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Strong convergence of Kleinian groups: the cracked eggshell
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Abstract. In this paper we give a complete description of the set SH(tti (Af)) of discrete faithful
representations of the fundamental group of a compact, orientable, hyperbolizable 3-manifold
with incompressible boundary, equipped with the strong topology, with the description given in
term of the end invariants of the quotient manifolds. As part of this description, we introduce
coordinates on SH(tti (Af)) that extend the usual Ahlfors-Bers coordinates. We use these
coordinates to show the local Connectivity of SH(tti (Af)) and study the action of the modular

group of M on SH(tti (Af)).

Mathematics Subject Classification (2010). Primary 57M50; Secondary 30F40.

Keywords. Kleinian group, deformation Space, algebraic limits, geometric limits, strong con-

vergence.

1. Introduction and Statement of results

Kleinian groups have been studied since the late 19^ Century in the work of Poincare
and Fricke and Klein, and more extensively since the work of Ahlfors and Bers in the
1960s and Thurston in the 1970s and 1980s. In this paper, we consider a particular
aspect of the basic question of understanding the behavior of sequences of Kleinian

groups.
There are two Standard notions of convergence for a sequence of Kleinian groups.

The first is algebraic convergence, which is convergence on generators. The second is

geometric convergence, which is convergence of the quotient hyperbolic 3-manifolds.
The topology of algebraic convergence on the set of isomorphic, finitely generated
Kleinian groups is roughly understood. In particular, there is a correspondence be-

tween connected components of this set of Kleinian groups and marked homotopy
classes of compact 3-manifolds, up to a natural equivalence. Geometric conver-

gence is considerably less well-behaved, as a sequence of isomorphic, finitely gener-
ated Kleinian groups may converge geometrically to an infinitely generated Kleinian

group.
Strong convergence of Kleinian groups combines these two different notions,

so that a sequence of Kleinian groups converges strongly to a Kleinian group if it
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converges to that Kleinian group both algebraically and geometrically. Thurston

proposed a picture of what the space of Kleinian groups with the strong topology
looks like, which we consider here.

Let M be a compact, orientable, hyperbolizable 3-manifold with incompress-
ible boundary. Let D(tti(M)) denote the set of discrete faithful representations

p: tti(M) -> PSL(2, C) equipped with the topology of algebraic convergence (for-
mal definitions are given in Section 2). The group Isom^(M^) ^ PSL(2,C) of
orientation-preserving isometries of hyperbolic 3-space acts on D(tti(M)) by con-
jugation. We denote the quotient by AH(tti(M)). Note that a sequence {[p«]} C

AH(tti(M)) converges to [p] e AH(tti(M)) ifthereisa sequence {/z„} c PSL(2,C)
so that {/z„p„/z~*} converges to p in D(tti (Af)). When there is no possibility of con-
fusion, we refer to elements of both D(tti (Af)) and AH(tti (Af)) as representations,
even though the elements of the latter set are formally equivalence classes of repre-
sentations.

By considering the quotient manifold Afp HI^/p(^i(Af)) corresponding to a

representation p, we can identify AH(tti (Af)) with the set of hyperbolic 3-manifolds
homotopy equivalent to Af up to isometry, where the homotopy equivalence induces
the given representation. A sequence {p„} in AH(tti(M)) converges strongly to a

representation p^o if {p«} converges to poo algebraically and if {p„(tti(M))} con-

verges geometrically to poo (tti (Af)). We denote by SH(tti (Af)) the set AH(tti (Af))
equipped with the strong topology. Though we do not use this description, one can

identify SH(tti (Af)) with the space of hyperbolic manifolds homotopy equivalent to
Af (up to isometry) equipped with a marked pointed Hausdorff-Gromov topology.

By Bonahon, see [Bon], each representation p e AH(tti(M)) is tarne, namely
the corresponding quotient manifold Afp HI Vp(jri (Af)) is homeomorphic to the
interior of a compact 3-manifold. Combining this result with the uniqueness of
the compact core, see [MMS], it follows that the topology of the quotient manifold
does not change under strong convergence (compare with [CaM]). Namely if {p„}
converges strongly to poo, then Afoo HlVPooC^i (Af)) is homeomorphic to Af„
H^/p,j (tti (Af)) for a sufficiently large. Using the Ending Lamination Theorem, see

[Mi2] and [BCM], and Thurston's Double Limit Theorem, see [Th3], one can then

see that the connected components of SH(tti (Af)) are in one-to-one correspondence
with the set of marked homeomorphism types of 3-manifolds homotopy equivalent
to Af (we see that this fact can be deduced from our results as well). In particular, as

a first point of contrast with AH(tti (Af)), we show that SH(tti (Af)) does not have

the bumping phenomenon described for AH(tti (Af)) for many Af in [AnC].
In addition to the existence ofbumping, another disturbing property ofAH(tti (Af))

is that it may not even be locally connected, see [Br], [Mag] and [BBCM]. We will
show that this does not happen with the strong topology.

Theorem A. Af a compact, oncntaWc, /zypcrfeoZ/zaWc 3-mam/oZcZ wzYZz m-
comprcss/Z?Zc Z?cmmZary. TZzcn ^Zzc spacc SH(jri(Af)) fs ZocaZZy comzcctecZ.
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Even when Af is such that AH(tti (Af)) is locally connected, the space AH(tti (Af))
may have so-called self-bumping points, see for instance [McM], [BrH] and [Ohl].
We will see that this kind of phenomenon does not appear in SH(tti (Af)).

Theorem B. Lc£ Mfea compact, oncntaAZc, AypcrAoZ/zaAZc 3-mam/oZcZ wzYA m-
comprcss/AZc AcmmZary. p G SH(tti(M)) Ac a rcprcscnta/Am am/crm/zmg Af.
TAcn cvcry nc/gAAorAoocZ o/p ccmtams a nc/gAAorAoocZ V C SH(tti (Af)) o/p sacA

£Aa£ V D int(SH(7Ti(M))) A connected.

The reason why self-bumping points may be present in AH(tti(M)) and not in
SH(tti (Af)) is that some sequences of representations that converge in AH(tti (Af))
do not converge in SH(tti (Af)). This has the following consequence:

Lemma 1.1. Le£ Mfeö compact, onentaAZe, AyperAoZ/zaAZe 3-mam/oZd wAA m-
compress/AZe Aonndary. TAen tAe space SH(jr(Af)) A no£ ZocaZZy compact

We denote by AH(Af) C AH(tti (Af)) the set of representations p whose quotient
manifold M^/p(jri (Af)) is homeomorphic to the interior of Af by a homeomorphism
that induces p. This set is contained in the closure of the component of the interior of
AH(tti (Af)) containing the minimally parabolic Kleinian groups T for which Afp is

homeomorphic to the interior of Af (this can be deduced from [Mar], [Su], [BCM]).
Let SH(M) denote the set AH(M) with the strong topology. Let Mod(M) be the

group of isotopy classes of orientation-preserving diffeomorphisms of Af. When
Af iS x / is a trivial /-bündle, Kerckhoff and Thurston, see [KeT], have shown
that the action of Mod(Af) AfCG(S) on AH(Af) is not properly discontinuous.
This result has been extended to other manifolds by Canary and Storm, see [CS]. On

SH(Af) we have the following result.

Theorem C. Lc£ Af Ac a compact, onentaAZe, AyperAoZ/zaAZe 3-mam/oZd wAA m-
compress/AZe Aonndary. Avsnme dza£ Af A no£ an / -AnndZe over a cZosed snz/ace.
TAen Aze acdon c/Mod(Af) an SH(Af) A properZy dAcondnnons.

Furthermore, we show that when Af is a trivial /-bündle, this action has fixed
points and hence is not properly discontinuous.

The authors would like to thank the referee for their careful reading of the paper
and for their comments and suggestions, which have significantly improved the paper.

1.1. Outline of the paper. Thurston [Th2] gives the following conjectural descrip-
tion of AH(Af) and SH(Af). When Af does not contain an essential annulus, AH(Af)
is homeomorphic to a closed ball, like an hard-boiled egg with its shell, whereas

SH(Af) is obtained by thoroughly cracking the eggshell on a hard surface. In order
to get a precise description of this cracked eggshell, we introduce some coordinates
for SH(M).
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Say that a representation p e AH(M) am/orrnZzcs M, and note that by definition,
Mp has a compact core AT homeomorphic to M. Without loss of generality, we may
choose AT to intersect each cusp of Mp in either a Single annulus (in the case of a rank 1

cusp) or a torus (in the case of a rank 2 cusp), see [McC]. Dehne the ends of Mp to
be the complementary regions of AT U cusps. Such an end is gcomctoZcaZZy m/rate if
it can be chosen to be contained in the convex core Cp of Mp and gcomctoZcaZZyyZmto

otherwise. We dehne the ccm/ormaZ cmZ Znvananfa of p to consist of the hyperbolic
metrics associated to the conformal structure at inhnity of each geometrically hnite
end and of the ending laminations associated to its geometrically inhnite ones. Such an
invariant (F, m, L) consists of a complete hyperbolic metric m on an open subsurface

F of 3M and of a geodesic lamination L C 3M — F on its complement; we call it
a gaZZZmaw/77 on M or on 3M (see dehnition in Section 2.8). We put on the set of
gallimaufries a topology that extends the usual topology of the Teichmüller space. We

say that the gallimaufry (F, m, L) is cZcmZ?Zy Zncom/?rc^ZZ?Zc if there is a transverse

measure A supported by L and p > 0 such that for every essential disc, annulus

or Möbius band (F, 3F) c (M, 3M — F) we have Z(3F, A) > p. We prove the

following result:

TheoremD. Mkßcompact, oncntoFZc, ZzypcrZ?oZZzaZ?Zc3-mam/oZcZwZ^ZzZncom-

prcvs/Z?Zc Z?cmmZary. FZzc cmZZng map £Zza£ assocZatos to a rcprcscntot/cm am/armZsZng

M Zto cmZ mvanan^ Zs a ZzomcomorpZz/^m/rom SH(M) Znto ^Zzc o/cZcmZ?Zy Zacom-

prc^ZZ?Zc gaZZZmaa/rZc^ oa 3M.

By the proof of the Ending Lamination Theorem, see [Mi2] and [BCM], the map
associating its ending gallimaufry to a (conjugacy class of) representation is one-to-
one. Thus we only need to show that the ending map dehned in Theorem D is proper
and continuous.

We then prove that the set of doubly incompressible gallimaufries equipped with
its topology is locally connected, does not have self-bumping points, and is not locally
compact.

In Section 2, we give the definitions and some basic results that are used in the

paper. In particular, we dehne the space of gallimaufries and describe some of its

properties. The proof that the ending map is proper is divided in two. In Section 3

we show that given a sequence of representations whose end invariants converge to a

doubly incompressible gallimaufry, a subsequence converges algebraically. This can
be viewed as a rehnement of Thurston's Double Limit Theorem. The proof mixes

arguments of Thurston's original proof, see [Th3], arguments of Otal's proof, see

[Ot2], and a cut and paste Operation. In Section 4 we show that the algebraically con-
vergent subsequence provided in the preceding section actually converges strongly,
by studying the behaviour of the convex cores of the sequence and concluding that
the limit sets converge in the Hausdorff topology. In Section 5 we show that the

ending map is continuous. The main difhculty here is in handling the geometrically
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infinite ends of the limit. This will be dealt with by proving a relative version of
Bonahon's Intersection Lemma, see [Bon]. At this point we have proved Theorem D
and Lemma 1.1. In Section 6, we prove Theorems A and B by constructing appropri-
ate paths in the space of doubly incompressible gallimaufries. In Section 7 we prove
Theorem C.

2. Background material and definitions

The purpose of this section is to provide the background material we use in this

paper. We often pass to subsequences; unless otherwise stated, we will without further
comment use the same notation for the subsequence as for the original sequence.

2.1. Kleinian groups and 3-manifolds. Standard sources for material on Kleinian

groups and hyperbolic 3-manifolds are [Thl], [MaT] and [Ka]. A growp is a

discrete subgroup of the group PSL(2, C) of all orientation-preserving isometries of
hyperbolic 3-space Throughout this paper, we assume that Kleinian groups are
torsion-free and non-elementary, so that they contain a non-Abelian free subgroup.

A ZzyperZwZ/zaWe 3-ra<2m/6>Z<i is an orientable 3-manifold that admits a complete
Riemannian metric all of whose sectional curvatures are equal to — 1. A 3-manifold
endowed with such a metric is a ZzyperZwZ/c 3-ra<2m/6>Z<i. It follows that an orientable

hyperbolic 3-manifold ZV can be expressed as the quotient ZV T for a Kleinian

group T, and that T is unique up to conjugacy in PSL(2, C).
An (orientation-preserving) isometry of extends to a conformal homeomor-

phism on the boundary at infinity 3ooKI^ C of The doraam
£2p of a Kleinian group T is the largest open subset of C on which the action of T is

properly discontinuous.
The Z/razY sef A r C C of T is the complement of £2 r. Let //p c eP be the

ZzwZZ in of Ap, which is the smallest non-empty convex subset of invariant
under the action of T. The core Cp of T is the quotient of //p by the action
of r.

A Kleinian group T is georae/WcaZZy^mte if the unit neighbourhood of its convex
core Cp has finite volume in H^ / T. A Kleinian group T is convex co-corapoc/^ if its

convex core Cp is compact, or equivalently, if it is geometrically finite and contains

no parabolic elements. A Kleinian group is ra/mraoZZy poraZ?oZ/c if every parabolic
isometry belongs to a rank two free Abelian subgroup.

A compact 3-manifold is ZzyperZ?oZ/zoZ?Ze if there exists a Kleinian group T so that
the interior int(ZlL) of ZIL is homeomorphic to the quotient manifold T. Note that,
under this definition, a hyperbolizable 3-manifold ZIL is necessarily /rrainc/Z?Ze (so
that every embedded 2-sphere in ZIL bounds a 3-ball in ZIL), orientable, and otoronZoZ

(so that every incompressible torus T in ZIL is homotopic into 3ZIL).
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An embedded compact submanifold VT in a 3-manifold Af is FcoraprevsFZe
if is infinite and if the inclusion VT ^ Af induces an injective map on
fundamental groups. A compact 3-manifold has mcorapressF/e feowmFry if each

component of 9Af is incompressible.
For a compact 3-manifold Af, let 3^<oM denote the union of the components of

9Af of negative Euler characteristic, so that 3^<oAf consists of 9Af with all boundary
tori removed.

Let F C 9Af be an incompressible compact surface. An essenftaZ annwZws

(or Möbius band) F in (Af, F) is a properly embedded incompressible annulus (or
Möbius band) (F, 9F) C (Af, F) that cannot be homotoped into F by a homotopy
fixing 9F. An essenf/<zZ <ZFc Z) is a properly embedded disc (Z), 3Z)) C (Af, F) that
cannot be homotoped into F by a homotopy fixing 3Z).

2.2. Discrete faithful representations. Let M be a compact, orientable, hyper-
bolizable 3-manifold. A Fscrete/FF/hZ representa/Fn of jri(Af) into PSL(2, C) is

an injective homomorphism p: jri(Af) -> PSL(2, C) whose image p(jri(Af)) is a

Kleinian group. A discrete faithful representation p of tti (Af) is gßöm^fncaZZy^nZfe

if the image group p(jri(Af)) is geometrically finite, and is co-compacf if
P(tti(M)) is convex co-compact.

Let p: tti (Af) -> PSL(2, C) be a discrete faithful representation. Assume more-
over that the quotient manifold Afp HI^/p(^i(Af)) is homeomorphic to int(Af)
by a homeomorphism /: int(Af) -> Afp HI^/p(^i(Af)) that induces p, so that

p /*. Under these assumptions, say that p wm/orrn/ses Af.
Choose now a pairwise disjoint set of horoballs in so that each horoball is

centered at a parabolic fixed point of p(jri(Af)), and there is a horoball centered at

the fixed point of each parabolic subgroup of p(jri (Af)) and hence invariant under
the corresponding parabolic subgroup. It is a Standard application of the Margulis
lemma that such a set of horoballs exists. The cwspFFZ of Afp is the quotient of
such a collection of horoballs. Where relevant, we will assume that we have made a

convenient choice of such a collection of horoballs.
Let D(jri(Af)) be the space of all discrete faithful representations of jri(Af)

into PSL(2, C). By choosing a fixed set of p generators gi,..., gp for jri(Af),
we can realize D(tti (Af)) as a subspace of (PSL(2, C))^ by the identification p i-^
(p(gi),..., p(gp)); the topology thus obtained is called the <zZge&ra/c FpoZogy or the

topo/ogy o/ßZg^fera/c conv^rg^nc^. By [Jor], D(jri(Af)) is closed in this topology.
In this paper, we do not work with all of D(jri(Af)), but rather with the connected

components of its interior; for a füll description of D(jri(Af)) in light of the proof
of the Ending Lamination Theorem, see [ACM]. The representations contained in
a given connected component of the interior of D(jri(Af)) are the geometrically
finite minimally parabolic representations uniformising a given compact, orientable,
hyperbolizable 3-manifold Af' homotopy equivalent to Af, by work ofAhlfors, Bers,
Kra, Marden, Maskit, Sullivan, and Thurston. Such a component of int(D(7Ti (Af)))
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is uniquely defined by the given manifold M'.
If we instead consider the Chabauty topology on subgroups of PSL(2, C), we

get the g£6>ra£/Wc fopoZogy or the topoZogy 0/ georae/Wc c<9nv£rg£nc£. A sequence
{<[>„} of Kleinian groups georae/WcaZZy to a Kleinian group Ooo if every
accumulation point a of every sequence {ßft £ 0„} lies in O^ and if every element

a of Ooo is the limit of a sequence {ßft £ Oft}. We will normally consider geometric

convergence for the sequence {pft(7Ti(M))} for a sequence {p„} C D(tti(M)); let
Goo be the geometric limit of {p„ (tti (Af))}. In this case, note that the limit manifold
HVGoo is not necessarily homeomorphic to int(M), and in fact the geometric limit
Goo Of a sequence of (isomorphic) finitely generated Kleinian groups can be infinitely
generated.

The sequence {p„} C D(tti(M)) converges stfrongZy if {p„} converges alge-

braically to some representation poo and if {p„ (tti (M))} converges geometrically to
PooOiOO). As we commented in the introduction, strong convergence preserves
the topology of the quotient manifold.

Lemma 2.1. Lef M Z?£ <2 compact, onenfa&Ze, Ayper&öZfeß&Ze 3-m<znz/bZd wzYA Zn-

c<9rapr£ss/Z?Z£ ZwwmZßry. Lef {p„} Z?£ <2 0/represenfarföns' wm/orra/s/ng M
^Zzotf corn^rges stfrongZy <2 represenfarfon poo- TZzen poo wm/orra/ses M.

/V00/ By the proof of Marden's tameness conjecture for such 3-manifolds, see [Bon]
(see also [Ag] or [CaG] for the general case), there is a compact 3-manifold M' such

that Moo H^/Poo(^i (M)) is homeomorphic to int(M'). Consider a compact core
K for Moo, which we can choose to be homeomorphic to M'. Since {pft(7Ti(M))}
converges geometrically to PooC^i (M)), there are points « £ N U {oo}, and maps
0« : Moo —^ Mft H^/pft(7Ti(M)) with 0ft(xoo) such that the restrictions of
the 0ft to i?(Aoo, are ^ft-bilipschitz with -> oo and ^ -> 1, see [MaT]. For
« sufficiently large, we have K C i?(xoo, By construction 0ft(K) is a compact
core for M„. By [MMS], any compact core for M„ is homeomorphic to K. It follows
that Mft is homeomorphic to Moo for ^ sufficiently large.

On int(D(7Ti(M))), the algebraic and strong topologies are equivalent.
The group PSL(2,C) acts on D(tti(M)) by conjugation. By AH(tti(M)) we

denote the quotient ofD(tti (M)) by PSL(2, C) endowed with the algebraic topology.
We denote by SH(tti(M)) the quotient of D(tti(M)) by PSL(2, C) endowed with
the strong topology. The interiors of both AH(tti(M)) and SH(tti(M)), with their
respective topologies, are the quotient of int(D(7Ti (M)) by PSL(2, C).

Let D(M) be the set of representations p £ D(tti (M)) that uniformise M. Recall
that this means that the quotient manifold Mp Et^/p(7Ti(M)) is homeomorphic
to int(M) by a homeomorphism / : int(M) —Mp Et^/p(7Ti(M)) that induces

p. (Hence, the interior of D(M) consists of quasiconformal deformations of a given
minimally parabolic Kleinian group uniformizing M.) We denote by AH(M), re-
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spectively SH(M), the quotient of D(tti(M)) by PSL(2, C) endowed with the al-

gebraic topology, respectively the strong topology. When 3M is incompressible, it
follows from the work of Ahlfors, Bers, Kra, Maskit, Sullivan and Thurston that

int(AH(M)) int(SH(M)) is homeomorphic to the Teichmüller Space T(3^.<oM);
in particular it is a topological ball.

It follows from Lemma 2.1 that for every topological manifold Af, SH(M) is

a closed set and is disjoint from any other set SH(M') C SH(tti(M)). Hence to
understand SH(tti (Af)), we only need to understand each of the SH(M') separately
as Af' varies over all the 3-manifolds homotopy equivalent to M.

An R-tree is a path metric space such that every two points can be joined by
a unique geodesic arc. Let 5" be an R-tree and let G be a group acting on 5" by
isometries. We say that the action is sraaZZ if the edge stabilizers are virtually cyclic.
We say that the action is ra/mraaZ if no proper subtree of 5" is invariant under the

action of G. We will normally consider actions of R-trees that are both small and

minimal.

Morgan and Shalen [MoSl] introduced a compactification of AH(M) by small
minimal isometric actions of tti(M) on R-trees. Consider an dement g of tti(M).
For p g AH(M) we denote by ^p(g) the translation distance of p(g) (which is 0

if the isometry is parabolic). Given an isometric action of tti(M) on an R-tree 5",

we denote by y(g) the translation distance of the action of g on 5". A sequence
of representations {p^} C AH(Af) tends to a minimal isometric action of tti(M)
on an R-tree 5" if there are -> 0 such that (g) -> (g) for every dement

g of tti(M), see [Otl]. Multiplying the sequence by a given constant yields
an isometric action on another R-tree which is homothetic to the first one. Hence

AH(M) has thus been compactified by actions on R-trees up to homothety.
Replacing by we get a compactification of the Teichmüller space which by

Skora's Theorem, see [Sk], is equivalent to Thurston's compactification by projective
measured geodesic laminations (see Section 2.6).

2.3. Geodesic laminations. Standard sources for material on geodesic laminations
are [Pe] and [Ot2], Appendice. Note that unless otherwise explicitly stated, a surface

of negative Euler characteristic will be equipped with a complete hyperbolic metric
of finite area.

A geodesic Zom/not/on L on a closed hyperbolic surface is a compact set that
is the (non-empty) disjoint union of complete embedded geodesics. Note that this
definition can be made independent of the choice of metric on S, see [Ot2], Appendice,
for example. A geodesic lamination is ra/mmoZ if it does not contain a geodesic
lamination as a proper subset. A minimal lamination is either a simple closed geodesic

or an ZrradonoZ Zommodon. A leaf of a geodesic lamination is if it lies in a

minimal sublamination. A geodesic lamination is the disjoint union of finitely many
minimal sublaminations and finitely many non-recurrent leaves. The
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of a geodesic lamination is the union of its recurrent leaves. It is itself a geodesic
lamination. A rawZ/Fcwrve is a union of disjoint simple closed geodesics. We say
that two geodesic laminations L and Z/ cross if at least one leaf of L transversely
intersects a leaf of Z/.

Let Zbea compact surface with boundary. We dehne a geodesic lamination in
F similarly as in the case of a closed surface by considering a hyperbolic metric
with geodesic boundary on F (again the dehnition can be made independent of the

metric). A geodesic lamination L C Fis pcnpZzcraZ if L is a simple closed curve
freely homotopic to a component of 9F.

Let L C S be a connected geodesic lamination that is not a simple closed curve.
The wirren W(L) of L is the smallest subsurface of with geodesic boundary
containing L. Notice that we may have W(L) S. It is not hard to see that

W(L) contains hnitely many simple closed curves that are disjoint from L, see [Lei],
§2.4. Removing from W(L) an annulus around each such curve, we get the swz/acc
craferaccJ Zry L that we denote by S(L). When L is a simple closed curve, we take

S(L) to be an (open) annular neighbourhood of L. In the particular case that L is

a non-connected geodesic lamination, we take S(L) to be the disjoint union of the

S(L;) as L; runs through the connected components of L. Notice that S(L) is an

open surface (i.e. without boundary).
A racaswrcJ gccJcs/c Zara/na/ron A consists of a geodesic lamination |A| and a

transverse measure on |A|. Any are A [0,1] embedded in S transverse to |A|, such

that 3A C S — |A |, is endowed with a transverse measure JA such that:

- the support of JA|^ is |A| D A;

- if an are A' can be homotoped to A by a homotopy preserving |A| then /^JA
Ava.

If A is a measured geodesic lamination, then its support | A | contains only recurrent
leaves. Two measured geodesic laminations cross if their supports cross.

We denote by JlZdC(S) the space of measured geodesic laminations on S endowed
with the weak* topology on transverse measures. If y is a weighted simple closed

curve with weight w(y) and A is a measured geodesic lamination transverse to y,
the Znterscc/fcn nwrafecr Z(A,y) is defined by Z(A,y) u;(y)/^|JA. Weighted
simple closed curves are dense in (S) and so Z extends to a continuous function
i: x -> R ([R], see also [Bon]).

Given a complete hyperbolic metric s on S, the length of a weighted simple closed

curve with support c and weight u; G R is (c), where (c) is the length of c with
respect to s. This length function extends continuously to a function : JlZdC(iS) —

R called the Z^ng^Zz/wncJon, see [Bon].
This dehnition can be extended to dehne the length of a measured geodesic lami-

nation in a hyperbolizable 3-manifold as follows. Let Af be a compact hyperbolizable
3-manifold with boundary. We are not interested in curves lying in a torus component
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of 3Af, so we use the notation Af£(3Af) for AfdC(3^<oAf). Let S be compact subsur-

face of 3^<oM. Let p e AH(Af) be a representation uniformizing Af and let c C S

be a simple closed curve. Denote by c* the closed geodesic in Afp HIVpC^i (S))
in the free homotopy class defined by c, if such a geodesic exists. We denote by
£p(c*) the length of c* with respect to the hyperbolic metric on Afp. When p(c) is

a parabolic isometry, we take p(c*) 0. This allows us to dehne the length of a

weighted multi-curve. Using the density of weighted multi-curves in Af£(3Af), we
can then dehne the length p(A*) of a measured geodesic lamination A e Af£(3Af).

We can associate to a measured geodesic lamination /3 on a hyperbolic surface
iS a small minimal action of tti(S) on an R-tree 7ß dual to /3, see [Ot2]. If c is

a simple closed curve, we denote by the translation distance of an isometry
of 7ß corresponding to c. The action of tti(S) on 7ß we get in this way satishes

(c) ZOS, c). Notice that this property completely dehnes the minimal action of
tti(iS) on 7jß, see [Ot2].

Let iS be a connected hyperbolic surface and let #: HP -> S be the covering
projection. Let L C 5 be a geodesic lamination and let tti(S) r> 7" be a minimal
action of tti(S) on an R-tree 7". Then L is reaZZzed in 7" if there is a continuous

equivariant map HP -> 7" whose restriction to any lift of a leaf of L is injective.
When S is a component of the boundary of a 3-manifold Af, we extend this dehnition
to actions of tti (Af) on R-trees in the following way. Given an action of tti (Af) on
an R-tree 7", we use the map Z* : tti (3Af) -> tti (Af) induced by the inclusion to get
an action of jri(3Af) on 7" (which is still small when 3Af is incompressible). By
saying that L is realized in 7", we actually mean that L is realized in the minimal tree
invariant under the action of Z* (tti (£)) on 7", equipped with the (minimal) action of
7Ti(S)

A simple closed curve c in a compact (i.e. closed or compact with boundary) sur-
face iS is essenft'ßZ if c does not bound a disc in S. A compact subsurface F C is es-
sen/räZ if every simple closed curve c C F that bounds a disc in S bounds a disc in F.

2.4. Train tracks. Consider a compact surface endowed with a complete hyper-
bolic metric of finite area. The purpose of this section is to introduce the notion of a

fraZn which is an object on a surface used to combinatorially encode measured

geodesic laminations. Specifically, a fraZn r in S is the union of finitely many
"rectangles" called the irancAes. In a rectangle [0,1] x [0,1] we call a segment
{/>}x[0, 1] C [0, l]x[0, 1 ] a vem'tc// segment and a segment [0, l]x{/?} c [0, l]x[0,1]
a AönzönfaZ segment. The two extremal vertical segments are the verfZc^Z sides. The
branches of a train track satisfy:

- a branch A; is the image of a rectangle [0,1] x [0,1] under a smooth map whose
restriction to ]0, l[x[0,1] is an embedding;

- the union of the double points of a branch is either empty or a non-degenerate
vertical segment;
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- given a pair of branches and the corresponding rectangles and maps, the inter-
section of the images is either empty or a non-degenerate segment;

- given the collection of rectangles and smooth maps producing the branches,

every connected component of the union of the images of the vertical sides is a

simple arc embedded in S.

Furthermore, we will assume that the closure of the complement of a train track r
contains no components that are either discs, monogons, bigons, punctured discs or
annuli.

The images of the vertical segments {/?} x [0,1] are the rfes. A maximal connected
union of ties lying in different branches is a swzYc/z. A sub-track of a train track r is

a train track all of whose branches are branches of r.
A geodesic lamination L is carrW fry a fracÄ; r when there is a hyperbolic

metric m on S such that the m-geodesic lamination L lies in r and is transverse to the
ties. A geodesic lamination L is ra/mraaZZy carrW by r if no proper sub-track of r
carries L. A measured geodesic lamination A is camAiby a train track r if its support
| A | is carried by r. Associating to each branch Z> of r the transverse measure A(Z>) of
a tie, we get a we/g/tf system for r. A weight System is a function {branches} -> M+

satisfying the switch conditions: each switch is two-sided and the sum of the weights
of the branches on one side is equal to the sum on the other side. If a train track r
minimally carries a measured geodesic lamination, there is a bijection between the
set of measured geodesic laminations carried by r and the weight Systems for r, see

[Pe], Theorems 1.7.12 and 2.7.4.

2.5. End invariants. Consider a discrete faithful representation

/o: tti(M) -> PSL(2, C)

that uniformizes M. By a result of Scott, the quotient manifold Mp has a compact
core K homeomorphic to M. We can choose K to intersect a chosen collection C
of cusps of Mp (see Section 2.2) in annuli or tori. The emZs of Mp are (equivalence
classes of) the complementary regions in Mp of K U C. To each end we associate an

open surface f C 3^^ 9M, and the end is homeomorphic to F x [0, oo), by the
Tameness Theorem.

Denote the convex core of Mp by Cp. An end of Mp, as defined above, is geomeZ-
n'caZZy Zn/Zrate if it is contained in the convex core Cp of Mp (up to a compact piece)
and geomefncßZZy yZraYe otherwise. We note that a Kleinian group is geometrically
finite by the definition given earlier in Section 2.1 if and only if it has finitely many
ends, each of which is geometrically finite by this definition.

The quotient £2p/p(tti (M)) of the domain of discontinuity is a Riemann surface

of finite type and adds a natural conformal boundary to the open manifold Mp. This

yields a natural embedding £2p/p(jri(M)) ^ 3M well defined up to homotopy.
To each geometrically finite end i? Fx[0, oo) is associated the component of
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£2p/p(7Ti(M)) homeomorphic to F. Thus we get a point in the Teichmüller space
5" (F); this is the end invariant associated to this end.

Let F ^ F x [0, oo) be a geometrically infinite end of Afp. Thurston associated

to F, see [Thi], a minimal geodesic lamination F on F defined as follows. Consider
a sequence {c„} c F of simple closed curves whose geodesic representatives c* C
F C Afp exit every compact subset of F. Make into a geodesic lamination
by using the counting measure. The existence of such a sequence of curves is a

non-trivial fact proved in [Bon]. Extract a subsequence such that {c„} converges in
«FAfdC(F) to a projective measured geodesic lamination [A]. Then [A] is supported
by F. Furthermore F does not depend on the choice of {c„}, as long as {c*} exits

every compact subset of F.
Combining the end invariants of the geometrically finite ends and the ending

laminations of the geometrically infinite ends, we get the end invariants of p. In
Section 2.8, we describe more precisely the kind of objects thus obtained.

2.6. Thurston's compactification. The Teichmüller space F(S) of a hyperbolic
surface can be compactified by actions on R-trees, up to homothety. The actions
thus obtained are small and minimal. By Skora's Theorem, see [Sk], such an action is

dual to a measured geodesic lamination. Since F(S) is compactified by actions on R-
trees up to homothety, we actually get a projective measured geodesic lamination. In
order to prove some results in the present paper, we need a more precise description of
the behavior of a sequence {m„} C F(S) tending to a projective measured geodesic
lamination [A]. In this section we recall how Thurston compactifies F(S) directly by
projective measured geodesic laminations (that is, without using R-trees), following
the exposition given in [FLP], Expose 8.

Fetmbeacomplete hyperbolic metriconiS. FetF C be a multi-curve such that
the components of S — F are 3-holed spheres. We refer to a 3-holed sphere as a paZr
ö/panfa, and such a multi-curve F is called a panfa decompösirfön of S. Following
[FFP], §1.2. Expose 8, and using F, we associate a partial raeaswrai/oZ/a/Fw Fp (m)
of iS to m. (Here, a metfswred /oZZa/fon of a surface is a Singular foliation of
with a transverse measure, where the measure of a curve transverse to the foliation is

preserved by homotopies preserving the foliation. A par/FzZ raeaswred/oZ/a/Fw is a

measured foliation of a subset of 5.) Eet F be a pair of pants and let Zi, Z2, Z3 be the
leaves of F bounding F.

Assume first that + C(W for every Z 7^ 7 7^ F. For Z 7^ 7, let
be the geodesic segment orthogonal to Z; and Zy. Eet 7/j be the set of points at

a distance at most ^(Z;) + (Zy) — (Z^)) from F;j. This set is foliated by the

curves {z | d(F; j, z) is constant} and the transverse measure is given by the distance
between two leaves. Thus in F we have three foliated sets. Notice that by the choice
of their widths they don't intersect in int(F). Thus we have constructed a partial
measured foliation Fp(m) of F (see Figure 1).
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Figure 1. The partial foliation of

If on the other hand ^(/i) > + ^m(^) (up to relabeling, this is the only
case left to consider) we take Pi^, respectively 7i^, to be the set of points at a

distance at most from £1,2, foliated as before, respectively the set of points

at a distance at most from £1,3. Let £1,1 be the (simple) geodesic segment
orthogonal at both ends to /1. The set of points of /1 not lying in the interior of
7\,2 H /1 nor of D /1 form two arcs ^4 and zl'. We take P14 to be the union of the

curves {z | d(Pi,i, z) is constant} starting at ^4 (notice that £14 may not lie in Pi,i).
Thus we have constructed a partial measured foliation P/ (m) of P (see Figure 1).

It is proved in Expose 8 of [FLP] that the projection mapping m to Pp (m) is

a homeomorphism from P(S) into the set of partial measured foliations giving a

non-zero measure to every leaf of P. Notice that Pp (m) depends on the choice of P.
One can extend this measured partial foliation into a Singular measured foliation

of the whole surface. This Singular foliation is well defined up to isotopy. It has been

noticed by Thurston that there is a natural bijection between equivalence classes (up to
isotopy and Whitehead moves, see [FLP]) of Singular measured foliations of a surface
and measured geodesic laminations, see [Lev]. To a measured foliation Pp (m), there

corresponds the measured geodesic lamination A satisfying Z(Pp(m),c) Z(A,c)
for every simple closed curve c. From now on we give the same name to a foliation
and to the corresponding lamination.

The measured geodesic lamination P> (m) roughly describes the length spectrum
of m, as can be seen in the following result, see Theorem 2.2 of [Th3]:

Theorem 2.2. Lef mo corapZe/p ZzyperfeoZ/c rae/Wc on on<Z Zef P feß ponfa
<Z£corapos//7on o/*S. Lef £ > 0 Z?£ sncZz fZzof Zeo/c o/P. PZzen
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zs 2 ö (s) ^<^Zz raeaswrai g£6><i£s/c Zara/na/fon A on £ sarfs/zes

/(A,^>(mo)) £ Imo(^) < ?(A,Fp(mo)) + ß^moW-

Now we explain how a projective measured geodesic lamination is associated to
a diverging sequence of points of P(*S). First, note that there exists £ > 0 so that

if a simple closed geodesic c C *S has length less than £ then every simple closed

geodesic crossing c has length at least e. The existence of such an £ can be easily
deduced from the Collar Lemma and £ does not depend on the hyperbolic metric on
S. Take any pants decomposition 2 of *S. Given a sequence {m„} C IT(S), we
extract a subsequence such that there exists TV such that for every leaf c of 2 either

(c) 5 £ for every « > TV or (c) > £ for every zz > AL If a leaf c of 2
satisfies (c) < £ for every /z > Af then we replace it by a simple closed curve P

that crosses c and is disjoint from 2 — Thus we get a new pants decomposition
P such that for every leaf c of P, (c) > £ for every zz > AP Now we consider

Assume that {m„} is a diverging sequence. By Theorem 2.2, Pp(m^)
diverges as well. We extract a subsequence so that {[Pp(pz«)]} converges in the

space of projective measured geodesic laminations.
Thus we get Thurston's compactification of Teichmüller space by projective mea-

sured geodesic laminations. Using Theorem 2.2 it is easy to see that this compactifica-
tion is the same as the one obtained by combining the Morgan-Shalen compactification
by actions on R-trees with Skora's Theorem.

Forgetting the transverse measure, we say that a sequence {m„} of complete hy-
perbolic metrics on S tozzPs to <2 Z<zzzzzzz<zft'ozz L on A if every subsequence contains
a further subsequence converging to a projective measured geodesic lamination sup-
ported by L.

2.7. Compactification of Teichmüller space for surfaces with boundary. Given
a sequence of complete hyperbolic metrics {m„} on a closed surface, we will need

to describe the behavior of the sequence on some specified subsurfaces. Namely we
need to define a compactification of Teichmüller space for surfaces with boundary.

The fastest way to do so is to use the compactification by actions on R-trees and

Skora's Theorem. Consider a compact surface P with boundary and let {m„} be a

sequence of hyperbolic metrics on P such that 3P is an union of m„-geodesics for
every zz. Assume that {m„} does not contain a convergent subsequence and that there

is a non-peripheral simple closed curve c C P such that ^ -> 0. We use c to
make sure that there is a non-peripheral closed curve whose length grows much faster
than the length of 3P. This ensures that each dement of 3P, viewed as a conjugacy
class in tti(A), has a fixed point when acting on the R-tree to which {m„} tends.

Such a fixed point is necessary to use Culler-Morgan-Shalen's Theory and Skora's
Theorem. Then, by [MoSl] and [Sk], a subsequence of {m„} tends to an action of
tti (P) on an R-tree dual to a compact geodesic measured geodesic lamination A.
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Thus we say a sequence {m„} of hyperbolic metrics with geodesic boundary on
F tends a Zmnma/Fm L on F if there is a non-peripheral simple closed curve

c C F such that 0 and any subsequence contains a further subsequence

converging to a projective measured geodesic lamination supported by L.
For technical reasons, we will need to associate to a metric m on F a measured

geodesic lamination, as was done for closed surfaces. Let mbea hyperbolic metric
on F such that 3F is an union of closed geodesics. Let Fp be a pants decomposition
of F, so that the connected components of F — (Fp U 3F) are three-holed spheres.

(Hence, we do not consider 3F to be contained in Fp.) Fix £ > 0 so that > £

for every leaf c of Fp. We are especially interested in sequences of metrics on F
with arbitrarily short boundary curves. In particular, we cannot simply repeat the
construction of Fp(m) in each component of F — Fp as we did in the case of a

closed surface, as we won't then satisfy the hypotheses of Theorem 2.2.

Consider the surface FF obtained by doubling F along its boundary, i.e. FF
is obtained by taking F and its mirror image and by identifying the corresponding
boundaries of these two surfaces. Endowing F C FF with a hyperbolic metric m
with geodesic boundary and its mirror image with the mirror image of m, we get a

complete hyperbolic metric Fm on FF. We denote by 3F C FF the multi-curve
corresponding to the identified boundaries of F and its mirror image. We consider
the pants decomposition Fp and its mirror image; the union yields a multi-curve
FFp C FF. There is a natural involution r: FF -> FF that exchanges F with its
mirror image. By construction we have r(FFp) FFp. We complete FFp into
a pants decomposition Fp>p so that we have r(Fp>p) Fp>p (see Figure 2). There

are two possibilities for a component of FF — FFp that intersects 3F, and Figure 2

shows how to extend FFp in both cases.

Figure 2. Extending FFp to a pants decomposition Fp>p.

Now we consider the map Fp^ : F (FF) -> Jl^dC(FF) associated to Fp>p as

defined in Section 2.6. When we have Z (Fp^p (Fm), 3F) 0, then the restriction of
Fp^^ (m) to the copy of F used to construct FF is a measured geodesic lamination

Fp^(m). The metric m is uniquely defined by Fp^p(m) and the lengths of the

components of 3F. Thus we have a well-defined injective map from the set of
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metrics on F satisfying 3F) 0 to eAfd£(int(F)) x R*_ (where A is

the number of components of 3F).
Let us show that when (3F) is small enough, we have Z (Fp^ (Dm), 3F) 0.

Claim 2.3. GZvene > 0, fAere emfa 77 > 0 depemi/ng onZy ons swcA (3F) <
77 ^Aen Z (Fp^ C®^)> ^F) — 0.

Proo/ Consider the partial measured foliation Fp^ (Dm) as originally defined and

let |Fp^ (Dm) | be its support. By [FLP], Expose 8, there is a uniform bound AT on
the length of the closure of every leaf of |Fp^(Dm)| D (DF — Pp>p), depending
only on e. By the Margulis Lemma, we can find 77 so that every component of DPp
is at distance at least AT + 1 from 3F. With this choice of 77, the closure of a leaf of
|Fp^(Dm)| fl (DF — Pp>p) with one endpoint on DPp cannot intersect 3F.

AsPpp is invariant under the actionof r, wehaver(Fp^ (Dm)) Fp^(Dm).
Furthermore 3F is fixed pointwise by the action of r. It follows that the closure of
a leaf of |Fp^ (Dm) | H (DF — Pp>p) intersects 3F only if it has both endpoints in

D/V.
Combining these two paragraphs, we conclude that for 77 small enough no leaf of

Fp^ (Dm) crosses 3F. In particular, we have Z(Fp^ (Dm), 3F) 0.

Given a sequence of metrics {m„} on F such that f^(3F) -> 0, we choose

a pants decomposition Pp (not containing 3F) so that we have (c) > £ for
every leaf c of Pp and every 77. We construct a map Fp^ : {m„} -> Jl^dC(F) as

described previously. Taking a subsequence {m„} such that {Fp^^(m^)} converges
projectively, we get a projective measured geodesic lamination [A]. SinceTheorem 2.2
holds for Dm„ and Fp^ (Dm„), it is still true when applied to m„ and Fp^ (m„).
It follows that {m„} tends to an action on an R-tree which is dual to [A].

A complete metric m on an open surface F can be approximated by a sequence
of metrics m„ on the surface F obtained by adding a simple closed curve along each

cusp of F. The metrics m„ have the property that 3F is an union of m„-geodesics
whose lengths converge to 0. Choosing an appropriate pants decomposition P of F
(again not containing 3F), one can define measured geodesic laminations Fp^ (m„)
associated to {m„} as above. It is easy to see that {Fp^(m„)} converges to a

measured geodesic lamination Fp^(m). Notice that Fp^(m) depends on P but
not on the choice of the sequence {m„ }. We have thus defined a map Fp^ : F (F) ->
A^dC(F) for which Theorem 2.2 holds.

2.8. Gallimaufries. Let S be a compact orientable surface of genus at least 2, not
necessarily connected. A gaZZ/mrm/ry T (F, m, L) on S is made as follows: F is an

open incompressible subsurface of *S, namely if a simple closed curve J C F bounds
a disc in iS, rZ bounds a disc in F; m is a complete hyperbolic metric (up to isotopy)
on F with finite area, so that in particular a connected component of F endowed with
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m is either a surface with cusps or a connected component of ; and L is a recurrent
geodesic lamination on the compact surface S — F. We furthermore require that L
does not have any closed leaf and that the connected components of S — (F U L)
are discs or annuli. The surface F is the mar/crate saz/acc of T and the lamination L
forms its /mmö&rafc Zam/na/Fm. We denote by ^<A>(*S) the set of all gallimaufries on
*S. As an example, the end invariants of a hyperbolic 3-manifold form a gallimaufry:
the union of the open surfaces facing the geometrically finite ends forms its moderate

surface, equipped with the metric induced by the corresponding conformal structure
at infinity; the union of the ending laminations of its geometrically infinite ends is its
immoderate lamination. We now define the topology on ^<A>(S).

Let {T„ L„)} be a sequence of gallimaufries on S. For each compo-
nent of — F„ which is an annulus A, we add to an essential simple closed curve
that can be homotoped into A. Thus we get a new geodesic lamination L^. We say
that {T„} converges to Too (Fqq, moo, Foo) in ^<A>(aS) if the following hold:

i) for every a we have F^ C F„ and the restrictions of the m„ to F^ converge
tomoo, namely we have /m„(9^oo) 0 and for every non-peripheral closed

curve c C Foo, we have (c) -> (c),

ii) the recurrent part of the Hausdorff limit of every convergent subsequence of
lies in L'«,,

iii) if a component L of Loo lies in infinitely many F„ then the restrictions of the

to S(L) tend to L.

A gallimaufry with empty immoderate lamination is simply a point in the Teich-
müller space of Thus by defining a gallimaufry we have constructed a bordification
of Teichmüller space. Notice that ^<A>(*S) is not compact and not even locally com-
pact.

Lemma 2.4. F/zc space ^<A>(*S) Zs netf Zcca/Zy compact

Proo/ Consider a simple closed curve c C and an embedded annulus A C
around c. Let m be a complete hyperbolic metric on the open surface — A and let

{m„} be a sequence of complete hyperbolic metrics on S converging to m on S — A
in the sense of i) above. In particular since c corresponds to a cusp of — A, we have

(f) 0-

Let 0: iS -> iS be a (right) Dehn twist along c. By construction the sequence of
gallimaufries {(£, m„, 0)} converges to (*S — A, m, 0) and since we have (c) -> 0,

for every fixed the sequence {(*S, 0* m„, 0)} also converges to (*S—A, m, 0). On the
other hand if we fix a and let -> oo, no subsequence of {(S, 0)} converges
in ^<A>(*S) for the following reason. First notice that if a sequence of metrics {m„}
converges to a gallimaufry Too (Foo,moo> £oo)> it follows from the definitions
that we have Z^„ (3Foo) -> 0. However, the 0* m^-length of any given simple closed

curve is bounded away from 0, when a is fixed and ä; varies. It follows that if
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{(£, </>*m„, 0)} converges to a gallimaufry T^o (^oo^oo^oo) then we would
have Foo S and Loo 0. This would mean that the metrics {0*m„} converge,
when n is fixed and A varies, which is clearly not the case.

Thus for every given compact set AT, we can find a sequence {£„} so that the

sequence {(*S, 0)} eventually exits AT. On the other hand, the sequence

{(£,</>*" m„, 0)} converges to (*S — A,m, 0). Hence we have shown that
is not locally compact.

2.9. Double incompressibility. Let Mbea compact 3-manifold and let F C 3M
be a compact surface whose boundary is incompressible. We say that a geodesic
lamination L C F is <ionZ?Zy ZncompressZWe Zn F if it contains the support of a

measured geodesic lamination A satisfying the following condition: thereexists 77 > 0

such that for every essential disc, annulus or Möbius band (F, 3F) properly embedded
in (Af, F), we have Z (A, 3F) > 77.

Notice that if a measured geodesic lamination L is doubly incompressible, then

every measured geodesic lamination with support L is also doubly incompressible.
Say that a gallimaufry T (F, m, L) is <ionZ?Zy ZncompressZWe if L is doubly

incompressible in 3M — F. The end invariants of a compact 3-manifold form a

doubly incompressible gallimaufry, see [Bon] and [Ca].
We give this definition in the most general case but, since we will only consider

orientable manifolds with incompressible boundary, we will not need to consider
essential discs or Möbius bands in the definition of doubly incompressibility. Notice
that although an orientable 3-manifold may contain some essential Möbius bands,
a regulär neighborhood of such a band contains an essential annulus and thus for
every essential Möbius band F C Af, there is an essential annulus A C Af such that

i(A,9X) 2i(A,3£).

3. Algebraic convergence

In this section we prove that the convergence of the end invariants to a doubly in-
compressible gallimaufry implies the algebraic convergence of the corresponding
representations (up to taking a subsequence).

Proposition 3.1. Le£ Mka compact onenfaFZe, ZzyperZ?oZZzaZ?Ze 3-mam/oZ<i wZt/z

ZncompressZWe feonmZary. Le£ {p„} C AH(Af) Z?e a segnence 0/ representa/fons
wra/ormZzZng Af amZ Ze£ T„ (F„,m^,L„) Z?e £/ze emZ ZnvanVmts- 0/p^ (tti (Af)).
Assnme {T„} converges Zn ^<A>(3Af) a <ionZ?Zy ZncompressZWe gaZZZman/ry

Too (Foo, moo, Foo). F/zen a snFsegnence o/{p„} converges aZgeZmaZcaZZy.

This result should be regarded as another extension of Thurston's Double Limit
Theorem ([Th3]). The improvement from previous results (for example from [Oh2]
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which seems to be the closest one) lies in the fact that we are considering the limit
of {T„} in the space of gallimaufries rather than its projective limit (however it may
be defined). It is not hard to construct an example where {F„ } converges to a doubly
incompressible gallimaufry even though the projective limit of the end invariants is

not doubly incompressible.
We prove this proposition by contradiction, roughly following the plan of Otal's

proof of the Double Limit Theorem, see [Ot2]. Assume that no subsequence of {p„}
converges algebraically. By work of Morgan and Shalen, see [MoSl], a subsequence
of {p„} tends to a small minimal action of tti(M) on an R-tree 5". Consider a

component L of the immoderate lamination Loo of Too- Using the assumption that

{T„} converges to Too we construct a sequence of laminations sufficiently close to
L whose lengths are sufficiently well controlled. We then deduce from the work of
Otal, see [Otl], that L cannot be realized in 5". On the other hand we see that since

Too is doubly incompressible, at least one component of its immoderate lamination
is realized in 5". This yields the expected contradiction.

3.1. Cut and paste. Before starting the proof of Proposition 3.1, we will describe
a relatively straightforward cut and paste Operation that will be used many times

throughout this paper.
Consider a closed orientable surface and an essential open subsurface f CS

which is not a pair of pants. Let c C S be a simple closed curve that intersects F.
We use a classical construction to get a simple closed curve e c F that behaves

somewhat like c. If c lies in F then we take e c. Otherwise, let be a component
of c D F; it is an are joining two boundary components of F (which may not be

distinct). Let V be a small neighborhood of the union of and of the components of
3F containing the endpoints of The boundary of V H F contains one or two simple
closed curves, depending on whether the endpoints of lie in different components
of 3F. Since F is not a pair of pants, at least one of these curves is not peripheral.
Let e be such a simple closed curve, namely e is freely homotopic to a component of
3V and is not peripheral in F.

By construction we have:

Claim 3.2. FZze s/rapZe cZosed cwrve e sarfs/Zes £Zz£ ZnegwßZ/rfes' < 2f^(c) +
£,(9F) om/i(e,c) < /(c,9F).

Consider now a sequence of simple closed curves {c„} C and the sequence
of simple closed curves {^} c F produced by the Operation above. Extract sub-

sequences so that {c„} and {^} converge in the Hausdorff topology to geodesic
laminations C and F respectively. Assuming that a minimal sublamination L of C
fills F, we have:

Claim 3.3. FZze Zara/mz/Fw L Zs a swWara/mz/Fw o/F.
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Froo/ Put a weight on so that HF} converges to a measured geodesic
lamination A supported by L. With such weights, we have 3F) -> 0. Since

we have Z(e^, < Z(c^, 3F) we get Z(F^, —> 0. Put a weight ^ on so

that {i^^} converges to a measured geodesic lamination /x. The support of /x is a

sublamination of F. Since {^} is bounded, we have Z (A, /x) lim Z

0. Since we have assumed that the support L of A fills F, then A and /x have the same

support and L is a sublamination of F.

Using this Claim, we will describe the behavior of a sequence of simple closed

curves with bounded length in a sequence of metrics that degenerates.

Lemma 3.4. Lef {m^} Ae <x tf/Ay/?erAc>ZZc meines on <x *S.

Lef F C S an ZncompressiAZe swAsw//ac£ swcA £A<x£ res/Wc/xons ö/*Ae {m«}
to F tonrZ to o g^orZ^^/c Zom/noAon L (Zn fAe sense o/Secft'on 2.7) Fzzx/^ZZs F. Lef
{c^} Ae o segwence ö/sim/?Ze cZoserZ cwrves on *S swcA ^Aotf (<Az)} Zs o AonnrZ^rZ

onrZ £A<x£ {c^} Zntorsecto S(L)/or n Zarge ^nongA. Fv/ract a swAsegwence
swcA £Aa£ {<:„} canverges Zn *Ae Fon^rZo/j^topoZogy to a geadesZc ZomZnoAon C. LAen

L Z.s a .vnA/omZnoAon o/C.

Proo/ Using the cut and paste construction described above, we get a sequence of
simple closed curves {e„ C S(L)} with (e„) < 2£,„„ (c„) + (0S(L)) and

Zfez? Uz) < Z(c„, 3S(L)). Consider a sequence {n„} converging to 0 such that the

sequence {w^Uj} C Jl7<L(S(L)) converges to a measured geodesic lamination A. By
Claim 3.3, the support of A is a sublamination of C.

Consider the double Z)S(L) of S(L) as defined in Section 2.7 and the metric
on Z)S(L) induced by the restriction of to S(L). Choose a pants decomposition
F of Z)S(L) as in Section 2.7 such that there is £ > 0 for which we have that

(pO > £ for every n and every leaf rZ of F and that F is invariant under the
natural involution r of Z)S(L). We have a measured geodesic lamination Fp (Am„)
defined as in Section 2.6.

Extract a subsequence such that {|Fp(Z)m„)|} converges in the Hausdorff topol-
ogy to a geodesic lamination 7/ and we have r(L') LA Let us show that any
component rZ of 3S(L) which is a leaf of L' is an isolated leaf. Otherwise L' would
contain leaves spiraling toward rZ. Since r(L') LA L' would contain leaves on
both sides of rZ spiraling in the same direction towards rZ. Such behavior cannot
happen in a Hausdorff limit of measured geodesic laminations. It follows that any
component rZ of 3S(L) which is a leaf of L' is eventually a leaf of {|Fp(Z)m„)|}.

We remove from Fp(Z)m„) every leaf that is a component of 3S(L). Since the
restrictions of the to S(L) tend to L, up to extracting a subsequence there are

-> 0 such that {r„Fp (Z)m„)} converges to a measured geodesic lamination Z)/x.
It follows from the previous paragraph that Z)/x is disjoint from 3S(L). Since the
restriction of to F tends to L, the support of Z)/x is the "double" of L. By
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definition, we have (3S(L)) -> Z(Z)/x, 3S(L))) 0. We denote by the

curve defined by on the copy of S(L) comprising Z)S(L). From Theorem 2.2,

we get z'(e„, (3S(L)) -> 0. It follows that

Z(A,Z)/x) fimFp(Z)m^)) 0. Hence the support of Ais L. Nowfrom
the first paragraph, we can conclude that Lisa sublamination of C.

3.2. Length and realization. Consider a component L of the immoderate lamina-
tion Loo of Too- In this section, we show that L cannot be realized in TA To do that,
we construct a sequence of geodesic laminations with controlled lengths which are
close enough (in a sense to be made precise) to L. We Start by roughly approximating
L by simple closed curves of bounded length, using Lemma 3.4.

Claim 3.5. FZzcrc L a scgwcncc {c^} 0/5/mpZc cZosccZcwrvcs on £ swcZz ^Zzct (c*)}
w Z?cmm/ccZ anc/ so wp to extracZzVzg o swfecgwcncc, {c„} converges m £/ze /Zons-

cZor/f topoZogy to <z geocZes/c Zam/nctoon conto/mng L.

Proo/ We first assume that Lcf„ for n sufficiently large, where F„ is the moderate
surface of T„. It is a classical result of Bers [Be2] that there are pants decompositions

of the F„ so that (F«)} is a bounded sequence. Extract a subsequence such

that { P^ } converges in the Hausdorff topology to a geodesic lamination Loo • Since P^
is a pants decomposition of F„ and since F is an incompressible subsurface of F„, for
everyn there is aleaf c„ of P„ that intersects F. By assumption, (c«)} is bounded.
Furthermore {c„} converges in the Hausdorff topology to a sublamination C of Poo-

By Lemma 3.4, L is a sublamination of C. By [Bei], we have (c*) < (c„).
In particular (c*)} is bounded.

If we have L F„ then L lies in the Hausdorff limit of every convergent sub-

sequence of {L^} where L^ is obtained by adding to L„ a curve in each component
of 3^<oM — F„ which is an annulus. By the definition of L^, if a component
of L^ intersecting S(L) is not a closed leaf, it is an ending lamination of p„. In
this case, there are curves c^ such that < ö for some 2 depending only
on 3M, such that {c^} converges in the Hausdorff topology to a geodesic lamination
containing P„. Taking a diagonal sequence we get a sequence {c„} of simple closed

curves so that the sequence (c*)} is bounded and so that {c„} converges in the

Hausdorff topology to a geodesic lamination containing L. If is a closed curve,
then (P*) 0 and we are done by taking c^ F„. This concludes the proof of
Claim 3.5.

Now that we have this sequence {c„}, we use the following proposition to deduce
that no component of L is realized in F.

Lemma3.6. Le£Mkßcorapac/, or/enfaPZe, ZzyperZ?oZ/zaZ?Ze3-mam/oZcZwzYAZncom-

press/Z?Ze Z?onncZary. Le£ {p„} C AH(M) Z?e a segnence toncZ/ng to a smaZZ m/mmaZ
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ftC/Zftft 6>/tTi(M) Oft Oft R-/T££ 5". {<?„} C 3M Z?£ ft S£gft£ftC£ o/^/ft2pZ^ cZo^rZ

cftrves swcZz ^Zzotf (c*)} Zs Z?oftftrZ^rZ. Avsftft2£ ^Zzft£ {c^} cftftV£rg£s Zft Z/ftftsrZft/jff
topoZftgy to o georfes/c ZftrftZftft/fftft Cqo Zef C Z?£ ftft Zrra/ZftftftZ ftz/ft/ftzft/ sftZ?Zft?ftZ-

ftft^'oft o/Coo- TZz^ft C Zs fto/^ r^ftZ/z^rZ Zft 5".

Proo/ The study of the behavior of the lengths of geodesic laminations that are
realized in 5" has already been initiated by J.-P. Otal, see [Otl]. His results are stated

under the assumption that Af is a handlebody, and he considers a sequence of geodesic
laminations that converges in the Hausdorff topology. But a careful look at the proof
yields the following Statement.

Theorem 3.7 (Continuity Theorem [Otl]). Lef Mkft coftzpftc/, oneftfa&Ze, Zzyper-

Z?oZ/zftZ?Z£ 3-ft2ftftz/oZrZ. Lef {p„} Z?£ ft s£gft£ftC£ ft/g£ftft2£/rZcftZZy2ZftZto repre^ftto/fftfts
o/tti (Af) toftrZZftg to ft ^rftftZZ mZftZmftZ ftc/Zoft o/tti (Af) oft ftft R-toee 5". ^ 0

sftcZz ^Zzft/^/or ftZZ g G tti (Af), we Zzftve (g) -> Of) ^ ^ C 3^<oAf Z?e ft
ftz/ft/ftzft/ georZesZc ZftftiZftftPoft wZft'cZz Z.s reftZZzerZ Zft 3". CorrsZrZ^r ft georZesZc ZftftiZftftZZoft

fi C S(L) coft^ftZftZftg L. TTzeft ^Zzere evZsto ft ft^ZgZzfeorZzoorZ V(£") o/£" ftftrZ cftftstoftfa

ß,fto swcZz ^Zzft/^/or every sZrftpZe cZoserZ cwrve c C V(L) ftftrZ/or every ft > fto,

^„(c*) > ß,o(c).

In this Statement, is a reference metric which is used to measure the "complex-
ity"' of the curve c. Any complete hyperbolic metric on 9Af can be chosen and <2

will depend on this choice.
Theorem 3.7 is enough to conclude the proofofLemma 3.6 when {c„ } converges in

the Hausdorff topology to C. In order to deal with the more general case, we use the cut
and paste Operation described in Section 3.1 in S (C) on the This provides us with a

sequence of simple closedcurves {^} C S(C) satisfying: Z^(e«) < 2^(c)+^(3F)
and Z (e„, c) < Z (c, 3F). Furthermore, by Lemma 3.3, up to extracting a subsequence,

{^} converges in the Hausdorff topology to a geodesic lamination £ containing C.
Now it remains to control the length in Af„ H[^/Pw(7n(Af)) of the sequence

{e^} thus constructed. Let *S be the connected component of 9Af containing C. Let
T C JL(C) be the maximal multicurve that is disjoint from Cjc fk(C) — *S(C).
Denote by 0: 5 -> 5 the mapping class that performs one left Dehn twist along each

component of 7\ For a fixed ft, the sequence {0^ (Gi)} converges as /: -> oo to a finite
geodesic lamination whose non-compact leaves spiral in IL(C) — *S(C). Extend this
lamination to a finite lamination whose non-compact leaves spiral in JF(C) — S (C)
and whose complementary regions are ideal triangles. Let /„:£-> Af„ be a pleated
surface (see definition in [CEG], §5.1) homotopic to the inclusion map such that /„
maps every leaf of to a geodesic of Af„. The existence of such a pleated surface
follows from [CEG], §5.3. We denote by (<Z) the length of a closed geodesic <Z of
iS endowed with the metric induced by /„. If a component c of 3*S(C) corresponds
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to a parabolic isometry in p„(tti(M)), we consider a map /„ : — c -> such

that the cusps of S — c are mapped to the corresponding cusps of M„. Such a map

/„ is called a nocZccZpZcatocZ snz/acc, see [Mil], and we set (c) 0 in this case.

Given £ > 0, it follows from the "efficiency of pleated surfaces", see [Th3], Theo-

rem 3.3, that there is a constant 2 ö(p) such that PI F^) < +
<2Z (c„, F), where /?£> is the complement of the c-Margulis tubes around the compo-
nents of 3*S (C) with short length (with respect to the metric induced by /„). (Compare
with [Mil], p. 138.) It follows that there is a component of c„ PI *S(C) P such

that (A^)} is bounded by some constant F > 0 depending on 2 and on the bound

on the (c*). Using these arcs in the construction described in Lemma 3.1, we
get a lamination F C *S(C) with C C £ and a sequence of simple closed curves

{c^} C eAfdC(iS(C)) such that {c„} converges to £ in the Hausdorff topology and

such that £/„ (c„) < 2£/„ (fc„) + (95(C)).
By the choice of the sequence (&„)} is bounded by F, and so (c„) <

2F + /„(3S(C)). Notice that since /„ realizes 3S(C), we have /„(3S(C))
(3S(C)*). Thus we get < 2F + (3S(C)*). Since the action of

Ph (tti (Af)) tends to the action of tti (Af) on the R-tree 5", there is a sequence -> 0

such that we have £w^p„(g) -> ^r(g") for every g g tti(M). In particular, we
have £„t?p„(95(C)*) -> r(9S(C). Thus < 2e„tf + e„p„(95(C)*) is
bounded.

On the other hand, since {c^} converges to £ P C, we have ^r
every complete hyperbolic metric on 5. It follows then from Theorem 3.7 that
C C £ is not realized in 5". This concludes the proof of Lemma 3.6.

Combining Claim 3.5 and Lemma 3.6, we conclude that no component of Loo is

realized in 5".

3.3. Double incompressibility and realization. Now we show that when Too is

doubly incompressible, at least one minimal sublamination of Loo is realized. Thus

we get a contradiction with Claim 3.5 and Lemma 3.6.

Lemma 3.8. Lc£ Mfea corapac/, oncntoFZc, ZzypcrZ?oZZzaZ?Zc 3-mam/oZcZ nnYZz Zn-

comprcssZZ?Zc Z?onncZary. ConsZcZcr a scgncncc o/ rcprcscntotZons {p^} C AH(M)
nm/ormZzZng M ^Zza£ tonc/s to a smaZZ mZnZmaZ ac/fon o/ tti (M) on an R-tocc F.
Lc£ T (F, m, L) Z?c a cZonfeZy ZncomprcvsZZ?Zc gaZZZman/ry. Avsnmc ^Zza/^/or cvcry
sZmpZc cZosccZ cnrvc c C F, ^Zzc scgncncc (c*)} Zs Z?onncZccZ. TLcn a£ Zcas£ onc

component o/L Zs rcaZZzccZ Zn F.

Proo/ Consider a component of 3^<oM. Since 3M is incompressible, we can
view tti(aS) as a subgroup of tti(M). Thus we have a small action of tti(aS) on
F. Let 7s be the minimal sub-tree of F for this action. By Skora's Theorem, see

[Sk], this action is dual to a measured geodesic lamination /3. Döing the same for
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each component of 3M we get a measured geodesic lamination ß e Jl/<L(3M). By
[MoS2], ß is not trivial. By [Otl], if a minimal geodesic lamination crosses |ß1, then
it is realized in 5". So we have to show that one component of L crosses |ß|.

For a simple closed curve c C f, we have assumed that (c*)} is bounded.
Hence we have i(c, ß) 0 for every simple closed curve c C F. This is possible
only if |ß | lies in 3M — F. Let us show that |ß | crosses L.

By [MoS2], (Af, (ß)) is not acylindrical, i.e. there is at least one essential annulus

with boundary in S(ß). In particular, if ß is a multi-curve, it contains the boundary
of an essential annulus or Möbius band. Since L is doubly incompressible, it follows
that L crosses ß.

Now we can assume that ß is not a multi-curve and denote by /x a connected
sublamination of ß which is not a simple closed curve. By [MoS2], ß lies in the

boundary of an essential /-bündle If C M and ß D IF D 3M factors through the

fibration. Namely, if we denote by 5 the base surface of IF and by p: IF -> 5 the

projection along the fibers, then p~*(f(/L)) ^ ^IF is a sublamination of ß (compare
with [BoO], see also [Lei], Lemme 4.7). Consider a sequence C F of simple
closed curves that converge in the Hausdorff topology to the support of p(/x). Then

{F„ p~*(^w)} is a sequence of essential annuli or Möbius bands such that {3F„}
converges in the Hausdorff topology to a sublamination of |ß|. Since L is doubly
incompressible in (Af, 3M — F), L crosses |ß|.

Thus we have proved that |ß | crosses L. By Theorem 3.1.4 of [Otl] this concludes
the proof of Lemma 3.8

We can now conclude the proof of Proposition 3.1.

Proo/tf/Prcpos/Fon 3.1. Assume that the conclusion is not satisfied, namely that a

subsequence of {p^} tends to an action of tti (Af) on an R-tree F. By Claim 3.5 and

Lemma 3.6 no component of Loo is realized in F. By the definition of the topology
on /7A>(3M), for every simple closed curve c C Foo, the sequence is

bounded. By [Bei], the sequence {Zp„(c*)} is also bounded. Thus the hypotheses
of Lemma 3.8 are fulfilled. It follows that at least one component of Loo is realized
in F. We conclude from this contradiction that a subsequence of {p„} converges
algebraically (up to conjugacy).

4. Strong convergence

Let Mbea compact, orientable, hyperbolizable 3-manifold, let {p„} C SH(M) be a

sequence of representations uniformizing Af and let T„ (F„, L„) be the end
invariants of p„. Assume that {T„} converges to a doubly incompressible gallimaufry
Too (Loo, Loo). We proved in the preceding section that a subsequence of
{Ptt } converges algebraically. We now show that this subsequence converges strongly
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to its algebraic limit poo C^i (Af)), by showing that the convex cores of the p„ (tti (Af))
converge to the convex core of PooC^i (Af)).

4.1. The ends of Afoo. We Start with the geometrically finite ends of PooC^i (Af)).

Lemma 4.1. Lc£ F fea connected component o/dze raoderate sn//nce fco o/T(X)-

F/zen dzere Zs n convex p/ented sn//nce /oo : F -> Af^ IH^/PooC^KAf)) Zzorao-

topZc to dze Znc/nsZon F C Af.

Proo/ For n sufficiently large, F is a subsurface of F„; let //„ be the connected

component of F„ containing F. We know that the restrictions of the to F converge
to a complete hyperbolic metric m on F. Let Cp„ be the convex core of p„ (tti (Af)).
Since //„ is a component of F„, there is a convex pleated surface /«://« -> 3Cp„.
Furthermore, by [EpM], //„ endowed with the metric induced by /„ is bilipschitz to

(//„, m„) with a uniform bilipschitz constant. It follows that (3F) -> 0 and that

{/„ (c)} is bounded for every simple closed curve c C F, where is the length
function of the metric induced by /„. From this we deduce that there is a subsequence
such that the restrictions to F of the metrics induced by the /„ converge to a complete
hyperbolic metric.

Let c C F be a simple closed curve such that poo (c) is a hyperbolic isometry.
Since {^/„(c)} is bounded, the distance between c* C Af„ and /«(c) is bounded

uniformly in n. Using Arzela-Ascoli's Theorem as in [CEG] we can extract a sub-

sequence of {/„} that converges to a pleated surface : F -> Cp^ homotopic to
the inclusion F C Af. Since the /„ are convex surfaces, by [BoO], is a convex
surface as well, see also [Le2].

Next we show that each component of the immoderate lamination L^o of T^o is

an ending lamination of Moo-

Lemma 4.2. Le£ Lfeß connected component o/Foo- F/zen dzere Zs n georaeteZcnZZy

Zn/ZnZte end F o/Afoo H^/PooC^i (Af)) snc/z dzctf F Zs Zzoraeoraorp/n'c to S(L) x
[0, oo), dze Znc/nsZon F -> Zs ZzoraotopZc to dze Znc/nsZon S(L) ^ Af nnd L Zs

zFe endZng ZomZnodon o/F.

Froo/ Let S be the component of 3M containing L and let : tti (S) -> PSL(2, C)
be the representation induced from p„ by the inclusion map. We note that (p*)

(p*) for every measured geodesic lamination p e jM<F(aS) C JM<F(3M).

By Claim 3.5, there is a sequence {c„} of simple closed curves converging in the
Hausdorff topology to a geodesic lamination containing L such that {£cr„ (<^)} is a

bounded sequence. Choose a transverse measure A supported by L. Since {£cr„ (<^)}
is a bounded sequence, it follows from the continuity of the length function, see [Bro],
that ^ctooO^*) 0. This means that L is not realized in H^/^ooC^i^))- It follows
that L is an ending lamination of an end F' of HI^/^ooC^i (£))
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By [Ca], the end i?' Covers an end £ of Moo and the covering i?' -> £ is finite-
to-one. On the other hand, i?' is homeomorphic to S(L) x [0, oo) (this comes from
the fact that the ending lamination has to "tili up" the surface defining the end) and

if we consider the surface S(L) x {1} its image in i? under the covering i?' -> £
is homotopic to the inclusion S(L) ^ M. Therefore the covering i?' -> £ is a

homeomorphism. Thus we have proved that there is a geometrically infinite end i?

of Moo H^/Poo(/i(M)) such that i? is homeomorphic to S(L) x [0, oo), the
inclusion i? ^ Moo is homotopic to the inclusion S(L) ^ M and L is the ending
lamination of iL

4.2. Reconstructing the convex core. In this section we show how the results of
the preceding section allow us to describe the convex core of Moo-

Let Lbea component of Loo- By Lemma 4.2, Moo has a geometrically infinite
end homeomorphic to S(L) x [0, oo) with ending lamination L. Choose some p > 0

and consider the map /oo : S(L) -> S(L) x {/?}. Each cusp of S(L) is mapped under
/oo to a cusp of Moo- L^t Goo be the union of the surfaces S(L) when L runs through
all the components of Loo. We have thus constructed an embedding /oo • Goo Moo
which is homotopic to the inclusion map.

In Lemma 4.1, we defined a map /oo : Loo C^ which is a homeomorphism
onto its image and is homotopic to the inclusion map. Now we have a map /oo : Loo U

Goo Moo- The complementary regions of Loo U Goo in 3^<oM are annuli. By
Lemmas 4.1 and 4.2, the simple closed curve in the homotopy class defined by each

of these annuli corresponds to a (maximal) parabolic conjugacy class of Poo(/i ))•
Furthermore, since Too is doubly incompressible, to each such parabolic element of
PooOiOO) there corresponds exactly one component of 3M — (Loo U Goo). To
each such component (which is an annulus) corresponds two cusps of Loo U Goo

whose images under /oo are two homotopic non-compact annuli lying in a cusp of
Moo- Remove from /oo(^oo U Goo) these two non-compact annuli and connect the

boundary components so created by a compact annulus. Perform the same Operation
for all the components of3^<oM — (FooU Goo). We get a compact surface Soo C Moo-

Change /oo to get a homeomorphism goo: 3*<oM -> Soo (this only involves

making the correct choice of the Dehn twisting in 3^<oM — (Loo U Goo) so that

goo is homotopic to the inclusion 3^<oM ^ Moo). Adjoin to *Soo the boundary of
the rank 2 cusps of Moo and extend goo to 3M. Now we have a homeomorphism
goo : 9M -> iSoo which is homotopic to the identity. Since 3M bounds a compact 3-

manifold, so does goo (3M). We deduce easily from this that /oo (Loo U Goo) bounds a

subset Coo of Moo which has a finite volume (compare with [BoO], Lemme 21). Since

/oo(S(Loo)) bounds an union of geometrically infinite ends and since /oo(^oo) is an

union of convex pleated surfaces, the union of Coo and of the geometrically infinite
ends contains the convex core Cp^ of poo- If one component of 3Cp^ were to lie
in int (Coo), the corresponding geometrically finite end would lie inside Coo- This
would contradict the fact that Coo has finite volume (see [BoO], Lemme 21, for more
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details). It follows that the union of Coo and of the geometrically infinite ends of
is the convex core of poo-

Extend goo to a homotopy equivalence Zz from Af to the compact set bounded

by goo(3M). By [Wa], /z is homotopic to a homeomorphism. It follows that poo

uniformizes M.

4.3. Domain of discontinuity and strong convergence. Now that we know the

geometrically finite ends and the behavior of the zzz^, we can deduce from [Kl] that
the algebraically convergent sequence {p„} converges strongly. On the other hand,
as we have already proved the convergence of the convex cores, it is not hard now to
conclude directly that we have strong convergence. So we briefly describe here why
the sequence {p„} converges strongly.

The main tool is a result of [JoM] (see also [MaT]):

Theorem 4.3. {p„} C AH(M) Z?£ a segz/ezzce 6>/r£pr£S£zzto/Z9zzs Z/zzz^ cozzverg^
aZg^ZzrazcaZZy to p^. Assz/zzze ^Zzotf £2p^ ^ £zzzp/y. Tjf {£2p^} cozzverg^ to £2p^ zzz

^Zze sezzse ö/Cara^Zz^Zozy, ^Zzezz {p„} cozzverg^ s/rozzgZy to p^-

Recall that {£2p„} converges to £2p^ in the sense of Caratheodory if and only if
} satisfies the two following conditions:

- every compact subset K C £2p^ lies in £2p„ for all sufficiently large zz;

- every open set O that lies in £2p„ for infinitely many zz also lies in £2p^.

We show that the £2p„ and £2p^ satisfy these two conditions.

Lemma 4.4. Z/zzJ^r rfze Zzypo^Zz^^ o/ProposzY/ozz 3.1, a sz/Z?s£gz/£zzc£ o/{p^} cozz-

vergas s/rozzgZy to p^-

Proo/ When £2p^ is empty, {p„} converges strongly to poo by [Ca] (see [Kl]).
Assume now that £2p^ is not empty.

Consider the convex pleated surface /w : Cp„. Let II be a hyperbolic plane
that intersects /oo(^oo) in a non-degenerate subsurface. The ideal boundary of II in
C 3M^ is a circle which bounds a disc Z) C 3EI^ such that int(D) C ^p^-

Let K C f2p^ be a compact connected subset. Such a compact set is covered

by the interiors of finitely many discs Z); defined as above. Since {/„} converges to
/oo, each such disc Z); is the limit of a sequence {A>} where Z);^ C J2p„ is the
disc bounded by the ideal boundary of a support plane for /„ (,F„). It follows that for
zz sufficiently large, K is covered by the Z);^. In particular, we have K C £2p„ for zz

sufficiently large.
Now, we will prove, by contradiction, that every open set O that lies in £2p„ for

infinitely many zz also lies in £2p^. Let O be an open set lying in £2p„ for infinitely
many zz and let u; e O D Ap^. Since the fixed points of hyperbolic isometries are
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dense in and since {p„} converges to poo, there is a sequence of points
converging to u; such that G Ap„. For a sufficiently large, we have G O H Ap„,
contradicting our hypothesis that O C for infinitely many m

Finally, we have now proved that the ending map is proper, namely:

Proposition 4.5. Mfea compact, er/cntoAZc, AypcrAeZ/zaAZc 3-mam/eZcZ wzYA

mcemprcvs/AZc Aewm/ary. Lc£ {p^} C AH(Af) Ac a scgwcncc e/rcprcscntoAem?
wm/erm/zmg Af anc/ Zc£ (F^m^L^) Ac *Ae cm/ mvarAmto e/p^. Asswmc
^Actf {F„} cenvcrgcs m ^<A>(3M) to a c/ewA/y mcemprcvs/AZc ga/Z/maw/ry Too

(Foo, moo, Loo). FAcn a swAscgwcncc e/{p^} cenvcrgcs stoeng/y.

5. Necessary conditions

In this section we prove that the end invariants of a sequence {p„} converge to the
end invariants of the limit.

Proposition 5.1. Lc£ Af Ac a compact, er/cntoAZc, AypcrAeZ/zaAZc 3-mam/e/c/ wzYA

mcemprcvs/AZc Aewm/ary. Lc£ {p„} Ac a scgwcncc e/rcprcscntoAem? £Aa£ wm/erm/zc
Af. Asswmc ^Act p„ Zs gcemcto/ca/Zy /mto amZ mm/ma/Zy paraAeZ/c /er a/Z a ancZ

Zc£ r„ (3^<oM,m„,0) Ac /to cm/ mvar/anto. 7/*{p^} cenvcrgcs s/reng/y to a

rcprcscnto/Fm poo, Fzcn {F^ } cenvcrgcs m ^A(3M) to ^Ac cm/ mvarAmto Too q//oo-

Free/ First recall that we have seen in Lemma 2.1 that poo uniformizes M. Let
us also recall the topology of ^A(3M) as described in Section 2.8. Consider our
sequence of gallimaufries {T„ (3^<oM, m„, 0)}. Then {F„} converges to Too

(Fqo, moo, Loo) in ^A(3M) if we have the following:

i) for every a we have Foo C F„ and the restrictions of the m„ to Foo converge
to moo, namely for every closed curve c C Foo, we have Z!^ (c) -> (c),

iii) if a component L of Loo lies in infinitely many of the F„, then the restrictions
of the m„ to S(L) tend to L.

Notice that since the lie in int(^A(3M)) the definitions are simpler than in
the general case. In particular, part (ii) of the definition is trivially satisfied.

The first property can be deduced from the convergence of the limit sets.

Lemma 5.2. CemAc/cr ^Ac mec/crato swz/acc Foo <?/ Too cgmppcc/ wAA /to cemp/cto
AypcrAeZ/cmcto/cmoo- Fer cvcry c/escc/cwrvc c C Foo, wcAavcZ/^(c) -^4^(c).

Free/ Let F be the component of Foo containing c and let S be the component of
3M containing F. Since {p„} converges strongly, as proved in [KeT] and [Oh3],
the limit sets {Ap„} of the Kleinian groups Pw(tti(S)) converge to the limit set of
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Poo C^i (£)) in the Hausdorff topology. It follows that } converges to in the

sense of Caratheodory, and hence that the Poincare metrics on the converge to
the Poincare metric on By this, we mean that if we consider a point x e
and a sequence {x„} C converging to x (whose existence is guaranteed by the

convergence of the the Poincare metric on at x„ converges to the Poincare
metric on at x, see [He].

Consider a component O of covering F and an arc c that is a lift of c to O.
Let Go C tti(M) be the subgroup such that Poo(Go) is the stabilizer of O. If we
let x be one endpoint of c, then the other endpoint is the point Poo(g")(X), where

Poo(g) is the dement of Poo(Go) (up to conjugacy) corresponding to c. Let F be the
closure of the c-neighborhood of c in the Poincare metric on O, and note that F is a

compact subset of O. In particular, F C for all « sufficiently large. Since the
Poincare metrics on the converge to the Poincare metric on uniformly on

compact subsets, since p„ (g) (x) lies in F for n sufficiently large and since {p„ (g) (x)}
converges to Poo(g")(X), we see that (c) -> (c), as desired.

Next we prove that for a connected component L of L^o, up to extracting a sub-

sequence, the restrictions of the to S(L) tend to a measured geodesic lamination
supported by L. To prove this property, we use some of the ideas of the "lemme
d'intersection" [Bon], Proposition 3.4. Consider a component L of the immoder-
ate lamination of Too- By definition of the end invariants of poo, L is the ending
lamination of a geometrically infinite end of Moo- We want to show that, up to ex-

tracting a subsequence, the restrictions of the to S(L) tend to a measured geodesic
lamination supported by L.

Lemma 5.3. Consider o connected component L o/Loq. 77zen, np te> extencdng n

snfeegnence, dze reste/cdons o/dze te> S(L) tend te> n raeoswred geodes/c Znm/nn-

don .snpported fry L.

Before starting the proof of Lemma 5.3 recall that it finishes the proof of Propo-
sition 5.1. Putting Lemmas 5.2 and 5.3 together yields that given a strongly con-
vergent sequence {p„} of representations that uniformize Af with end invariants

r„ (3^<oM, 0), we have that {T„} converges in ^4>(9M) to the end invariants
of the limit poo This concludes the proof of Proposition 5.1.

Proo/o/Lemmn 5.3. Let be the connected component of 3M that contains L. Since

L is a minimal component of the immoderate part of Loo it is the ending lamination
of a geometrically infinite end of Moo. Then there is a sequence {c^} C S(L) of
simple closed curves such that {c^} converges in <7WdC(3M) to a projective measured

geodesic lamination supported by L, the geodesic representatives ^ of in
exit every compact subset of and oo)} ^ bounded. This follows directly
from Lemma 7.9 of [Mi2] but one can also write a simpler proof using a sequence of



842 J. W. Anderson and C. Lecuire CMH

pleated surfaces exiting the end faced by S(L) and Bonahon's Intersection Lemma
([Bon], Proposition 3.4).

Since {p„} converges strongly to poo, there are sequences 1 and -> oo,
a point Xoo £ M^, and a sequence of diffeomorphisms : 2?(xoo> C M^ ->
M„ M^/p„(7Ti(M)) such that V«(Aoo) and that is a ^„-bilipschitz
diffeomorphism onto its image. Choose £ such that for every A; either ^ is disjoint
from the e-thin part of M^ or ^ ^ is the core of an e-Margulis tube.

Consider a sequence {P„} of pants decompositions of S such that (T*„)} is

a bounded sequence. We show that, up to extracting a subsequence, {P„} converges
in the Hausdorff topology to a geodesic lamination containing L. Then we show that
this can happen only when the zzz„ degenerate transversely to L. First we control the
intersection numbers between and using the following lemma.

Lemma 5.4. CazzszV/er a segz/ezzce {<i„} C 5 q/Azzzzp/e c/ased cz/zres. TTzere zs

ö > 0 szzc/z ^/zotf/ar evezy A; swj0fc/ezzrf;y Zarge ^/zere zs A^ szzc/z £/za£ Z(e£,^w) 5
ß(^m„(^n) + 27r)/or« >

Proa/ The basis of this proof comes from [Bon], Proposition 3.4.

Let Koc C Cp^ C Moo H^/poo(7Ti(M)) a compact core for Moo- Since

{p„} converges strongly to poo, for zz sufficiently large (AToo) is a compact core for
M„ (see Lemma 2.1). By [KeT] or [Oh3], {Ap„ } converges to Ap^ in the Hausdorff
topology. By [Bow], the convex hulls {//p„} C converge to //p^ C in the

Hausdorff topology. It follows that we have ^wC^oo) C Cp„ for zz large enough.
We use the notation ^w(^oo)- Notice that the induced metrics on the 3AT„

converge to the induced metric on
Recall that is the geodesic representative of ^ in M„. Since ^ exits every

compact set, d(^ ^, AT^) > 3C& for some C& -> oo. Fix For zz sufficiently large,

^,00 #«) c Moo- Furthermore £p„ (f„(^ ^)) < 0£oo) where
is the bilipschitz constant of So ^(^„) < oo) ^ ^ sufficiently

large. Since the length of ^ is bounded, there are 21 and A^ such that for zz > A^,
we have 5 öl (note that <2i depends on the sequence {^} but not on
£). For zz sufficiently large, d(^(^^), AT„) > 2C^. Since is ^„-bilipschitz,

is a ^-quasi-geodesic. It follows that d(^ AT„) > C& for zz sufficiently
large.

In what follows, we view <i„ and as simple closed curves in S C 3AToo. Let

/„: S -> 3Cp„ be the map sending S c 3M to the corresponding part of the

boundary of the convex core of M„ M^/p„(7Ti(M)). Consider an annulus A^
joining (//„((/„) to /„(rf„) in Cp„ and an annulus joining t//„(e^) to in

int(Cp„). Since AT„ is a compact core for M„ and 3M is incompressible, M„ — AT„

is homeomorphic to 3M x R (see [MMS]). It follows that we can choose A^ and

A^„ so that they intersect AT„ only along and respectively. By
[Bon], Lemme 3.2, we have z'Ofc V„) < /(/„(c/,,). ^4<z„) where the
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first term is the geometric intersection number in S and the two others are geometric
intersection numbers in (as defined in [Bon], §111). Since int(Cp„), wecan
choose

^ so that it lies in int(Cp„). In particular ^
does not intersect 3Cp„. It

follows then that/(/«(//«), „) 0- Hence we only need to boundz^
Notice that i (e£^) is invariant by homotopy (of ^ ^ or as long as ^

does not intersect <M^ through the homotopy ([Bon], Lemma 3.1). We will now
modify ^4^ to make computation easier. For each we choose a point ^ e ^4^
such that {d(^, £„)} is a bounded sequence. We also choose points G ^w(^w)
and z„ e /„(<:/„). Start with the annulus ,4,/^ c Cp„ joining t//„(c/„) to ./„(</„)
that was used in the previous paragraph. Let us change by a homotopy so that
it contains ^ and a geodesic segment joining to z„. Lift this annulus to an

infinite band in the universal cover of M„. The annulus ^4^ is the quotient
of z4^ under a covering transformation p«(a«). The part of ^4^ between two lifts

and ^ p«(ß«)(^) of is a disc containing a lift of We change
Z)„ by a homotopy to the geodesic cone from to 3ZV Then we replace ^4^
by U/ez PwO^XAi) and ^4^ by the quotient of this new band. The new annulus

z4^ is the union of the set made up of geodesic segments joining to V
of the set made up of geodesic segments joining V to ^ and of the set of
geodesic segments joining /„ (<Z„) to ^. Notice that 3A^ has not been moved during
these homotopies, hence z'(e£ ^4^) has not changed. According to the previous
paragraph, we havez(e>fc, d„) < 4,/J.

By construction, for « sufficiently large, (X) > Gl and V„ *(£«) lies
in a compact set (independent of «). It follows that for /: sufficiently large, ^

does

not intersect iV Thus for /: sufficiently large, ^ only intersects U G„. Since

^ oo) oo as Z -> oo, we even have some £ > 0 such that for «

sufficiently large the intersections between and U G„ are at distance at least

£ from the two geodesic segments in U G„ joining ^ to Furthermore, since

converges to in the Hausdorff topology, we have d(e£ 3Cp„) > e, for
« large enough. Thus the intersections between

^
and Z^ U G„ are at distance at

least £ from 3(Z^ UG„).
By construction, Z^ is the union of two geodesic triangles. Thus we have

area(Z^) < 2tt. Since /«(<V is piecewise geodesic, G„ is a union of geodesic
triangles. It is well known that the area of a hyperbolic triangle is less than the length
of each of its edges, see [Thl], Lemma 9.3.2. Thus we have area(G„) < Z(/„(<Z„)).

From the proof of [Bon], Proposition 3.4, we get:

- If^(4,„) > then < 0j(e£„)area(F„ U G„), where 02 is the

volume of the ball with radius | in R x

- If Z(e^ < e, then we have z(e^, <Z„) < (V*area(Z^ U G„), where 03 is the

area of a hyperbolic disc with radius |.
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We have seen above the inequality

area(F„ U G„) < (/„(*/„)) + 27T.

It follows from a result of Sullivan (see [EpM]) that there is AT > 0 depending only on
Af such that £(/„(//„)) < AT!^(c/„). Consider 2 max{AT2i 22 and

notice that 2 depends on the choice of the sequence c^. For A sufficiently large and for
a sufficiently large (depending on A), we have Z(c^, c/„) < 2(^m„ (^w) + 2tt).

We can now show that every sequence of short pants decompositions, with respect
to the converges to L. More precisely, we have:

Claim 5.5. Lef {P«} Ac a scgacncc q/panto AccomposZAcms o/*S sz/cA A/a£ (P«)}
Zs a Acmm/cc/ scqacncc. ßtract a saAscgacncc sz/cA A/a£ {P«} converges Zn fAe

//acrsAorjfftopo/ogy to a geoc/esZc ZamZnaAon Pqo C S. PAen L Zs a swAZamZnaAcm o/
p* (X)'

Proo/ Since L is an irrational geodesic lamination, if Poo crosses L, then we have

Z(e&, P^) -> oo. By Lemma 5.4, {Z(e&, P«)} is bounded. It follows that either L is

disjoint from P^o or L is a sublamination of Poo- Since P„ is a pants decomposition
for every n, no geodesic lamination is disjoint from Poo- So we conclude that L is a

sublamination of Poo-

Now we can conclude the proof of Lemma 5.3. As we have seen, there is a

constant AT depending only on S such that for every complete hyperbolic metric m

on iS, there is a pants decomposition P$ with ^m(Ps) 5 ^ (see [Be2]). Consider
a sequence {P„} of pants decompositions such that {^m„(^w)} is bounded. Extract
a subsequence such that {P„} converges in the Hausdorff topology to a geodesic
lamination Poo. By Claim 5.5, L is a sublamination of Poo- Let c C S(L) be a

non-peripheral simple closed curve. Since c crosses L, we have Z(P„, c) -> oo. It
follows then from the Collar Lemma that (c) -> oo. In particular the restrictions
of the m„ to S(L) are unbounded. By Lemma 3.4, the restrictions of the m„ to S(L)
tend to L. This concludes the proof of Lemma 5.3 and of Proposition 5.1.

Using the Ending Lamination Classification and Propositions 4.5 and 5.1, we can

now prove Theorem D.

Theorem D. Le£ Mfeö compact, onentoAZe, AyperAoZZzaAZe 3-mam/oZcZ wtYA Zn-

comprcvsZA/c Aonm/ary. PAc cnc/Zpg map zAaf to a rcprc.scaP/Aoa cmz/ormZzZpg Af
assocZatos Zto em/ ZavarZaato Zs a AomeomorpAZsm/rom SH(M) Zato A/e se£ o/c/cmAZy

ZncompressZAZe gaZZZman/nes.

Proo/ By the Ending Lamination Classification, see [Mi2] and [BCM], the end-

ing map is injective. By Proposition 4.5, this map is proper. Combining Proposi-
tions 4.5 and 5.1, we get that a sequence {p„} C SH(M) with end invariants {T„
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(3^<oM, m„, 0)} converges strongly to poo withendinvariants I^o (F^o ,^00^00)
if and only if } converges to Too in ^4>(9M). In particular it follows that every
Poo £ SH(Af) can be approximated by geometrically finite minimally parabolic rep-
resentations in the strong topology, namely SH(M) is the closure of its interior. By
using such approximations we can drop the assumption in Proposition 5.1 that p„
is geometrically finite and minimally parabolic. It follows that the ending map is

continuous. Thus the ending map is injective, continuous and proper: it is a homeo-

morphism onto its image.

From this theorem and from Lemma 2.4, we deduce that SH(tti (Af)) is not locally
compact (Lemma 1.1).

Lemma 1.1. LcZ Af Z?c <2 compact, or/cntoFZc, ZzypcrZ?oZ/zaZ?Zc 3-mam/oZcZ wzYZz m-
comprcss/Z?Zc Z?cmmZary. FZzcn zZzc spacc SH(M) /s noZ ZocaZZy compact

6. Seif bumping and local Connectivity

By constructing appropriate paths in ^4>(9M) we study the local Connectivity of the
set of doubly incompressible gallimaufries. We note that by [Lei], the set of doubly
incompressible gallimaufries is an open subset of ^cA(3M).

A note about the notation in this section: The approximating gallimaufries all have

the same moderate surface, namely 3^<o (9M), and the same immoderate lamination,
namely the empty lamination. Therefore, we identify each approximating gallimaufry
with the metric on 3^<o (9M). In particular, we speak of sequences of metrics on the
moderate surface as converging to a limiting gallimaufry.

Proposition 6.1. LcZ Mfea compact, or/cntoFZc, ZzypcrZ?oZ/zaZ?Zc 3-mam/oZcZ wzYZz

mcomprcss/Z?Zc Z?oamZary. LcZ T (F, m, L) Z?c a cZoaZ?Zy mcomprcss/Z?Zc gaZZ/man/ry
amZ ZcZ {(3^<oM, m„, 0)} amZ {(3^<oM, 0)} Z?c Ovo scgncnccs m int(^>4>(3M))
ccmvcrgmg to T. FZzcn, ap to passmg to a snfescgncncc, zZzcrc /s an arc m zZzc

scZ int(^«A(3M)) jommg m„ to sncZz zZzaZ cvcry scgncncc 0/pomO {z„ G i:„}
converges to T.

Proo/ The main difficulty is that on F we need to have precise control on the behavior
of z,j, whereas on S(L) we need to control the large scale behavior of z„. To deal

with that issue, we use Fenchel-Nielsen coordinates to control the behavior of z„ on
F and the measured geodesic lamination Fp (z„) as defined in Section 2.7 to control
the large scale behavior of z„ on S(L).

We denote by G the surface obtained by adding to F every component of 3M —

F that is an essential annulus. For each n and Z we will define the metric /:«(/)
independently on G and on the closure // of 3^<oM — G.
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Choose £ > 0 and consider a pants decomposition P of 9M so that every compo-
nent of 9F is homotopic to a component of P and so that (c) > £ and (c) > £

for every n and every component c of P that is non-peripheral in P.
Let us first dehne the restriction of A«(Z) to //. In m„,0) and

(3^<oM, 0) we view // as a subsurface with geodesic boundary. Since {^} and

{m„} tend to T, we have (9#) -> 0 and (9//) -> 0. Then for n large enough,
there is associated to the restriction of respectively to // a measured geodesic
lamination Pp(m„), respectively Pp(s„) (see Section 2.7). Also, the restriction of

to // is uniquely dehned by Pp (/«„) and (c) |c is a component of 9//}.
Extract a subsequence such that {Pp (m„)} converges to a geodesic lamination P

in the Hausdorff topology. Since the restriction of to S(L) tends to L, then any
subsequence of Pp (m„) that converges projectively has a projective limit supported
by L. It follows that L is a sublamination of P. Consider a sequence {r„} of train
tracks carrying P so that {r^} is a basis of neighborhoods of P for the Hausdorff
topology. Namely every sequence of laminations {P„} such that P„ is minimally
carried by converges to P in the Hausdorff topology (for the existence of such train
tracks, see [Otl]). Notice that if P„ is minimally carried by then up to extracting
a subsequence {P«} converges to a sublamination of P. Since L is a sublamination
of P, we may choose the so that L is minimally carried by a sub-track of for
every n.

Since {Pp (m„)} converges to P, up to changing the indices, we may assume that
Pp (m„) is carried by r„. In particular Pp (m„) dehnes a weight System Pp (m„)(r„)
on ^. Let A be a measured geodesic lamination with support L, and note that Pp (m„)
also dehnes a weight System A (r„) on Let -> oo be a sequence of positive real
numbers. LorZ e [0, |], the weight system2(|—^)Pp(m„)(r„) + 2^PT„A(r„) dehnes

a measured geodesic lamination /x„ (Z) carried by such that /x„ (0) Pp (m„) and

Z^(|) P^A. Lor ^ is minimally carried by r„. It follows that we have:

Claim 6.2. Cons/der o segnence {Z„} E [0, PZzen zZze //onsdo/jff Z/ra/Z o/every
snZrsegnence o/{/x^(^)} zs e/zZzer P or L. 7n porZ/cnZor /Z conZoZns L.

Consider a simple closed curve c C G. The intersection number Z(c, /x^(Z)) is

given by the following formula:

Claim 6.3. For n Zorge enongZz, depeneZZng on c, we Zzove

/(c,/x„(0) 2(2 + 2f/6„z(c,A)

/or oZZ Z E [0,1].

Proo/ Since {r„} is a basis of neighborhoods of P for the Hausdorff topology, for n

large enough, depending on e, we can change and e by homotopies so that for every
measured geodesic lamination A carried by Z (e, A) is the sum of the weights of the
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branches of that c intersects transversely, counted with multiplicity. In particular,
for n large enough, we have Z(c,/x„(z)) 2(2 — Z)Z(c, + 2zF„Z(c, A).

Using a similar construction, replacing by ^ we get a path of measured

geodesic laminations /x„(z), £ g [2,1] with /x„(2) PT^A and /x„(l) Fp(^).
Hence, given a sequence {^} G [2,1]", the Hausdorff limit of every subsequence of

contains L.
We dehne the restriction of £„(2) to // for Z g [0,1] as follows: —

(1 — (c) + Zf!^ (c) for every component c of 3// and Fp(A«(Z)) 2*7* (0-
Next we dehne the restriction of A«(Z) to G. Consider the Fenchel-Nielsen

coordinates {(c, 0c) k a component of P} associated to P. Namely for a metric m,
c(m) g]0, oo[ is the m-length of c and 0^ £ is the twist angle along c (taking
the Convention that 0c(m') 0<~(^) + 2tt corresponds to a füll Dehn twist along
c). On G we dehne the restriction of A«(Z) as follows: each component c of 3G is

a closed geodesic with length ^cfc(O) (1 ~~ O^c(^w) + Z^k«); the Fenchel-
Nielsen coordinates of A«(Z) along each non-peripheral component c of P D G are

{(1 — + Zkk«), (1 + ZÖ^k«)}- This dehnes a metric with
geodesic boundary on G.

Notice that a component <2 of 3G is also a component of 3// and that the length
given to <2 by the restriction of A«(Z) to G is the same as the length given by the
restriction to //. We just need to dehne how we glue together the metrics dehned

on G and // to get a complete dehnition of A«(Z). For a component c of 3G, the
Fenchel-Nielsen coordinates of A«(Z) along c are {(1 — Z)kk?«) + Zkk«)> (1 —

"F Z0ckw)}*
Now a complete hyperbolic metric A«(Z) has been dehned on 3^<oM for every

n G N and all £ g [0,1]. It follows easily from the dehnition that, for a hxed n, (Z)

is a continuous path joining to The following two Claims will conclude the

proof of Proposition 6.1.

Claim 6.4. For every segnence {Z„ } C [0,1]^ zZze resZr/cZ/ons' o/zZze (Z„) Zo G Zen<2

to zZze corapZeZe ZzyperZ?e>Z/c raeZr/c m on F.

Proo/ Since {m^} and {^} both converge to m on F, for every component e of P
that is homotopic to a cusp of F, we have (e) -> 0 and (e) -> 0. Thus we
get 4„(f„)(0 + (1 - —>• 0. If c is a component ofPHG that
is not homotopic to a cusp of F, then {4K), 0c (^w)} and kck«)> 0c kw)} both

converge to {c(m), 0c(m)}. Hence

{k(Zw))> 0c(Z«))} {Zji^C(^W) H~ (1 — Z«)^ck«)? Z^0c(^zz) H~ (1 ~Zjj)0ckw)}

converges to {k (m), 0^ (m)}. It follows that the restrictions of the (Z) to G tend to
the complete hyperbolic metric m on F.
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Claim 6.5. Lc^Li Z?c a componcn^ o/L. 7Lcn/or cvcry scgwcncc {^} G [0,1]^,
rcs/Wc/Lms o/TZzc Zo S(L) ZcncZ Zo L.

Proo/ We will assume that we have {^} G [0, The proof is similar if we
assume {Z„} g [|, 1]^ and these two results are enough to conclude the proof of
Proposition 6.1. Consider a non-peripheral simple closed curve c C S(Li). Since
the restrictions of the m„ to *S(Li) tend to Li, we have i(3^>(m„),c) -> oo and

^ ^ave ^at AT„/(A,c) -> oo and ÄT„i(A,</) 0,

where a is as defined in the second paragraph before the Statement of Claim 6.4.

From Claim 6.3 and Theorem 2.2, we get -> oo and -> oo.

Hence, up to extracting a subsequence the restrictions of the (Z„) to S (L i) tend to a

projective measured geodesic lamination. By Claim 6.2, the support of this projective
lamination is Li. This concludes the proof of Claim 6.4.

By Claims 6.4 and 6.5, for every sequence {Z„} G [0,1]^, {/^(Z„)} converges
tor.

Using Theorem D and Proposition 6.1, we can now prove Theorems A and B.

Theorem A. LcZ Mfea compact, oncnZaZ?Zc, ZzypcrZ?oZ/zaZ?Zc 3-mam/oZcZ w/zA m-
comprcss/AZc AowmZary. LAcn zZzc spacc SH(tti(M)) L ZocaZZy co/mccZccZ.

Proo/ Consider a representation p G SH(tti(M)). By the tameness of p(jri(M)),
see [Bon], there is a compact manifold Af' such that p uniformizes Af'. By Lemma 2.1,

every sufficiently small neighborhood V C SH(tti(M)) of p lies in SH(Af'). Let
T G ^4>(9M') be the end invariants of p. By Theorem D, V is homeomorphic to
a neighborhood IT C ^eA(3M') of T. By Proposition 6.1, IT contains a connected

neighborhood TT' of T. Taking the preimage of TT' under the ending map, we get
a connected neighborhood V C V of p. Thus we have proved that SH(tti(M)) is

locally connected.

The proof of Theorem B follows the same lines.

Theorem B. LcZ Af Z?c a compact, oncnZaAZc, ZzypcrZ?oZ/zaZ?Zc 3-mam/oZcZ w/zA m-
comprcss/AZc Aowm/ary. LcZ p G SH(tti(M)) Ac a rcprcscnZaZ/on wm/orm/zmg Af.
LAcn cvcry nc/gAAorAoocZ o/p conZams a nc/gAAorAoocZ V C SH(tti (Af)) o/p swcA

zAaZ V D int(SH(7Ti(M))) L co/mccZccZ.

Proo/ Let Vi C SH(tti(M)) be a neighborhood of p. By Lemma 2.1, Vi contains
a neighborhood V2 C SH(M) of p. We denote by c the ending map as defined
in Theorem D. By Proposition 6.1, c(V2) contains a neighborhood IT C Im(c) of
c(p) such that IT D int(^>4>(3Af)) is connected. Taking V c~^(1T), we get a

neighborhood of p such that V D int(SH(7Ti (Af))) is connected.
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7. The action of Mod(M)

In this last section we study the action of Mod(M) on SH(M).

Theorem C. Mfea compact, oncntoZ?Zc, ZzypcrfeoZ/zafeZc 3-mam/oZcZ wzYZz m-
comprcss/Z?Zc Z?cmmZary. Axsamc ^Zza£ Af Zs nct an / -ZmmZZc ovcr a cZosccZ ^ar/acc.
TZzcn ^Zzc ac/Zcm o/Mod(M) an SH(M) Zs propcrZy cZZsccm/macms.

Proo/ Consider a sequence of representations {p„} C int(SH(M)) and a sequence
of diffeomorphisms {</>„ : Af -> M} such that {p^} and {p„ o converge respec-
tively to representations poo and p^ (up to conjugacy) in SH(M). We show that up
to extracting a subsequence, the </>„ are isotopic. It follows easily that the action of
Mod(M) on SH(M) is properly discontinuous. Since minimally parabolic geomet-
rically finite representations are dense in SH(M), we may assume that p„ is such a

representation without any loss of generality. As a first Step, the following claim is

useful to pick the correct representation in each conjugacy class.

Claim 7.1. {y«}, {a^} arni {Z^} Z?c scgacnccs o/cZcmcnfa o/ PSL(2, C). Assamc
^Zza£ ^Zzc scgncnccs {a^} ancZ {Z?^ } ccmvcrgc to ZzypcrfeoZ/c /samc/r/cs aoo ^oo ^acZz

^Zza£ aoo ßwcZ Z?oo nctf Zzavc a CY7mma/?/zxcc/ pc/at Assamc a/so £/za£ £/zc scgacnccs
{y«ß«y^~^} <^cZ {y«^«y^"^} ccmvcrgc. 77zcn, ap to cx/rac/Zng a safecgacncc, {y^}
ccmvcrgcs.

Proo/ Assume that no subsequence of {y„ } converges. We show that we end up with
a contradiction. For n sufficiently large, a„ and Z^ are hyperbolic isometries. Let A„
and be the axes of a„ and Z^ respectively, for n e N U {00}. By assumption {A„ },
respectively {£«}, converges to Aoo, respectively i?oo, in the Hausdorff topology on

U 9ooHI^. Consider a point xeil Since we have assumed that no subsequence
of {y„} converges, we have d(x, y~*(A)) Since aoo and Z?oo do not have a

common fixed point, we have max{d(y~* (x), A„), d(y~* (x), i^)} -> 00.

By assumption the sequence {d(x, y«tf«y„~* (X))} converges. On the other hand,

we have d(x, y«a„y~*(x)) d(y~^(x),a„y~^(x)) which converges if and only
if {d(y~*(x), A,j)} is a bounded sequence. Similarly we get that (d(y~*(x), £„)}
is a bounded sequence. Thus we get that max{d(y~^(x), A„), d(y~*(x), i^)} is

bounded, contradicting the preceding paragraph.

This claim allows us to get the expected conclusion under some extra assumptions
on the diffeomorphisms </>„.

Lemma 7.2. Lc£ Mfea compact, or/cntoZ?Zc, ZzypcrfeoZ/zafeZc 3-mam/oZcZ naYZz m-
comprcss/Z?Zc Z?oamZary. Lc£ ZV C 3M Z?c an Zncomprcxs/Z?Zc compact saZanam/oZcZ

sacZz £/za£ tti(ZV) Zs nctf AZ?cZ/an. Lc£ {</>„ : M ^ M} fe a scgacncc a/cZzjffcamar-

pZzAms sac/z ^Zza/, ap to Zzomotopy, ^ In A ^Zzc ZcZcn/Ay ancZ Zc£ {p^} C int(SH(M)) Z?c
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a Avswrae {p„ o </>„*} as wZZ. TTzen

^Zz^r^ Zs <2 rZZ^omorpZz/^m 0: Af -> Af swcZz ^Zz<2£ wp to otrac/mg <2 swZ?s£gw£nc£,

eacZz 0 o A Zsotop/c to z7*£ zVZ^/to/y.

Proo/ Let p„ : tti(M) —> PSL(2, C) be a representative of p„ G int(SH(M)) such

that {p„} converges to poo, namely we have actual convergence and not only just
up to conjugacy. Consider the sequence {p„ o </>„* : tti(M) -> PSL(2, C)}. By as-

sumption there isasequencejy^} C PSL(2,C) so that {y«(p« o0„*)y~i} converges.
Since tti (ZV) is not Abelian, the non-elementary Kleinian group poo C^i (ZV)) contains

two hyperbolic isometries Poo(gi) and Poo(g"2) with disjoint fixed point sets. By as-

sumption, we have p„ o 0„*fe) p„(p,) for /' 1,2. Thus taking p„(gi)
and Pw(g2)» we get from Claim 7.1 that, up to extracting a subsequence, {y„}
converges. Hence, up to extracting a subsequence {p„ o </>„*} converges.

Wehave p„ o0„^(7n(M)) p„(tti(M)), asfollows. Since {p„ converges
and since {p„} converges strongly, for every <2 g tti(M) there is & G tti(M) such

that {p„ o </>„*(<2)} converges to Poo(^). It follows from [Jor] that for tz sufficiently
large <^*(<2) Z>. Thus we have proven that for every closed curve <2 C Af there is

a closed curve & c Af such that <^(<2) is homotopic to & for tz sufficiently large.
Consider a pants decomposition P of 3^<oM. By the above paragraph, for «

sufficiently large, maps each component c of P to some given curve rZ C 3M that
is freely homotopic in Af to c. By [Joh] and [JaS], for a given curve c, there are only
finitely many such simple closed curves rZ up to isotopy on 3M. It follows that up to
extracting a subsequence there is «0 such that o maps P to itself up to isotopy.
Consider another pants decomposition P' C 3^<oZiT such that the components of
3^<oM — (P U PO are discs. Using the same arguments we find a diffeomorphism
0 and a subsequence of {</^} such that 0 o <^(P) is isotopic to P and 0 o 0«(PO
is isotopic to P' in 3M. It follows that the restrictions of the 0 o to 3^<oM are

isotopic to the identity. By [Joh], up to passing to a subsequence, 0 o is isotopic
to the identity for every tz. This concludes the proof of Lemma 7.2.

This is enough to conclude the proof of Theorem C in most cases that remain. Let
IL be a characteristic submanifold for M. Such a characteristic submanifold is an

union of 7-bundles and solid tori and its basic property is that every essential annulus
in Af is isotopic to an annulus lying in IL. The existence of such a characteristic
submanifold has been proved in [Joh] and [JaS]. If we assume that a component ZV

of M — IL has a non-Abelian fundamental group, then we can argue as follows. By
[Joh], up to extracting a subsequence there is a diffeomorphism 0: AP —> AP such

that, up to homotopy, each (0 o0„) is the identity. In particular, up to homotopy,
(0 ° 0«)|a is the identity. By assumption the sequences {p„} and {p„ 0(^0 0«)*}
converge in SH(ZIL). It follows from Lemma 7.2 that up to extracting a subsequence
and up to changing 0, the diffeomorphism 0 o is isotopic to the identity for every
n. Hence, up to extracting a subsequence, the diffeomorphisms are isotopic and

we are done.
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When every component of Af — VT has Abelian fundamental group, the closure
of Af — fT is an union of solid tori. In this case we will use Theorem D to find
an incompressible surface // C 3M satisfying the hypotheses of Lemma 7.2. Let
T„ (F„, L„) and T^ (F^, L^) be the ending gallimaufries of and

Pw — P« ° respectively. Since we have assumed that is minimally parabolic
and geometrically finite, we have F„ F^ 3^<qM and 0. Let
Too (^oo-'«oc. ^oo) and r^, (/^. w'oo- ^oo' be the ending gallimaufries of
Poo and p^, respectively. By Theorem D, {T„} converges to Too and {T^} converges
to T^. To each end of IH^/PooCuCAf)) corresponds a subsurface of 3M; we will
say that this subsurface/ac<?s an end of PooCu (Af)). Now we reduce the search

for // to the search for a curve c C 3M with some specific properties.

Claim 7.3. c C 3M Z?£ a sZrapZe cZ<9S£<Z cwrve swcZz ^Zzotf </>„ (c) Zs ZsotopZc to c

on 3M /or every to Avswrae ^Zzotf ^Ztore are saf/acres //De an<Z ZF D c swcZz £Zza£

///a<res an emZ a/HI^/poo(^i(Af)) an<Z Fza£ ZF/a<res an emZ ö/Et^/p^(7Ti(M)).
Avsnrae £Zza£ c Zs perZpZzeraZ Zn neZ^Zzer // nar ZF. FZzen ^Ztore exZs/ a JZ^eomorpZzZ^m

0: Af -> Af an<Z a sncZz Fza£ eacZz (0 o |# Zs ZsotopZc to Fto ZdenftTy.

Free/ First, we show that the ends faced by // and ZF are of the same type.

Claim 7.4. FZze sn//a<re ZF/a<res a geometoZcßZZy^nZto ene? z/and an/y z//Z
/a<res a geometoZcßZZy^nZto ernZ a/M^.

Free/ By Theorem D, //, respectively ZF, faces a geometrically finite end if and

only if {^m„(c)}> respectively {^m„ (0w(c))}, ^ bounded. By assumption, 0«(e) is

isotopic to e hence we have (0„(e)) (e). Thus ZF faces a geometrically
finite end of if and only if // faces a geometrically finite end of Moo-

Consider the case where // and ZF face geometrically finite ends of Moo and

respectively. By Theorem D, {m„ |#} and {m^ |#/} converge to complete hyperbolic
metrics on // and ZF respectively. Since (//) contains c, (//) intersects ZF. On
the other hand, (<^(3//)) -> 0. Thus, for n large enough, <^(3/Z) D ZF c 3ZF

up to isotopy. It follows that up to isotopy, for n large enough, </>„ (//) either is disjoint
from/F or contains ZF. Sincec C </>«(//) (up to isotopy) and c C ZF, ZF C <^(/Z).
Similarly, </>~*(3ZF) D ZZ C 3ZZ up to isotopy. It follows that ZZ C </>~*(ZF) for
n large enough. Thus we have proved that </>«(//) ZF, up to isotopy, for n large
enough. Up to extracting a subsequence and composing by a fixed diffeomorphism,
we may assume ZF // up to isotopy.

Given a curve </ C ZZ, there is F such that < F. We also have

f^(<^(</)) 5 AT. Since T^ converges to Too, ^ converges to m^. It
follows that for n large enough, we have (0« (</)) < 2F. There are only finitely
many m^-geodesics with length bounded by F. Hence there are only finitely many
possibilities for the isotopy class of </>«(</). Since this holds for any closed curve
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Je//, there are only finitely many possibilities for the isotopy class of the diffeo-
morphism </>„ |# : // -> //. This concludes the proof of Claim 7.3 when // faces a

geometrically finite end of Moo-
Assume now that // faces a geometrically infinite end of Moo with ending lamina-

tion L and that //' faces a geometrically infinite end of with ending lamination
//. Consider pants decompositions P and P' of 3^<oM such that (J) < £ for
every component J of P and (<P) < £ for every component <P of P'. Consider

En -> 0 such that, up to extracting a subsequence, £„Pp(m„) D // tends to a mea-
sured geodesic lamination A. Since T„ tend to r^, the support of A is the ending
lamination Loo H // of //, which in particular it fills //. By Claim 7.4, the restriction
of the to //' does not contain a convergent subsequence. Extract a subsequence
such that D //'} tends to a measured geodesic lamination A'. Since {F^}
converges to the support of A' is the support of the ending lamination D //'
of //', which fills //'.

If 3// is empty, then // is a component of 3M and the same holds for ZT. Since

c C </>«(//) and c C //' by assumption, we have //' </>„(//). Otherwise, for a

component J of 3//, we have £«Z^ (P?) 0- Hence £«Z^ (0„(J)) -> 0. Extract
a subsequence such that {<^(J)} converges in the Hausdorff topology to a geodesic
lamination Z). Since J is disjoint from £, Z) is disjoint from £. Since |A'| fills
ZT, if Z) were to intersect //' without being peripheral, then Z) would cross |A'|.
Since {£„Pp/(m^) D //'} tends to A' we would then have liminf £«Z^ (0„(J)) >

liminf £„/(Pp/(m^), 0„(J)) > 0. Thus we have proved <^(3/Z) D //' C 3//'upto
isotopy. Similarly we have </>"* (3//') D // C 3/Z up to isotopy and we may assume

//' </>«(//) up to isotopy, for the same reasons as in the geometrically finite case
above.

Let us extend £ to a pants decomposition C of P and consider a leaf J of
C. Extract a subsequence such that {</>„(</)} converges in the Hausdorff topol-
ogy to a geodesic lamination Z) C //. Since J is disjoint from £, Z) is dis-

joint from £ and hence crosses |A|. If Z) is not a simple closed curve, we have

oo. By Theorem 2.2, we have £«Z^ (0„(J)) —oo. This
would contradict £^Z^(<^(J)) £«Z^(J) -> i(J, A). Thus, up to extracting a

subsequence <^(J) does not depend on It follows that there is 0: Af -> Af such

that up to extracting a subsequence {0 o </>„} leaves C invariant, up to isotopy. For
each leaf J of C, we choose a transverse f, namely a simple closed curve that crosses
J and is disjoint from C — J. By the same argument, up to extracting a subsequence

(7) does not depend on E It follows that, up to changing 0, (0 o |# is isotopic
to the identity.

Now we can conclude the proof of Theorem C by finding a curve £ satisfying
the assumption of Claim 7.3. Let IE C Mbea characteristic submanifold. By
[Joh], up to extracting a subsequence, there is a diffeomorphism 0: Af -> Af such

that (0 o <^)|m-jv is isotopic to the identity. As we have seen after the proof of
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Lemma 7.2, if a component of Af — IL has a non-Abelian fundamental group, we are
done.

Assume that all components of Af — IL have Abelian fundamental groups. Then
all the components of the closure of Af — IL are solid tori and either Af is an /-bündle
or decomposes as the union of 7-bundles over compact surfaces with boundary, /-
bundles over tori and solid tori.

If a component 7\ of this decomposition is an /-bündle over a torus, 97i PI 9M is

the union of one torus and some (at least one) annuli and exchanges the components
of 7i f! 9M (up to isotopy). Hence there is a homeomorphism t/t : Af -> Af such that
t/t o maps each component of 7i D 9M to itself (up to isotopy and) up to extracting
a subsequence. Since and are doubly incompressible, every curve c lying
in such an annulus lies in the "middle" of an end. Namely for every representation

p G SH(Af), c lies in a surface // facing an end of Mp and c is not peripheral in //.
Since ^ o maps each component of 7i P 9M to itself, ^ ° 0w(c) is isotopic to c

on 9M. Hence c fulfills the hypothesis of Claim 7.3 (replacing </>„ with t/t o <^). This

provides us with an incompressible surface // C 9M with non-Abelian fundamental

group and a diffeomorphism 0: m -> Af such that (0 o </>„)|# is isotopic to the

identity.
If a component 7i of the decomposition of Af is a solid torus, 7i PI 9M is the

union of annuli. If those annuli are not primitive then we are in the same Situation

as before. Namely, every curve c lying in such an annulus lies in the "middle" of an
end. Hence we can conclude as in the preceding paragraph.

We are left with the case where Af is the union of 7-bundles over surfaces with
boundary and solid tori and where for each such solid torus 7,7P 9M is an union
of primitive annuli. By assumption Af is not an 7-bündle. This is possible only if at

least one component 7i of IL is a solid torus such that 7\ P 9M has at least three

components. Furthermore exchanges the components of 7\ P 9Af, hence there is

^ such that ^ o maps each component of 7i P 9M to itself. Since Too and T^ are

doubly incompressible, at most one simple closed curve <7 C 7i P 9Af, respectively
7' C 7i P 9Af, is peripheral in a surface G facing an end of Moo, respectively in a

surface G' facing an end of Since 7\ P 9M contains at least three non-isotopic
simple closed curves, we can chose a simple closed curve c / ü! with <^(c) 7^

and t/t o isotopic to <7 for infinitely many Thus c lies in a surface 77 facing
an end of c is not peripheral in_77, lies in a surface 77' facing an end of

and <^(c) is not peripheral in 77' and we can conclude as before.
The surface 77 produced in Claim 7.3 provides us with an incompressible manifold

A 77 satisfying the hypotheses ofLemma 7.2. From Lemma 7.2, we conclude that

up to extracting a subsequence, the diffeomorphisms are isotopic. This concludes
the proof of Theorem C.

When Af is a trivial 7-bündle over a closed surface S it is easy to see that The-

orem C does not hold. Consider a pseudo-Anosov diffeomorphism 0: aS —> aS with



854 J. W. Anderson and C. Lecuire CMH

stable lamination A+ and unstable lamination A~. Consider the diffeomorphism
0: Af -> Af whose projection along the fibers is 0. Consider the representation

p G 3SH(M) which is doubly degenerate and has ending laminations |A+| on one
side and |A~ | on the other side. Then p is a fixed point of the action of 0 on SH(M).
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