there is at least one
element s = g/ whichis fixed by O and mapstos = gK. Let ky,. ..,k be coset
representatives of H in K. Since k; normalizes H, the element gk; H € (G/H)?
for each i. Therefore, there are exactly p different s € (G/H)€ that map to £. It
follows that fi o f* is multiplication by p, as required. Since we are working here
over the finite field FF,,, all the composites fi o f* = 0.

We now show that D (V') is conjugation invariant if Cg (Q) acts trivially on V.
In other words, we claim that for all K € ¥, the centralizer Cg (K) acts trivially on
Hom g, (0)1(R[G/ K] €. V). Consider the way the actionis defined: letc € Cg(K)
and ¢: R[G/K|¢ — V be an R[Wg(Q)]-map. Then (c¢)(gK) = ¢(gcK). On the
other hand since gK € (G/K)?, we have Q¢ < K. So, ¢ centralizes Q¥. This
means gcg~! centralizes O and hence acts trivially on V. This gives

o(gcK) = ¢(geg™'gK) = geg ' p(gK) = p(gK).

Therefore (c@)(gK) = @(gK) for all gK. This shows that ¢ € Cg(K) acts as the
identity on Hom g[w, (gy] (R|G/K]2. V). O

The cohomological and conjugation properties are inherited by the Ext-functors.

Proposition 5.4. Let M and N be RIg-modules relative to some family ¥ .

(i) If N is a cohomological Mackey functor over ¥, then EXt*RF?(M’ N) is a co-
homological Mackey functor over all subgroups H < G.
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(i) Ifboth M and N are conjugation invariant with respectto ¥, thenExtp n (M, N)
is conjugation invariant with respect to all subgroups H < (.

Proof. We have seen that for f: S — T, the induced maps
2 S 2
Hompgr, (M & R[S "]. N) %D‘ Hompgro (M @ R[T *],N)

satisfy the property that

[(fs o FPer](V)(x @ @) = Ful f ™ (or)(U)(F* (x) @ B)]
= Fuler(U)F"(x) @ (f  B))]
= Filgr (U)(F*(x) ® (o 0 F))]
= (Fxo FO))ler (V)(x @ a)]

forall x e M(V)and o: V — T. In the last equality we used the invariance of @1
with respect to the G-map F: U — V (our notation comes from the definition of
f+ above). Hence, if f: G/H — G/K and F, o F* is multiplication by |K: H|
(this follows from a count of double cosets), then f, o f* is also multiplication by
| Kt HE]-

Let M and N be conjugation invariant right R/ g-modules, and let P be a pro-
jective resolution of M over RIg. To show that Exty ~ (M, N) is conjugation in-
variant, it is enough to show that the chain map induced by the conjugation action on
Hompgp, (P, N) is homotopy equivalent to the identity. We remark that the action of
anelement ¢ € Cg(H) gives an automorphism J.: Org H — Ory H, and induces
an RI'y-module chain map P(J,): Resg (P) — Resg (P).

If f: G/H — G/H is given by eH + ¢H where ¢ € Cg(H), then for each
degree i,

£ Homgr,(P; ® R|G/H?|,N) — Homgr, (P; ® R[G/H"|,N)
is given by
FHes)U)(x @ a) = ps(UNx @ foa)
where § = G/H,x € Pi(U),and a: U — G/H is a G-map. In other words,
¥ = Hompgpr, (A;,id), where A;(x ® ) = x ® f o o defines a chain map
AMPRR[G/H']| - P® R[G/H"].

Wemay assume thatU = G/K withK € ¥ . Leta(eK) = gH . The conjugation
actionof ¢ € Cg(H) on M(U) or N(U) is given by the G-map F: G/K — G/K,
where F(eK) = gcg™ 'K and foa = aoF. Weremark that z := gcg™! € Cg(K),
since K C gHg™!, and that P*(F) = P(J,)(K). Notice that

[ es)U)(x @ @) = (ps(U)(x - PHF) @ a)) - N¥(F),
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showing that the maps f;* are just given by the natural action maps of ¢ on the domain
and range of the Hom. Now observe that

P(J;): Res%(P) — Resg(P)

is a chain map lifting M (J;): Resl(;’r(M ) — Resl(;’r(M ). Since M is conjugation
invariant, it follows that P(.J,) ~ id by uniqueness (up to chain homotopy) of lifting
in projective resolutions. Therefore A1 (= A o (P*(F) ® id) ~ A, and f* =~
Hom(A{,id). But for all x € P;(U), we have

Hom(A1,id){ps)(U)(x®a) = @5 (U)(x- P (F)® fow) = (ps(U)(x®a))-N"(F),

and hence f*(¢s) ~ ¢s, by the conjugation invariance of V. O

Definition 5.5. For any subgroup 4 < G, and any R[g-modules M and N, an
element o € Exty . (M, N) is called stable with respect to G provided that

H EH
Resyy e (0) = Res i sy c?}(a)

forany ¢ € G. The map c¥; is the induced map fy where f: G/H — G/%H is the
G-map givenby xH — xg~ ' (gHg™).

Theorem 5.6. Let R = Zp) and G be a finite group. For a right RI'g-module M
and a cohomological Mackey functor N : D(G) — R-Mod, the restriction map

Resp : Extip (M. N) — Exthp, (M. N)

is an isomorphism for n = O onto the stable elements, for any p-Sylow subgroup

P <G.

Proof. By Proposition 5.4 (i), Ext (M, N) is a cohomological Mackey functor.
Now the result follows (as in [33], 2.2) from the stable element method of Cartan and
Eilenberg [7], Chapter XII, 10.1. (|

Remark 5.7. Note that since Ext - (M, N) is a cohomological Mackey functor, it
is a Green module over the trivial module R, considered as a Green ring by defining
Indg: R(G/H) — R(G/K) to be multiplication by |K : H| (see Example 2.9 in
[19]). It follows that Ext} » (M, N) is computable in the sense of Dress in terms of
the p-Sylow subgroups (see Example 5.10 in [16]).

The proof of Theorem 5.1. Let R = Z(py and G be a finite group. Let H < G be
a subgroup which controls p-fusion in &. For any cohomological Mackey functor
F, the restriction map Resg maps surjectively to the stable elements in F (), for
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any p-Sylow subgroup P < G. If H controls p-fusion in G, and F is conjugation
invariant, then all elements in F(H ) are stable and

Ress : F(G) = F(H)

is an isomorphism. This follows by a standard argument used to prove one direc-
tion of Mislin’s theorem in group cohomology (see, for example, Symonds [33],
Theorem 3.5, or Benson [2], Proposition 3.8.4). We apply Proposition 5.4 and this
remark to the cohomological Mackey functor F = Ext, . (M, N), and the proof is
complete. ' L

In the next section we will need a variation of this result.

Definition 5.8. We say the N is an atomic right RIG-module of type O € F, if
N = Ig(N(Q)) where Iy is the inclusion functor introduced in Section 2.

Theorem 5.9. Let G be a finite group, R = Z(p), and let ¥ be a family of p-
subgroups in G. Suppose H < (G controls p-fusion in . Then, for RI'g-modules
M and N,

Res? : Exth ro (M, N) = Extgpr, (Res% M, Ress N)

is an isomorphism for n = 0, provided that Cg( Q) acts trivially on M{(Q) and N(Q)
Jorall Q € ¥.

Proof. Without loss of generality, we can assume that N is an atomic R [g-module of
type Q, with trivial C (Q )-action on N(Q). This follows from the 5-lemma (using
the filtration of N in [20], 16.8).

Furthermore, we may also assume that N(Q) is R-torsion free. To see this,
observe that as an Ng(Q)/ 0 Ce (Q)-module, N(Q) fits into a short exact sequence
0 - L — F — N(Q) — 0, where F is a free Ng(Q)/QCg((Q)-module. By
taking inflations of these modules, we can consider the sequence as a sequence of
Ng(Q)/Q -modules and apply the functor /. This shows that N fits into a sequence
0 - N"— N — N — 0, where both N" and N are conjugation invariant and
atomic, with an R-torsion free module at Q.

Now let N, = N @ F, = N/pN. By Lemma 4.10 we have a finite length
coresolution

0— N, - DN, - DCN, - ---— DC"N, — 0 (5.10)

for some m > 0. Since ¥ is family of p-groups, Lemma 5.3 shows that the Mackey
functors DC' N, are cohomological over ¥ and conjugationinvariant, for0 < i < m.
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We can apply the functors Exty, (M. =) to the coresolution (5.10). By Propo-

sition 5.4, the Mackey functors Exty, (M, DC ' N,) are also cohomological and
conjugation invariant. Therefore '

Res? : Ext*RFG (M, Np) = Extpp, (M, Np)

is an isomorphism by Theorem 5.1 and the 5-lemma (using the coresolution). Fur-
thermore, since N((Q) is R-torsion free, we have a short exact sequence

0— N/pF=1' = N/pF - N/p — 0,
for every k > 1, and hence by “dévissage” we conclude that
Resf; : Extlp. (M, N/p*) =5 Extyp, (M, N/ p) (5.11)
is an isomorphism, for every & > 1. To finish the proof it is enough to show that
Resfy : Extyr, (M. N)® Z, — Exthr, (M.N)® Z,

is an 1somorphism. However, for P any projective resolution of M over R, the
complex

Hom gy, (P. N/ p¥) = Hompgr, (P, N) ® Z/ p¥

is a cochain complex of finitely-generated R-modules. By the universal coefficient
theorem in cohomology [30], p. 246, we have an exact sequence

0 — Exthp. (M. N) ® Z/ p* — Exthp (M. N/p¥)
— Torf (Ext}h! (M, N), Z/p*) — 0.

Since Z p = l(in 7./ p* and the inverse limit functor is left exact, we obtain an exact
sequence

0 — Exthr. (M.N)® 7, — lim Extyr, (M. N/ )
: R n+1 k
— LE]TC’rl (EXtRFG (M,N),Z/p").

Now we compare this sequence via Resg to the corresponding sequence for the
subgroup H, and use the dévissage isomorphisms (5.11) on the middle term. This
shows immediately that Resg is injective on the first term, for all # > 0. Since the
functor Tor{a is left exact, we get Resg’, injective on the third term as well. But now

a diagram chase shows that Resg is surjective on the first term. (|
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6. Chain complexes over orbit categories

In this section, we prove some theorems about chain complexes over orbit categories.
In particular, Proposition 6.8, Proposition 6.4, and Theorem 6.7 will be used in the
proof of Theorem A (see Section 9). Most of the results follow from Dold’s theory
of algebraic Postnikov systems [11].

As before, G denote a finite group and ¥ denote a family of subgroups of G.
Throughout this section /' = Org & and R is a commutative ring. For chain com-
plexes C and D, the notation C ~ D always means C is chain homotopy equivalent
to D. For chain isomorphism the standard notation is C = D. When we say C is
a projective chain complex, we mean it is a chain complex of projective modules
(which also means that it is projective in the category of chain complexes). A chain
complex C is positive if C; = 0 fori < 0.

We say that a chain complex C over RIg has finite homological dimension (or
hdim C is finite) if C is positive, and there exists an integer n such that H,;(C) = 0
fori > n. A chain complex C is finite if C is positive, and there exists an integer
n such that C; = Ofori > n. We start with a well known observation about chain
complexes.

Lemma 6.1. Let C be a projective chain complex of RI'g-modules which has finite
homological dimension. Then, C is homotopy equivalent to a finite projective chain
complex if and only if there is an integer n such that

Extpr, (C.M) =0 fori>n,
forall RI'g-modules M.

Proof. See Cartan—Eilenberg [7], Chapter XVII, 1.4, for chain complexes over rings.
A similar argument as in Proposition 4.5 gives the result over the orbit category. [

Proposition 6.2. Let C be a projective chain complex of 7.I'g-modules which has a
finite homological dimension. Suppose that L,y @z C is chain homotopy equiva-
lent to a finite projective chain complex for all p||G|. Then, C is chain homotopy
equivalent to a finite projective complex.

Proof. Let M be an RI-module. Consider the hypercohomology spectral sequence
(see [3], 3.4.3):
Ey" = Extyr (H/(C), M)

which converges to Ext7 re (C, M). Since C has finite homological dimension, for
all i > (I(I'g) + hdim C), the group Ext,(C, M) is a finite abelian group with
exponent dividing a power of |G|. Here /(1) is the length of the orbit category, as
defined in §2D, and hdim C denotes the largest integer # such that H,(C) # 0.



Vol. 88 (2013) Equivariant CW-complexes and the orbit category 399

In particular, there is an integer &, independent from M, such that

Extyr, (C,M) = (D Exty . (Z(p) ®2 C, Mp)
2lIG|

foralli > k. Here M, = Z(,)®@z M. Now, since Z ) @z C is homotopy equivalent
to a finite projective complex for all p | |G|, there is an # such that

Exty (C.M) =0
foralli > » and for all M. The result follows from the previous lemma. U

A chain complex version of Rim’s theorem also holds.

Proposition 6.3. Let R = Z () and C be a projective chain complex over RI'g with
Sfinite homological dimension. Assume that ¥ is a family of p-subgroups. Then, C is
homotopy equivalent to a finite projective complex if and only ifReSg C is homotopy
equivalent to a finite projective complex for any p-Sylow subgroup P of G.

Proof. One direction is clear (and holds without assumption on the family ). Con-
versely, suppose that Resg C is homotopy equivalent to a projective complex with
hdim = /. Let n be an integer bigger than both / and hdim C. Consider

0
e — Resg Cphp1 — Resg Cpn —> Resg Chog — " — Resg Co—0.

We have
Exthr, (Res§ im(3,), M) = Extlyt! (Res§ €, M) = 0,

for every RI'p-module M. This gives that Resg im(4dy, ) is projective. By Theo-
rem 3.9, we obtain that im(9d,) has finite projective resolution. Thus, C is chain
homotopy equivalent to a finite projective complex. L

We also prove a chain complex version of Theorem 5.9. Recall the definition of
conjugation invariant RIg-modules given in (5.2).

Proposition 6.4. et G be a finite group, and ¥ be a family of p-subgroups in G.
Suppose H < G controls p-fusion in G and R = Zp). Let CH be a positive
projective chain complex of RI'g-modules such that the homology groups H; (CH)

are conjugation invariant right RI'g-modules, for every i = (. Then, the following
holds:

(1) There exists a positive projective chain complex C¢ of RI'g-modules such that
Resg CYC is homotopy equivalent to CH.

(i) If C¥ is homotopy equivalent to a finite projective complex, then CS is also
homotopy equivalent to a finite complex.
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For the proof we will need the theory of algebraic Postnikov systems due to Dold
[11], §7. According to this theory, given a positive projective chain complex C,
there is a sequence of positive projective chain complexes C(7) indexed by positive
integers such that f : C — C(i) induces a homology isomorphism for dimensions
< i. Moreover, there is a tower of maps

C(i)

|

C(i — 1) —= Si+1p(H;)
|
|
Y 5
¢ C(1) — 2~ 53 (1)

N

C(0) — 2> 22P(H,)

such that C(i) = X7 C(«;), where C(w;) denotes the algebraic mapping cone of «;,
and P( ;) denotes a projective resolution of the homology module ;.

Recall that the algebraic mapping cone of a chain map f: C — D is defined
as the chain complex C(f) = D @ XC with boundary map given by d(x,y) =
(dx + f(x),dy). Note that X" is the shift operator for chain complexes which is
defined by (X" C); = C;_, for every integer n.

The algebraic Postnikov system has similar properties to the Postnikov system
in homotopy theory. The maps a; : C(i — 1) — XZiHIP(II;) are called k-invariants
and they are well defined up to chain homotopy equivalence. We can consider the

k-invariants as classes in Ext;"FlG (C(i — 1), H;), since there is an isomorphism

[C(i — 1), Z"+TP(H,)] = Bxtyr, (CG — 1), H;)

between chain homotopy classes of chain maps and the Ext-groups of chain complexes
(see Dold [11] for details). The k-invariants «; € ExtiR"'FlG (C(i — 1), H;) are defined
inductively and they uniquely specify C up to chain homotopy equivalence.

We also need a lifting result for R I'y-modules.

Lemma 6.5. Let G be a finite group, and ¥ be a family of p-subgroups in G.
Suppose H < G controls p-fusion in G. Then the restriction map M +— Resg (M)
gives a bijection between the isomorphism classes of conjugation invariant right
RIg-modules and conjugation invariant right RI'y-modules.

Proof. A conjugation invariant right R I'g-module M is a functor Org G — R-Mod
which factors through the quotient category Or G — Subg G. Here Subgz G has ob-
jects K € ¥ and morphisms Morgy, g (K, L) = Morg,,. g(G/K,G/L)/Cs(K),
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where an element ¢ € Cg(K) acts on a G-map defined by f(eK) = gL via the
composition eK — cgL (see p. 206 in [21]).

Consider the functor F: Org H — Org G given on objects by H/K — G/K
(see Section 3), and on morphisms by induced maps. First note that every object
of Subs G is isomorphic to an object of Subz H, since every p-subgroup of G is
conjugate to a subgroup of /. In addition, F induces a bijection of morphism sets

Morsuby #(K. L) — Morsu, 6 (K, L)

since H controls p-fusionin G. Supposethat F( fi) ~ F( f2), where fi(eK) = hL
and f(eK) = hyL, for some hq,h, € H. By assumption, there exists ¢ € Cz(K)
such that chp,I. = h{L, or hl_lchz € . < H. But this implies ¢ € Cy(K) so
f1 & f> and F is injective on morphisms. Given f: G/K — G/L with K < H,
fleK) = gL and g7'Kg € L < H, we have g = ch for some ¢ € Cg(K) and
h € H, because H controls p-fusionin G. Hence f ~ F(f1), where f1(eK) = hL
and F is surjective on morphisms.

Therefore the functor F: Ory H — Orgz G induces an equivalence of categories

F: Subg,-H = Sub?, G
by [24], IV.4, Theorem 1, p. 91. U

Proof of Proposition 6.4. Part (ii) follows from Proposition 6.3, so it 1s enough to
prove the existence of C¢. By Lemma 6.5, for each i > 0 there exists a conjugation
invariant right RI'g-module H l.G such that Resg (HI.G) = H,;(CH).

Consider the Postnikov tower for C¥ . Since CH (0) = P(Hy(CH)) there is a
complex CY (0) such that Resg CY(0) ~ CH(0). In this case, the complex C% (0)
can be taken as a projective resolution of HOG . Now, we will show that such a lifting
exists for C# (i) for all i . For this we prove a slightly stronger statement so that we
can carry out an induction. We claim that the following holds for all 7 = 0.

(i) CH(n) lifts to a chain complex C% (1)

(i) The restriction map
Res$ ExtR . (C%(n), N) —» Extgr,, (C7(n),Res§ N)

1s an isomorphism for all * = 0 and for every RIg-module N which is conju-
gation invariant.

We have already shown that C7(0) lifts to C%(0). For the second property, first
observe that C%(0) is chain homotopy equivalent to a chain complex with single
module HOG and similarly, C¥(0) ~ H ({{ . So, we need to show that

Res$ : Extk ., (HS, HE) — Exthr, (HI, H)
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is an isomorphism. This follows from Theorem 5.9, because of our assumption on
homology groups.
Now, assume that both (i) and (ii) hold forn = i — 1. Then, take

of € Extidt (COG — 1), HE)

which corresponds to the class asiH € Ext;}lﬂ i -1, H I.H ) under the isomor-
phism given in (ii). Let C% (i) = ™! C(oal.G ). Then, we have a short exact sequence
of chain complexes

af
0—=Cl (i) —C4(i — 1) —= S TP(HI) —0.

Since Resg al.G = oalH , we have Resg CY (i) ~ CH(i). Now, we will show that (ii)

holds for C% (i). By the 5-lemma, it is enough to show that
Resf; : Extpp, (ST 'P(HT), N) — Exthp, (ST'PHT). N)

is an isomorphism for all * = 0, and for every RIg-module N which is conjugation
invariant. But, this follows from Theorem 5.9. U]

Now, we prove one of the main results of this section which allows us to glue
p-local chain complexes. We first give a definition.

Definition 6.6. Let C be a chain complex over RIg. We say that C has homology
gaps of length n, if H; ;1 (C) = 0for 0 < k < n, whenever H,(C) # 0.

Theorem 6.7. Let G be a finite group of order m. For each prime p | m, let CP) be
a positive projective chain complex of Z.(pyI'G-modules. Suppose that

(i) CW has homology gaps of length > 1(I'g), for all p | m,
(i1) there exists a graded 7.I'g-module H such that H; (C(P)) = Zpy®z H; forall
i 20, andforall p|m.

Then, there is a projective chain complex C of 7. I'g-modules such that 7.y @z C ==
C(p),for each prime p | m, and H;(C) = H; fori > 0.

Proof. We will construct C inductively. The case i = 0 is trivial, because in this
case we can take C(0) = P(Hy). Assume now that C(i — 1) has been constructed
in such a way that Z,y ®z C(i — 1) =~ Cff)l forall p | m. If H; = 0, then we can
take C(i) = C(i — 1) and it will satisfy the condition that Z ) ® 7 C(i) ~ CI(‘D). So,
assume H; is nonzero. If i +1 > (Z(Fg) + hdim C(7 — 1)), then we have

Exty. (CG — 1), P(H)) = GBEMZ;)FG (Z(p) ®z C(i — 1), HP)
plm

~ @Ext’z(m r (€ — 1), B

plm
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where HI.(‘D ) = Zpy @z H;. Note that the above condition on (7 + 1) is satisfied
since the distance between nonzero homology groups of C(P) is bigger than /().
Choose a; € Extfz‘}l(; (C(i — 1),P(H;)) so that under the p-localization map, «; is

mapped to the i-th k-invariant al.(p ) of the p-local complex C2), for every p | m.

Let C(i) = 71C(«;). For each prime p | m, we have a diagram of the form

0— C(i) —=C(i — 1) — = P(H;) — 0

a(p)

0——= CP ) ——= PG - 1) - P(pr)) el
where the vertical map ¢, is given by the composition
@p: Ci — 1) = Zpy 2 CG — 1) = CP(G —1).

The first map in the above composition is induced by the usual inclusion of integers
into p-local integers. From this diagram, it is clear that there is amap C(i) — C&(7)
which induces an isomorphism on homology when it is localized at p. Thus, it gives
a chain homotopy equivalence Z ) ®z C(i) = C)(i), for p | m. This completes
the proof. (]

We conclude this section with a technique (used in the proof of Theorem A) for
modifying the homology of a given (finite, projective) chain complex C over the orbit
category. A projective resolution P — M has length < £, provided that P; = 0 for
i >T.

Proposition 6.8. et I" be an El-category. Let ¢ Hp — H;C be an RI" -module
homomorphism, where Hy = Hy(C). Suppose that both kernel and cokernel of ¢
admit finite projective resolutions of length < £, andthat Hy ; =0 for1 < j < £.
Then there is a RT" -chain complex C' such that H;(C') = H;(C), fori # k, and
H (C) = H;C

Proof. First suppose that ¢ is surjective. Let
0= Pryy — - — Pr = kerp = 0

be a projective resolution for ker ¢. Since C is exact in the range [k + 1,k + £), we
have a chain map

0 Py Priq Py kergp —=0

e e ]

o —— Cppr1 — Cryy s Cr+1 Zy Hy 0.
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This gives a chain map f: P — C, where fi: Py — Cy is the composition of fj
with the inclusion Z; C Ck. Let C' = C(f) denote the mapping cone of f. The
induced map

kergp = Hi(P) - Hp(C) = Hy

on homology is given by the inclusion, and hence Hi(C') = H, with H;(C') =
H;(C) fori # k.
Now suppose that ¢ is an injective map, so that

0 — Hy Eo H) — cokerg — 0 (6.9)

is exact. Let e: P — coker ¢ be a projective resolution of coker ¢ of length < £,
indexed so that e : Py — coker ¢ — 0. We form the pull-back

0 H; ﬁk Py 0
|
0 H; H, cokerg —— 0

of the sequence (6.9) by ¢, and note that ﬁk = H; & Pi. The chain complex
i > Cpyp1 > C B P > Cpg —» - —> Cy— 0
has homology Hyati =k, and & H; — H; is surjective. By the pull-back diagram,
ker ¢ = ker(e: P, — coker g).

Since coker ¢ has a projective resolution of length < £, it follows that ker ¢ has a
projective resolution of length < £. Hence the assumptions needed for the surjective
case hold for @ H; — H, and we are done by the argument above.

The general case is done by expressing the map ¢ : Hy — H_as the composition
of a surjection and an injection. (]

7. The finiteness obstruction

Let (¢ be a finite group and F be a family of subgroups of (G. The main result of this
section is Theorem 7.6: given a finite projective chain complex C of 7 I'g-modules,
for ' = Orz G, we can obtain a finite free complex by taking join tensor of C with
itself sufficiently many times. This result is an adaptation to the orbit category of the
fundamental work of Swan [32]. We first introduce some definitions, based on the
material in Liick [20], §10-11.

Let I" be an El-category. We denote by Ko(Z I') the Grothendieck ring of isomor-
phism classes of projective Z I"-modules and Ky(Z I, free) denote the Grothendieck
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ring of isomorphism classes of free ZI'-modules (under direct sum M & N and
tensor product M ®z N ). We have an exact sequence of abelian groups

0 — Ko(Z T free) — Ko(ZT) % Ro(ZT) — 0

defining the quotient group Ko(ZI).

Note that Ko(Z T, free) is a subring, but not an ideal in general. This is because
the tensor product of a free module with a projective module is not free in ZI". For
example, if P 1s a projective module which is not free, then P ® Z = P is not a free
7, I'g-module although Z is free when G € ¥.

Given a finite projective chain complex of Z I'-modules

C:0-C,—-Cy_y—--—C, >Cy—0

we define .
0(C) = ) (-1)'[Ci] € Ko(ZT)
i=0
and N
0(C) = q(0(C)) € Ko(ZT).

The class 6 (C) is called the finiteness obstruction since it is the only obstruction for
C to be chain homotopy equivalent to a finite {free chain complex.

From now on, we assume that all the chain complexes are positive and projective.
As always, we assume all modules are finitely generated.

The following are standard results which show that & (C) is an invariant, and that
it is an obstruction for finiteness.

Lemma 7.1. If C and D are chain homotopy equivalent, then o(C) = o (D).
Proof. See [20], 11.2. ]

Lemma 7.2. Let C andD be finite chain complexes of projective 7.I" - modules. Then,
c(C®zD) =0c(C)-c(D).

Proof. See [20], 11.18, and the sharper result in [20], 11.24. ]

Lemma 7.3. Let C be a finite chain complex with 6(C) = 0. Then C is chain
homotopy equivalent to a finite chain complex of free Z.I"-modules.

Proof. See Swan [32], Proposition 5.1. L

Given two chain complexes of RI"-modules C and D, consider the corresponding
augmented complexes

C: o= -Ci =-Cy—-R—=0
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and

—~

D:---—- Dy —- Dy — Dy— R— 0.
Taking their tensor product, we obtain a complex of the form
CorD: -5 C1®D1®Cy @Dy — Co & Dy — R — 0.

Definition 7.4. We define the join tensor, denoted C 3 D, of two positive augmented
chain complexes C and D by the formula

CxD= E(E QR f)),

where 2 denote the suspension of a chain complex defined by (2C); = C,—; for
all 7.

Lemma 7.5. Let C and D be finite chain complexes of projective Z.I" -modules. Then,
c(C#D)=0(C)+oD)—o0(C)-c(D).

Proof. Note that (C % D)y = Cr & Dy & EBi+j:k—1 C; ®z D;, foreach k > 0.
Therefore,

o(CxD)=> (—DF[CG]+ D DDl - > (—DF[G o D))
k k i+j=k—1
and the result follows. U

We often express the above formula by writing
(1 —0(C%D)) =(1-0(C)(l-0o(D)).

Whenever it is written in this way, one should understand it as a formal expression of
the formula given in Lemma 7.5. The main theorem of this section is the following:

Theorem 7.6. et I'g = Org G where G is a finite group and F is a family of sub-
groups in G. Given a finite chain complex C of projective 7. g -modules, there exists
an integer n such that n-fold join tensor %, C of the complex C is chain equivalent
to a finite complex of free 7.I'g-modules.

We need to show that the finiteness obstruction & (3¢, C) vanishes for some n. In
the proof we will use a result by Oliver and Segev [26].

Proposition 7.7. Let G be afinite group andlet P and P’ be anytwo finitely generated
projective .G -modules. Then, P @z P’ is stably free as a 7Z.G-module.

Proof. See [26], Proposition C.3. U
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We also need the following splitting theorem for Ko(Z ).

Theorem 7.8. let I' be an El category. Then, the map

Ko(S): Ko(ZI) — €P Ko(Zx)).
x€lso(I)

defined by [P| — [Sx(P)] on each x € 1s0(I"), is an isomorphism. The same holds
when Ky is replaced by Ky.

Proof. See Liick [10], Proposition 11.29. U

As a consequence of this theorem, if /7 is finite then Ko(ZT) is finite: in this
case I" has finitely many isomorphism classes of objects x € Ob(I"), and Aut[x] is
a finite group (apply Swan [31]), Proposition 9.1. In particular, if I = Org G, then
the group Ro(IM) is finite.

From now on we assume /g = Org ( for some finite group G, relative to some
family ¥ . The splitting theorem above can also be used to give a filtration of Ko(Te).
Recall that every projective Z['g-module is of the form

P @ EgSyP
HeT

where 7 is a set of representatives of conjugacy classes of elements in #. So, another
way to express the above splitting theorem 1s to write

Ko(LIg) = €D Ko(ZT)u
HeT
where Ko(ZTg)y = {|P] | EgSg P = P}. Note that this is only a splitting
as abelian groups, but using this we can give a filtration for the ring structure of
Ko(ZTg). Let
b=TocThi - CTy=T

be a filtration of 7 such thatif € 7; and K € T; and *H < K forsome g € G,
then i < j. This gives a filtration

0=Ko(ZIg) C Ko(ZIg)1 € C Ko(ZTG)m = Ko(ZTg)

where
Ko(ZIg)i = {[P]| P = Dyer, EaSu P}

Lemma 7.9. Let V be a Z|Ng(H)/H|]-module and W be a Z|Ng(K)/K]-module.
Then

il

EgV @z ExW= @  Egrex(Resgnex EnV ®z Resgnex ExW).
HgKeH\G/K
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Proof. Applying the definition, we get
EgV @z ExW = (V@ W) Q@zauwG/H)xauG/ k)] L Mapg (?, G/H x G/K)

where Map (X, ¥') denotes the set G-sets from X to Y (see [10], 11.30, for a similar
computation). Since

G/HxG/K= || G/HN3K),
HgKeH\G/K
the module gV @p ExW decomposes as
@ EgnexUnnzi
HgKeH\G/K
where Uy neg are Ng(H NEK)/(H N ¢ K)-modules. Applying Spnzx, we find

Unnsx = Sursk(EgV @z ExkW) = Resgnsg(EnV @z Ex W)

= Resynsg EuV @z Resynesx ExW.
O

Lemma 7.10. Ko(Z1g); is an ideal of Ko(Z.Tg) .
Proof. For Eg Sy P and Ex Sk, we have
ExSyP ®z ExSkQ = D ELVL
E

where L = H N#K forsome g € G. So,if H € T;, K € T;,and L € T, then
k<i,j. ]

Now, Theorem 7.6 follows by induction from the following proposition.

Proposition 7.11. Let C be a finite chain complex of projective 7.1'g-modules. If
G(SpC) =0forall H € T ~ T, then there is an n such that 7(Sy (3%,C)) = 0 for
al HeT ~T;_4.

Proof. An element in 6(C) can be expressed asa sumu + »_ ; vj + w where

u= Y o(EgSuC). Y vi= Y  o(EgSpC),
HeT; j HeT;~Ti
and
w = Z a(EgSyC).
HeT~T;
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By Lemma 7.5, we have

1= 0(3,C) = (1 — o(C))" = (1 _ (u +3 v+ w)) € Ko(ZTg).
J

So,
| — 0 (%,C) = (1 _ (Zuj + w))n mod Ko(Z TG )i1.
i

By Lemma 7.9, it is easy to see that v; - vx = 0 (mod Ko(ZIg)i—1), for j # k.
Note that
vj - v; = stably free (mod Ko(Z13)i—1)

by Proposition 7.7. To complete the proof, observe that modulo Ko(Z g )i—1,
n
(1= (Zw +u))
J
1+y (k)(—l) (Zuj ¥ w)
k=1 J
" (n
=14 Z (k) (—1)* Zkvjwk_l + stably free
k=1 J

I
-1
=1+4n Z Z (z B 1)(—1)kvjwk_1 + stably free.
k=1 j

1 —o(x%,0)

This shows that o (3%, C) is stably free for some n, since Ko (Z I'g) is a finite group.
L

8. Realization of free chain complexes

Let X be G-CW complex, and let ¥ be a family of subgroups of G. Throughout this
section, R denotes a commutative ring and /g denotes the orbit category Org G-

Definition 8.1. We say that a G-CW complex X has isotropy in ¥, provided that
XH £ gimplies H € ¥, forall H < G.

The main result of this section is Theorem 8.10, which shows that under certain
conditions a finite free chain complex over the orbit category can be realized by a
finite G-CW complex with isotropy in ¥ . This is a generalization of Swan [32],
Theorem A, which is based on a construction of Milnor, see 3.1 in [32].
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Associated to a G-CW complex X with isotropy in ¥, there is a chain complex
of RI-modules defined by

5 dn 2, On ? 9 ?
C(X*: R): ...i>R[Xn']—>R[Xn_1']—>“'_1>R[X0.]_>0

where X; denotes the set of i-dimensional cells in X and R[X; ?] is the coefficient
system with R[X; *|(H) = R[X I.H |. We denote the homology of this complex by
H,(X"; R), and in particular

H (X" R)(H) = H(X":R).
Given a chain complex C of R[g-modules, there is a dimension function
DimC: ¥ — Z,
constant on conjugacy classes of subgroups, defined by
(Dim C)(H) = dim C(H),

for all H € ¥, where the dimension of a chain complex of R-modules is defined in
the usual way as the largest integer d such Cy # 0.

It will be convenient to write (H) < (K) whenever H® < K forsome g € G.
Here (#7) denotes the set of subgroups conjugate to 7 in G.

Definition 8.2. We call a function d : ¥ — Z monotone if it satisfies the property
that d(K) < d(H) whenever (H) < (K). We say that a monotone function d is
strictly monotone if d(K) < d(H), whenever (H) < (K) and (H) # (K). L

Note that 4 monotone implies that d is constant on conjugacy classes (such
functions are usually called super class functions). We remark that the dimension
function of a projective chain complex is always monotone: if (Ey P)(K) # 0, then
(Eg P)(L) # Oforevery L < K.

A chain complex C of RI'g-modules is connected if Cis positive and Hp(C) = R.

Definition 8.3. Letn: ¥ — 7 be amonotone, non-negative function. A complex C

of RI'g-modules is Callgdd an n-Moore complex if it is connected, and forall H € ¥,
the reduced homology H;(C(H)) = 0, fori # n(H). O

A special case of an n-Moore complex is a homology n-sphere.

Definition 8.4. We say that a complex C of RI'g-modules is an R-homology n-
sphere if it is an n-Moore complex, and for all 7 € F, we have f;(C(I)) = R,
fori = n(H). A homology n-sphere is called oriented if the Ng (H)/H -action is
trivial on the homology of C(H) forall H € ¥.
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The chain complex associated to the unit sphere X = S(V') of areal or complex
representation V of ¢ is an example of a Z-homology n-sphere, where n(H) =
dim X 7. A G-CW complex X with this property is a komotopy representation in the
sense of tom Dieck (see [10], Chapter I, Definition 10.1), provided that its dimension
function is strictly monotone. We will not use this terminology further.

We now introduce a technique to remove free modules above the homological
dimension from a chain complex, without changing its chain homotopy type. For
this delicate process we first need some algebraic lemmas.

Definition 8.5. Let I” be an El-category. A free RI'-module F is called isorypic
of type x € Ob([I") if it is isomorphic to a direct sum of copies of the free module
E,R|[x|].

For extensions involving isotypic modules we have a splitting property.

Lemma 8.6. Let
E: 0> F—=>F M-=>0

be a short exact sequence of RI"-modules over an El-category I'', such that both F
and F' are isotypic free modules of the same type x € Ob(I"). If M(x) is R-torsion
free, then & splits and M is stably free.

Proof. 1t is enough to prove the result in case I = E, R[x], where x € ObT". The
general case follows from this by an easy induction. Consider the extension
€:0— ExRlx] > F - M — 0.
By the adjointness property
Homgpr (L R[x], N) = Hompg[(R[x], N(x))
for any RI™-module N. We apply this to the given injection j: E,R[x] — F' =
(£ R|x])™. Since
&(x): 0 — R[x| > R[x]" = M(x) = 0

has R-torsion free cokernel M (x), this sequence splits over R[x]. By the naturality
of the adjointness property, we get a splitting of j over R L

Recall that hdim C(#) denotes the homological dimension of the chain complex
C(H).

Proposition 8.7. Let C be a finite free chain complex of RI'g-modules, and let
H € ¥ have the property that hdim C(H) < d = dim C(H). Suppose that
dimC(K) < (d —2) forall (H) < (K), (H) # (K). Then C = D, where D is
a finite free complex with dimD(H) = d — 1, and dimD(K) = dim C(K) for all
(K) # (H).
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Proof. Consider the subcomplex C’ of C formed by free summands of C isomorphic
to Z|G/K ?], with (G/K)! £ 0 or equivalently (/) < (K). The boundary maps
of C’ are the restrictions of the usual boundary maps to these submodules. Since
dim C(K) < (d — 2) forall (H) =< (K) such that () # (K), the free modules C
and C/,_. are isotypic of type G/H . We have

d—1
C:0->C,—-Ci_—-—=Cl=-Ci—0

where d = dim C(H). Note that C(H) = C'(H), so the map d4: C; — C;_,

is injective by the condition that hdim C(H) < dim C(f7). Now we can apply

Lemma 8.6 to the extension

0
0— C} — Cy_, — cokerdg — 0

and conclude that coker(dy) is a stably free RIg-module. By adding elementary

chain complexes to C of the form Z|G/H * | LY 7Z|G/H * ] in the adjacent dimensions
(d — 1) and (d — 2), we can assume that coker(d,) is free. Consider the diagram

0 Gl — 2 i 0 0 0

id D l l
IR S Y G .
D: ... 0 0 coker d4 —’*C:i—z Co 0.

The chain complex I’ is a chain complex of free modules and it is chain homotopy
equivalent to C’. Now define D as the push-out in the following diagram:

ker ker
C’ C @y
D’ D c/C’

Since, C" and D’ are chain homotopy equivalent, then C and D are chain homotopy
equivalent. Also, note that dimD(H) = dimD'(H) = (d — 1), and dimD(K) =
dim C(K) for all (K) # (H). L

This immediately gives the following.
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Corollary 8.8. Let C be a finite free chain complex of RI'g-modules. Suppose that
C is a homology n-sphere, with n strictly monotone. Then C is chain homotopy
equivalent to a complex D with DimD = n.

Proof. Since C is a homology n-sphere, n{K) = hdim C(K), forall K € ¥. We
apply the previous result to a subgroup 7, which is maximal with respect to the
property that hdim C{H) < d := dim C(H). Then n(K) = dim C(K) for all
K € ¥ larger than H. Since # is strictly monotone, dim C(K) < (d — 2) for all
(H) < (K), (H) # (K). This process can be repeated until DimD = n. O

When the dimension function of C is not strictly monotone, we get a weaker
result. Following Section 2, we define /(f7, K) as the maximum length of a chain of
conjugacy classes of subgroups

() =(Ho) = (H) 2 ... 2 () =(K)

whereall H; e F,0<i < 1.

Corollary 8.9. Let C be a finite free chain complex of RI'g-modules, andletn: ¥ —
7, be a monotone function such that hdim C(H) < n(H) for all H € ¥. Assume
that I(H, K) < k whenever n(H) = n(K). Then, C is chain homotopy equivalent
to a complex D which satisfies D;(H) = 0 foralli > n(H) + k.

Proof. Let
(H) =(Ho) = (H1) 2 ... 2 (H) =(K)

be a maximal length chain of subgroups in ¥ with n(H) = n(K). Since n is
monotone, n(H;) = n(H) for0 < i < [. By repeated application of Proposition 8.7,
working down from the maximal element K, we can obtaindim C(H;_;) = n(H)+i,
for0 <i </. Since! = (H,K) < k,wehave dim C(H ) < n(H) + k as required.

O

The main purpose of this section is to prove the following theorem:

Theorem 8.10 (Pamuk [27]). Let C be a finite free chain complex of 7.I'g -modules.
Suppose C is an n-Moore complex such that n(H) = 3 for all H € ¥. Suppose
furtherthat C;(H) =0 foralli > n(H)+ |, and all H € ¥ . Then there is a finite
G-CW complex X, such that C(X7; Z) is chain homotopy equivalent to C, as chain
complexes of Z.I'g-modules.

Note that the resulting complex X will have isotropy in ¥ . We first prove alemma
(compare Theorem 13.19 of [20]).
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Lemma 8.11. Let X be a finite G-CW complex. Suppose that we are given a free
Z.T'g-module F, and a 7.T'G-module homomorphism ¢: F — H, (X", Z), for some
n = 2. Assume further that X 7 is (n — 1)-connected for every H € F such that
Z|G/H | is a summand of F. Then, by attaching (n + 1)-cells to X, we can obtain
a G-CW complex Y such that

H(X":72)= H(Y":Z)fori #n,n+1,
and
0— H, 1(X":2) > H, (Y. Z) > F By H,(X"7Z)— H,(Y":Z) = 0

s exact.

Proof. Let Z be awedge of n-spheres with a (+ action on them such that i, (Z',Z) =
I as ZI'g-modules. We want to construct a map f: Z — X realizing ¢. But
H,(X":7) = m,(X"), for every H € F such that Z[G/H "] is a summand of
F, since X is assumed to be (n — 1)-connected. Therefore, we can represent
the images of an Z|Ng (f)/H]-basis under ¢ for the isotypic summand in F of
type G/H by maps f;: S* — X . We extend these maps equivariantly to maps
fi: 8" x G/H — X. By repeating this construction for each type G/H in F, we
obtain an equivariant map f: Z — X realizing ¢. Take Y to be the mapping cone
of f. Then, it is easy to see that ¥ satisfies the desired conditions. U

We also need the following lemma:

Lemma 8.12. et C be a finite free chain complex of Z.I'g-modules. Suppose that
C is connected, and H;(C) = 0, fori = 1,2. Then, C is chain homotopy equivalent
to a complex of the form

o Cp > Chg == C3 =5 Co(X) = C1(X) = Co(X) = 0

where C2(X) — C1(X) — Co(X) — 0 is the initial part of the chain complex
C(X?: 7), for some G-CW complex X with isotropy in ¥, and X simply-connected
forall H € F.

Proof. There is a G-CW complex I # G satisfying the following properties:
(i) All isotropy subgroups of E¢ G arein ¥ .

(i) Forevery H € ¥, thefixed pointset (E# G)¥ iscontractible [22], Theorem 1.9.

The chain complex D := C((E#G)*: Z) of this space gives a free resolution of
Z as a ZI'g-module. Since H;(C) = 0, fori = 1,2, the following sequences are
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both exact
05 o
0 A C, Cq Co Z 0
H (8.13)
05 o7
0 B Dy Dy Dy Z 0

where A = ker 82C and B = ker 8‘29.
By an elementary operation on a sequence A — C, — C; — Cy we mean

adding or removing trivial free summands F % Fin adjacent dimensions. Itis clear
that elementary operations do not change the chain homotopy type of the upper and
lower sequences in diagram (8.13).

Then, by Schanuel’s Lemma [32], 1.1, there exist free modules £ and F’ such that
A® F = B & F’. Infact, the argument in Schanuel’s lemma can be extended to say
that the induced isomorphism y: A @ F = B @ F' comes from a chain isomorphism
after a sequence of elementary operations (compare [20], p. 279).

In other words, there exists a chain isomorphism

00— AP F——CFRh—CidF—Ci®d Fy Z 0
Vls slfz ;lﬁ ;lfo H
O%B®F'%D2®F£%D1®Ff—>DO®F6 4 0

(8.14)

for some suitable choices of free modules, where the upper and lower sequences in
diagram (8.14) are obtained from those in diagram (8.13) by elementary operations
(see Proposition 3.3.3 in [27]).

In the first step, we stabilize (4 — C3) = (A & F — C, ¢ I'), by adding the
identity on F, and similarly (B — D) = (B & F' — D, & F'). We therefore
have a chain map

0—— A F ——Cr, 8 F 4 Co Z 0
=
0O——BpF ——= Dy F’ D4 Dy Z 0

which is a chain homotopy equivalence (by composition with the chain map in (8.14)).
After an elementary operation on C, we can use the isomorphism y: AGF =~ B F’
to splice the bottom sequence to C, and obtain a chain homotopy equivalence

Cs P F——Co B F Ci Co Z 0
Cs C3®DF ——= D, g F' Dy Dy Z 0.
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The top sequence is chain homotopy equivalent to C, so to complete the proof we
need to show that the sequence D, & F' — Dy — Dy — 0 can be realized as
the first three terms of a chain complex of a G-CW complex X, with isotropy in ¥,
such that X 7 is simply connected forall H € #: since E¢ G is contractible, using
Lemma 8.11, we can attach free 2-cells to its two skeleton E#G®. The resulting
complex X will have the desired properties. L

Now, we are ready to prove Theorem 8.10.

Proof of Theorem 8.10. We can assume that the complex C is of the form given in
Lemma 8.12. We obtain a map ¢: C3 — Cr(X 2)) which induces an isomorphism
Z2(C) = Z>(X@) between 2-cycles of these chain complexes. This is the starting
point for an inductive argument based on applying LLemma 8.11 at each step.

Fixn = 2, and assume by induction that there is an #-dimensional G-CW complex
X and a chain map

ot Oy —— Cht1 Cn Co 0
0 Zy(X D) — €, (XD) —> - —> Cy(X @) —0

which induces an homology isomorphism for dimensions less than or equal to (n — 1),
and at dimension 7z the induced map Z,,(C) — Z,(X ) is an isomorphism.

Note that dim C(H) < n(H) + 1 by assumption. If Z[G/H ?] is a summand of
Cyi1,then (n + 1) < dim C(H) < n(H) + | implies n{H) = n, and hence the
H-fixed set of X is (1 — 1)-connected. We can now apply Lemma 8.11 to the map
@: Cpy1 — H,(X®:7) defined by the composition

¢: Cup1 = Zn(©) = Zy(X™) — Hy (X" 2).

Let us call the resulting complex X®+1. Note that there is a chain map C —
C(X @+1) which induces an isomorphism on homology for dimensions < n, and
at dimension 7 + 1 we have an isomorphism Z,11(C) = Z, 41 (X®#+1). Since C
is finite dimensional, after finitely many steps, we will obtain a finite dimensional
G-CW complex X and a chain map f: C — C(X) which induces isomorphism on
homology for all dimensions. Since both C and C(X) are free Z I'g-chain complexes,
f is achain homotopy equivalence as desired. L

9. The proof of Theorem A

Let G = S5, the symmetric group of order 120 permuting {1,2,3,4,5}, and let
S4 < G denote the permutations fixing {5}. We work relative to the family ¥ of
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rank 1 subgroups of 2-power order. Let ['g = Org G. Our family ¥ consists of the
subgroups of ¢ which are conjugate to one the subgroups in the set

(1,c.¢c2 ¢y

where C' = ((12)(34)), CF = ((12)), and C4 = {(1234)). In addition we will
consider the Sylow subgroups Cs = ((123)) and C5 = ((12345)). It is convenient
to note that for I = §4 < G, we have

Nu(Cs) = Dg = N (C3') = Ng(Ca).

while NH(CZB) = E = {(12),(34)), and Ny (C3) = Sy1233. On the other hand,
Ng(CE) = ((12), Sz45)) and Ng(C3) = Sq123; % ((45)).

Our strategy will be to construct finite projective complexes C#) with isotropy in
¥ over ZpyI'G, for each prime p dividing the order of |G|, which are R-homology
n-spheres with respect to the the same homology dimension function z. The glu-
ing theory of Section 6, Theorem 6.7, will be used to construct a finite projective
Z-homology n-sphere over Z ' from this data. Then the join construction from
Section 7 will allow us to find a finite free complex, to which the realization theorem
of Section 8 will apply.

We introduce the notation Ry for the RI'g-module defined by Ro(K) = 0, for
K # 1, and Ry(1) = R with trivial G-action. In other words, Ry = I1(R) as
defined in Section 2.

9A. The case p = 2. Let I = S4 < G, R = Z(,) and consider the standard
H -action on the 2-sphere given by the rotational symmetries of the octahedron. Let
X denote the H-CW complex associated to the first barycentric subdivision of the
octahedron. Then X has isotropy in the family consisting of the cyclic subgroups of
H of orders < 4.

Let I'y = Org H denote the orbit category for 1 with respect to the family
Fy = ¥ N H. Consider the chain complex C(X’: R) as a chain complex of RIy-
modules, by restricting this functor to the full subcategory 'y of the orbit category
Or(H ). This gives an exact sequence of the form

0 — Ry — 2R[H/1%] — 3R[H/17]
— R[H/C4'|® RH/CL?| ® R[H/C3?] = Hy — 0,

where all the modules in the extension (excluding the ends) except R[H/C3 "] are
free Ry -modules, and Hy = Hy(C(X?; R)).

Since R|H /(3| is a projective RH -module (it is induced up from R, which is
projective over R[C3]), we see that R[H/C3’] = I1R[H/C3] as RI'g-modules.
Therefore C(X?; R) is a finite projective chain complex over RIy.
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It is useful to represent an Rl -module M by alabelled tree diagram:

M(Cy)

M = M(CH M(CF)

e

with one vertex for each isomorphism class of objects, and edges given by the par-
tial ordering of the subgroups in ¥ up to conjugacy. The labels are given by the
R[Ny (K)/K]-modules M(K), for K € ¥.

For the homology module Hy(X”; R) over the orbit category I'yy we have the
diagram

M(1)

R[Ds/C]

Mo = R[Ds/C4 R[E/CP]

R.

The (k + 1)-fold join of C(X?; R) with itself (see Section 7) is a finite projective
complex of the form

CO0-Ry—-(C) 5 —>C,—»--=>Cy—->R—-0

over Ry with (n + 1) = 3(k + 1). Incase X = S(V), where VV = R3 is a real
orthogonal f-representation, then the join construction on spheres just produces the
unit sphere S(V & --- @ V) in the direct sum of (k + 1) copies of V. This sphere has
real dimension n = 3(k + 1) — 1. The purpose of the join construction is to produce
a complex with dimension gaps between the non-zero homology groups, as required
by Theorem 6.7 for gluing the different primes together.

We have Ho(C) = Rand H,, = Ry. If (k + 1) is even, then H;(C(Q)) = R,
with trivial Ny (Q)/Q-action, and H; (C(Q)) = 0, fori # k, for each non-trivial
Q € F. By Proposition 6.4, we obtain a chain complex C of projective RIg-
modules, having homology isomorphic to R, with trivial Ng(Q)/Q-action. By
construction, the homology dimension function z for C? is the same as for C.
Notice that 7z 1s monetone, but not strictly monotone.

9B. Thecase p = 3. Let R = Z(3yand K = CZB. The 3-period of G = 55 is four
(see [7], Chapter XII, Example 11), so by Swan [32] there exists a periodic projective
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resolution P with
0O R—-P,—----—> P —>PFPy—-R—=10

over the group ring RG, for any n such that 4 | (n 4+ 1). We will assume that
12 | (n + 1), and let k& be defined by the equation (n + 1) = 3(k + 1). Similarly,
since Ng(K)/K = S§3 also has 3-period 4, we have a chain complex D yielding a
periodic projective resolution

0= R—- Dy —---—Dyg—-R—=0

over RS3. In the rest of this section we let Wx = Ng(K)/K to simplify the notation.
We want a finite projective chain complex C over RIg which fits into an extension
of chain complexes
O— EfP—-C—=IgD—=0

where the induced exact sequence on the 0-th homology
0— Ry - Hy(C) - I[gR—>0

is the non-trivial extension of tree diagrams (with vertices at {1, K'})

0 R R
0 — ‘ — +id — ‘ — (.
R R 0

For a projective R[Wg|-module D, the module /g D has a finite projective resolution
of the form

0—— FE1Res Ex D —— Ex D —— Ig D —— 0.
By definition of the functors £, and 7 (see Section 2), the canonical map
EM—-I,M—0

is always surjective for any R[x]-module M. We have Ex R[Wx]| = R|G/K "] and
hence Eg D is projective. Also Res; Ex D is projective, because it is a summand of
R[G/K] which is projective as a ZzyG-module. This shows that, once constructed,
C will be homotopy equivalent to a finite projective chain complex by Proposition 6.2.

Associated to every RG-chain map f : Res; ExD — P, there is a chain complex
C which fits into the push-out diagram

0—— F1Resy ExD —— ExD IxD 0

o

0 EP C IxkD 0.
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We want to choose f so that C satisfies the condition on homology. Note that
Hy(Resy ExgD) = Resy Ex R = R[G/Ng(K)|.

Since the modules Res; Ex D; = (Ex D;)(l) are projective for all i and P is exact,
there exists a chain map f: Res; ExD — P

LR

Py Py R 0

lifting the augmentation map R[G/Ng(K)] % R. To sec that the resulting push-
out complex C has the desired properties, consider the homology at zero for the
diagram of chain complexes given above. Since [k is an exact functor, H{(I/xD) =
Ix Hi(D) = 0, and we get

0 —— Ho(E1Res; EgD) —— Ho(EgD) —— Ho(IgD) —= 0

s | |

0 ———— Hy(E1P) ————— Hy(C) —— Hy(IxgD) ——0
where Ho(£1P) = E£1R. Note that
Hy(F1Resy ExD) = E1Resy Hy(ExD) = E1Res; ExR = E1R[G/Ng(K)|.
This gives a diagram of the form

FEikerg =———— F  kere

0 — E1R|G/Ng(K)] — ExR — IxR —0

E1(e) H
0 —— Ef{R——— Ho(C) ——= g R——0
where the middle vertical sequence of RI¢-modules is given by

R R
00— — ‘ — \|rid — 0.
ker & R|G/Ng(K)| R

This shows that Hy(C) has the desired form.
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Now, to obtain the same homology dimension function as for the complex C®,

more homology must be added to the complex C. We need to extend Hy and Hy via
the non-split extensions

0—>H0—>ﬁ0—>N—>O and 0—>Hk—>ﬁk—>N—>O

where

The module N has a finite projective resolution of the form
0— E1R|G/Dg] - Ec,R— N — 0.
Note that Res; Ec, R = R[G/Ng(Cs)] = R[G/Ds), and for 0 = C#* we have

Resg Ec, R = R®R[pg/c,RI(G/C)2] = RRgpg/c, ] RING(Q)/Ne, (Q)] = R

where the equality in the middle comes from Lemma 3.6. Since R is projective as
an R[Dg/C4]-module, E¢, R is projective. It is easy to see that F£1 R[G/ Dg] is also
projective. So, by Proposition 6.8, we can replace C with a finite projective chain
complex C) over RI'g which has the desired homology.

9C. The case p = 5. For p = 5, the situation is easier than the case p = 3. Let
R = Zsy. The 5-period of S5 equals 8, so by Swan [32] there exists a periodic
projective resolution P over the group ring R(r, giving an exact sequence

0 R—->P,—--+-—-P—>Py—R—0

for any positive integer n such that n + 1 = 3(k 4 1) for some integer k, with
8 | (£ + 1). We start with the RI'g-complex C = EP obtained by the extension
functor from P. Since C has no homology at the non-trivial 2-subgroups in ¥, we
need to change the homology at Hy and at Hy to match the homology we have for
p = 2and p = 3. Note that we need to extend Hy, and Hy via the non-split extensions

O—>H0—>ﬁ0—>M—>O and 0—>Hk—>ﬁk—>M—>0
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where

Let K =C ZB . The module M is the direct sum of L. (which has the same form as
N)and g R. We claim that each of these modules have finite projective resolutions
over RIg. For Ix R we have a resolution of the form

0 — E1R[G/(K x S3)] = ExR — IgR — 0.

Note that
Res; Ex R = R[G/Ng(K)] = R[G/(K x §3)]

where S3 denotes the subgroup of S5 generated by symmetries of {3,4,5}. Since
R is projective as an R[Ng(K)/K]|-module, Ex R is projective. It is clear that
E1R[G/(K x S3)]isalso projective. So, the above resolution is a projective resolution
of Ix R. We can also write a finite projective resolution for L (similar to the resolution
given for N). So, by Proposition 6.8, we can replace C with a finite projective chain
complex C®) which has the desired homology.

The proof of Theorem A. We will first construct a projective chain complex C over
7, I'g with isotropy in ¥, by applying Theorem 6.7 to glue the p-local complexes
@ for p = 2,3,5. Note that in the constructions of C{?) apave, we may choose
any integer k suchthat k odd, n + 1 =3(k + 1), 12 | (n + 1) and 8 | (kK + 1).
To satisfy the first condition in Theorem 6.7, that the distance between non-zero
homology groups of the C) is larger than /(') = 2, we will also need k > 3 and
n—k =3

Remark 9.1. The minimum value for k satisfying the requirements used above is
k =7, which gives n = dim C = 23.

The ZI'-module H needed to satisfy the second condition in Theorem 6.7 1s
given by H;(K) = Z, fori = 0,n(K) with K € ¥, and zero otherwise. By
Proposition 6.2, C is chain homotopy equivalent to a finite projective complex.
To obtain a finite free complex, we can apply Theorem 7.6, which (possibly after
some joins) produces a finite free Z I -chain complex C with the Z-homology of an
n-sphere, and n(K) = 3 forall K € ¥.

Note that our homology dimension function z is not strictly monotone, since
n (CZA) = n(Cy), but by Corollary 8.9 we can modify our complex to satisfy the
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conditions for geometric realization in Theorem 8.10, since /(C5!, C4) = 1. Applying
Theorem 8.10, we conclude that G = S5 acts on a finite G-CW complex X with
isotropy in F . 0

Remark 9.2. For this particular example we needed to apply Theorem 7.6 with one
join tensor operation, because Ko(ZI'g) = 7/2. This follows from Theorem 7.8,
Lemma 7.5 and well-known calculations showing that Ky (Z|Nc(Q)/Q]) = 0, for
1 #Q e ¥, but EO(Z[G]) = 7 /2. Note that, by Dress induction, it is enough to
consider the projective class groups of p-hyperelementary subgroups of G (see §50
in [9], [28]). We therefore obtain a finite G-CW complex X ~ § 47 with isotropy
in ¥.
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