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Abstract. We prove that the orbit closure of the determinant is not normal. A similar result is
obtained for the padded permanent (i.e., the permanent multiplied by a power of a linear form).
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1. Introduction

Let v be a complex vector space of dimension m and let 27 := v ® v* = Endv.
Consider det € Q := S™(E™"), where det is the function taking determinant of any
X € Endv. Fix abasis {eq, ..., ey} of vand a positive integer # < m and consider
the function p € @, defined by p(X) = x7'{" perm(X?), X being the component
of X in the right down n x n corner, where any element of End v is represented by a
m x m-matrix X = (X; j)1<i,j,<m in the basis {e; } and perm denotes the permanent.
The group G = GL(£) canonically acts on (. Let Xy (resp. X,;) be the G-orbit
closure of det (resp. p) inside Q. Then, Xqe and X, are closed (affine) subvarieties
of O which are stable under the standard homothety action of C* on Q. Thus, their
affine coordinate rings C[X4.:| and C[X,] are nonnegatively graded G-algebras over
the complex numbers C. Clearly, End £ - det C Xy, where End £ acts on Q via
(g-q)(X)=¢q(g"-X)forg e EndE,ge Qand X € E.

For any positive integer n, let m = m(n) be the smallest positive integer such
that the permanent of any # X n matrix can be realized as a linear projection of the
determinant of a 7 x m matrix. This is equivalent to saying that p € End £ - det for
the pair (m,n). Then, Valiant conjectured that the function r2(r) grows faster than
any polynomial in # (cf. [V]).

Similarly, let m = m(n) be the smallest integer such that p € Xge (for the pair
(m,n)). Clearly, m(n) < m(n). Now, Mulmuley—Sohoni strengthened Valiant’s
conjecture. They conjectured that, in fact, the function m(n) grows faster than any
polynomial in #z (cf. [MS1], [MS2] and the references therein). They further con-
jectured that if p ¢ Xgye, then there exists an irreducible G-module which occurs
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in C[X,] but does not occur in C[Xg]. (Of course, if p € Xy, then C[X,] is a
G-module quotient of C[ X 4et].) This Geometric Complexity Theory programme ini-
tiated by Mulmuley—Sohoni provides a significant mathematical approach to solving
the Valiant’s conjecture (in fact, strengthened version of Valiant’s conjecture proposed
by them). In a recent paper, Landsberg—Manivel-Ressayre [LMR] have shown that
m(n) = n?/2.

It may be remarked that Valiant’s above conjecture is equivalent to

(permn)nzl ¢ prs-

This is an algebraic version of Cook’s celebrated P £ NP conjecture. The conjecture
of Mulmuley—Sohoni is equivalent to (perm, ),=1 ¢ VP For a survey of these
problems, we refer to the article [BL] by Biirgisser-Landsberg—Manivel-Weyman.

From the experience in representation theory (e.g., the Demazure character for-
mula or the study of functions on the nilpotent cone), one important property of
varieties which allows one to study the ring of regular functions on them is their
normality. But, unfortunately, as we show in the paper, both of the varieties X 4 (for
any m > 3) and X, (forany m > n + 1 and n > 3) are not normal (cf. Theorems 3.8
and 8.4). These are the principal results of the paper.

To prove the nonnormality of X 4., we study the defining equations of the boundary
0 Xger = Xger \ X§., and show that there exists a G'-invariant f, in C[X 4| (where
G’ := SL(E) and X§,, := G - det), which defines X4 set theoretically (but not
scheme theoretically), cf. Corollaries 3.6 and 3.9. In particular, each irreducible
component of d Xy is of codimension one in Xy (cf. Corollary 3.6). To show that
Xaer 1s not normal, we show that, in fact, the GIT quotient X/, := X4e// G’ is not
normal by analyzing the G'-invariants in C[Xe]-

Let {e]....,ey,,} be the dual basis of v*. Then, of course, {¢; ; := ¢; ® e}‘; 1 <
i,j <m}isabasisof E. Let §; be the subspace of £ spannedby {¢; j;m—n+1 <
i,j < m}, S the subspace of E spanned by S; and e; 1, and S+ the complementary
subspace spanned by the set {e; jb1<i j<m \ {€1.,1.€i jtm—nt1<i j<m. Let P be the
maximal parabolic subgroup of G = GL(E) which keeps the subspace S+ of E
stable and let L p be the Levi subgroup of P defined by Lp = GL(S~) x GL(S).
Let R be the parabolic subgroup of GL(S) which fixes the line spanned by e ;.

The proof of the nonnormality of X, is more involved. We first show that the
G-module decomposition of C[X,] is equivalent to the GL(.S)-module decompo-
sition of the ring of the regular functions on the GL.(S)-orbit closure € of p (cf.
Theorem 5.2). Next, we analyze € in Section 6. In particular, we give its partial
desingularization of the form O := GL(S) xg ((8* X Xperm)//C*) (cf. Proposi-
tion 6.3 and Lemma 6.2), where Xy is the GL(S1)-orbit closure of the permanent
function perm inside S™(E£™), C* acts on §* X Xperm via the equation (21) and the
action of R on (8™ X Xperm)//C* is given in Section 6 immediately after Lemma 6.2.
We determine the ring of regular functions on O (as a GL(.S)-module) completely
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(and explicitly) in terms of the ring of regular functions on X, as a GL(Sy)-
module (cf. Theorem 7.5). Via the Zariski’s main theorem, this allows one to give
the G-module decomposition of the normalization of X, completely in terms of the
GL(S1)-module decomposition of the ring of regular functions on the normalization
of the GL(8y)-variety Xpem, (use Theorem 5.2, Corollary 5.4, Lemma 6.2, Propo-
sition 6.3 and Theorem 7.5). It may be remarked that we are not able to give an
explicit G-module decomposition of C|[X,] itself from that of the GL(S)-module
C[Xperm]. By comparing the explicit GL(S )-module decomposition of the ring of
regular functions C[£] mentioned above with the ring of regular functions on the
GL(S)-orbit closure of p, we conclude that X, is not normal for any m > »n + 1 and
n > 3 (cf. Theorem 8.4). A similar idea allows us to conclude that the orbit closures
of p under the groups R and GL(S) are not normal (cf. Corollaries 8.2 and 8.3).

Notation. We have often abused the notation and denoted the homogeneous vector
bundle on the homogeneous space G/ P associated to the P-module M by M itself.
Hopefully, the distinction will be clear from the context. We denote C\{0} by C*
and the dual of a vector space VV by V*. (We hope it will not cause any confusion.)

Acknowledgements. I thank J. Landsberg for bringing my attention to the works of
Mulmuley—Schoni and his comments to an earlier version of the paper and to K. Mul-
muley for explaining to me some of his works. I thank the referee for some helpful
comments. This work was partially supported by the NSF grant DMS (0901239.

2. Coordinate ring of the orbit closure of det

Take a vector space v of dimension m > 0 and let £ = v ® v* = End v. Consider
G = GL(E) acting canonically on Q = S™(E™), and consider det € O, where det
is the function taking determinant of any A € End v.

Recall the following result due to Frobenius [Fr] (cf., e.g., [GM] for a survey).

2.1 Propesition. The isotropy (gt C G consists of the transformations of the form
1:Y = AY*B, where Y* =Y or Y and A, B € SL(v). (Here Y' denotes the
transpose of Y with respect to a fixed basis of v.)

2.2 Lemma. Any t of the form t(Y) = AY B as above can be written as
Endv=0®v* - 0v®0v*, v® f— Av®@ B/, (1)

where B* is the dual map induced from B. In particulay, such a t has determinant 1.
If T is of the form ©(Y) = AY'B as in the above proposition, then

mim—1)

detz =(-1)" =7 . (2)
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Proof. Take abasis {e; } of v and let {e]'} be the dual basis of v*. Let A = (a; ;) be
the matrix of A in the basis {e;} of v and similarly B = (b; ;). Then,

(B¥el)ep = e (Bey) = Z Y (Bepee) = by p-
£

Thus, B¢} = > bj.pe,. Hence, denoting the map (1) by , we have

e,J:_e,®e |—>Ae,®B (6’)—Zak;€k®bj Zak,1p6k®e
k.p k.p
Thus,
(2Cei.)), = aribjp = (e B,p.,

where (%(e,-,j))k’p denotes the (k, p)-th component of 7(e; ;) in the basis {ex ,}-.
This proves 7 = T.

Let {Aq,...,A;u} be the eigenvalues of A and {uq,. .., 4} the eigenvalues of
B. Then,

m
det? = ]‘[ ity = [ [ (A7 det B) = (det A)™ (det B)™ =

H

sincedet A =det B = 1.
To prove (2), in view of the above, we can assume that 7(¥) = Y. The proof in
this case is easy. (|

As a consequence of Proposition 2.1 and LLemma 2.2, we get the following.

2.3 Corollary. We have a group isomorphism:
¢: SL(0) X SL(0)/ @y = G, ¢lA.Bl(v® f) = A (B™) [,

where Oy, is the group of the m-th roots of unity acting on SL(v) x SL(v) via
z(A,B) = (zA, zB), |A, B| denotes the Oy,-orbit of (A, B) and G,
identity component of Gge.

In particular, dim(G’ - det) = (m? — 1)2, where G' := SL(E). Moreover,
Ggf:t - Gdf:t

If (%) is even, then Gy C G'.

5. denotes the

Since the isotropy G, is not contained in any proper parabolic subgroup of G’

(as can be easily seen by observing that no proper subspace of £ is stable under

G{..), Kempf’s theorem [Ke], Corollary 5.1, gives the following result observed in
Theorem 4.6 of [MS1]:
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2.4 Proposition. The orbit G’ - det is closed in Q.

Let X3, := G - det, Xy := X, where the closure is taken inside 0, and let
Xl := G'-det. More generally, let V' be an irreducible representation of GL(k) (for
some k > 1) such that the center of GL.(k) acts nontrivially on 7 and let v, € V be
such that SL(k)-orbit of v, is closed. Denote X = GL(k)- v, and X' = SL(k) - v,.

The following simple lemma is taken from [MS2].

2.5 Lemma. For any d > 0, the restriction map
p?: CUX] — C[X']

is injective, where C4[X| is the homogeneous degree d-part of C[X] (i.e., C4[X] is
a quotient of ST(V*)),
In particular, for any d = 0, the restriction map

¢! CU[Xga] = C[X;

et
Is injective.

Proof. Take f € C¥4|X] suchthat p¢(f) = 0, 1.e., f(x) = Oforall x € X’. Then,
forany z € Cand x € X', f(zx) = z9 f(x) = 0, i.e.,, f(C-X’) = 0 and hence

J(C-X) =0 Bu, C-X" = X and hence f(X) = 0. This proves the lemma.
L

As a consequence of Proposition 2.4, Lemma 2.5 and the Frobenius reciprocity,
one has the following result from [MSZ2].

2.6 Corollary. An irreducible G'-module M occurs in C|G'/G},| = C|X],] if and
only if M occurs in C|Xqe|- In particular, an irreducible G'-module M occurs in

C[Xaer] if and only if M Gier 0,

2.7 Example. Let m = 2. Then, G - det is dense in @ = S2?(E*) (since they
have the same dimensions by Corollary 2.3). Moreover, () has 5 orbits under G of
dimensions: 10, 9,7, 4, 0.

To show this, observe that there are exactly 5 quadratic forms in 4 variables (up
to the change of a basis): xf + x% + x32. + xf; x% + x% + x%;x% + x%; xf; 0. Their
isotropies under the Gr-action have dimensions: 6, 7, 9, 12, 16 respectively.

3. Non-normality of the orbit closure of det

We first recall the following two elementary lemmas from commutative algebra.
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3.1 Lemma. let R be a 7. -graded algebra over the complex numbers C with the
degree O-component R® = C and let M be a 7.4 -graded R-module. Let m be the
augmentation ideal P ;.. R? and assume that M/(m - M) is a finite dimensional
vector space over R/m ~ C. Then, M is a finitely generated R-module.

Proof. Choose a set of homogeneous generators {Xy,...,X;} C M/(m - M) over
R/m and let x; € M be a homogeneous lift of x;. Let N C M be the graded
R-submodule: Rxy 4 --- + Rx,. Itis easy to see that

w- (M/N) = M/N. 3)

If M/N # 0,let d, > 0 be the smallest degree such that (M/N)4 = 0. Clearly,
(3) contradicts this. Hence N = M. ]

3.2 Lemma. let R and S be two non-negatively graded finitely generated domains
over C such that R® = S° = C andlet f: R — S be a graded algebra injec-
tive homomorphism. Assume that the induced map f : Spec S — Spec R satisfies
(]P)_1 (tg) = {mgs}, where g is the augmentation ideal of § and Spec § denotes
the space of maximal ideals of §. Then, S is a finitely generated R-module; in
particular, it is integral over R.

Proof. Let m', be the ideal in § generated by f(mg). Then, by assumption, myg is
the only maximal ideal of S containing m’,. Hence, the radical ideal ,/m’, = mg.
Thus, m'’p D mg for some d > 0 (cf. [AM], Corollary 7.16). In particular, S/m'p is
a finite dimensional vector space over € and hence by the above lemma, § is a finitely

generated R-module. This proves that S is integral over R (cf. [AM], Proposition 5.1).
O

Let 3Xge = Xger \ X§., be its boundary, equipped with the closed (reduced)
subvariety structure coming from Q. Let I C C|Xg| denote the ideal of 9 X ye.
More generally, as in Lemma 2.5, let V' be an irreducible representation of GL.(k) (for
some k& > 1) such that the center of GL(k) acts nontrivially on V andlet0 # v, € V
be such that SL{k)-orbit of v, is closed. Denote X? = GL(k) -v,, X = GL(k) - v,
and0X = X\ X7, all equipped with the locally-closed (reduced) subvariety structures
coming from that of V. Let I C C[X] denote the ideal of X . With this notation,

we have the following Lemma 3.3, Proposition 3.5 and Corollary 3.6.

3.3 Lemma. For any nonzero GL(k)-submodule M C 1, the zero set
ZM) =4{yeX: f(y)=0 forall f € M}

equals 0X.



Vol. 88 (2013) Geometry of orbits of permanents and determinants 765

Proof. Of course, Z(M) > 3X. Moreover, Z(M ) is a GL(k)-stable subset of X. If
Z (M) properly contains dX, then Z{M) = X, which is a contradiction since M is
nonzero. L

3.4 Remark. The above lemma is clearly true even without the assumption that
SL(k) - v, is closed.

3.5 Proposition. The ideal I C C[X] contains a nonzero SL(k)-invariant. In par-
ticular, the ideal I C C[Xqy] contains a nonzero G'-invariant.

Proof. Let m, be the unique integer such that (z/;) - v, = z7™ov, forall z € C*,
where I is the identity matrix in GL(k). Consider the action of C* on V via
z-v = (26 [} . v, where

e(my,) =—1 itm, >0,

=: 1 it m, < 0.

This gives rise to an action of C* on X. Let Z := X//SL(k). Then, Z is an
irreducible affine variety with C*-action coming from the action of C* on X . Con-
sider the C*-equivariant map : C — X, w w—eolnay, where C* acts on
C via z -w = zw. Consider the composite map 6 = 7w oco: C — Z, where
7: X — X//SL(k) is the canonical projection. By the assumption that SL(k) - v,
is closed in V, (5)~1{0} = {0}. Moreover, clearly & is a dominant morphism since
GL(k) - v, is dense in X. Thus, by Lemma 3.2, & is a finite (in particular, surjective)
morphism. Moreover, no SL{k)-orbit ¥ in X \ {0} is closed in X . In fact, for any
suchY,0e¥:

Let Y’ be a closed SL(k)-orbit in ¥. If ¥’ is nonzero, ¥’ = SL(k) - o(z), for
some z € C*, since & is surjective. But, SL(k) - o(z) C X?, whereas Y’ C 9X.
This is a contradiction. Hence, 0 € Y.

Take any nonzero homogeneous polynomial £, € C[Z] = C[X |3 of positive
degree. Then, f, restricted to 90X // SL(k) is identically zero, since X // SL(k) =~
{0}. Hence, f, € {. This proves the proposition. O

3.6 Corollary. For any nonzero homogeneous f, € C[X]"® of positive degree,
the zero set Z( f,) = 0X. In particulay,

Vifo) =1,
where { f,) is the ideal of C|X | generated by f,.

Moreover, each irreducible component of X is of codimension one in X. In
paiticular, each irreducible component of 3 Xqe is of codimension one in Xge.

Proof. By the last paragraph of the proof of the above proposition, f,jsx = 0. Thus,
the first part of the corollary is a particular case of Lemma 3.3.
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For the second part, observe that f, does not vanish anywhere on X? since f, is
SL(k)-invariant and homogeneous. Moreover, f, c 6: C — C is surjective (being
nonzero) and hence sois f,: X — C. Now use [S], Theorem 7 on page 76. L]

3.7 Remark. The assertion in the above corollary, that each irreducible component
of X is of codimension one in X, can also be proved by using Lemma 5.7. (Observe
that GL(k) - v, is affine by using Matsushima’s theorem.)

3.8 Theorem. For anym > 3, Xy, = G - det is not normal.

Proof. Assume that Xge 18 normal, then so would be Z = Xy4.//G’. By Mat-
sushima’s theorem, since the isotropy of det is reductive (cf. Corollary 2.3), X7, is
an affine variety. By the Frobenius reciprocity,

C[X2,]% ~ @ V(aD)® [V(aD)*]Gw, 4)

det
acd

where V{aD) is the irreducible G-module of dimension one with highest weight
corresponding to the partition (¢ > --- > a) (m? factors). Thus, V(aD) is the
one dimensional representation corresponding to the character g +— (detg)¢. By
Lemma 2.2, if m(m — 1)/2 is even, [V (aD)*]% is one dimensional, for all @ € 7.
If m(m — 1)/2 is odd,

dim[V(aD)*]%= =1 ifaiseven, (5)
=0 ifaisodd. (6)

Ford € Z 4, let C4[X4,,] denote the subspace of C[X4,,] such that, for any z € C*,

. . = 4
the matrix zI acts via z™4. Let f, CPmm[X2 19 be a nonzero element, where

pm = 1ifm@m—1)/2isevenand p;,, = 2if m(m — 1)/2 is odd. Then, clearly,

CZ0[x2]1% ~ @ Cfe.

det
GEZ+

Now, C[X4|¢ < C[X2,]% is a homogeneous subalgebra. Let d, > 0 be the

smallest integer such that f, = j:(,d" € C[Xae]¥ . (Such a d, exists by Proposi-
tion 3.5.) Since, by assumption, C[ X%’ is a normal ring, j:o e CPm™[X,]¢". In
particular, from the surjectivity C[Q] —» C[Xget]. we would get C2m™m[0]9 £ 0,
hence S pmm(Q*)G’ # 0. This contradicts [Ho], Proposition 4.3 (a), if p,,m < m?2,
ie.if m > 3. Thus, Z (and hence X4 ) 1s not normal. U

3.9 Corollary. For any m > 3, and any nonzero homogeneous f, € (C[xdet]G’ of
positive degree, { f,) is not a radical ideal of C|Xge].
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Proof. Let C(Xq4e) = C(X,,) be the function field of Xy (or XJ.,). As in the

det
proof of the above theorem, X5 is affine and, of course, normal (in fact, smooth).

det

Take a function 2 € C(Xye) Which is integral over C[Xg]. Since XJ,, is normal,

h e CIX§,]. Ith ¢ C[Xyu], we can write h = kl/fgd" for some d, > 0 and
h1 € C[Xqet) \ { fo) (cf. Corollary 3.6 and [S], page 50). From this (and since A
is integral over C|X4et|) we see that h‘f € {fo) for some d > 0. If (f,) were a
radical ideal, we would have /1y € (f,). This contradicts the choice of /;. Hence
h € C[Xqet]. Thus, Xge is normal, contradicting Theorem 3.8. This proves the

corollary. (]

3.10 Remark. The saturation property fails for C[X 4| for m = 2.
By [GW], page 296, as modules for GL(d ) (forany d > 1),

S(PCh) >~ d V()
,LLEZZ?,=1Z+0),5

where w; := €1 + - -+ + €; is the i-th fundamental weight of GL.(d). Observe that,
form = 2, since Xy; = O (cf. Example 2.7), we have C[Xye] = S(S?(E)). Thus,
V(2w,) appears in S2(S?(E)), but V(w-,) does not appear in S1(S2(E)).

4. Isotropy of permanent

Consider the space v of dimension m as in Section 1. Fix a positive integer n < m.

Chooseabasis {e1, . .., e, } of vand consider the subspace v of dimension # spanned
by {em—n+1,---,€mt. We identify End vy with the space of n X n-matrices (under
the basis {€;—n+1,--.,em}). Then, the permanent of an n X n-matrix gives rise to

the function perm € S”((End vy)*). Consider the standard action of GL(End v{) on
S™((End vy)*). In particular, GL(End v1) acts on perm.
Recall the following from [MM] (cf. also [B]).

4.1 Proposition. For n > 3, the isotropy of perm under the action of the group
GL(End vy) consists of the transformations

0 X = AX ",

where X* is X or X' and A, p belong to the subgroup D of Gl.(v1) generated by
the permutation matrices together with the diagonal matrices of determinant 1.

Lemma 2.2 and its proof give the following.
4.2 Lemma. The determinant of the above map t1: X v AX™* 1 is given by

dett = (=)™ (det 1)" (det )" if X* = X',
= (det A)" (det p)" iFX* = X.
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If particulay; if n = 2k for an odd integer k, then

detr =—-1 if X*=X',

4.3 Corollary. let n = 3. Consider the homomorphism

y: D x D —> (GL(End v1))perm, YA, )0 ® f) = Av ® (™ )* £,

forv® f € vy ® v] = End vy, where (u~1)* denotes the map induced by = on

the dual space vi. Then, y induces an embedding of groups
7: (D x D)/©, — (GL(End v))

perm>

where O, acts on D x D via z - (A, 1) = (zA, zu), for z € Oy,
Moreover, Im y contains the identity component of (GL(End v1)) ¢,

Further, if n = 2k for an odd integer k, then y is an isomorphism onto
(SL.(End v1))

perm*

Since the isotropy SL(End v1)pem 18 not contained in any proper parabolic sub-
group of SL(End vy ), Kempf’s theorem [Ke], Corollary 5.1, gives the following result
observed in [MS1], Theorem 4.7:

4.4 Proposition. For n > 3, SL(End vy)-orbit of perm inside S" ((Endvy)*) is
closed.

Thus, an irreducible SL(End vy )-module M occurs in C[ GL(End vy) - perm] if
and only if M SV EMODwen L O (¢f the proof of Corollary 2.6).

By exactly the same proof as that of Theorem 3.8, we get the following:

4.5 Theorem. Forn > 3, the subvariety GL.(End vq)-perm C S"((End vq)*) is not
normal.

We prove the following lemma for its application in the next section.

4.6 Lemma. Let C = (c; ;) € End vy be such that
perm(X + C) = perm(X) forallX € Endv;.

Then, C = 0.
Proof. Take X = (x; ;) with x1 = --- = x1,, = 0. Then,
X140 o 0
X211 X222 -t X2a a.1n
perm(X) = perm | | i i = xyperm X'V, (7)

Xn,1 Xn,2 0 Xanm
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where
X22 0 Xag
Y@y —

Xn,2 *° Xpn
By assumption, for any X = (x; ;) as above,
perm(X) = perm(X + C)
= (x1.1 +cr,1) perm(X D 4 DYy 4 ¢ 5 perm(X 12 + ¢(1-2))
+ -+ cpy perm (X O 4 cU), (8)

Now, x1,; divides the left side by (7), hence it must also divide the right side of the
above equation. Thus,

n
ZCIJ perm(X(l-‘j) 4 C(l’j)) =0 9)
i=1
and (by equations (7)—~9))
perm(X(l’l) + C(l’l)) = perm(X(l’l)).

By induction, this gives
C(l’l) = 0.

By a similar argument,
cD =0 forall j.

Substituting this in (9), we get

n
ch,j perm X1 =,
j=1
which gives ¢1,; = Oforall j. Hence,

C =0 (]

4.7 Remark. As pointed out by the referee, a similar proof shows that the above
lemma is true for any P € S4((CY)*) such that its zero set in PV is not a cone.

5. Functions on the orbit closure of p

We take in this and the subsequent sections 3 < n < m.
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Recall the definition of the subspace v; C v from Section 4. Let nf— be the

complementary subspace of v with basis {eq, ..., e;—n}. Consider the padded per-
manent function p € Q = S™(E*), defined by p(X) = x{'7" perm(X?), X being
X111 *
the component of X in the right down n X n corner xe | where any
* R

I

element of £ = End v is represented by a m X m-matrix X = (x; j)1<i,j,<m in the
basis {e; }.

Let § be the subspace of /£ spanned by ey and e; j, m —n +1 < i,j <
m, and let S~ be the complementary subspace spanned by the set {e; ;}1<i j<m \
{€1.1. ¢ jtm—nt1<i j<m (Where, as in Section 1, ¢; ; = ¢; ® e}‘). Let P be the
maximal parabolic subgroup of G = GL(E) which keeps the subspace S+ of E
stable. Let Up be the unipotent radical of P and let L p be the Levi subgroup of P
defined by Lp = GL(S*) x GL(S).

The following lemma is easy to verify.

5.1 Lemma. The subgroups GL(S~) and Up act trivially on p. Hence, P - p =
GL(S) - p.

Since GG/ P is a projective variety,
Xp=G-(P-p=G-pC (.
Thus, we have a proper surjective morphism

¢: Gxp(P-p)=Gxp (GL(S)-p) > Xp, [g.x]> g-x,

for g € G and x € P - p. Consider the decomposition into irreducible components
(forany d = 0)

CYGLS)-pl= & nald) Vaus)(A)*  (forsomen;(d) € Zy). (10)

A€D(GL(S))

where C4[GL(S) - p| denotes the space of homogeneous degree d -functions with
respect to the embedding GL(S)-p C @, D(GL(S)) denotes the set of dominant
characters for the group GL(S) (with respect to its standard diagonal subgroup)
consistingof A = (A > --- > A,24¢) with A; € Z, and V1 (5)(A) is the irreducible
GL.(S)-module with highest weight A.

For a certain generalization of the following theorem, see Proposition 6.3.2 of
[BL].

5.2 Theorem. For any A € D(GL(S)) and d > 0 such that ny(d) > 0, we have
A <0.
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Moreover, as G-modules,

Clxl= P nald) Ve,
AeD(GL(S))

where A 1= (0> -+ > 0> Ay > --- > A,24,) € D(G) (with initial m® — n® — 1
zeroes).
Further, the G-equivariant morphism ¢ induces an isomorphism of G-modules:

¢*: C[X,] — C[G xp (P-p)].

Proof. Observe that, by Lemma 5.1, (Cd|GL(S ) p| is a P-module quotient of
C4|G - p] with Up and GL(S-) acting trivially on (Cd[GL(S) : p|. Thus, as P-
modules,

C4[GL(S) - p]" ~ @ na(d) Vorsy(A) = CUX]*
A€D(GL(S))

Take a nonzero B (s)-eigenvector of weight A in cd |GL(S ) - ]’|= where Bgp(s) is
the standard Borel subgroup of GL(S) consisting of upper triangular matrices. Then,

its image in C d[DCp]* is a B-eigenvector of weight A, where B is the standard Borel

subgroup of G. In particular, forany A € D(GL(S)) such thatn (d) > 0, e D(G)
(since C4[X,]* is a G-module). Hence, A1 < 0 and EBMD(GL(S)) n(d) Vg ()L) C
c4 [Xp]*. Dualizing, we get the G-module surjection:

ClUxl > P nud) Ve ™. (11)
AeD(GL(S)

From the surjection ¢, we obtain the (r-module injective map:

¢*: CUX,) — H°(G/P.CY[GL(S) - p])
= P @ HOG/P Varsy(W)),
AED(GL(S))
where Up and GL(S™) act trivially on Voris)(A)”
~ P md) Ve,

A€D(GL(S))

where the last isomorphism follows from [Kul], Lemma 8. Combining the injection
¢* with (11), we get that ¢* is an isomorphism, proving the theorem. 0

5.3 Proposition. The isotropy of p under the group P is the same as that under the
group G.
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Proof. Firstofall G/P = WU, P/P, where U, is the opposite of the unipotent
radical Up of P and Wy, is the set of all the smallest coset representatives of W/ Wp,
W (resp. Wp) being the Weyl group of G (resp. P). (This follows since the right
side is an open subset of G/ P which is 7 -stable and contains all the 7'-fixed points
of G/P.)

Take w € Wy, u € Up, r € GL(S) such that wur - p = p. Then,

pr M lwTlX) =p(X) forany X =X+ X, e E=8taS. (12)
In particular, for X = wX,, we get
p(r~'uT'X,) = p(wX,). (13)

We have u™1X, = X,, thus

p(r~'u' X2) = p(r7' Xa). (14)
Now, well-order a basis of S as vy, vs,...,vz7 (d = n? 4+ 1) and also a basis
Vgi1s-- . Vy2 of ST, Then, w can be represented as the permutation i — n; with

Ny <o <G Nggpy < on <M.

For X, = Zle zjv; € 8,

p(wX,) = p(i zj vni) = p(z zi vni), (15)
i=1

i<i,

where 1 < i, < d is the maximum integer such that n;, < 4. In particular, p(wX>)
only depends upon the variables zy, ..., z;,. Thus, by the identities (13)—(15),

d
(7 o w) = (L zm) foranyz e,
i=1

i<ip

which gives

d d
. Vi ) = = iV i Uj ' :
p(r ;z,v,) p(r (22 v + Z ijj)) forany b; € C

d=j>ip
Thus,
a d
p(zu) =p(Caw+r X ),
i=1 i=1 d=j>i,

Applying Lemma 4.6, it is easy to see that Zdzjw'o bjv; = 0 (forany b; € C).
Thus, i, = d,1e.,w = 1.
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Taking X = X, € S in (12), we get (since w = 1) p(r~1X,) = p(X,), which
is equivalent to p(r~!X) = p(X) forall X € E. Thus, r is in the isotropy of p and
hence u is in the isotropy of p,i.e., p(u~'X) = p(X) forall X = X; + X, € E.
This gives p(X| + X> 4+ Y5) = p(X1 + X5), where ¥ := u~'X; — X; € S. Hence,
p(X, + Y,) = p(X,) forall X, € S and any Y, of the form #~1X; — X, for some
X1 € S+. Applying Lemma 4.6 again, we see that ¥» = 0, hence Mg, = Id. Thus,

u = 1. This proves the proposition since Up and GL(S~) stabilize p. O

5.4 Corollary. The restriction ¢, of the map ¢ to G xp (P - p) is a biregular iso-
morphism onto G - p.
Moreover, "1 (G -p) = G xp (P - p).

Proof. Of course, ¢, is surjective. We next claim that ¢, is injective. Take ¢,[g,p] =
¢dolg1.p], ie., g-p = g1 - p, which is equivalent to (gl_lg) ‘p=pie, gileg €
Gy, = F,, by Proposition 5.3. Thus, gl_lg = 7 for some ¥ € P, C P. Hence,
lg.p] = |g1.p|, proving that ¢, is bijective. Since G xp (P -p) and (& - p are both
smooth, ¢, 1s an isomorphism (cf. [Ku2], Theorem A.11).

To prove that ¢~1(G - p) = G xp (P -p), take [g, v] € G xp (P - p) such that
$lg.y] € G-p,ie,g-y =h-pforsomeh € G. This givesy € G-pN P -p.
But, P - pisclosed in & - p by the first part of the corollary and hence y € P - p,
establishing the claim. (]

Let Sy be the subspace of § spannedbye; ;j,m—n+1 <i, j <m. Consider the
maximal parabolic subgroup R of GL(S) = Aut S, consisting of those g € Aut S
which stabilize the line Ceq ;. Then, Lr := Aut(Cey 1) x Aut 87 is a Levi subgroup
of R. Let Ug be the unipotent radical of R and U the opposite unipotent radical.

5.5 Proposition. The isotropy of p underthe group GL(S) is the same as the isotropy
of the Levi subgroup L.

Proof. Inthe proof, weleti, j anoverm—n+41 <, j <m. Anyelementu € Up
is givenby uei 1 = e11,ue;; = e;; + aijey 1, for some a; ; € C. Similarly, Ugp
consists of u” suchthatu™e; ; = ¢; ; andu~eq 1 = ey,1+ Y ¢; je; ;. Any element
of GL(S) can be written as wu~ug (for some g € Lg,u € Ug,u~ € Uy and w
either the identity element or a 2-cycle ((1,1), (i, j))). Take any X = xy ey +
D xijei; €S.ByXs, wemean ) x; je; ; and by (X)q,1 we mean xy 1.

(wuug)™" - p)(X) = p(wu ug X)
= ((wu~ug X)1.1)" " perm((wu~ug X)s, ).
So, if (wu~ug)~! € (GL(S)),. then

((wu_ug)_1 -p)(X) = p(X) = x7{'7" perm(Xg,) forall X € §.
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Since no linear form divides perm, we get
axyy = (wu ugX);, lorsome constantw # 0 € C, (16)
and
Bperm(Xs,) = penn((wu_ug X)Sl) for some constant § # 0 € C
= perm ((wu " ug(Xs,) + xi1wu" uger)s,). (17)
Since the left hand side of (17) is independent of x1 1, we get
perm((wu~ug X)s,) = perm((wu~ug X)s, + (@1 1wu"uger1)s,).

forall X € Sandwy; € C.
Since wu~ug € Aut S, as X varies over S, (wu~ug X)s, varies over all of Sy.
Thus, by Lemma 4.6,

(wu ugeii)s, =0. (18)

Now,
U ugey1 =u (Aeyy) forsomed # 0
= Aler1 + Zci,jei,j)- (19)
Thus, if w is the 2-cycle ((1, 1), (i,, jo)) forsomem —n + 1 <i,, j, < m, then
wu-uge = A(eio,jo + Z ¢ e+ c,-o,joelgl).
(i,))# o0 do)

In particular, (wu~ug er.1)s, # 0, acontradiction to the identity (18). Thus, w = 1.
By the equations (18)— (19), we get

cijj =0 foralli, j.

Thus, u~ = 1.
By equation (16), we get

axig = (wu ug X)i1 = (g X)i1 = (ug(Xs, +xi1e11), ;-
In particular, (¥g Xs,)1,1 = 0. Since g maps S; onto Sy, we get
(e, j)1g=0 forallm—n+1<i,j<m.
Hence, a; ; = 0. Thus, ¥ = 1 as well. This proves the proposition. (]

5.6 Corollary. Let 3 < n < m. Then, each irreducible component of
GL(S) - p\(GL(S) - p)
is of codimension 1 in GL(S) - p.
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Proof. By the last proposition, the isotropy of p inside GL(.S) is the same as that
of the isotropy of p inside L. Forany A € C*, take 7; € Aut(Cey 1) defined by
e1.1 > Aey . Then, forany g € Aut Sy and X = x;y 4e1 1 + X7 with Xy € §;, we
have

((ta, ) -P)(X) = p(A " x10e1,1 + g7 X4)
= (A%, )™ 7" perm(g ™' Xy). (20)

Thus, (1.g) € (Lg)p if and only if (l%)m_”g € (Aut Sy)perm for some n-th root
AT of A. Considering the projection to the first factor (L), — Aut(Ceq,;) = C*
and using Corollary 4.3, it is easy to see that (L z), = (GL(S)), is reductive. Thus,
GL(S) - p is an affine variety. Of course, GL(S) - p is an affine variety. Moreover,
0 € (GL(S)-p)\(GL(S)-p) by (20). Thus, (GL(S)-p)\(GL(S)-p) is nonempty and
each of its irreducible components is of codimension 1 in GL(S) - p by the following
lemma. (]

We recall the following well-known result from algebraic geometry. For the lack
of reference, we include a proof.

5.7 Lemma. [et X be anirreducible affine variety andlet X° C X be an opennormal
affine subvariety. Then, each irreducible component of X \ X? is of codimension 1

in X.

Proof. Letm: X — X be the normalization of X. Then, X° being normal and open
subvariety of X, 7: 77 1(X?) — X? is an isomorphism. We identify 7~ '(X?) with
X? under 7. Decompose X \ X? = Cy U C,, where Cq (resp. C5) is the union of
codimension 1 (resp. > 2) irreducible components of X \ X?. Then, by Hartog’s
theorem, the inclusion i : X° c X \ C; induces an isomorphism i *: C[X \ Cy] ~
C[X?] of the rings of regular functions. Let f be the inverse of i *. Then, X being
affine, there exists a morphism j : X \ C; — X? such that the induced map j* = f
and j xo = = Id (cf. [H] Proposition 3.5, Chapter I). Since the composite morphism
ioj: X\ Cy — X\ C restricts to the identity map on X? and X7 is dense in
X \ Cy,i 0 j =1Id. In particular, i is surjective, i.e., X? = X \ C;. Thus,

X\ X% =n(X\ X% = n(Cy).

But, since 7 is a finite morphism, 7(Cy) is closed in X and, moreover, all the
irreducible components of 7 (Cj) are of codimension 1 in X. L

As another corollary of Proposition 5.5 (together with Corollary 4.3, Lemma 5.1,
Proposition 5.3 and identity (20)), we get the following well-known result.

5.8 Corollary. For3 <n <m,dim X, = m*(n*> + 1) —2n + L
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6. A partial desingularization of GL(S) - p

By virtue of the results in the last section (specifically Theorem 5.2), study of the
G-module C[X,] reduces to that of the GL(.S)-module C[GL(S) - p].

6.1 Definition. Define the morphism

B: GL(S) xg (R-p) = GL(S)-p, |g. fl=>g- [

for g € GL(S), f € R - p, where the closure R - p is taken inside S™ (£™).
Since GL(S)/R is a projective variety, # is a proper and surjective morphism.

6.2 Lemma. The restriction B, of p 1o GL(S) xXg (R -p) is a biregular isomorphism
onto GL(S)-p. Moreover, the inverse image B~ (GL(S)-p) equals GL(S) X g (R-p).

Proof. By Proposition 5.5, the isotropy of p inside GL(S) is the same as that in
R. From this the injectivity of §, follows easily. Since S, is a bijective morphism
between smooth varieties, it is a biregular isomorphism.

Take [g, f] € B~HGL(S) - p). Then, f € (GL(S) -p) N R -p. But, since B, is
an isomorphism, R - p is closed in GL(S) - p. Thus, (GL(S)-p)NR-p = R-p. This
proves the second part of the lemma. (]

As in Section 4, consider perm € §7(S7), where Sy is viewed as End vy and vy
is equipped with the basis {em—n+1,--.,em}. Moreover, the decomposition £ =
S+ @ Cey 1 & Sy gives rise to the projection £ — S; and, in turn, an embedding
S™(S]) — S™(E™). Thus, we can think of perm € S*(E™). Let

X = (AutSy)-perm C S"(E™),

perm

where Aut S 1s to be thought of as the subgroup of G by extending any automorphism
of §7 to that of F by defining it to be the identity map on § L Cey,1. Let Xperm be
the closure of X7 in S™(E™).

Consider the standard (dual) action of GL(S) = Aut.S on §*. In particular, we
getan action of R on §*. Also, it is easy to see that Ug and Aut(Ceqq) act trivially on
xgcrm (and hence on Xperm) under the standard action of GG on §7(£™). In particular,
Xperm 18 @ R-stable closed subset of S” (£*) (under the standard action of R).

Consider the morphism
a:S*Xx[JEI'm_}Qa (Aaf)Him_nf;

for A € §* and f € Xpem, where A € E*is the image of A under the inclusion
S* — E* induced from the projection £ — S. Then, & is R-equivariant under the
diagonal action of R on §* X Xperm. Define an action of C* on $™* x Xpem via

Z(A, ) = (A, 2" f). (21)
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This action commutes with the action of R. Then, & clearly factors through the
C*-orbits, and hence we get an R-equivariant morphism

o (8" X Xperm)//C* — Q.

6.3 Proposition. The above morphism w« is a finite morphism with image precisely

equalto R - p.
Moreover, a ' (R -p) = ((S*\S}) X xgerm)//(j* and the map «,, obtained from
the restriction of o 10 ((S*\S}) x xgerm)//(j* is a biregular isomorphisin

do: ((S™\ST) x X2,.)//C* =R -p,

perm

where ST is thought of as a subspace of S* via the projection § = Cey 1 ®S1 — Si.
In particular, o is a proper and birational morphism onto R - p.

Proof. Consider the C*-equivariant closed embedding
§* X Xperm <> E* x ST(E™),

where C* acts on the right side by the same formula as (21). This gives rise to the
closed embedding

1 (ST X Xperm ) //CF — (E* x ST(E™))//C™.
We next claim that the morphism
Y (BT X SYET))/C" — 0 = S"™(ET),

induced from the map (A, f) — A" " f for A € E* and f € S™(E™*), is a finite
morphism. Define a new C* action on E* x §"(E™) by

tO, f)=(th,tf) forteC*.

This C*-action commutes with the C*-action given by (21). Thus, we get a C*-
action (still denoted by ®) on (E* x S"(E*))//C*. Also, define a new C*-action
on S™(E*) by

1O f ="t forr e C*and f e S™(E*).

Then, ¥ is C*-equivariant. Moreover, ¥~ 1(0) = (0 x SM(E*) U E* x 0)//C* =
{0}. Thus, by Lemma 3.2 (applied to the map ¥ considered as a map: (£* X
S™(E*))//C* — Imyr), ¥ is a finite morphism.

Since & = ¥ o1, we get that « is a finite morphism.

We next calculate @~ (p). Let [A, f] € a~'(p), where [A, f] denotes the image
of (A, f)in (S* X Xperm)//C*. Then,

AT f = p = AT perm, (22)
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where A, € §* is defined by A,(zeq 1 + X1) =z forany z € C and Xy € §;.
Since A does not divide perm, from (22) we get

A =ai,and f =a" " perm forsomea € C*,

which gives
[A. f] = [Ao. perm].

Thus, &~ !(p) is a singleton and hence so is a~!(r - p) for any » € R (by the R-
equivariance of ). In particular,

o '(R-p) = R[4, perm]
= (Aut(Cey,1) Ur Aut(S1)) - [Ao, perm]
= (Aut(Cey 1) Ug) - [4o, since Aut(S7) -1, = A,
= [(Aut(Cel D UR) - A, since Aut(Cey ;) and
Ug act trivially on X7

perm

perm]

perm]

[S*\Sl ’ ]JE:["I’H]
((S*\Sl ) X xpf:rm)//(c*'

Observe that all the C*-orbits in (S™\ST) x X, are closed in $* X Xperm and
hence ((S*\S}) x xperm)//c* = ((S*\S7) x xperm)/c* can be thought of as
an open subset of (S* X X e )//C*. This proves that «, is a bijective morphism

between smooth rreducible varieties and hence it is a biregular isomorphism (cf.
[Ku2], Theorem A.11).

Finally, since « is a f{inite morphism (in particular, a proper morphism), Im « is
closedin Q and contains R-p. Thus, Ima 2 R-p. But, since ((S*\S7)x chrm)//(j*

is dense in §* X Xperm//C*, we get Ima C R-pandhence Ima = R-p.
This completes the proof of the proposition. (]

6.4 Remark. Even though we do not need, the above map « is a bijection onto its
image.

Combining LLemma 6.2 with Proposition 6.3, we get the following:
6.5 Corollary. We have

C[GL(S) - pl L) C[GL(S) xgr (R-p)] = H°(GL(S)/R,C[R-p])

< HO(GL(S)/R.C[S* X Xperml 7).
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7. Determination of H° (GL(S)/R, C[S* x xpem]‘c*)

We continue to follow the notation from the last section. In particular, 3 < n < m.
For any d > 0, we have the canonical inclusion:

J: HY(GL(S)/R, (C[S*] & C/[XpermD®")
— H°(GL(S)/R, (C[S*\ST] ® C/[Xperm ),
where C4 [ Xperm| denotes the space of degree d-homogeneous functions on Xperm C
S™(E*). Thus, Cd[xperm] is a quotient of S¢(S™(E)). In this section, we will
determine the image of j.

For any R-module M, H°(GL(S)/R, M) can canonically be identified with the
space of regular maps

{qb: GL(S) = M : ¢pfr)=r"1-(¢p()), forall £ € GL(S), r € R}.

Thus, by the Peter—Weyl theorem and the Tannaka—Krein duality (cf. Chapter III in
[BD])

H°(GL(S)/R, M)

= @ VGL(S) (A)* & HomR(VGL(S)()L)*, M) (23)
A= z~=A,2 | )€D(GL(S))

We will apply this to the cases M = (C[S*]@C¥[Xpern])C and M = (C[S*\S}]®
(Cd[xperm])(c*-

7.1 Lemma. Take any A = (A1 = -+ = A,24q) € D(GL(S)) and any d > 0. Then,
the canonical inclusion

Homg (Varcsy(A)* (C[S*] @ C[Xoern)) )
< Homg (Vor(s)(A)* . (CIS*\S7] ® C[Xperm]) )

is an isomorphism if A1 < 0.
Moreover, if Ay > 0, then the left side is 0.

Proof. Take ¢ € Hompg(Voris)(A)*, (C[S*\S]] ® Cd[xperm])‘ﬁ*). Let v} €
VioL(s)(A)* be the lowest weight vector of weight —A. Then, ¢ is completely de-
termined by its value on v}. Let

¢1 1= qb(vx) (S*\Sik) X xperm — C

be the corresponding map. For z € C*, take the diagonal matrix Z = [z, 1,...,1] €
GL(S) with respect to the basis {ey.1, €; ; }m—n+1<i,j<m- Then, @(Zv3) = Z-p(v3),



780 S. Kumar CMH
Le, e () = 2-¢y. This gives 2741y = 2 - ¢y, ie.,

M1z zig) . x) = e (BN (201, 2ig), X))
= ¢1((zz1,1, 21,), x), (24)

where {z1,1, z; j} are the coordinates on S™* with respect to the basis {e1 1,e; j} of
S. Write

$1((z11,205).X) = D _ 21 4 Pe(zi,j. %)

leZ
for some Py(z; j,x) € C[S{] ® (Cd[xperm]. Equation (24) gives
zM szqlf’g(zl-,j,x) = ZZEZfJPz(Zi,j,x)
{eZ {eZ

forallzy 1,z € C*,z;; € Cand x € Xyom. Forany £ € Z suchthat Pe(z; j,x) # 0
(forsome z; ; € C andsome x € Xpen), from the above equation, we getz_’11 = z¢.
In particular,

—A
¢1((21,1:Zi,j)=x) = ZLIIP—M (Zi,j’x)-

Thus, if nonzero, ¢ : (S*\S7)X Xperm — € extends to amorphism $* x X porn — C
iff —A; = 0. This proves the lemma. ]

As a corollary of the above lemma and the identity (23), we get the following.

7.2 Proposition. For any d > 0, let
H(GL(S)/R. (C[S*\ST] ® C¥[Xperm)©)
= D m(d) Vorisy(A)™.

A=(A1z2A 0 )ED(GL(S))
Then,
H(GL(S)/R. (C[S™] ® C¥[Xperm) ")
= D m(d) Varis) (D).

A:(AlZ"'ZAHZ_._l)ED(GL(S)):AISO
Define a new action of R on Xpery by
roOx = x(r)" " x, (25)

where y: R — C* is the character defined by x(r) = (re1.1)1.1, where (X)q 1 is
defined in the proof of Proposition 5.5.
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7.3 Lemma. For any d > 0, there is a canonical isomorphism of GL(S)-modules:
HO(GL(S)/R, (C[S*\ST] ® C/[Xperm)®") = HP(GL(S)/Lr, C[Xperm]*),

where Cd[xpﬂrm]x is the same space as (Cd[xperm] but the L p-module structure on
Cd[xperm]x is induced from the action O of R (in particular, Lg) on Xperm.

Proof. From the fibration R/L g — GL(S)/Lgr — GL(S)/R, we get
H°(GL(S)/LR. C¥Xperm]¥) = H(GL(S)/R,C[R/LR] ® (C[Xperm]¥))-
So, it suffices to define an R-module isomorphism
7 (CIS\ST] @ CF[Xperm]) ™ — CIR/LR] @ (C[Xpen]”)-

First, define amorphism yy: R/Lg — S*\S7 by (y1(rLR))X) = x(r)(r ' X)1.1,
forr € Rand X € §. Then, y; satisfies:

yi(r'rLg) = y()r' - y1(rLg) foranyr,r’' € R. (26)
Now, define the morphism
710 R/LR X (Xperm: @) = ((S™\ST) X Xperm)//C*., (rLr.x) > [y1(rLR). x],

where (Xperm. ©) denotes the variety Xperm together with the action © of R. From
(26), itis easy to see that y; is an R-equivariant morphism. Moreover, it is a biregular
isomorphism. (Observe that all the C*-orbits in (S*\S7) X Xperm are closed and
hence ((S*\ST) X Xperm)// C* is the same as the orbit space ((S*\ST) X Xperm)/C*.)
Now, y is nothing but the induced map from ;. (]

Now, we determine HO(GL(S)/LR, Cd[xperm]x).
7.4 Lemma. For any d > 0,
HO(GL(S)/ LR, C¥[Xperm] )

B @ Vous)(A) @ Homy  (Vor(s)(A). €[ Xperm]).
A.:(A-lZ"'ZAH2+1)ED(GL(S))

(27)

Thus, forany A = (A1 = Ay = --- = A2, 1) € D(GL(S)), Vii(s)(A) appears in
H°(GL(S)/Lk, (Cd[xpf:rm]x) if and only if the following two conditions are satisfied:

(1) |A| = dm, where |A| := > A;, and
(2) there exists . = (1 = -+ - = u,2) such that p interlaces A, i.e.,

AMZ UL ZA2Z o Z o 2 A2 2 fp2 2 Ap2yy,

and the GL(Sy)-irreducible module Vi (s,y(1t) appears in (Cd[xperm].
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Proof. The 1somorphism (27) of course follows from the Peter—Weyl theorem and
the Tannaka—Krein duality.

For z € C*, let Z be the diagonal matrix [1,z,...,z] € Aut §; C Aut S and Z
the diagonal matrix [z, 1,...,1] € Aut(Cey,1) C AutS. Then, ZZ acts on Xpery via
EZ2H)ox=2"""Z.x) =z""x. (28)

By the branching law for the pair (GL(S), GL(S;)) (cf. [GW], Theorem 8.1.1), we
get, for any A € D(GL(S)),

VoLesy(A) > &P VoLes) (i), as GL(.S7)-modules. (29)
ME‘.D(GL(Sle))f
Lt interlaces

Now, since GL(S;) and ZZ generate the group L g, combining the equations (27)—
(29), we get the second part of the lemma. (Observe that the two actions - and © of
GL(S1) on Xperm coincide.) O

Combining Proposition 7.2 with the Lemmas 7.3—7.4 and the identities (28)—(29),
we get the following:

7.5 Theorem. For any d > 0, decompose
(Cd [xperm] o= ®MED(GL(51 ) i (d) VGL(S1 ) (,LL)
as GL(S1)-modules. Then, as GL(S)-modules,

H°(GL(S)/R. (C[S*] ® C¥[Xperm)) ")

~ D (Z b= o2z e 20 2(d)) Vargsy(@). GO)
A=A 1= =A2y20) W interlaces A
|A| =dm

In particular, Vg (s)(A) occurs in HO(GL(S)/R, (C|S*] ® Cd[xperm])(j*) if and

only if the following two conditions are satisfied:
D A=GR1 == A2 =0 and|A| =dm, and

(2) thereexists a i = (puq = -+- = W2 > 0) which interlaces A and such that the

irreducible GL(S1)-module Vi (s,)(1) occurs in Cd[xperm]-

(Observe that if Vii(s,)(it) occurs in Cd[xperm], then automatically || = dn
and (1,2 = 0, since (Cd[xpsrm] is a GL(S))-module quotient of S (S"(E)).)

7.6 Remark. Since

(C[S*] ® CXperm))E = S M(S) @ CU[X perm],
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and S is a GL(S)-module, we also get (using [Kul], Lemma 8)
H®(GL(S)/R. (CS™] ® C/[Xperm)")
~ §=md(§) @ HO(GL(S)/R, C¥[ X perm])
~ D qu(d)STIS) @ Ver sy (A).

u=(p1=z =i, 2) 0,220

where fL 1= (@1 = -+ = p,2 = 0) € D(GL(S)).

8. Nonnormality of the orbit closures of p

It is easy to see that the morphism « of Section 6 induces an injective map (for any
d = 0)

a*: CUR-p] = (C[S*] @ CHUXperm )" = S¥(S) @ C4[X perm]-
8.1 Proposition. For any m > 2n, the inclusion

H®(GL(S)/R, CU[R-p]) — H(GL(S)/R. (C[S*] ® C![Xpern)®"),
induced from the inclusion a*, is not an isomorphism for d = 1.

Proof. Of course, C![R-p]isa R-module quotient of ™ (E); in fact, itis a R-module
quotient of S™(S). Let K be the kernel

0— K — S™(S)— C'[R-p] —0. (31)

We first determine the linear span (R - p) of the image of R - p inside S§™(S*).
For u € Ug,z € C* and g € GL(S1) (where z; € Aut(Cey ) is defined by
Tz(e1,1) = zey,1),

((gut)™" -p)(xy,1e1,1 + Z Xi,j€i, ;)
m—n+1=<i,j<m

= p((zx1,1 + in,jai.j)el,l + gij,je,-,j)

(where ue; ; = e; ; + a; je1,1)
= (zx11 + in,jai,j)m_n(g_l -penn)(z Xi,jei,j)-

For any vector space V, the span of {7, v € V} inside $"7" (V) coincides with
S§™7"(V). Farthermore, since S”(S7) is an irreducible GL(.S1)-module, the span of
{g7 " -perm} zeii(sy) isequal to S (ST). Here we have identified §” (ST) < S"(S™)
via the projection § — Sy, e;1 — 0.
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Thus,
(R-p) = S™"(87)-S"7(S™)
= )Lg‘t—nSn(Sl*) D )Lom—n—ISn+1(S1*)
G- AY S™(ST).
where A, € §¥ is defined in the proof of Proposition 6.3. Thus,
K ~ effl_”"'lS”_l(Sl) G- D 6’??150(51)-

None of the weights of K are GL(S)-antidominant with respect to the basis
{er1.€ijtm—n+1<i,j<m of S if

m—-n+1>n—1, ie,iftm>2n-—2.

Hence,
HO(GL(S)/R,K):0 iftm>2n—2. (32)

Also,
HI(GL(S)/R,K):0 iftm>2n—1. (33)

To prove this, it suffices to show that, for any weight y of K and any simple reflection
s; for GL(S), s;(—u + p) — p is not dominant, i.e., s; 4 + «; is not antidominant.
Writing pt = (f1,. .., [hy241). We have

1> p; + 1 forall j = 2 (sincem > 2n — 1)

Thus, ifi > 1,
(Sipt + o)1 = p1 > (Sipt + @)z
Hence, s; 4 + o; is not antidominant fori > 1. Fori = 1, we get
(s1p0 )2 = p1 — 1> (514 +a1)s = ps.
Combining (32)—(33), we get
H°GL(S)/R.K) = H'(GL(S)/R,K) =0 forallm > 2n. (34)

Considering the long exact cohomology sequence, corresponding to the coefficient
sequence (31), we get for all m > 2n (by using (34)),

HY°(GL(S)/R.C'[R-p]) ~ H(GL(S)/R.S™(S)) = S™(S). (35)

In particular, F°(GL(S)/R,C!|R - p]) is an irreducible GL(S)-module.
Next, we determine M := H°(GL(S)/R,(C[S*|® C! [Xperm])c*). (In fact, for
the following determination of M, we only require mm > n > 3.) By Theorem 7.5,
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the irreducible GL(.S)-module Vi (s5)(A) appears in M if and only if the following
three conditions are satisfied:

1) A2e, =0, |A] =m,

2) there exists g = (1 > -+ > u,2 = 0) which interlaces A, and

3) the irreducible GL(S1)-module Vi (s,y(1t) occurs in C 1 [ Xperm]-

But, C! [ Xperm] 18 the irreducible GL(.Sy)-module §" (1), since X pery is a closed
GL(Sy)-subvariety of $*(Sy). Thus, p = (n = 0 = 0 > --- = 0). Hence,
Vor(sy(4) occurs in M if and only if

A=A ZA220---20) withdy>n>Azand A + A, = m.

In particular, M is not irreducible. This proves the proposition. 0

8.2 Corollary. let m = 2n. Then, R - p is not normal.

Proof. 1f R - p were normal, by the original form of the Zariski’s main theorem (cf.
[M], Chapter III, §9) and Proposition 6.3 (following its notation),

o C|R-p] = C[(S* x Xperm) //C™]
would be an isomorphism. In particular, we would get the R-module isomorphism
a*: C[R-p] = (C[S*] & C [ Xperm))C
But this contradicts Proposition 8.1. 0

The following corollary follows similarly.
8.3 Corollary. Let m > 2n. Then, GL(S) - p is not normal.

Proof. By Definition 6.1 and Lemma 6.2, we have the proper, surjective, birational
morphism
B: GL(S) xg (R-p) = GL(S) - p.

If GL(S) - p were normal, both the maps § and the composite map § o (Id x &) (which
are both proper and birational morphisms)

GLUS) Xz ((S” X Xpem)//T*) 25 GL(S) x (R-P) 2> GL(S) - p

would induce isomorphisms (via the Zariski’s main theorem [H], Chapter III, Corol-
lary 11.4 and its proof)

B*: C[GL(S) - p] == H®(GL(S)/R.C[R-p])
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and
(Bo(1dxa)”: C[GL(S)-p] == H*(GL(S)/R.C[S* x xperm]c*).

In particular, the canonical map
(d x )*: HOGL(S)/R. C[R-p]) = HO(GL(S)/R. C[S* X Xpern]" )

would be an isomorphism. This contradicts Proposition 8.1. Hence GL(S) - p is not
normal. L

8.4 Theorem. et m > n > 3. Then, G - p is not normal.

Proof. Recall from Section 5 the proper and surjective morphism ¢ : G xp (P-p) —>
G - p. It is birational by Corollary 5.4. Consider the projection 7: P — GL(S),
obtained by identifying GL(S) ~ P/(Up - GL(S~)) and let Pg be the parabolic
subgroup of P defined as 7~ (R). Now, define the variety

Yy=2>r XPr ((S* X xperm)//(j*)’

where Pg acts on ($™* X X oy, ) //C™ viaits projection onto R. Consider the morphism

ap:Y = P.-p=GL(S)-p. |[p.x]— p-a(x),
for p € P and x € (5" X Xperm)//C*. Observe that, under the canonical identifica-
tion (induced from the map ) GL(S) xg ((S* X xperm)//(c*) ~ Y, the map wp is
nothing but the composite map S o (Id x «) (cf., the proof of Corollary 8.3). Hence,

ap is a proper, birational morphism. The P-morphism ap of course gives rise to a
proper, birational (-morphism

ap:GxpY = Gxp (P-p).
Finally, define the proper, birational, surjective G-morphism as the composite
ap =¢odap: GxpY — G-p.
If G - p were normal, we would get an isomorphism
ap*: C[G-p| — C[G xp Y] = H°(G/P, H*(GL(S)/R, C[S* X Xperm]* ")),

where P acts on H%(GL(S)/R, C[S* x Xperm]c*) via its projection . Itis easy to
see that this, in particular, would induce an 1somorphism

CGp] = HO(G/P. HOGL(S)/R. (C[S*] @ C[Xpern)) D). (36)
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Now, by the proof of Proposition 8.1 (this part being valid under the only assumption
m > n > 3), there exist k3 > 0 such that

%* (C*
HY%(G/P, HYGL(S)/R. (C[S*] & CUXperm]) ™ ))
= @A:(Al2/12202"'20)€D(GL(S)):/112n2112,111+/12:m kAHO(G/R VGL(S)()‘))

= eBi:(/h212202'--20)€D(G):A1znzkz,hﬂz:m k2Ve(4), by [Kul], Lemma 8,

where A is obtained from A by adding m? —n? — 1 zeroes in the end to A. In particular,
H(G/P, HY(GL(S)/R, (C[S*]®C ! [xperm])c*)) is not an irreducible G-module.

Finally, C[G - p] is, by definition, a G-module quotient of the irreducible G-
module 0* ~ S™(E). Clearly, C[G - p| is nonzero and hence

CHG -p] =~ S™(E).
This contradicts (36) and hence the theorem is proved. [

8.5 Remark. (a) As pointed out by N. Bushek, it is easy to see (by using that ¢* is
an isomorphism as in Theorem 5.2, and considering the normalization of G - p) that if
GL(S) - p is normal, then so is G - p. Thus, using Theorem 8.4, we get that GL(S) - p
is not normal for any m > n > 3 (thereby improving Corollary 8.3).

(b) I thank Bushek for pointing out that the hypothesis m > 2n in Theorem 8.4
in an earlier draft of the paper was unnecessary (with no change in the proof).

(c) Corollary 8.2 holds forany m > n > 3. Toproveitfor3 <n <m < 2n, it
is easy to see, from the proof of Proposition 8.1, that dim C'[R - p] < dim(C[S*] ®
C ! [xperm])(c* .
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