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Abstract. We classify all finite groups of essential dimension 2 over an algebraically closed
field of characteristic 0.
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1. Introduction

Let be an algebraically closed field of characteristic 0 and let G be a finite group.
A faithful G-variety is a variety with a faithful G-action. A coraprevs/on is a G-
equivariant dominant rational map of faithful G-varieties. Given a faithful G-variety
X over the essenftaZ d/mensiön o/X, denoted ed^(X), is the minimum dimension
of 7 over all compressions X —>7 where 7 is a faithful G-variety over The
essenftaZ d/mension o/G, denoted ed^ (G), is the maximum of ed^ (X) over all faithful
G-varieties X over

The major result of this paper is a Classification of all finite groups of essential
dimension 2 over an algebraically closed field of characteristic 0.

Loosely speaking, the essential dimension of a group is the minimal number of pa-
rameters required to describe its faithful actions. Essential dimension was introduced
by Buhler and Reichstein in [10]. Their main interest was to determine how much a

"general polynomial of degree can be simplified via non-degenerate Tschirnhaus
transformations. They showed that essential dimension of the Symmetrie group on
n letters, ed^(iS^), is the minimal number of algebraically independent coefficients
possible for a polynomial simplified in this manner.

The essential dimension of finite groups in general is of interest in Inverse Galois

Theory. Here one wants to construct polynomials over a field A; with a given Galois

group G. Ideally, one wants polynomials that parametrize all fields extensions with
that group: the so-called genenc poZynora/a/s (see [31] and [29]). The essential
dimension of G is a lower bound for the genenc d/mension of G: the minimal
number of parameters possible for a generic polynomial.
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Essential dimension has been studied in the more general contexts of algebraic

groups [43], algebraic Stacks [8], and functors [5]. We restrict our attention to the

case of finite groups in this paper.

If // is a subgroup of G then ed(//) < ed(G); a similar inequality fails for
quotient groups [41], Theorem 1.5. The essential dimension of an abelian group is

equal to its rank [8], Theorem 6.1. The essential dimensions of the Symmetrie groups,
Sh, and alternating groups, are known for « < 7 and bounds exist for higher «

(see Theorems 6.5 and 6.7 of [8], Proposition 3.6 of [51] and [22]). It is a deep
result of Karpenko and Merkurjev [30] that the essential dimension of a /7-group is

the minimal dimension of a faithful linear representation.

We use the notation Z>2« to denote the dihedral group of order 2«. Finite groups of
essential dimension 1 were classified by Buhler and Reichstein in their original paper;
they are either cyclic or isomorphic to where is odd. There is a Classification
for infinite base fields by Ledet [36] (see also Remark 3.2), and for arbitrary base

fields by Chu, Hu, Kang and Zhang [11].

We review what is known about groups G of essential dimension 2. If G contains

an abelian subgroup A then rank(A) < 2. The Sylow /7-subgroups G^ of G can be
described using the Karpenko-Merkurjev theorem: Gp must be abelian for all /? odd,
and groups G2 must be of a very special form (see [41], Theorems 1.2 and 1.3). Any
subgroup of GL2(C) or £5 has essential dimension < 2.

Finite groups of essential dimension 2 with non-trivial centres were classified

(implicitly) by Kraft, Fötscher and Schwarz (see [34] and [33]). They show that a

finite group with a non-trivial centre has essential dimension < 2 if and only if it can
be embedded in GL2(C). Their main interest was in d/mensiön, a "regulär"
analog of essential dimension. See also [44] and [38].

Our study of essential dimension uses the concept of a versaZ G-v<zne/y (defined in
Section 2). These are simply models of the versal torsors seen in Galois cohomology.
We will often say a G-action is versal if it gives rise to a versal G-variety. The key
fact is that if G is a finite group of essential dimension « then there exists a versal
unirational G-variety of dimension

To study essential dimension 2, we only need to consider versal rational G-surfaces
since unirational surfaces are always rational over an algebraically closed field of
characteristic 0. Furthermore, one can G-equivariantly blow-down sets of exceptional
curves to obtain a ra/mraaZ raod^Z of a smooth G-surface. The minimal rational G-
surfaces were classified by Manin [39] and Iskovskikh [28] building on work by
Enriques: they either possess conic bündle structures or they are del Pezzo surfaces.

The use of the Enriques-Manin-Iskovskikh Classification for Computing essential
dimension was pioneeredby Serreinhisproof that ed^(Aö) 3 [51], Proposition 3.6.

Independently, Tokunaga [53] has also investigated versal rational surfaces.
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The dichotomy into conic bündle structures and del Pezzo surfaces is too coarse
to easily identify exactly which groups occur. Our current work was inspired by
Dolgachev and Iskovskikh's [20] finer Classification of such groups. Their goal was
to classify conjugacy classes of finite subgroups of the Cremona group of rank 2 (the

group of birational automorphisms of a rational surface). This problem has a long
history. The first Classification was due to Kantor; an exposition of his results (with
some corrections) can be found in Wiman [54]. Unfortunately, this early Classification
had several errors, and the conjugacy issue was not addressed. More recent work on
this problem include [3], [17], [55], [4] and [6].

Recall that the automorphism group of the algebraic group (C*)" is isomorphic
to GLh(Z). Our main theorem is as follows:

Theorem 1.1. Lef T (C*)^ Z?£ a 2-d/mensic>ft<zZ torws. Tjf G zs growp 0/
£vs£/tzto/Z d/mezzsiözz 2 z7z£/t G fs zsömözp/wc to <2 swfegrow/? 0/ cwe 0/ rfze /oZZow/ng

grow/zs:

(1) GL2OC), ^ generaZ Zmezzr growp 2;

(2) r w/Z/z |G D r| copnrae to 2 anzZ 3, ((} ~(/ )> 0)) — ^12;

(3) r XI £2 wifA |G fl r| coprzme to 2, ((~o 1 )• (1 0)) - £>g;

(4) w/Z/z |G D T| copnrae to 3, #3 ((® l}), (_?j ^ ~ S3;

(5) r XI £4 wAA |G fl r| coprzme to 3, #4 ((l 4 )> (1 o)) - ^
(6) PSL2(F7), ^ s/rapZe growp o/orzfer 168;

(7) S5, £Zz£ symmefnc growp on 5 Ze/tors.

ony^n/to swFgrowp q/T/zese grozz/zs- Zzzzs essen/zaZ z/zmezzsiozz < 2.

A few remarks are in order.

Remark 1.1. We do not classify all versal minimal rational G-surfaces; we only
determine which groups appear. Different G-surfaces with the same group G may
not be equivariantly birationally equivalent. There exist two versal £5-surfaces that

are not equivariantly birationally equivalent: the Clebsch diagonal cubic (by a result
of Hermite, see [14], [47] and [32]) and the del Pezzo surface of degree 5 (see the

proof of Theorem 4.5). Other examples of this phenomenon can be found for abelian

groups [46], and for versal actions of £4 and A5 [2].

Remark 1.2. Essential dimension can be defined over any field. Dolgachev and

Iskovskikh's Classification, and many of our other references, take the base field to be

C. We shall see in Lemma 2.1 below that this is sufficient to handle any algebraically
closed field of characteristic 0.
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Remark 1.3. For algebraically closed fields of non-zero characteristic, the Enriques-
Manin-Iskovskikh Classification still holds. However, the Dolgachev-Iskovskikh
Classification no longer applies. Furthermore, unirational surfaces are not necessarily
rational in this case, so the Classification may be inadequate. See [51] for related
discussion.

Remark 1.4. For non-algebraically closed fields of characteristic 0, we know that

any group of essential dimension 2 must appear in the list above (this is immediate
from Proposition 1.5 of [5]). However, the problem of determining which groups
appear is more complicated. It is possible that a versal G-surface over a field A may
not be defined over a subfield A' while there may be another versal G-surface that
Zs defined over A'. A füll Classification of versal minimal rational G-surfaces would
remedy this Situation.

Remark 1.5. For essential dimension 3, one might try to do something similar with
threefolds. The problem is significantly more difficult. First, even over C there exist
unirational threefolds that are not rational. Second, there is no analog of the Enriques-
Manin-Iskovskikh Classification here, nor the Dolgachev-Iskovskikh Classification.
In fact, until recently it was an open question as to whether oZZ finite groups could be

embedded into the Cremona group of rank 3 [52], 6.0.

However, Prokhorov [42] shows that very few simple non-abelian groups can act

faithfully on unirational threefolds. The author [22] has applied Prokhorov's work to
show that the essential dimensions of Ay and £7 are 4.

Remark 1.6. Note that, since unirational and rational coincide in dimension 2, for
every group G appearing above, there exists a versal G-variety X whose rational
quotient X/G is rational. This has consequences related to Noether's problem. As

suggested by the referee, for any faithful linear representation k of a group G in
this list, the invariant field C(F)^ is retract rational (see [48], [18] or Remark 5 (a)
in [31]). In addition, any such G possesses a generic polynomial with only two
Parameters. Thus, the list above is also a complete Classification of groups of generic
dimension 2.

The proof of Theorem 1.1 breaks into two mostly independent pieces. We show
that it suffices to consider only four surfaces:

Theorem 1.2. 7/* G Zs <2 yZrate gronp 0/ ewezz^/zzZ dZmension 2 Pzen G Zzos <2 versoZ

oct/on on pro/ecft've pZone P^, prodnct o//?ro/ecZZve ZZnes P* x P\ or fAe d^Z

P^zzo sn//<2C£s o/<i£gr££ 5 onJ 6.

And we show that the groups with versal actions on these four surfaces are those

listed above (Theorem 4.5). As in Remark 1.1, we point out that Theorem 1.2 does

no£ classify minimal versal G-surfaces.
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We also mention some intermediary results that we feel are of independent interest.
Three of the four surfaces are toric varieties. In order to classify their versal actions,
we develop techniques that apply to smooth complete toric varieties in general. We

leverage the theory of C<xr rmgs [15] and wmversaZ torsors [13]): a faithful G-action
on a complete non-singular toric variety is versal if and only if it lifts to an action on
the variety of the associated Cox ring (Theorem 3.2).

This result has some important corollaries. First, if a complete non-singular toric
variety has a G-fixed point then it is versal (Corollary 3.5). Second, a complete non-
Singular toric variety is G-versal if and only if it is G^-versal for all of its /7-subgroups
(Corollary 3.6). The assumption that the variety is toric may be gratuitous (see

Conjecture 3.7). This second corollary is instrumental in our proof of Theorem 4.5;
it reduces the study of versal toric surfaces to actions of 3-groups on and actions
of 2-groups on P * xPl

The rest of this paper is structured as follows. In Section 2, we recall basic
facts about versal varieties, essential dimension and the Enriques-Manin-Iskovskikh
Classification. In Section 3, we develop tools for determining when a toric G-variety
is versal. In Section 4, we determine precisely which groups act versally on the
four surfaces of Theorem 1.2. In Section 5, we show that all groups acting versally
on conic bündle structures already act versally on the four surfaces. In Section 6,

we show the same for the del Pezzo surfaces. This proves Theorem 1.2 and, thus,
Theorem 1.1.

2. Preliminaries

Recall that the main theorem applies for any algebraically closed field of characteris-
tic 0. Nevertheless, for the rest of the paper, we will restrict our attention to C. This
is possible in view of the following lemma:

Lemma 2.1. Swppose G zs dornte growp and zs an aZgefera/caZZy cZased y^Zd 0/
cAtfractenstz'c 0. 77*enedfc(G) edc(G).

Proo/ This is just Proposition 2.14(1) of [8] since and C both contain an algebraic
closureofQ.

We will make no more reference to a general field All varieties, group actions
and maps will be defined over C unless it is explicitly stated otherwise. We write
ed(—) instead of edc (—) for the rest of the paper without risk of ambiguity.

2.1. Versal varieties

Definition 2.1. An irreducible G-variety X is G-versaZ (or just versaZ) if it is faithful
and, for any faithful G-variety 7 and any non-empty G-invariant open subset 1/ of
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X, there exists a G-equivariant rational map / : 7 —> G. We say an action of G is

versaZ, or that G acta versaZZy, if the corresponding G-variety is versal.

Note that the versal property is a birational invariant: it is preserved by equivariant
birational equivalence. In fact, our definition of versal variety is equivalent to saying
thatits genericpointis a "versaltorsor" asin [5], Definition6.3, or [24], Definition 5.1.

Versal varieties are useful for studying essential dimension. If V is a versal G-
variety then ed(X) ed(G) [5], Corollary 6.16. If V —> 7 is a compression of
faithful G-varieties and V is versal then so is 7 [5], Corollary 6.14. Thus, if a versal

variety exists, there exists a versal variety V such that dim(X) ed(X) ed(G).
Recall that a ZZnear G-varZe/y is a linear representation of G regarded as a G-

variety. Any faithful linear G-variety is versal [24], Example 5.4. Thus versal varieties
exist. In particular, the essential dimension of any finite group is bounded above by
the dimension of a faithful linear representation.

The versal property descends to subgroups:

Proposition 2.2. Swppose // Zs a swfegrowp o/abrate growp G. /jf X Zs a G-versaZ

varZe/y ^Zzen X Zs //-versaZ.

Proo/ Clearly, a faithful G-action restricts to a faithful //-action. Consider any
faithful //-variety 7 and any non-empty //-invariant open subset G of X. We need

to show the existence of an //-equivariant rational map /: 7 —> G. The set

G' PlgeG £"(^0 is a G-invariant dense open subset of G. Since X is G-versal,
there exists a G-equivariant rational map ^: F —> G' from a faithful linear G-

variety F. Let IF be a non-empty //-invariant open subset on which t/t is defined.
Note that F is //-versal since the restricted action still acts linearly. Thus there
exists an //-equivariant rational map 0: 7 —> IF. By composition, we obtain an

//-equivariant map / : 7 — > G as desired.

The following result is one of our major tools:

Proposition 2.3. G Z?e abrate growp. 7/*X Zs a proper versaZ G-varZe/y ^Zzen aZZ

afeeZZßft swfegrowps G/G Zzßve^vee? poZnfa on X.

Proo/ Note that the origin is a smooth fixed point of any linear G-variety F. Thus,
the result follows immediately by "going down" ([45], Proposition A.2).

We recall various Standard results on essential dimension which can be found in
[10]. We say that a dihedral group, of order 2« is an o<Z<Z <ZZZze<ZraZ growp if « is

odd, and an even JZZzeJraZ growp otherwise.

Proposition 2.4. G Z?e a^ZmYe growp.

(a) //*// Zs a swfegrowp ö/G ^Zzen ed(//) < ed(G).
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(b) 7/*G Zs <zZ?eZZ<zn zZz£ft ed(G) rank(G).

(c) ed(G) 0 z/omZ onZy z/G Zs Znv/oZ.

(d) ed(G) 1 z/omZ onZy z/G zs cycZZc or odd dzTzedraZ.

The covorzozzZ dZmension of a group G, denoted covdim(G), is the minimal di-
mension of a faithful G-variety X such that there is a faithful linear G-variety F and

a dominant regulär G-equivariant map F -> X. One may consider covariant dimen-
sion as a regulär analog of essential dimension. The interested reader is directed to
the work of Kraft, Lötscher and Schwarz ([34], [33]). The following result follows
from the Classification of groups of covariant dimension 2. We do not use the concept
of covariant dimension anywhere eise in this paper.

Proposition 2.5. Tjf G Zs <z yZrate groz/p 0/ £ss£zzZz<2Z dZmension 2 wzYZz <2 zzozz-ZrzvzoZ

cenZre zZzezz G Zs zsoraorpZzzc Zo <2 sz/Z?groz/p o/GL2(C). 7n porZzcz/Zor, G Zzos <2 versoZ

ocZzozz

Proo/ By Proposition 3.6 of [33], whenever G has a non-trivial centre we have

ed(G) covdim(G). By [33], Section 7, all finite groups of covariant dimension 2

are isomorphic to subgroups of GL2OC). Thus we have a faithful linear G-variety of
dimension 2. This is versal and equivariantly birational to P^.

We remark that, since all non-trivial /7-groups have non-trivial centres, this propo-
sition suffices to prove the Karpenko-Merkurjev theorem for groups of essential di-
mension 2. Recalling that all irreducible representations of /7-groups have degree a

power of /?, we have the following:

Proposition 2.6. //*/? > 2 Zs <2 prZme, zZzezz oZZ ^-growps o/£vs£zzZz<2Z dZmension 2 ore
ai^ZZan.

2.2. Minimal rational surfaces. We recall some basic facts about minimal rational
surfaces (see [20] or [40]). Throughout this paper, a szzz/oce is an irreducible non-
Singular projective 2-dimensional variety over C. A razzzzraoZ G-szzz/oce is a faithful
G-surface X such that any birational regulär G-map X -> 7 to another faithful G-
surface T is an isomorphism. There is a (not necessarily unique) minimal G-surface
in every equivariant birational equivalence class of G-surfaces. The possible minimal
G-surfaces are classified as follows:

Theorem 2.7 (Enriques, Manin, Iskovskikh). Tjf X Zs <z razzzzraoZ raZzozzoZ G-szzz/oce
zZzezz X odra/Zs <2 cozzzc Z?z/zz<iZ£ sZrz/cZz/re or X Zs zsoraorpZzzc Zo 0 d^Z P^zzo szzz/oce.

Our interest in minimal rational surfaces is justified by the following proposition
(see §3.6 in [51]):
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Proposition 2.8. Sz/ppose G zs dornte groz/p. PZzezz ed(G) < 2 z/azzd ozzZy z/TZzere

emfa <2 zzzzzzzzzzaZ ra/fozzaZ versaZ G-szzz/ace X.

2.3. Polyhedral groups. The following facts will be used extensively in the sections
that follow. Most of these results can be found in, for example, [16]. Recall that a

poZy/zedraZ groz/p is a finite subgroup of PGL2(C). Equivalently, the polyhedral
groups are precisely the finite groups acting regularly on P *. The polyhedral groups
were classified by Klein as follows: C„, the cyclic group of zz elements; Z>2w» the
dihedral group of order 2zz; A4, the alternating group on 4 letters; S4, the Symmetrie

group on 4 letters; and A5, the alternating group on 5 letters.
These groups have normal structures as follows:

Proposition 2.9. Sz/ppose P zs <2 poZy/zedraZ groz/p azzd V zs <2 zzozz-ZrzvzYzZ proper
zzöztzzöZ szzZzgrozz/z tf/P. Wfe Zzave ^Zze/öZZöwzzzg ptfssiMzYzes:

(a) P ~ 54, TV ~ ^4, P/TV ~ C2,

(b) P ~ 54, TV ~ C2 x C2, P/TV ~ 53,

(c) P ~ ,44, TV ~ C2 x C2, P/TV ~ C3,

(d) P ~ P>2n, AT — Cot, P/TV ~ P>2n/OT wAere m|«,

(e) P ~ £>4«, TV ~ D2«, P/TV ~ C2,

(f) P ~ C„, TV ~ Cm, P/TV ~ Cot/« w/jere m|n.

Afote ^Zz<2£ Z>2 — C2 P4 ~ C2 x C2 are zzzcZzzJ^J aZzave as <i£g£zz£rate cases.

Finally, we will need the following fact about lifts of polyhedral groups to 2-
dimensional representations:

Proposition 2.10. A^zzzzYe sz/Zzgraz/p G 0/ PGL2 (C) Zzas azz zsazzzazpZzzc Zz/^ zzz GL2 (C)
z/azzd azzZy z/G zs cycZzc ar add JzZz^JraZ.

3. Versal actions on toric varieties

In Section 4 we will use the theory of toric varieties extensively to prove Theorem 4.5.

Many of the results we use are applicable beyond the case of surfaces so we consider
the case of versal actions on toric varieties in general.

3.1. Cox Rings and universal torsors. We recall the theory of toric varieties from
[23], and Cox rings from [15]. We will also use the language of universal torsors
from [13]. Note that the similarity of the terms "universal torsor" and "versal torsor"
is merely an unfortunate coincidence.
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Given a lattice TV ~ Z", a/an A in TV is a set of strongly convex rational polyhedral
cones in Af (g) R such that every face of a cone in A is in A and the intersection of
any two cones in A is a face of each. Given a fan one may construct an associated

toric variety.
The associated toric variety X X(A) contains an /i-dimensional torus D

Af ® C*. The variety X is non-singular if every cone in A is generated by a subset

of a basis for AL The variety X is complete if the support of the fan is all of Af ® R.
In this paper, we will restrict our attention to complete non-singular toric varieties.

Let Af Hom(X, Z) be the dual of the lattice AL Let Div;r(X) be the group
of T-invariant divisors of X. Let A(l) be the set of rays in the fan A. To each ray
p G A(l) we may associate a unique prime D-invariant divisor Dp. In fact, A(l) is

a basis for Div^(X). We have the following exact sequence:

1 -> M -> Divr(X) -> PicOO -> 1

where Pic(X) is the Picard group of X.
Denote X Hom(Pic(X), C*) and apply Hom(-, C*) to the above sequence to

obtain another exact sequence:

i Ä" (<c*p^ -> r i.

From [15], any toric variety X has an associated fofaZ coonimate ring, or Co* ring,
which we denote Cox(X). The ring Cox(X) is a Pic(X)-graded polynomial ring

Cox(X) C[xp : yO A(l)]

and has an induced X-action via the grading. (Note that Cox uses G where we write

*).
The variety L Spec(Cox(X)) is isomorphic to affine space and there is

a closed subset Zcf obtained from an "irrelevant ideal." The open subset L — Z
is invariant under the X-action and, since X is non-singular, the map (L — Z) -> X
is a X-torsor. Indeed, this torsor is a wmversaZ torsor over X.

We define Aut(X) as the normaliser of X in the automorphism group of L — Z.
From [15], Theorem 4.2, there is an exact sequence

1 -> Ä" -> Aut(X) -> AutOO -* 1

where we denote the last map tt : Aut(X) -> Aut(X).
Let Aut(X, A) denote the subgroup of GL(X) which preserves the fan A (per-

mutes the cones). The group Aut(X, A) has an isomorphic lift to Aut(X) via per-
mutations of the basis elements {xp}. The group is a subgroup of Aut(X)
which descends to D C Aut(X).

More generally, if G is a group with a faithful action on X then there is a group

£ ff-'(G) C Aut(X)
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acting faithfully on F — Z. We have an exact sequence of groups

(1)

For finite groups G, the group £ acts as a subgroup of GL(F):

Lemma 3.1. G Z?£ a^zzzzte groz/p actzzzg /azYZz/z/ZZy on X. AZzezz A acta ZzVzearZy

on F.

Proo/ The linear algebraic group Aut(X) is of the form (A^ x> G^) • Aut(X, A)
where A^ is unipotent and G^ is reductive. (See Section 4 in [15]. Note that Cox's
notation G^ has nothing to do with the group G in our context). Since G is finite
and AT consists of semisimple elements, all elements of £ are semisimple. Thus

£ C Gj • Aut(X, A). The group G^ is of the form

G, neu*;)
where the s are the weight-spaces of the action of X on F (as a vector space). The

group Aut(X, A) permutes the basis vectors of F. Thus G^ • Aut(X, A) acts linearly
on F. Thus the subgroup £ acts linearly.

The versal property is related to Cox rings by the following result:

Theorem 3.2. Snppose G zs o yZn/te gronp onJ X Zs o compZ^fe non-^ZngnZor forzc
/azYZz/z/Z G-von>/y. AZzezz X zs v^r^oZ z/ond onZy z/TZze exact segz/ezzce (1) spZzYs.

Proo/ Suppose the exact sequence splits. The map from F — Z to X may be viewed
as a dominant rational map ^ : F —> X. Since A is linear for any finite group G,
we obtain an A-equivariant rational map from a linear A-variety to X. Since there
is a section G ^ A the map ^ may be viewed as a G-equivariant dominant rational

map from a linear G-variety. Thus X is versal.
For the other implication, we assume X is versal and want to show (1) splits.
Since X is versal there exists a G-equivariant rational map / : IT —> X where

IT is a faithful linear G-variety. Let A -> A be the X-torsor obtained by pulling
back t/t along the restriction of / to its domain of definition A. From the universal

property of pullbacks we obtain an A-action on A compatible with the G-action
on t/.

Note that Pic(A) 0 since A is open in the affine space JF. Thus, from the

exact sequence (2.0.2) in [13], we see that the etale cohomology group 7/* (A, X) is

trivial. In particular, the torsor A -> A is trivial.
Since X is proper and A is normal, the indeterminacy locus of / is of codimension

> 2. Thus, all invertible global functions on A are constant and the space of sections

of A ^ A is isomorphic to X. Thus A has an induced action on X and the desired

Splitting follows from Lemma 3.3 below.
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Lemma 3.3. Sftppose Zs an oZg^AraZc groz/p nftYA cZosed ftomzoZ sftAgrowp X oftd

gwo/zeft/" G X/X. Sftppose X acta oft X swcA ^Aotf ^Ae restfrZcted oc/foft o/X oft
Zfae/f Zs /roftsZo/foft. TA^ft X spZZfa os X x G.

Xroo/ Take any point /? G X and consider the stabiliser S Stab^(/?). For any

g G G we have a lift A G X. There is an element A g X such that AA(/?) /?.
Thus AA G S and it follows that aS/(aS H X) G. Since X acts freely on itself,
S D ^ 1. Thus iS ~ G and we have a Splitting of X.

Remark 3.1. Cox rings and universal torsors can be defined in more generality
than the context of toric varieties (see, for example, [13], [26] and [35]). The Cox
rings of minimal rational surfaces have been extensively studied. For example, conic
bundles are considered in [13], §2.6; del Pezzo surfaces, in [19] and [49]. It would
be interesting to investigate versality using these constructions.

In fact, the proof of Theorem 3.2 still applies in one direction: if a G-action on
a complete non-singular variety is versal then an analogous exact sequence to (1)
would still split. However, the analog of F is linear if and only if X is toric [26],
Corollary 2.10. Thus, in general, one does not have an obvious compression from a

linear G-variety as above.

Recall that the Standard projection C —> pw-i ^ ^n example of ^ obtained
from the Cox ring. We point out a special case of the preceding proposition:

Corollary 3.4. Lef G Ae abrate groz/p oc/fftg/ftZ^A/hZZy oft X P"~*. TA^ft X
Zs G-versoZ z/oftd oftZy z/fAere emfa oft eftzAeddZftg G ^ GL^(C) sz/cA ^Aotf ^Ae

coftzposirfoft nftYA ^Ae cftftOftZcoZ ftzop GL^(C) -> PGL„(C) gZves ^Ae G-octZoft oft
pw—1

Remark 3.2. Theorem 3.2 and Corollary 3.4 were inspired by Ledet's Classification
of finite groups of essential dimension 1 over an infinite ground field A [36]. Indeed,
Theorem 1 of [36] states that a finite group G has essential dimension 1 if and only
if there is an embedding G ^ GL2(A) such that the image of G contains no scalar
matrices 7^ 1. Such a group descends isomorphically to a subgroup of PGL2(A). In
other words, the action of G on lifts to A^.

The following is a useful tool for showing that a variety is versal.

Corollary 3.5. Sftppose G Zs o ^ZftZte groz/p oc/fftg /oZ^A/ftZZy oft o coftzpZete ftoft-
sZftgz/Zor Jone von>/y X. Tjf G Aos o^Zved poZftf ^A^ft X Zs G-versoZ.

Xroo/ We have an action of £ on the fibre of the fixed point, so the result follows
from Lemma 3.3.
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Remark 3.3. We note that Corollary 3.5 fails when X is not toric. Consider a

hyperelliptic curve C with its involution (generating a group G ~ C2). This is a

faithful G-variety with a fixed point. However, C cannot be versal since the image
of a rational map from a linear variety to C must be a point.

The following corollary is also inspired by Ledet [36]:

Corollary 3.6. G Z?e o/nZto gronp oc/zng/nYZz/nZZy on <2 corapZeto non-sZngnZor

tone vone/y X. PZzen X Zs G-vensoZ z/ond onZy z//or ony pnrae p, X Zs G^-vensoZ

/er <2 SyZow p-snZ?gronp G^ o/G.

Proo/ Using Theorem 3.2 this follows from a well-known result in group cohomol-

ogy. Consider the produet n Res^ of the restriction maps Res^ : //^(G, AT) ->
//^(G^, AT) over all primes p and some choice of Sylow p-subgroups G^ for each p.
From [9], Section III. 10, this produet is an injection. Thus P -> G has a section if
and only if every G^ has a section.

We remark on one application of this corollary that is not immediately obvious,
but extremely useful. Suppose X is a G-variety and we want to determine whether

or not it is versal. For each prime p, let Gp be a p-Sylow subgroup of G. Suppose
X is G^-equivariantly birational to a G^-variety X^ for each prime p. The versality
property may be easier to determine on the new varieties X^ than on the original
variety X.

This corollary is our main tool in the proof of Theorem 4.5. In particular, we
will show that the versality question on all toric surfaces can be reduced to studying
3-groups acting on and 2-groups acting on P* x P*.

There does not seem to be any compelling reason why Corollary 3.6 should only
be true for toric varieties since versality is a birational invariant. One might conjecture
that this theorem holds for any variety:

Conjecture 3.7. G Z?e o/nZto gronp oc/zng /nYZz/nZZy on 0 vone/y X. PZzen X
Zs G-vensoZ z/ond onZy z//or prZme p, X Zs G^-vensoZ/or 0 SyZow p-snZ?gronp

o/G.

3.2. Monomial actions. We make the following Observation:

Lemma 3.8. Snppose X Zs 0 tone vone/y w/^Zz o/nYZz/nZ octZon 0/0/nZto gronp G

contoZned Zn zPe torzes P. PZzen X Z.s G -vensoZ. PnrzPermore, z/X Z.s compZeto, zPen

X Zins 0 G-/vezZ poZnt.

Proo/ First, suppose X is complete; by the Borel fixed point theorem X has a P-
fixed point and, thus, a G-fixed point. In general, X is P-equivariantly birationally
equivalent to a complete non-singular toric variety (say P"). Consequently, this
birational equivalence is G-equivariant. Thus X is G-versal by Corollary 3.5.
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Consider a toric variety X with torus T, fan A and lattice X. Recall that Aut (X, A)
is the subgroup of GL(X) preserving the fan A. Note that the group Aut(X, A) has a

natural action on X which is T-stable. We say a group G has a ranZftpZ/co/fv*? oct/on

onl if G C Aut(A, A).

Lemma 3.9. Snppose X Zs o fonc vone/y wzYZz o /ozYZz/nZ ranZ/fpZ/co/fve oct/on o/ o

gronp G. TTzen X Zz<xs o po/n£ ond X Zs G-versoZ.

Proo/ Any element of Aut(X, A) fixes the identity of the torus T in X. The versality
of X is well-known (see Lemma 3.3 (d) of [12] or [1]).

Note that both T-actions and multiplicative actions are T-stable - they preserve

f as a subvariety of X. Any particular T-stable automorphism of X is a product
of an element of T and an element of Aut(X, A). Thus, the group of T-stable
automorphisms of X is precisely

Aut^(X) r xi Aut(X, A).

Given such a subgroup of Aut^(X) there is a natural map

&>r: G -> Aut(A, A) c GL(A)

given by the projection G^G/(Gnf). We denote this map to emphasize its

dependence on T (even though, strictly speaking, it depends on X).
Despite the fact that T-actions and multiplicative actions are always versal, this

does not hold for T-stable actions in general. Nevertheless, they are much more
manageable than general actions.

Definition 3.1. Let G be a group acting faithfully on a toric variety X. We say that the
action is raonora/oZ if there exists a fan A in a lattice X inducing a torus T X (8) C *
such that the associated toric variety is G-equivariantly biregular to X andg(T) T
for all g e G.

Such actions are also called "twisted multiplicative" in the literature.
Note that, for a linear variety X ~ C, monomial actions are precisely the same

as monomial representations. Recall that all linear representations of supersolvable

groups are monomial [50], Section 8.5, Theorem 16. This result has a natural gener-
alisation for toric varieties.

Proposition 3.10. Snppose G Zs o snpersoZvoWe yZrate gronp oc/mg on o corapZete

non-s/ngnZor fonc vone/y X. TTzen G Zs monom/oZ.

Proo/ By Lemma 3.11 below, there exists a change of basis a: L -> L such that
X tt~*(G) has a monomial action on a(L) with X acting diagonally. Since X
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acts diagonally in both coordinates, if F^ is the weight space in F corresponding to
some character A: AT -> C* then af(F^) C F^. These F^ are precisely the of
[15], Section 4. This means that ar e G^ where

G, r]GL(^.) CM(AT).

Thus ar descends to an automorphism of X. In the new basis, we have an embedding
F ^ (C*)^) xi Aut(F, A). Taking the quotient by X we obtain G C F xi

Aut(W, A).

Lemma 3.11. Swppose we Zzave an evact segwence o/aZgeferaZc growps (over C)

i -> A: -> £ -> G -> l

wZzere X Zs dZßgönßZZsß&Ze amZ G Zs yZmYe swpersoZvaMe. For any representa/fon F
o/F zFere emfa ß cAoZce ö/ctförc/Zratfes swc/* zFßf F Zs monomZ^Z wZzF F JZagonaZ.

Fw/tfeerraore, any ZrredwcZWe re^resercfatfZcw Zz<xs «/ZmerrsZon JZvZdZng zFe on/er o/G.

Proo/ This is a straight-forward generalisation of [50], Section 8.5, Theorem 16. We

proceed by induction on the dimension of F. For any normal subgroup X <1 F the

quotient 77: F -> F/X sits in an exact sequence

1 -> ??(*o -> ??(£) -> -> 1

with 77 (F) diagonalisable and 77(F)/t7(F) finite supersolvable. Thus it suffices to
assume F is a faithful irreducible representation of F.

Suppose F is abelian. There are no non-trivial unipotent elements in G or F, so

F consists of semisimple elements. Thus F is diagonalisable (thus monomial). This
also takes care of the base case dim(F) 1.

Suppose F is non-abelian. We claim there exists a normal diagonalisable subgroup
A containing F which is not contained in the centre of F. If F is not central we may
take A F. If F is central then there exists a normal cyclic subgroup C of F/Z(F)
by supersolvability of F/F. In this case, take A to be the inverse image of C in F.
We see that A is abelian (thus diagonalisable since F is diagonalisable), contains F,
and is not contained in the centre of F.

We have a decomposition F 0 V/ into distinct weight Spaces for the action of
A. Since A is normal in F, the group F permutes the Spaces V/. In fact, the action
of F is transitive since F is irreducible. Since F acts faithfully on F and A is not
central in F, there is more than one weight space V/. Let // be the maximal subgroup
of F such that //(Fo) Fo. We see that the F-representation F is induced from the

//-representation Fo.

Since dim(F) [F : //] dim(IF) and // contains F the result follows from the
induction hypothesis.



Vol. 88 (2013) Finite groups of essential dimension 2 569

Recallthat p-groups are supersolvable. Thus, in particular, actions of p-groups on
toric varieties are always monomial. This isparticularlyusefulinlightof Corollary 3.6
above.

4. Del Pezzo surfaces of degree > 5

The main goal of this section is to prove Theorem 4.5: a Classification of all finite

groups which act versally on one of the four surfaces P^, P* x P\ DPö (the del
Pezzo surface of degree 6) or DP5 (the del Pezzo surface of degree 5).

Recall that the automorphism group of P^ is PGLs(C); that of P* x P* is

(PGL2(C) X PGL2(C)) x »S2

where S2 swaps the two copies of PGL2(C); that of DPg is (C*)^ x 7) 12 (see
Section 6.2 in [20]); and that of DP5 is S5 (see Section 6.3 in [20]).

The surfaces P^,P^xP^ and DPö are toric. The monomial actions on these

surfaces will be particularly important. For example, we have the following lemma:

Lemma 4.1. AZZ versaZ ac/zons tf//znzte groz/ps on P* x P* ore monom/oZ.

Proo/ Recall that tt : Aut(X) -> Aut(X) is the group homomorphism induced from
the Cox ring construction. For G C Aut(X) we have the lift 7? tt~* (G) in

Aut(X) ~ (GL2(C) x GL2(C)) x 52

with the exact sequence (1) from Section 3.

Let // Gfl (PGL2(C) x PGL2(C)). The group /7 is the image in G of the
centralizer of in TL We see that Ff is a normal subgroup of G of index at most 2.

Let Ffi and 7/2 be the projections of // to the first and second copies of PGL2(C).
We note that there is a natural embedding // C //1 x 7/2. When // 7^ G we have

isomorphisms TG ~ 7/2 induced by the actions of elements in G — 77.

We may consider the action of 7i on L ~ C* as a 4-dimensional representation

p. Let tt~^(77). Note that C GL2(C) x GL2OC). Thus, the restriction

p|^ is a direct sum of 2-dimensional subrepresentions cri and 0*2. Informally, one

may consider cri as the preimage of 7/i and 02 as the preimage of 7/2. If G 7^ 7/
then p is induced from cri.

If G is versal then there is a section from G to TL Recall that a finite subgroup
ofPGL2(C) lifts isomorphically to GL2(C) if and only if it is cyclic or odd dihedral
(Proposition 2.10). All 2-dimensional representations of lifts of such groups are
monomial. Thus cri and 02 are monomial. If G 7/ then p cri 0 02 is monomial.
If G 7^ 7/ then p Ind^ cri is monomial.



570 A. Duncan CMH

4.1. Monomial actions on toric surfaces. Recall the Classification of conjugacy
classes of finite subgroups of GL2(Z). We use the list in Lorenz's book [37], page 30.

The list comes with explicit representatives for each conjugacy class in terms of
explicit matrix generators. We use the ^ notation to denote this explicit representative
in each conjugacy class. (Lorenz uses ^ to denote the class, not the representative).
Since it is used so extensively in what follows, we reproduce the list in Table 1.

Table 1. Conjugacy classes of non-trivial finite subgroups of GL2(Z).

Label Generators Structure

«1 (i~o Mio) £>12

£2 o'?)- (10) £>8

^3 T®®TTT 06

£4 TT 06

£5 ("»'S). (ä-°i) C2 x C2

^6 (10). (-",-0') C2 x C2

^7 (i -«') Ce

^8 (So') C4

£9 (?:!) C3

^10 Co'-»,) C2

«11 (o'S) C2

^12 (?J> C2

One checks that Figure 1 contains the finite subgroup lattice structure in GL2(Z)
where an arrow means "contains a subgroup in the conjugacy class of". We omit
composite arrows for clarity.

From this subgroup lattice structure we make some useful observations about /?-

groups in GL2(Z). For /? > 3, there are no non-trivial /7-subgroups of GL2(Z). All
2-subgroups of GL2 (Z) are conjugate to a subgroup of ^2 • All non-trivial 3-subgroups
of GL2(Z) are conjugate to ^9.

Let TV Z^ be our lattice. There are Standard realisations of P^, P* x P* and

DPö as the toric varieties associated to the complete fans in TV from Figure 2.

Let T TV (8) C* be the torus associated to the lattice AL Choose coordinates
suchthat (^1,2.2) £ (C*)^ ~ T corresponds to

(Aj : A2 : 1) e P*
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Figure 1. Lattice of finite subgroups in GL2(Z).

Figure 2. Standard fans for P^, F * x F * and DPö-

and

(Ai : 1 ; A2 : 1) e P* xP'.
Thus the maximal cones in Ap2 and Api><pi correspond to the T-fixed points indi-
cated in the diagram.

Recall that the group of T-stable automorphisms Aut^(X) of a surface X is

r x Aut(A, Ax) where Aut(A, A^) is the group of automorphisms of the associated
fan Ax. We have the following automorphism groups:

Aut(A, Ap2) ^4? Aut(A, Apixpi) — ^2? Aut(A, Adp^) ^1.

Sinee and ^2 are the maximal finite subgroups of GL2(Z) up to conjugacy (see

Figure 1), all monomial group actions on toric surfaces are equivariantly birational
to actions on P* x P* or DPö. (Note, however, that this is nof the case for general
actions.)

By Lemma 3.8, this means that all faithful /7-group actions on toric surfaces are

automatically versal for /? > 5. For 3-groups and 2-groups the theory is a bit more
involved. For 3-groups, the versal property can be determined by considering actions
onP^:
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Lemma 4.2 (3-groups acting on toric surfaces). Snppose G3 Zs <2^ZnZto 3-gronp octZng

/ö2YZz/nZZy on <2 tone snr/oee X. FZzen X Zs G3-Z?Zr<2/zon<2ZZy egnZvoZen/^ to F P^
w/^Zz G3 C F x ^9 onzZ ^Zze/oZZowZng ore egnZvoZen/v

1. F Zz<2s <2 G3-ybc£<i poZn/,

2. X Zs G3-v£rsoZ,

3. zFe/oZZowZng eonzZZft'ons ZzoZzZ:

(a) z/&>:r(G3) 1 ^Zzen ^Zzere ore no eonzZZ/zons,

(b) z/&>:r(G3) ^9 ^Zzen G3 H F 1.

Proo/ Recall that all /7-groups are monomial and ^9 is the maximal finite 3-subgroup
of GL2(Z) up to conjugacy. Thus we may assume G3 C F x ^9 in some coordinates

by Proposition 3.10. Furthermore, selecting a new fan in the same lattice induces a

birational map. Thus X is G3-birationally equivalent to F P^. Since versality is

a G-birational invariant, it suffices to assume X F for the remainder of the proof.
The implication (1) => (2) is immediate by Corollary 3.5. In case (a), all

remaining implications are immediate by Lemma 3.8. It remains to consider case (b)
with &>;t(G3) ^9.

Assume (2): that X is versal. Since G3 is a 3-group of essential dimension 2, it
is abelian by Proposition 2.6. Note that ^9 does not fix any of the cones of the fan

Ap2 except for the trivial cone {0}. Thus any G3-fixed point must be on the torus.
Note the action of any non-trivial element of G3 D F does not fix any point on the

torus. If G3 D F 7^ 1 then we have an abelian subgroup without a fixed point. This
contradicts Proposition 2.3. So (3) must hold and we have (2) => (3).

If (3) holds, then G3 ~ C3. Any finite cyclic group acting on P^ has a diagonal-
isation. So there exists a G3-fixed point. We have (3) => (1).

Similarly, we determine which 2-groups are versal by studying P * xPl
Lemma 4.3 (2-groups acting on toric surfaces). Sw/Tpose G2 Zs <2^ZnZto 2-gronp oe/fng
/azYZz/wZZy on <2 tone snr/oee X. FZzen X Zs G2-Zn><2/zon<2ZZy egnZvoZen/^ to F P^xP^
wzYZz G2 C F x ^2 ^Zze/oZZowZng ore egnZvoZen/v

1. F Zzos <2 G2-^vezZ poZn/,

2. X w G2-vers<2Z,

3. zFe/oZZowZng eonzZZft'ons ZzoZzZ:

(a) z/to;r(G2) A eonjngoto to 1 or ^12 ^Zzen ^Zzere ore no eonzZZ/zons,

(b) ?/to^(G2) Zs eonjngoto to ^Zzen (o/tor eZzoonng eoorcZZnotos sneZz ^Zzetf

tor(G2) ^n),/or ony Z G G2 fl FT (1, A)/or sorae A e C*,

(c) Zn oZZ reraoZnZng eoses we regnZre G2 H F 1.
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Proo/ Recall that 7/2 is the maximal finite 2-subgroup of GL2(Z) up to conjugacy.
Similarly to Lemma 4.2 above, we may assume G2 C 7 x 7/2 and X 7.

The implication (1) => (2) is immediate by Corollary 3.5. We prove the remain-

ing implications by restricting to each case in (3).

Case (a): j(G2) is conjugate to 1 or ^12. There are no additional conditions so

it suffices to show (1) always holds. When a>r(G2) 1, this is immediate from
Lemma 3.8. For 0)7* (G2) conjugate to 7/12 we choose coordinates so that 0)7* (G2)
^12 andusethefan Api><pi as above. The cone er spannedby {(1,0), (0, l)}isfixed
by the action of 7/12 and, since it is a maximal cone, corresponds to a 7-fixed point.
Thus the 7-orbit corresponding to er is a G-fixed point.

Case (b): j(G2) is conjugate to ^n. It suffices to assume that a>r(G2) 7/n
and 7 is constructed from the fan Api^pi. Assume (3) does not hold; we will show
that this implies (2) cannot hold. There exists an element ^ e G2 H f of the form
£ (A 1,2.2) C (C*)^ whereAi 7^ 1. Furthermore, by taking appropriate powers,
we may assume Ai has order 2. Now consider g £ G2 such that &>r(g") 7^ 1. The

group A (gX) is an abelian subgroup of G2.

Note that 7/n (and thus g) only fixes the cones spanned by {(0,1)}, {(0, —1)}
and {0} in Apixpi. The element t acts non-trivially on the 7-orbits corresponding
to those cones (and so has no fixed points there). We have an abelian subgroup A
without a fixed point. This contradicts Proposition 2.3. Thus (2) does not hold. We
have shown (2) => (3).

Now assume (3) holds. Recall the definitions of //, //1 and 7/2 from the proof of
Lemma 4.1. In this case G2 77; and T7i, 7/2 are cyclic. Thus 7/i has a fixed point

on the first P * and 7/2 has a fixed point /?2 on the second. The point (/?i, ^2) is a

G2-fixed point of 7. Thus (3) => (1) => (2).

Case (c): all remaining cases. Assume (3) does not hold. Recall the subgroup
strueture of 7/2 from figure 1. We must have 7/io C 0^7-(G2). If G2 H 7 7^ 1 then
there exists an element £ £ G2 H 7 of order 2. The element £ commutes with the
action of 7/io. Let g £ G2 be an element such that 1 7^ &>r(g") C 7/io. The group
A (gX) is an abelian subgroup of G2.

Note that 7/io only fixes the trivial cone {0} in Api><pi so any A-fixed point must
be on the torus. The element £ does not fix any point on the torus. We have an abelian

subgroup A without a fixed point. This contradicts Proposition 2.3. Thus (2) does

not hold. We have shown (2) => (3).
Now assume (3) holds. In this case, 7/i and 7/2 are cyclic. A cyclic subgroup of

PGL2(C) lies in some torus C*. Thus we may find new coordinates with a different
torus 7'c7 such that 7/ C 7'. Note that, for any g £ G2, g^ G 7' so 0)7-/(g) has

order 2. Also, 7/io and 7/n are contained in 77. Thus, any g £ G2 — 7/ must have

&T' (g) conjugate to the non-trivial element in T/n. So G2 C 7' xi 7/n and has a fixed
point by case (a). We have shown (3) => (1) => (2).
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Lemma 4.4. AZZ ^ZnZto G o/ /oZZowZng gronps Zzove versoZ raonoraZoZ

octZons on o tone swz/ace:

(1*)

(2) P x ^ wZ^/z IG n 71 copnrae to 2 onzZ 3,

(3) Pxi^2 w/tA IG n r| coprZm^ to 2,

(4) P x ^3 wZtA IG n r| coprZnn? to 3,

(5) P X^4 wZtA IG n 71 coprZnn? to 3.

Fwr^Zzermere, ony^ZnZto gronp wZtA o vensoZ raonoraZoZ oc/zon on o torZc sn//oc£ Zs <9/

zPZs/orm.

Proo/ Recall that when deciding whether a group G has a versal action on a complete
non-singular toric variety it suffices to check Sylow /?-subgroups G^ (Corollary 3.6).
For all the forms above, G^ is always versal when /? > 5 by Lemma 3.8. So one only
needs to check the Sylow 3- and 2-subgroups.

Any finite G with a monomial action can be written in the form G C P x ^
where ^ is from Table 1. From Lemma 4.2 and Lemma 4.3 we have necessary and

sufficient conditions for G2 and G3 to be versal.
We note G3 H P 1 is equivalent to |G D P| coprime to 3 and similarly for G2.

By selecting appropriate Sylow subgroups we have Table 2 where the last row gives
the necessary and sufficient conditions for G to be versal.

One sees that any group G listed in the theorem is versal.

For the converse, we show that all of the other possibilities for to^(G) are already
contained in a group appearing in the list. The cases ^5,^ ^8 and ^10 are all covered

by form (3); #7, by form (2); ^9, by forms (4) and (5); and to^(G) 1 by form (1*).
It remains to eliminate the special case 1. Here, G // C //1 x 7/2 in the

language of the proof of Lemma 4.1. Thus any finite subgroup G of P xi ^11 must
be a subgroup of P2« x Cm for sufficiently large integers n and m. From case (3b)
of Lemma 4.3, if G is versal we can assume n is odd. We show that any such group
is actually isomorphic to a group of form (1*) above.

Indeed, consider the following subgroup of GL2(C):

where £„ and ^ are nth and mth roots ofunity, respectively. This group is isomorphic
to P2« x C^ and has an embedding into P x ^12.

4.2. Versal actions on the four surfaces

Theorem 4.5. Snppose o^ZnZto gronp G Zzos <2 vensoZ octZon on P^, P* xP \ DPö,

or DP5. PZzen G Zs^ZnZto snfegronp o/one o/TZze/oZZowZng gronps:
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Table 2. Yersality conditions for monomial actions on surfaces.

66)7^ (G) «r (G3) «r (G2) G n 7" | coprime to

*1 £9 ^6 2,3

£2 1 £2 2

£3 £9 ^12 3

£4 £9 ^12 3

£5 1 £5 2

^6 1 ^6 2

^7 £9 ^10 2,3

^8 1 ^8 2

£9 £9 1 3

^10 1 ^10 2

£11 1 «11 special

^12 1 ^12 none

1 1 1 none

(1) GLaCC),

(2) L x wzYZz IG n 71 copnrae 60 2 ontZ 3,

(3) L x ^2 wZfA IG n r| copnrae 60 2,

(4) f >1^3 wzYZz IG n r| copnrae 60 3,

(5) L x ^4 wzYZz IG n r| copnrae 60 3,

(6) PSL2(Fy),

(7) 5s.

oZZ yZrate snFgronps o/ 6Zze oFove gron/T? ort versoZZy on one o/ ^Zzose

Proo/ Recall that any finite subgroup of GL2(C) acts versally onP^. We note that

any finite subgroup of L x ^12 is a subgroup of GL2OC). So form (1*) in Lemma 4.4
is wholly contained in form (1) of this theorem.

By Lemma 4.4, the versal monomial actions on ony toric surface are contained in
forms (1)—(5) above. Recall that the automorphism group of DPö is L xi ^ and the
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group of monomial automorphisms of P* x P* is 7 xi ^2- Forms (1)—(5) all have

versal actions on one of the 4 surfaces.

It remains to study actions that are nctf monomial. All actions on DPö are mono-
mial, and by Lemma 4.1, this is also true of versal actions on P* xPl Thus these

surfaces require no more consideration.

We consider DP5. Recall from Section 6.2 in [20] that a del Pezzo surface of
degree 5 can be described as a quotient (P*)^/ PSL2(C). The automorphism group
of DP5 is $5 and its action is versal by the construction in [10]. Thus, all subgroups
of $5 act versally on DP5.

It remains to classify all finite groups acting versally on P^. Recall that, by Corol-
lary 3.4, it suffices to determine whether there is an isomorphic lift from PGL3(C) to
GL3 (C). We refer to Blichfeldt's Classification of finite subgroups of GL3 (C) in [7],
Chapter V. Using Blichfeldt's notation, we note that groups of types A and B descend

to subgroups of GL2OC), and groups of type C and D descend to monomial actions

on P^. These groups have already been considered.

Finally, we consider the exceptions E-J in the Classification. Blichfeldt appends
the symbol "0" to the order of a subgroup of GL3(C) when there is no isomorphic
lift of its image in PGL3(C). Consequently, only types H and J descend to versal
actions - these correspond to the groups A5 and PSL2(F7).

5. Conic bündle structures

Recall Manin and Iskovskikh's Classification of minimal rational G-surfaces into
conic bundles and del Pezzo surfaces from Section 2.2. In this section, we establish
the conic bundles case of Theorem 1.2. The del Pezzo surfaces case will be considered
in Section 6.

Theorem 5.1. 7/*G Zins <2 vensnZ nc/ron on <2 ra/n/ranZ con/c fenndZe X ^Zz^n G Zzos 0
vensnZ <2c/ron on P* x P* or P^.

All of the following facts about conic bündle structures can be found in Section 5 of
[20] or in [28]. A con/c Z?nndZe s/rnc/nre on a rational G-surface X is a G-equivariant
morphism 0: X -> F such that F ~ P * and the fibres are isomorphic to reduced
conics in P^. Note that, unlike del Pezzo surfaces, the G-action is required for this
definition to make sense. There may exist other group actions where X does no£ have
such a structure (for example, not all actions on P* x P* respect the fibration).

A fibre F of the morphism 0 is either isomorphic to P * or to P * A P * (two copies
of P* meeting at a point). In the first case, Aut(F) ~ PGL2(C); in the second,

Aut(F) has a monomial representation of degree 2 (in particular, it is a subgroup of
GLaoc)).
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Let Fh be the ruled surface P(0pi 0 0p i (A)) for a non-negative integer « (see,

for example, [25], Section V.2). A conic bündle is either isomorphic to some F„ or
to a surface obtained from some F„ by blowing up a finite set of points, no two lying
in a fibre of a ruling.

Let TT: G -> PGL2(C) be the map induced by the action of G on F under 0. Let
G# im(jr) and Gjv ker(jr). One may consider Gjv as the largest subgroup of
G which preserves the generic fibre. Note that every fibre of 0 is G^-invariant. It is

useful to think of Gjv as the group that "acts on the fibre" and G# as the group that
"acts on the base." Both Gjv and G# are polyhedral groups since they act faithfully
on rational curves.

Let £ {/?!,..., /v} be the set of points on F whose fibres are Singular. Let
be the set of components of Singular fibres {Fi, F^.} where F; and

F^ are the two components of the fibre </>"* (/?;) for each e £. We have a natural

map £: G -> Aut(<F) where Aut(<F) is the group of permutations of <F. Let us

denote Go ker(£) D Gjv (note that this differs slightly from the definition in [20],
Section 5.4).

Proo/ö/ 5.1. We prove the theorem by considering the different possibilities
for G^. We suggest reviewing the results of Section 2.3.

Note that if Gjv contains a characteristic subgroup of order 2 then G has a non-
trivial centre and, thus, a versal action on by Proposition 2.5. The polyhedral
groups with characteristic subgroups of order 2 are the dihedral groups with
n > 2, and the cyclic groups of even order. It remains to consider Gjv of the following
types: odd cyclic, odd dihedral, C2 x C2, A4, S4 and A5.

By Lemma 5.3 below, Go acts faithfully on every component of every fibre of 0.
If iS has no Singular fibres then X is a ruled surface and we may apply Lemma 5.2.

Consequently, we may assume tt has a Singular fibre F. So Go acts faithfully on an

irreducible component of F with a fixed point. Any such component is isomorphic
top*. The only polyhedral groups with fixed points are the cyclic groups, so Go is

odd cyclic.
Note that Gjv can only permute components of the same fibre, thus £ (Gjv) C

(C2)P We have a normal structure with Go <1 Gjv cyclic and Gjv/Go c (C2)'.
This excludes Gjv ~ A4, Gjv ~ S4 and Gjv ~ A5. Thus it remains only to consider

groups G^ that are odd cyclic, odd dihedral or isomorphic to C2 x C2.

These remaining cases are handled by the lemmas below. If Gjv is odd cyclic
then the result follows by Lemma 5.4 below; this case corresponds to X being a

ruled surface. If G^ is odd dihedral then Lemma 5.5 applies; these surfaces are the

"exceptional conic bundles" of [20], Section 5.2. Finally, if Gjv ~ C2 x C2 then
Lemma 5.6 applies; these are all "non-exceptional conic bundles" as in Section 5.4

of [20],
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Lemma 5.2. //"X zs o rnZ^d sn//oc£ wzYZz o versoZ G-oc/Zon £Zz£n G ocfa versoZZy on
P* xPi or P^.

Proo/ If X is P* xpi then we are done. Otherwise, from [20], Theorem 4.10, we
see that any finite group acting on a ruled surface is a central extension of a finite
subgroup ofPGL2(C) or SL2OC). Any finite subgroup G of such an extension has a

versal action on P^. Indeed, it suffices to consider G with trivial centre. Any such

G then embeds into PGL2(C) or SL2(C). All polyhedral groups have versal actions

on P^ (see proof of Theorem 4.5); as do all finite subgroups of SL2(C).

Lemma 5.3. TZze gronp Go ocfa/o/^/nZZy on every coraponen^ 0/every ^ZZ?re o/</>.

Proo/ Let Z? be a component of a fibre of0. Since Go preserves components of fibres,
we may Go-equivariantly blowdown A to a ruled surface such that Z? is isomorphic
to a fibre of the blowdown variety. Thus, it suffices to prove the theorem for A when
all fibres are isomorphic to P *.

Let g be any non-trivial dement of Go. There exists an open cover of Z? by open
sets G such that </>"* (G) ^GxP^. Let L be the subset of distinct triples of points
in (P*)^. There is an isomorphism L -> PGL2(C) by taking the automorphism
determined by the images of the three points 0, 1 and 00. By composing this isomor-

phism with the restrictions g|G x {0}, g|G x {1} and g|G x {00}, we obtain a map

7g,t/ : PGL2(C) which takes each point to the action of g on the fibre of 0.
Let or: PGL2(C) C be the map defined by

Tr(VV
—-

det(X')

where A' is any lift of A to GL2(C). One easily checks that or is well-defined and is

invariant on conjugacy classes. Furthermore, for any A e PGL2(C) of finite order,

ar(A) 4 if and only if A 1 (by diagonalisation).
The isomorphism 0~*(G) ~ G x PMs only determined up to conjugacy in

PGL2(C). Gluing together each after composing with of we obtain a map
yg : Z? -> C. Since C is affine and Z? ~ P \ the image of yg is a point. Since Go

acts faithfully on A, there must be at least one fibre on which g acts non-trivially.
Thus yg 7^ 4 and g acts non-trivially on every fibre. Thus Go acts faithfully on every
fibre.

Lemma 5.4. Snppose G acta versoZZy on A on<Z Gj^ Zs o<Z<Z cycZ/c. TZzen G acta

versoZZy on P* x P* or P^.

Proo/ It suffices to consider G-minimal A. When A is a ruled surface then the result
follows from Lemma 5.2. As we shall see, this is the only case that occurs.
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Suppose X is a ruled surface. We will show that G^ must contain an involu-
tion, contradicting the assumption that G^ has odd order. We use the same reasoning
as the proof of Lemma 5.6 in [20].

Since X is G-minimal, there must exist an element g e G that swaps two com-
ponents, R and iL, of a Singular fibre of 0. By taking an odd power, we may assume
that g has order m 2L

Consider a 1. The intersection point /? of R and R' is in the fixed locus
X^. Any involution acting on a surface with an isolated fixed point must act via

(x,y) i-> (—x,—y) in some local coordinates about that point. Thus, if /? is an

isolated fixed point then g cannot swap R and R'. This contradiction insures that X^
contains a curve other than the fibres of 0. Thus, g is contained in G^.

Now, consider the remaining case a > 1. Consider Zz g"*^. Suppose X^
contains iL Then Zzg(y) gA(y) g(y) applies for all y e iL This means that
R' is contained in X^ as well, contradicting the smoothness of X^. Thus, neither

component is contained in X^.
There exists exactly one fixed point y on R other than its intersection with R'. If y

was an isolated /z-fixed point on X then its image g would still be an isolated /z-fixed

point upon blowing down iL But then R has a trivial /z-action: a contradiction. Thus
/z fixes a curve not contained in the fibres of 0. We obtain /z e G^.

Lemma 5.5. Sz/ppose G acta versa/Zy on X Gj^ zs 6><Z<Z <Zz7z£<ZraZ. T/zen G acta

wrsß/Zy on P * xPl

Proo/ Recall that Go — and G^ ~ Z>2« for some n odd as in the proof of
Theorem 5.1. Consider any g e G#, we shall prove that // 7T~*((g)) is a direct
product G^ x (g).

Since (g) is cyclic there is a fixed point on iL Thus 0 has an //-fixed fibre F.
Recall that Go acts faithfully on F. If F is non-singular then Aut(F) ~ PGL2(C).
If F is Singular then Aut(F) C GL2(C) and we have a natural map Aut(F) ->
PGL2(C) with central kernel. The group Go is not in the centre of G^, so we have

map 77: // —> PGL2(C) which is injective on Go.
Since 77 is injective on Go it must be injective on G^. The image of 77 must be a

polyhedral group with a normal subgroup isomorphic to G^ ~ D2« for some odd

n. From Lemma 2.9, the only possibilities are 77(7/) ~ G^ or 77(7/) ~ Z>4„ ~
G^ x C2 (since n is odd). Either way, there exists a retract // -> G^ of the inclusion
G/v ^ //. Thus // ~ G^ x (g).

Recall that G^ has a trivial centre. By [9], Corollary IV.6.8, there is only one
extension of G^ by G# associated to a map G# -> Out(G^) (up to equivalence).
Since g has a trivial action on G^ for any g e G#, the map G# -> Out(G^) is

trivial. Thus we must have G ~ G^ x G#.
The group G^ contains an involution. If G# contains a subgroup isomorphic to

C2 x C2 then G contains (£2)^. This would contradict ed(G) < 2. So G# must be
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cyclic or odd dihedral. Thus, G ~ G^ xG^ has a versal action onP^ x P* where

G^ acts on one P *, and G#, the other.

Lemma 5.6. Swppose G acta versaZZy on X onJ Gjv ~ C2 x C2. TTz^n G acta versaZZy

on P^.

Proo/ It suffices to consider G with a trivial centre, since otherwise we immediately
have a versal action on P^ by Proposition 2.5. We have a map G# -> Aut(G^) ~ S3

with kernel /. We note that, by construction, if g g G maps to / c G/ Gjv then g
commutes with G^.

Suppose / 1. If G ^ S3 is not surjective then G is abelian or isomorphic to
A4. Both of these have versal actions on P^ so it suffices to assume G is an extension
of C2 by £3. A 2-Sylow subgroup of G is not normal, since we would obtain a

non-trivial map from S3 to C3 (which cannot exist). A 3-Sylow subgroup of G is not
normal since A4 C G and C3 is not normal in A4. The only group G of this form
is 5*4 [27], Theorem 1.33. The group S4 has a versal action on P^ by the proof of
Theorem 4.5.

It remains to consider / ^ 1. We shall see that this case cannot occur.
Suppose / contains a subgroup Af ~ C2 x C2. The group Af' c G

has essential dimension < 2 and a non-trivial centre (it is a 2-group). Thus, there
is an embedding p: Af' ^ GL2(C). This representation p is faithful and, since

Gjv C Z(Af'), has a non-cyclic centre. It cannot be irreducible by Schur's lemma.
Thus, Af' is abelian and must have a fixed point on X (since it is versal).

Under the projection to i? this becomes a fixed point for M. But Af has rank 2

and cannot have a fixed point on i? ~ P *, a contradiction. Thus we cannot have a

subgroup C2 x C2 in /. We have a morphism G# -> S3 whose kernel cannot contain
C2 x C2. Considering the normal structure of G# (a polyhedral group), this excludes

G# isomorphic to A4, S4 or A5.
It remains to consider G# cyclic or dihedral. The involutions in Aut(G^) all fix

a non-trivial element of G^. Since G has a trivial centre, we must have an element

g G G that descends to an element of order 3 in Aut(G^).
If G# is cyclic then / and jr(g) generate G#. If G# is dihedral then / and jr(g)

generate the maximal normal cyclic subgroup of G#. Indeed, there is no non-trivial

map from a dihedral group to C3 so G# surjects onto Aut(G^) ~ £3. The kernel
of the composition G# -> Aut(G^) -> C2 is generated by / and jr(g) as desired.
Note that 7r(g)^ g / in either case.

Let L (7r~^(/),g). Consider any 7 g tt~*(/). Since tt (7) and jr(g) com-
mute, we have (g, 7) A: for some A; G G^. Thus 7^ G Z(L) since gy'^g"*

Suppose / has even order. Note that Z(L) fl G^ 1 so there exists 7 G tt * (/)
with 7 ^ Gjv such that 7^ 1. In this case, we have a subgroup Gjv x (7) ~
(C2)^ C G. This cannot have essential dimension 2 so we have a contradiction.
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We may assume / has odd order. Note that Z(L) C since any element

mapping non-trivially to L/tt"* (/) C Aut(G^) cannot be central. We want to show
that TT maps Z(L) onto /. For any y G / there exists x G / such that x^ y
(since |/| is odd). There is a lift / G L such that tt(Z) x. We have Z^ G Z(L) and

tt(Z^) x^ y as desired. Since G^ D Z(L) 1 we have a Splitting / ^ L with
image Z(L). Thus we may identify / and Z(L)

Since ed(L) < 2 and / Z(L) 7^ 1, there is an embedding L ^ GL2(C). We
then compose this with the natural map GL2(C) -> PGL2(C). Note that L// ~
(G^ xi C3) ~ A4. Since Z(L) /, we have a map L -> PGL2(C) with image A4
and kernel /. Any subgroup of GL2(C) mapping onto A4 C PGL2(C) must have a

central involution by Proposition 2.10. So / has even order; a contradiction.

6. Del Pezzo surfaces of degree < 4

We are finally in a position to prove Theorem 1.1. It remains only to show that groups
with versal actions on del Pezzo surface of degree < 4 have already been seen acting
versally on the surfaces of Theorem 4.5. Indeed, the main theorem is an immediate

consequence of the following:

Theorem 1.2. 7/* G
<2c/26>n onP^, xP \ DPÖ, or DP5.

Proo/ All groups G of essential dimension 2 have versal actions on minimal rational
G-surfaces by Proposition 2.8. Thus, it suffices to prove that, for any minimal rational
versal G-surface X, there exists a versal action on one of the 4 surfaces listed above.
Recall that any minimal rational G-surface X is a del Pezzo surface or has a conic
bündle structure by Theorem 2.7.

Theorem 5.1 proves the theorem for surfaces with a conic bündle structure. We
recall from [20], Section 6, that the only minimal rational G-surfaces of degree > 5

are precisely those listed in the Statement of the theorem. Thus it suffices to consider
degrees < 4. In the following X is a del Pezzo surface with a versal G-action.

Case degree 4: The minimal groups of automorphisms of del Pezzo surfaces X of
degree 4 are listed in Theorem 6.9 of [20]. We know that G must be from this list
and that ed(G) <2. If G is abelian or a 2-group then it acts versally on P^. All
remaining groups have abelian subgroups with ranks > 3 (note that C2 x A4 contains

C|); thus they cannot be versal.

An alternative proof that does not rely directly on [20], Theorem 6.9, can be found
in the appendix of [21].

Case degree 3: The minimal groups of automorphisms of del Pezzo surfaces X of
degree 3 are listed in Theorem 6.14 of [20]. It suffices to consider G from this list.
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All groups with non-trivial centres and essential dimension < 2 have versal actions

on by Proposition 2.5. Thus we may assume G has a trivial centre. In particular,
we may eliminate all abelian groups from the list. Next, we may eliminate all groups
with abelian subgroups of rank > 3 since they cannot be versal by Proposition 2.4 (b).
Similarly, we eliminate G containing a non-abelian 3-subgroup by Proposition 2.6.

Also, if G is a subgroup of £5 then G has a versal action on DP5 by the proof of
Theorem 4.5.

All that remains to consider are G of the form C| xi C2 and C| xi C2 It suffices

to consider G ~ C| x C2. We may view this group as a representation of C| on
the vector space F|. Since the centre is trivial, we may assume the representation is

faithful. The representation is diagonalisable, so G is isomorphic to S3 x £3. This

group has a versal action on F * x P * by the proof of Theorem 4.5.

An alternative proof can be found in the appendix of [21].

Case degree 2: We have a finite G-equivariant morphism of degree 2 to P^ (see

Section 6.6 in [20]). If the induced action of G on P^ is faithful then we are done.

Otherwise, the group G contains a central involution (a Ge/ser /nvtfZwft'tfn). Any such

group has a non-trivial centre and sits inside GL2(C) by Corollary 2.5.

Case degree 1: This case proceeds the same way as degree 2 via the Iterftra mvöZwft'tfn.

The only difference is that the finite morphism of degree 2 maps onto a Singular quadric
cone in P^ (see Section 6.7 in [20]). The automorphism group of a Singular quadric
cone is the same as the minimal ruled surface F2 (see [25], Example V.2.11.4). Any
versal action on such a surface must also act versally on P^ or P * xP * (see Lemma 5.2

above).
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