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Vertices of closed curves in Riemannian surfaces

Mohammad Ghomi*

Abstract. We uncover some connections between the topology of a complete Riemannian
surface M and the minimum number of ver/fces, i.e., critical points of geodesic curvature, of
closed curves in M. In particular we show that the Space forms with finite fundamental group
are the only surfaces in which every simple closed curve has more than two vertices. Further
we characterize the simply connected Space forms as the only surfaces in which every closed

curve bounding a compact immersed surface has more than two vertices.
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53A05.
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1. Introduction

In this paper we study the relation between the topology of a complete Riemannian
surface Af and the minimum number of ver/7ces, i.e., critical points of geodesic

curvature, of closed curves in M. Our prime motivation here is the classical theorem
of Kneser [25], [29], which states that any (£P) simple closed curve in Euclidean
plane iP has at least four vertices. It is known that this result also holds in the sphere

and hyperbolic plane HP, since the Stereographic projection and the inclusion

map of the Poincare disk preserve vertices [26], [9]. Further, it follows from another
classical result due to Möbius [28], [39] that any simple closed curve in the projective
plane MP^ has at least three vertices. We show that, up to a rescaling, these are the

only surfaces where every simple closed curve has more than two vertices:

Theorem 1.1. TTze onZy compZefe R/emmzmVm sw//<2ces wZzere every s/mpZe cZosee?

cwrve Zzos more fZzon Avo verf/eex ore fZze xpoee/ormx w/fZz^mYe/mzdomentaZ growp.

Thus the simply connected space forms are the only complete Riemannian surfaces

where Kneser's four vertex theorem holds, and real projective planes are the only
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other surfaces where every simple closed curve has at least three vertices. Another
Classification result we obtain in this work uses the extension of Kneser's theorem
to self-intersecting curves by Pinkall [34] who showed that every closed curve in R^
(and hence HP and S^) which bounds a compact immersed region must have at least

four vertices. Our next theorem shows that this property also characterizes the simply
connected space forms:

Theorem 1.2. 77z£ onZy compZ^te ^ZemmzmVm wZzere every cZosee? cwrve
wZzZcZz ZwwmZs a compact Zraraersee? swz/ace Zz<xs raore ^Zzan ftvo ver/^Zee^ ßre ^Zze sZmpZy

eonnee^ee? ^paee/orm^.

Finally one may ask what are all surfaces which satisfy the condition of the last
theorem if the word "immersed" is replaced by "embedded". Obviously, surfaces of
the above theorems would then fall into that category, but there are more examples:

Theorem 1.3. 77ze onZy corapZete T^mmzmVm swz/aces wZzere every cZosee? cwrve
wZzZcZz ZwwmZs a compact embedded surface Zzas more ^Zzan ftvo ver/fces ore oncntafeZc

spacc/orms o/gc/ms zcro,^/Zct ton, one? rcscaZZngs o/ RPp

We recall that an orientable surface of genus zero is one that is homeomorphic to
minus a totally disconnected subset [37]. The above theorems are proved in the

next three sections below. The proofs of Theorems 1.1 and 1.3 employ some basic

curve shortening and certain perturbation results for closed geodesics or horocycles
in hyperbolic surfaces. An important lemma utilized here is a result of Jackson [24]
who showed that Kneser's four vertex property holds only in surfaces with constant
curvature. The proof of Theorem 1.2 also uses this lemma, together with an explicit
example of a rather remarkable cylindrical curve which has only two vertices but
bounds a compact immersed surface (Figure 5). A general result for perturbing
closed geodesics to curves with only two vertices is discussed in the appendix.

Four vertex theorems have spawned a vast and diverse literature since the first
version of the theorem was proved in 1909 by Mukhopadhyaya [30], who showed
that convex planar curves have four vertices. This is the only version mentioned in
nearly all differential geometry textbooks, with the exceptions of [18], [29] where
the more general theorem of Kneser is discussed, see also [23], [31], [20]. PinkaH's

paper [34] and related work [48], [7] offer other more general proofs as well, based on
a number of ideas. For more recent proofs see [1], [45] which use curvature flow and

Sturm theory. Another recent development is concerned with a converse of Kneser's
theorem [10], [15]. There are also interesting generalizations to space curves [41],
[49], [46], connections with contact geometry [2], [50], polygonal analogues [33],
and a version for surfaces with boundary [14]. See [36] for a physical application,
and [13], [32] for some more references and historical remarks.
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2. Proof of Theorem 1.1

We begin by recording the result of Jackson mentioned above:

Lemma 2.1 ([24]). MfeöRZem<znnZ<zn wZfA cwrva/r/re X andZ^/? Z?£ a

poZn^ o/M. Swppose /? Zs a sta/fomzry poZn^ o/X, Z.£., JXp 7^ 0. TTzen

an 6 > 0 sncZz aZZ 0 < r < c, £Zz£ rae/rZc cZrcZe a/radZns r centered a£

/? Zzas anZy Ava ver/fces.

Thus we may confine our attention to complete Riemannian surfaces Af of con-
stant curvature X, or 2-dimensional space/arras, as far as proving Theorem 1.1 is

concerned. Furthermore, we may assume that Af is not simply connected due to the

following fact: let c R^ denote the unit sphere and HP C R^ be the Poincare

half-plane with its Standard metric of constant curvature —1; then we have:

Lemma 2.2 ([26]). 77ze stereograpZzZc prq/ec/fan tt : — {(0,0,1)} -> R^ and
dze ZncZnsZon map Z: HP -> R^ preserve dze sZgn q/TZze denva/fve q/TZze geodesZc

cnrva/nre a/cnrves.

Thus Kneser's theorem holds in all simply connected 2-dimensional space forms.
The property of the Stereographic projection mentioned above was already known
to Kneser [25], and the property of the inclusion map for the Poincare disk was

proved by Maeda [26]; but the Poincare disk and half-plane are equivalent up to a

Möbius transformation, which establishes the corresponding fact for the Poincare

half-plane, since Möbius transformations preserve vertices [34], [20]. Essentially,
these observations are consequences of the fact that the Stereographic projection and

the inclusion map of the upper half-plane send circles to circles, and the vertices occur
when the curve has third order contact with its osculating circle.

It remains to consider non-simply connected 2-dimensional space forms M. We

may assume, after a rescaling, that the curvature X of Af is 0, 1, or — 1. Then by the

Hopf-Killing theorem [44], [38], Af X/G where X R^, S^, or HP and G is a

discrete subgroup of isometries of X which acts freely and properly discontinuously
on X. In particular, the projection tt : X —X/G M is a Riemannian covering
map. We also recall that G is isometric to the fundamental group tti(M). Indeed,
for any point o e Af, c e X with tt(ö) o, and closed curve y: [0,L] -> Af
with y(0) <9, if y: [0, L] -> X is the lifting of y with y(0) <9, then there exists

a unique element g e G such g(y(0)) y(L). This correspondence, which will
be utilized a number of times below, establishes the isomorphism between G and

7Ti(M).

2.1. The elliptic case. If X 1, then Af is the real projective plane RP^
§V{±1}. By a theorem ofMöbius [28], [39], see Note 2.8 below for other references,
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any simple closed noncontractible curve T in RP^ has at least three /n/fecf/on pomfa,
i.e., points where the geodesic curvature vanishes. But there must be at least one
vertex between every pair of inflections. Thus T must have at least three vertices. On
the other hand, if T is contractible, then it lifts to a pair of simple closed curves in
S^, each of which must have four vertices by Kneser's theorem. Since the covering
map is one-to-one on each of these curves, it then follows that T must have at least
four vertices. So we conclude then that all simple closed curves in RP^ must have

at least three vertices. (Note that in a nonorientable surface, the geodesic curvature
in only well-defined locally and up to a sign; however, this is enough to allow one to
talk about vertices and inflection points.)

In the remaining cases we construct explicit examples of simple closed curves
with only two vertices, by perturbing geodesics or horocycles of M.

2.2. The parabolic case. If ÄT 0, then M R^/G where there are exactly four
types of possibilities for G corresponding to the cases of cylinder, twisted cylinder,
torus, or Klein bottle [44]. In each of these cases Af contains a simple closed geodesic
T, as may be easily seen by looking at the fundamental region of these surfaces which
is either a rectangle or an infinite strip in R^. Let y: R/L Mbea parametrization
of T by arclength (where L denotes the length of T), and y be a lifting of y to R^. Then

ytracesaline which we may assume tobe the x-axis. Letg £ Gbetheuniqueelement
such that g(y(0)) y(L). Then g is either the "translation" (x, y) i-> (x + A, y)
or the "glide reflection" (x, y) i-^ (x + L, —y) and we define, respectively,

y(0 := (?,Asin or y(0 := Asin (^))'
for some A > 0. Then the image of y is invariant under the action of g. Consequently,
if TT: R^ —> M denotes the covering map, then tt o y traces a smooth closed curve in
Af with only one or two vertices. Further note that, as A -> 0, y converges to y, and

consequently tt o y converges to tt o y y with respect to the t^-norm. So since y
is simple, it follows that tt o y will be simple as well for sufficiently small A.

2.3. The hyperbolic case. If K -1, or M is a hyperbolic surface, we need to
establish a basic structure theorem first. Recall that an of a surface is a nested

sequence of subsets which eventually lie outside any given compact subset. Each
dement of this sequence is called an end and two ends are equivalent
if each representative of one end lies in a representative of the other. A cwsp of a

hyperbolic surface is an end with a representative which is isometric to a representative
C of the "thin" end of the parafeoZ/c cyZ/mfer M^/G where G is generated by the

parabolic translations (x,y) i-^ (x + L,y); more explicitly, a cusp representative

may be defined as

c C(70 := {(*,>0 e H* | j > A}/G,
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for some Zz > 0. Alternatively, a cusp may be visualized as an end of the tapering
surface of revolution in R^ known as the p^ndöspZzere.

Proposition 2.3. FV^ry non-s/rapZy connected comp/ete ZzyperfeoZzc snz/ßce contezns

o szrapZe cZosed geode^zc or n cnsp.

In the special case where the surface is orientable and has finite Euler character-

istic, the above proposition follows from a result in the recent book of Borthwick [6],
Proposition 2.16. With the aid of this result, and some curve shortening, we give the

more general proof which we seek. First we need to establish the following lemma.

If M were orientable, this lemma would follow from basic results on curve short-

ening flow by curvature [17], [8]; however, when M is not orientable, the geodesic
curvature is not well-defined along the entire curve; hence we use the "disk flow"
method devised in [19] which does not require orientability.

Lemma 2.4. Lc£ M Z?c n compZcte Rzenznnnznn snz/occ nnd T Z?c n szrapZc cZoscd

cnrvc o/Zcngdz L zn M. Snpposc dz<te T zs no£ z^otepzc te> n pozn/^ nnd dze o/nZZ

cnrvc^ zn dze zsotopy cZnss o/ T wZzo^c Zengdzs nrc feonndcd nfeovc Zry L nrc con^ncd
te> n compact rcgzon o/M. TTzcn T zs zsotepzc te> o szmpZc cZo^cd gcodc^zc.

Proo/ If M is compact, the lemma follows immediately from [19], Theorem 1.8.

But the proof of Theorem 1.8 in [19] shows that compactness is needed only so that

one can apply Ascoli's theorem to conclude that any length non-increasing homotopy
Tj has a convergent subsequence. Of course one may draw the same conclusion as

long as T^ is confined to a compact subset of M, which we assume is the case.

Next we use the previous lemma to establish another basic fact:

Lemma 2.5. FVcry compZcte non-on'cnteZ?Zc Rzcmannzan sz/r/dcc contazns o szmpZc

cZoscd gcodcszc, wZzzcZz Zzas o teZndar nczgZzfeorZzood ZzoracoraozpZzzc te> o MöZnzcs- stezp.

Proo/ If a complete Riemannian surface M is nonorientable then it must contain a

Möbius band Z7. Let T be a smooth simple closed curve which is a retraction of Z7.

By the isotopy extension lemma [22], if T' is any curve in M which is isotopic to
T, then T' will also have a neighborhood I/' which is homeomorphic to a Möbius
band and retracts onto T'. This yields the following two observations. First, T is

not isotopic to a point, because every surface is locally orientable. Second, no curve
homotopic to T may be disjoint from T. This is due to the fact that there exists a

smooth curve T' homotopic to T which intersects T only once, see Figure 1. Next
note that any curve T" homotopic to T will be homotopic to T' as well. Suppose

now, towards a contradiction, that T" is disjoint from T. Then, if # denotes the
intersection number, we have

o #(r",r) #(r',r) 1,
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Figure 1

by the invariance of intersection number under homotopy [22]. Thus, T" D T 7^ 0.
This shows that any Zcngdz ncmdcrcas/ng isotopy of T must be confined within a

compact region of Af (if length of T is L, then this region would consist of points of
Af which are within a distance L/2 of T). It follows then, via Lemma 2.4, that T is

isotopic to a simple closed geodesic.

We need only one other basic result before proving Proposition 2.3. A ZzypcrfecZ/c

cyZ/ndcr is the quotient HP/ G where G is generated by the hyperbolic translations

(x,y) i-> (c^x,c^y). Thus a hyperbolic cylinder contains a simple closed geodesic,
i.e., the image of the positive half of the y-axis, which cuts the cylinder in half.
Following Borthwick [6] we dehne a/hnncZ, as one of these halves. We say that a

surface is tepcZcg/caZZy /zmte if it is homeomorphic to a compact surface minus a

hnite set of points.

Lemma 2.6 ([6]). EVcry ncn-s/rapZy connected noncorapoc^ comp/ete onentaZde Zzy-

perfeoZZc sn//ßce nnYZz/zn/te tepoZogy Zzas n cn^p or/nnneZ end.

Proo/ If our hyperbolic surface Af HP/G is homeomorphic to an annulus, or,
equivalently, Af is orientable and G has only one generator, then that generator is

conjugate to either a parabolic or hyperbolic translation of HP, which we dehned
above. Consequently Af is isometric to either the parabolic cylinder or hyperbolic
cylinder, in which case Af has a cusp or funnel end respectively, and we are done. On
the other hand, if Af is not homeomorphic to an annulus (and is not simply connected),
then Af will be "nonelementary" and the proof follows from Theorem 2.13 of [6]
which classihes the ends of nonelementary geometrically hnite orientable hyperbolic
surfaces. To apply this classihcation result, we just need to note that since M is

topologically hnite, it is "geometrically hnite" as well ([6], Theorem 2.10), i.e., G

is hnitely generated, or, equivalently, the fundamental region of Af is a hnite-sided
convex polygon in HP.

Now we are ready to prove Proposition 2.3:

Prcc/c/Prcpcs/dcn 2.3. By Lemma 2.5 we may suppose that our surface, say Af,
is orientable. It is well-known that every compact non-simply connected orientable
surface contains a simple closed geodesic, e.g., this follows from Lemma 2.4; or
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see Section 9.6 in [38] for the hyperbolic case. So we may also suppose that Af
is noncompact. Then, if Af has finite topology, by Lemma 2.6, one of the ends of
Af must be a "cusp" or a "funnel" [6]. In either case we would be done since, by
definition, funnels are bounded by simple closed geodesics. So it remains to consider
the case where Af has infinite topology, although all we need is that Af have at least
four ends. Then we show that Af must have a simple closed geodesic as follows.

By the generalized Jordan curve theorem, any simple closed curve To divides Af
into two components. Choose To so that each of the components of Af — To contains
at least two ends of Af, and To is rectifiable. Then let T* be a length nonincreasing
isotopy of To, e.g., as defined by Hass and Scott [19], Theorem 1.8. Note that, by
the isotopy extension lemma [22], the topology of Af — T* does not depend on L
Let ^ be a continuous choice of a component of Af — T*, and i? C ^4o be an end

representative of Af which does not contain all ends of Af that are in ^4o- Then T*
cannot be contained entirely in £ for any time f, because then ^ would be disjoint
from some of the ends of ^4o- Now let i?' C £ be another end representative such

that the distance of from 3i? is bigger than L/2 were L is the length of To. Then

T, n £' 0 for all f.
Similarly, for each end of Af we may choose an end representative which will

always be disjoint from T*. Then the complement of all these end representatives is

a compact subset of Af which contains T* for all f, and so we may apply Lemma 2.4

to complete the proof.

Having proved Proposition 2.3, we may now proceed with the rest of the proof of
Theorem 1.1 by considering the following two cases:

2.3.1. If our hyperbolic surface Af M^/G contains a cusp, then it contains a

/zorocyc/e, i.e., a simple closed curve y: R/L -> Af which lifts to a horizontal line
y(Z) (L A) C Then let y be the perturbation of y given by

y(f) := A + Asin

see Figure 2. Recall that there is a unique element g e G, given by g(y (0)) y (L),

0 L

Figure 2
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which in this case is the parabolic translation (x, y) i-> (x + L, y). Further, as we
argued in Section 2.2, since y is also invariant with respect to g, the projection tt o y
is a smooth closed curve in Af with only two vertices for any A 7^ 0, by Lemma 2.2.

Furthermore, again as A -> 0, y converges to y with respect to the G* norm. Thus,
since y is simple, tt o y will be simple as well.

2.3.2. If Af HP/G contains a simple closed geodesic y: R/L -> Af, then it lifts
to a geodesic y: R -> HP. We may assume that y traces the upper half of the y-axis
in its positive direction, and y(0) (0,1). Then y(L) (0, (recall that the

hyperbolic distance of (0,1) from (0, y) is given by ln(y)). As before, let g e G

be the (unique) dement such that g(y(0)) y(L). Then g is either the hyperbolic
translation (x,y) i-> (e^x,e^y) or the glide reflection (x,y) i-> (—e^x,e^y),
depending on wether or not small tubulär neighborhoods of y are orientable. So

there are two cases to consider:

If g is the hyperbolic translation (i.e., a tubulär neighborhood of y in Af is ori-
entable), let

y(0 := ^A^ sin ln(/^,

see Figure 3. Note that y(e^T) e^y(0> he., the image of y is invariant under the
action of g. Thus tt o y is a smooth closed curve in Af, and choosing A sufficiently

Figure 3

small we can make sure that tt o y is simple as we argued in Section 2.2. Finally note
that y has only two vertices on the interval [1, Thus, the projection of tt o y will
have only two vertices, again by Lemma 2.2.

If g is the glide reflection (i.e., no neighborhood of y in Af is orientable) let

y(0 := (A/^ sin ^ ln(/^ ^
Then the image of y is invariant under the action of g and tt o y again yields the
desired curve for small A, which completes the proof of Theorem 1.1.

We record below the last part of the proof for future reference:
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Lemma 2.7. Any cZosed geodesic or ZzörocycZe Zn a ZzyperfeoZZc Zs C^-cZose
to a cZos£<i cwrve wZ^Zz no more ^Zzmz ftvo ver/zc^s.

Note 2.8. The theorem of Möbius mentioned above is equivalent to the Statement that

every simple closed curve T in which is Symmetrie with respect to the antipodal
reflection (T —T) has at least six inflection points. Since the antipodal reflection
switches the sign of geodesic curvature, the number of inflection points of T must be

2m where m is odd. So, it is enough to show that T has more than two inflections.
In this sense, the theorem of Möbius may be viewed as a special case of the "tennis
ball theorem" [2], [3], [1] which proves the existence of at least four inflections for
curves which bisect the area of S^. The latter result in turn follows from a theorem of
Segre [42] who proved that any simple closed curve on which contains the origin
in its convex hull must have at least four inflection points. Another proof of Segre's
theorem may be found in [51]. For other refinements or results related to the theorem
of Möbius see, [40], [47], [35],

3. Proof of Theorem 1.2

Let Af be a complete Riemannian surface satisfying the hypothesis of Theorem 1.2.

By Lemma 2.1, and after a rescaling, we may again assume that Af has constant
curvature 1, 0, or — 1 which result in the following three cases respectively:

3.1. The elliptic case. Recall that here Af is the real projective plane MP^
SV{± 1}. In this case we may construct an explicit example of a curve with only two
vertices, which bounds an immersed compact surface, as shown in Figure 4. In this

picture, MP^ is represented as a hemisphere of S^, say the northern hemisphere, with

Figure 4

the antipodal points on its boundary, or the equator, identified, and we are looking at

this hemisphere from "above" (i.e., in a direction orthogonal to the plane of the equa-
tor). Alternatively, the above picture may be regarded as that of a unit disk, and then
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we may transfer the depicted region to a hemisphere via a Stereographic projection,
which preserves the number of vertices by Lemma 2.2. Note that the points where
the curve intersects the boundary of the hemisphere are inflection points.

3.2. The parabolic case. In this case Af RV G where G has at most two genera-
tors one of which must be a translation or a glide reflection [44]. But the composition
of two glide reflections is a translation. Thus G must contain a subgroup // generated
by a translation. Then the projection R^/// -> R^/G yields a covering of M by a

cylinder. Thus it is enough to show that every Hat cylinder contains a closed curve
with only two vertices which bounds a compact immersed surface. Then the covering
map yields the corresponding examples in all other topological types of Hat surfaces

(the twisted cylinder, the torus, and the Klein bottle).
So we may suppose that Af is a Hat cylinder, i.e., Af RVLZ which is the quo-

tient of R^ modulo the horizontal translations (x, y) i-> (x + zL, y). Alternatively,
we may think of Af as the fundamental region [0, L] x R c R^ with its right and

left hand sides identified. Then the curve we seek is depicted in the left hand side of
Figure 5, and the picture on the right shows a lifting of that curve in R^. Note that

Figure 5

the curve on the cylinder bounds a compact immersed surface. Thus we only need

to check that the given curve has only two vertices. Indeed the curve on the right is

given by

y(0 :=
*

—2 (a + cos (f) cos(/), cos (|) sin(f)),
ör + 2a cos j cos(G + cos j

where a 9/100. To count the vertices of y note that if we invert y with respect to
the unit circle and then translate it to the left by a distance of a we obtain the curve
given by r(0) cos(0/5) in polar coordinates, see Figure 6. A straight forward
computation then shows that the derivative of the curvature of r is given by

^ ^ 24(8 + 6cos(f)) sin (f)
(13 + 12cos )P
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Thus r has only two vertices which occur at 0 0 and 0 5tt/2, and one may
easily check that both are nondegenerate critical points of curvature. Hence y has

only two vertices as well, since Möbius transformations preserve vertices [34], [20],
as we had pointed out earlier. Finally, if y has only two vertices as a curve in R^ then

it has only two vertices in HP as well, by Lemma 2.2.

Note 3.1. Another example of a closed curve on the torus, or the Klein bottle, which
has only two vertices but bounds a compact immersed surface is depicted in Figure 7.

Note that although this example is more simple than that of Figure 5, it does not work

Figure 7

on the cylinder or twisted cylinder because the region that it bounds would not be

compact in those surfaces.

Note 3.2. Although the example of Figure 5 bounds a compact immersed surface in
the cylinder, the lifting of that curve does not bound any such surface in the plane.
The conditions for a closed planar curve to bound a compact immersed disk were first
described in the thesis of Blank [5]. See [27], [12], [4] for further refinements and

generalizations of that result.

3.3. The hyperbolic case. Recall that in this case, by Proposition 2.3, Af either has

a cusp, or a simple closed geodesic.

3.3.1. Suppose first that Af has a cusp, then we may construct an example similar
to that of Figure 5 on Af because cusps are asymptotic to cylinders. More precisely,
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recall that a cusp is isometric to an end of a pseudosphere, which we may think of as

a surface of revolution I] about the z-axis in Rp Note that I] contains a meridian m«,

of length 6 for every sufficiently small 6. After a vertical translation we may assume
that m«, lies on the xy-plane. Further, after a homothety of R^, we may assume that

m«, has length 2tt. Thus we obtain a sequence of surfaces X!«, which converge to the

cylinder C given by ;*P + y^ 1, within any given compact ball i? centered at the

origin of R^, as 6 -> 0. In particular, for small 6, C and X«, will be t?°°-close in
i?, and thus any curve in i? D C may be projected into X«, by moving it along the
normals to C. The new curve will be close to the original one, and thus will have
the same number of vertices as the original curve if all the vertices of the original
curve are nondegenerate critical points of curvature, which, as we verified earlier, is

the case in the example of Figure 5.

3.3.2. Now suppose that M has a simple closed geodesic T. Then T lifts to a

geodesic in the upper half-plane HP, and after an isometry, we may suppose that this

lifting traces the positive half of the y-axis. Also recall that homotheties of iP are
isometries of HP. We can use these homotheties by constructing an example similar
to that of Figure 5 along the y-axis, see Figure 8. The curves depicted in this picture

Figure 8

are rescalings of each other by a (Euclidean) factor of where L is the length of T.
This completes the proof once we note that example of Figure 5 may be constructed
for any given L.

4. Proof of Theorem 1.3

Let Af be an orientable space form of genus zero, Hat torus, or a rescaling of RP^, and

T cMbea simple closed curve which bounds an embedded surface. If Af RP^,
or a rescaling of RP^, then T has at least three inflection points by Möbius's theorem,
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as we pointed out in Section 2.1. If Af is an orientable surface of genus zero or a torus,
then T must bound a disk in Af. Consequently T lifts to a simple closed curve in the
universal cover of Af, and then it follows from Kneser's theorem and Lemma 2.2 that
T must have at least four vertices.

To complete the proof of Theorem 1.3 it remains then to show that if Af is not an

orientable space form of genus zero, Hat torus, or a rescaling of RP^, then it must
contain a simple close curve T which bounds a compact surface but has no more than
two vertices. Again, by Lemma 2.1, we may assume that Af has constant curvature.
Further, since we already know that Af may not be or RP^, we may suppose that
the curvature of Af is nonpositive. The next result shows that we may assume that
Af is orientable as well:

Lemma 4.1. Azzy zzozzonentaWe com/?Zete szzz/ace o/nonposzY/ve czzrva/rzre conta/ns

a 57m/?Ze cZösed cz/rve wzY/z 6>zzZy veztz'ces w/zzc/z Zwz/zzds a com/rac*
szzz/ace.

Proo/ First recall that, by Lemma 2.5, any nonorientable complete Riemannian sur-
face Af contains a simple closed geodesic y: R/L -> Af which has a tubulär neigh-
borhood homeomorphic to a Möbius strip. Let y be a lifting of y to the universal

cover of Af, which is R^ or HP.

If the universal cover of Af is R^, i.e., Af has zero curvature, then we may suppose,
for convenience, that y traces the x-axis. Now let

7±(0 := ± e))

and note that these curves are invariant under the group of "glide reflections" (x, y) i->

(x + L, —y), see Figure 9. Thus the covering map tt : R^ -> Af sends these curves to

Figure 9

a Single closed curve with only two vertices in Af which converges to y with respect
to the tP-norm as A -> 0. In particular, this curve will be embedded for small A.

If the universal cover of Af is HP, i.e., if Af has negative curvature, then we
may suppose that y traces the positive half of y-axis in the positive direction and



440 M. Ghomi CMH

y(0) (0,1). Now let

7±(0 :=

and again note that these curves are invariant under the group of "glide reflections"
(x, y) i-> (—e^x, y), see Figure 10. Thus the covering map tt : HP -> Af once

Figure 10

again sends these curves to the desired curve for small A.

Now recall that the only orientable parabolic 2-dimensional space forms other
than the tori are the cylinders and the Euclidean plane, both of which have genus
zero. Thus we may assume that Af has negative curvature, and observe that

Lemma 4.2. EV^ry corap/ete onenfa&Ze Ayper&oZ/c Af genws
confa/ns ß sim/?Ze c/<9S£<i or a Zzorocyc/e wA/cA a compact
o/M.

Proo/ Since Af has nonzero genus, and is not a torus, it is the connected sum of
a torus r with a noncontractible surface Af'; this follows from the normalization
theorem of Richards [37] which states that any orientable surface is homeomorphic
to the connected sum of with a countable number of tori and minus a totally
disconnected subset. Thus there exists a simple closed curve T which divides Af into
two components: one homeomorphic to T minus a disk and the other homeomorphic
to Af' minus a disk. Now let T* be the curve shortening flow devised in [19]. Then
as we argued in the proof of Proposition 2.3, T* either converges to a simple closed

geodesic or eise eventually enters every representative of an end of M. The latter
case may happen only if that end is a cusp and T* is isotopic to a horocycle of that

cusp. The proof is then complete once we recall that, by the isotopy extension lemma
[22], the topology of Af — T* is independent of Z. In particular, the closure of one of
the components of Af — T* will be homeomorphic to T minus an open disk, which
is a compact region of M.
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By Lemma 2.7, we may now perturb the curve given by the last result to obtain a

simple closed curve with only two vertices, which completes the proof.

Appendix: More on perturbations of geodesics

In Section 2.3 we showed that any closed geodesic in a hyperbolic surface may be

perturbed, in the sense, to a closed curve with only two vertices. Here we include
a more general result for orientable surfaces of constant curvature, which may not be

complete.

Theorem 4.3. T fea cZased g£a<i£sZc a/ ZengPz L Zn a PZ^mamzZan sn//ac£ a/
cansfrm^ cnrva/nre ÄT, wZzZcZz Zs onenfa&Ze Zn a nmgZzfearZzaad a/ T. TTzen, every
neZgtoar/zaad a/ T confaZns a cZased cnrve w/zZc/z Zzas anZy Pva verP'ces, and may Z?e

regnZred Z?£ arZn/rarZZy L°°-cZas£ T, Z£ and anZy Z^ 7^ (2tt/L)^.

The proof of this result follows from the following three lemmas. The basic idea
here is again to perturb the geodesic in the direction of its normals according to a sine

curve. To this end we first show that a neighborhood of T in Af may be represented
as a surface of revolution in R^. This Observation, via the above theorem, shows

that the only closed geodesics which cannot be perturbed to curves with only two
vertices correspond to great circles in spheres (there are still many other examples of
closed geodesics in noncomplete surfaces of constant positive curvature, which may
be perturbed to curves with only two vertices, provided only that the length condition
in the above theorem is satisfied.).

Lemma 4.4. Af and Af' Z?£ PZ^mannZan a/canstan^ cnrva/nre ÄT wZn'cZz

cantaZn sZmpZe cZased gead^Zcs T and T' wZdz onenfa&Ze nmgZzfearZzaads. TTzen

dzere emf apen nmgZzfearZzaads L and L' <9/ T and T', respecdveZy, and an Zsame/ry

/: —> L/ wZn'cZz maps T T'.

Praa/ Fix an orientation for Af, and for each point p of T let {ei(p), ^(p)} be a

continuous choice of basis for 7^M such that ^ is tangent to T and (pi(p), ^(p))
is in a fixed orientation class of 7^M. Similarly, let (p'), ^(pO) be a continuous
choice of basis along T' such that ei(p') is tangent to T' and (^(p0> ^(pO) is in
a fixed orientation class of M' for all p' G T'. Since Af and M' have the same
constant curvature, then, as is well known, they are locally isometric. Indeed, it
follows from a theorem of Cartan, that for every p g T, and p' G T', there is an open
neighborhood Lp of p and an isometry / := /p: Lp ^ M' such that /(p) p'
and d/(e;(p)) e-(p), Z 1, 2, see [11], p. 158.

We may assume, without loss of generality, that the neighborhoods Lp mentioned
above are O/ZmZar, which we define as follows. Let AZe(T) be the set of all point of
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Af whose distance from T is less than 6, then by the tubulär neighborhood theorem

[43], for sufficiently small 6, A^(T) is fibrated by geodesic segments which meet T
orthogonally at one point. This givesrisetoa natural projection map tt: A^(T) -> r.
We say that a neighborhood [/ of /? is tubulär provided that there exists a connected

open neighborhood / of /? in T such that [/ tt"*(/).
Now let /?(Z) and //(Z) be a pair of parametrizations of T and T' by arclength, and

C/j := C/^(^) bea tubulär neighborhood of/?(Z) such that there exists an isometry / :

Af'with /(/?(Z)) /?'(0 and d/(^(j?)) £•(//). By compactness of T,
there will be a finite number of points /?/ /? (Zy) such that the tubulär neighborhoods
C/y cover T. Note that if : C// -> Af' are the corresponding local isometries, then

C/J := //(t/y) also form an open covering of r". Let [/ := UC/y, C/' := UC/J, and

dehne /: C/ -> C/' by setting /|c/y := /). It is simple to verify that / is well
dehned, i.e., whenever I/y PI 14 7^ 0, then on C// PI 14, using the uniqueness
of geodesics and the fact that the intersection of two tubulär neighborhood is tubulär,
which shows that / is the desired isometry.

Suppose we have a surface of revolution in R^ parametrized by

X(Z, 0) (r(z) cos(0), r(z) sin(0), /z(Z)). (1)

By a necZ; of X we mean a meridian, i.e., a curve 0 i-> X(Zo, 0), which occurs at a

height where the tangent to the prohle curve r is parallel to the axis of revolution,
i.e., r'Oo) 0.

Lemma 4.5. Fbr any consZanZ X andposiZzve consZanZ L, zZzere

o/revoZw/foft m R^ w/Z/z consZanZ cwrvaZwre X and a n£c& o/ZengzA L.

Proo/ If X 0, then it is obvious that we may let our surface to be a cylinder over
a circle of length L. If X > 0, then, for —e < Z < e, set

Then the surface of revolution X given by (1) has constant curvature X, see [16],

p. 483. Further X has a neck at Z 0 which has length L. Similarly, if X < 0, set

r«):= ^=osh(l) and A(,) := £ ^1 - (A sinh (1)) </,.

Then X again has constant curvature X, see [16], p. 487, and it has a neck of length
L at Z 0

Finally we need:
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Lemma 4.6. X swz/ace o/revoZwft'on zn parara£/77Z£<i fry

X(Z, 0) := (r(7) cos(0), r(7) sin(0), z), (2)

wZzere 0 < 0 < 2TT and —6 < Z < 6. Snppose zZzaZ X Zzas a necA r aZ Z 0, and

1 + r(0)r"(0) ^ 0. (3)

TTzen zZzere ernZs an e > 0 sncZz zZzaZ/ar every 0 < A < e zZze cnrve

ca(0) := ^(A cos(0), 0)

Zzas anZy /wo verZ/ces.

Praa/ First we recall that the geodesic curvature of Ca is given by

where 7a (0) := c^(0)/||c^(0)|| is the unit tangent vector field of Ca, and va(0) is
a continuous normal vector field along Ca which is tangent to X. To compute v, we
maylet n(Z,0) := xS^X/HS^X xS^H be a unit normal vector field of X, and
set va(0) := /t(A cos(0), 0) x 7^(0). A straight forward calculation then shows that

r'r^ + Ar - Ar'r" sin^P) + cos((9)(r'f + cos(0)) + 2A^ sin2(0)r'((r')* + l)
ZCA (0) — 775

V(r')2 + l(r2 + A^sin2(0)((r')2 + l)) '
where

r := r(Acos(0)), r' := r'(Acos(0)), and r" := r"(Acos(0)).

Since by assumption r'(0) 0, we have &o(0) 0 for all 0. So, fixing 0 and

applying Taylor's theorem, we obtain

fcA(0) 9;i*o(0)A + ÄA(0)A*, (4)

where

1 _|_ r(T)V"(T))
WO ^ ^ ' cos(0), and **(0) j 9^(0)(A - m)^m. (5)

Note that (4) is valid for all (A, 0) in [0,1] x [0, 2tt]. Further, since &a(0) depends

smoothly on both A and 0, so does ^a(#)- Consequently, the t^-norm of as

a function of 0, has a uniform upper bound A valid for all A e [0,1]:

4:= sup ||^(0)||g2= sup sup {/?^(0),/?^(0),/?^(0)} < oo.
Ae[0,l] Ae[0,l] <9e[0,27r]
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Furthermore, (4) shows that

IM#) - dAM0)A||e2 ||äa(0)||C2 A* < ,4A*.

where all norms are with respect to 0. So

lim ||Aa(0 - 9a&o(0)A|L2 0-
A-M)+ "

Combing the last equation with the computation for 9a^o (^) in (5) we obtain

0.lim
A-*0+

*A(0 1 + r(0)r"(0)
A r2(0) £2

Now recall that 1 + r(0)r"(0) 7^ 0 by assumption. Thus, for small A, Ä:^(0)/A
is t^-close to C cos(0) for some nonzero constant C, which yields that A^(0)/A is

t^-close to —C sin(0). It follows then that £^(0)/A, and consequently A^(0), has

precisely two zeros, because —C sin(0) has only two zeros and at those points its
derivative does not vanish. We conclude then that £a($) has only two local extrema,
as claimed.

The last three lemmas yield:

Proo/q/* TTzeorera 4.3. Suppose that K (2tt/L)^. Then, by Lemma 4.4, we may
isometrically identify a neighborhood of T in M with a neighborhood of a great
circle T' in a sphere of radius L/(2tt). But any X* perturbation of T' will still be

a simple closed curve, which by the classical four vertex theorem of Kneser on the

sphere [25] must have four vertices (the spherical version of the classical four vertex
theorem follows from the fact that the Stereographic projection preserves vertices, as

had already been observed by Kneser). This proves the "only if" part of the theorem.
Now suppose that K 7^ (2tt/L)^. By Lemmas 4.4 and 4.5 we may identify a

neighborhood of T with a surface of revolution in R^, which we may parametrize
by X given in (2), so that T is identified with the neck T' of X at height £ 0.

Then Lemma 4.6 completes the proof once we can verify that 1 + r(0)r"(0) 7^ 0.

To see this note that a neck of a surface of revolution is a line of curvature, i.e., it is

tangent to a principal direction field of the surface, because the Gauss map « sends

any neck to a great circle of S^, whose plane is parallel to that of the neck, via a

homothety of the neck. More precisely, if a neck has radius r (0), then for any tangent
vector u to that neck v/r(0), where is the shape Operator of X. So

X has constant principal curvatures 1 / r (0) in the direction of the tangent vectors
of the neck T' (and with respect to the inward normal to X). Further, recall that a

direction orthogonal to a principal direction is again a principal direction. Thus the
other principal curvatures along T' are given by the curvatures of the profile curve
which is —r"(0) (with respect to the direction of the inward normal). So we conclude
that the Gauss curvature (which is the product of principal curvatures) of X along
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T' is RT —r"(0)/r(0). Note further that L 2jrr(0). Thus, by our assumption
at the beginning of this paragraph, 4tt^ 7^ RTL^ —r^(0)r(0)4jr^, which yields
1 7^ —r"(0)r(0) as desired.
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