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A characterization of Inoue surfaces

Marco Brunella

Abstract. We give a characterization of Inoue surfaces in terms of automorphic pluriharmonic
functions on a cyclic covering. Together with results of Chiose and Torna, this completes the
Classification of compact complex surfaces of Kähler rank one.
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In this paper we shall solve a problem proposed in [C-T]:

Theorem 1. Lcf £ Z?c a compact connccfccZ compZcx snr/acc o/aZgcZ?raZc cZZmcnsZon
~ TT

0. Snpposc fZzaf fZzcrc exZsts an Zn/ZmYc cycZZc covcnng -> (nnYZz covcrZng /rans-
/ormafZons gcncrafccZ Zry </9 e Aut(*S)) ancZ a nonconsfanf posZ/rvc pZnnFarmonZc

/nnc/ron F on xncZz fZzaf

F o ^9 A • F

/or xomc pox/f/vc rcaZ A. FZzcn £ Zs a (poxxZZ?Zy Z?Zotvn np) /nonc xnr/acc.

The class of Inoue surfaces was discovered by Inoue (and independently Bombieri)
around 1972 [Ino], [Nak]. They are special (and explicit) compact quotients of HI x C,
and they enjoy the following properties:

- the first Betti number is 1, the second Betti number is 0;

- they admit holomorphic foliations;

- they do not contain compact complex curves.

Conversely, Inoue proved in [Ino] that any compact connected complex surface with
the above properties is an Inoue surface.

Our proof of Theorem 1 will be ultimately a reduction to Inoue's theorem. The

pluriharmonic function F naturally induces a holomorphic (and possibly Singular)
foliation F on S. By a "topological" study of such a foliation we will be able to un-
derstand some topological structure of and in particular to show that C2(*Smin) — 0

or Cj (Smin) 0 (where Smin denotes the minimal model of S). From this vanishing
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of Chern numbers, and results of Kodaira and Inoue, the conclusion will be imme-
diäte. Remark that, conversely and by construction, every Inoue surface satisfies the

hypotheses of Theorem 1, which therefore gives a precise characterization of Inoue
surfaces.

Together with the results of [C-T], Theorem 1 allows to complete the Classification
of compact surfaces ofKahler rank one. Recall [H-L], [C-T] that a compact connected

complex surface has FdFZcr ran£ one if it is not Kählerian but it admits a closed

semipositive (1, l)-form, not identically vanishing (this is not the original definition
of [H-L], but it is equivalent to it by the results of [C-T], see also [Lam] and [Tom]).

Corollary 2 ([C-T] and Theorem 1). FZzc onZy compact connected comp/ev snr/dees
o/KöZzZer ran£ one are

(1) non-KöZzZen'an cZZ/pdcTradens;

(2) certe/n //op/snr/aces, and dzc/r Zdcnv-nps;

(3) /none snr/aces, and dzc/r Zdcnv-nps.

In the case of an Inoue surface, a closed semipositive (1, l)-form is given by
(dF/F) A (d^F/F), with F as in Theorem 1. The closedness of that (1, l)-form is

a consequence of the pluriharmonicity of F, dd^F 0.

1. Geometrie preliminaries

Let iS be a surface as in Theorem 1. Without loss of generality, we may assume
that iS is minimal, since the hypotheses are clearly bimeromorphically invariant. The

assumption a(*S) 0 implies, by Enriques-Kodaira Classification [BPV], p. 188,

that iS is either a torus or a K3 surface or a surface of class VIIo, that is Zq (*S) 1

and £od(iS) —oo. However, the existence of a positive nonconstant pluriharmonic
funetion on some covering of *S, and therefore on its universal covering, excludes
the case of tori, by Liouville theorem, and the case of K3 surfaces, which are simply
connected. Thus S is of class VIIo. For the same reason (Liouville theorem), S

cannot be a Hopf surface, whose universal covering is \ (0,0).
We claim that, in order to prove Theorem 1, it is sufficient to prove that

C2(5) 0

or

cf (5) 0.

Indeed, we firstly observe that these two conditions are equivalent, by Noether formula
and x(0s) 0 (which follows from S e VIIo). Then, C2(*S) 0 and Za(*S) 1

imply Z?2(£) 0. By a classical result of Kodaira ([Nak], Theorem 2.4) S contains
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no compact complex curve, otherwise it would be a Hopf surface. Since also admits

a holomorphic foliation (see below), all the hypotheses of Inoue's theorem [Ino] are
satisfied and we get that is an Inoue surface.

The automorphic function F on S induces a real analytic map

/ logF: 5 — R/[Z • log(A)].

The regulär fibers of / are smooth (possibly disconnected) Levi-flat hypersurfaces
in S, because F is pluriharmonic. However, / could have also some Singular fibers,
corresponding to critical points of F. In fact, our aim is precisely to show that these

Singular fibers do not exist at all, since this is clearly equivalent to the vanishing of
the Euler characteristic C2OS).

The holomorphic 1-form 3F e £2*(S) descends to 5 to a holomorphic
section (still denoted by ca) of £2 * (S) <g)L, where L is a flat line bündle (the one defined

by the cocycle A E R+ C C* This twisted closed holomorphic 1-

form induces a holomorphic foliation F on S, which is tangent to the fibers of /.
In the following it will be important to distinguish between the singularities of

F, Sing(F), and the zeroes of Z(&>). The former are only isolated points, since

(as customary) we like to deal with "saturated" foliations. The latter, on the contrary,
may contain some compact complex curves. Remark also that Z(&>) coincides with
the set of critical points of /, Crit(/).

The foliation F has a normal bündle Afy and a tangent bündle 7y [Brl], which
are related to the canonical bündle of by the adjunction type relation

Afc ® 7y

Because F is generated by e £2*(S) (8) L, we have [Brl]

Afr L®0(-2>;C,-)
where {C/} are the curves contained in Z(F>) (if any) and {my} are the respective
vanishing Orders.

We shall prove below that Z(F>) is at most composed by isolated points, giving
by the previous formula the flatness of Afy F. Then we shall prove that either
C2OS) 0 or 7y is also flat. But in this second case we therefore get that F5 is flat
too, hence cj (*S) 0.

2. The structure of the smooth fibers

For every # e S\ let be the über of / over #, and denote by
7 1, ...,£, its connected components (with £ possibly depending on #). In this
section we consider the smooth components, that is the components around which /
has no critical point, and we prove that they have the expected structure.
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Proposition 2.1. j Z?£ a sraoctf/z connected coraponen^ o/n^Z?er A/#. 77zen ^/ze

Zenve^ o/J^ nre edZzer nZZ womorpZz/c te> C, or nZZ Z^omorpZz/c te> C *. /n ^Zze^r^

cn.sc, Af#j fs d/^eomorpZz/c te> T nnd | Af# y
fs n Z/nenr tetaZZy /rradonnZ/oZ/ndon.

/n dze ^econd cn^e, A n S^-Z?nndZe over T/ nnd
y ^ ^ pnZZ-Z?nc^ o/n

Z/nenr ZrrndonnZ/oZ/ndon on T/

The first case will lead to Inoue surface of type *Sm, and the second case to those

of type or [Ino],

Proo/ The foliation y
is defined by the elosed and nonsingular 1-form

/ d^F|Af#y (whieh is well defined on a neighbourhood of any fiber, up to a

multiplieative constant). We may use some classical results of Tischler [God], 1.4,

concerning the structure of (real) codimension one foliations defined by elosed 1-

forms. According to those results, the foliation can be smoothly perturbed to a fiber
bündle over the circle with fiber Hg, the (real) oriented compact surface of genus

g > 1. Note that, since n(S) 0, the leaves of cannot be all compact, and so they
are all dense in M#j [God], 1.4.3. Moreover, by using the flow of a smooth vector
field c on M#j such that /(c) 1, and the closedness of /, we see that the leaves

are all diffeomorphic to the same abelian covering of Hg [God], 1.4.2 and 1.4.6.

The above flow of c sends leaves to leaves, but of course it does not need to preserve
the complex structure of the leaves, that is it does not need to realize a conformal
diffeomorphism between the leaves. However, the compactness of implies, at

least, that such a diffeomorphism is quasi-conformal [Ahl]. More precisely, if
is the flow of c at time A then there exists a constant < 1 such that, for every
/? G the complex dilatation of d/j acting from 7/Jf to 70^) is bounded

by (the complex dilatation is the quotient between the antiholomorphic and the

holomorphic part of <i<^, and it is at each point less than 1 because is orientation
preserving between the leaves; the compactness of gives a uniform bound).
Thus, realizes a -quasi-conformal diffeomorphism between any leaf L and its

image leaf (L), and therefore a -quasi-conformal diffeomorphism between their
respective universal coverings.

In particular, since C and ED are nctf quasi-conformal, we obtain that all the leaves

of have the same (conformal) universal covering: either they are all parabolic,
uniformised by C, or all hyperbolic, uniformised by ED.

For our purposes, it is sufficient to prove that the leaves are parabolic: since they
are abelian coverings of Hg, this implies that g 1, i.e. M#j is a torus bündle over
the circle. The rest of the Statement is a Standard fact, see 1.4, IV.2.23 and IV.2.24 in
[God],

We can associate to a elosed positive current O g A*'*(sy, by integration
along the leaves against the transverse measure defined by / [Ghy]: if 77 G zP(S),
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we define

$(??) / ß A

Remark that this is indeed a (1, l)-current: if is of bidegree (2,0) or (0,2) then

identically vanishes when restricted to the leaves, hence the 3-form /3 A on
is identically zero. The hypersurface is cooriented, and hence oriented,

by its defining function F, and this gives also the positivity of O: if > 0 then

dF A?] > 0 too, and so the integral of A on a level set of F is

nonnegative. Finally, O is closed because /3 is closed.

Obviously this current does not Charge compact complex curves, since there are

no such curves at all in hence by a result of Lamari [Lam], [Tom], Remark 8,

it is an evact positive current. Actually, in our case the proof of such a fact is very
simple. The current O, supported on can be approximated by a current O'

supported on a nearby über component and the disjointness of Supports gives
[O] • [O'] 0, i.e. [<t>p 0 (here [•] denotes the De Rham cohomology class). Now,
on a class VIIo surface the intersection form is negative definite [BPV], p. 120, and

the vanishing of the selfintersection implies the vanishing of the cohomology class.

As a consequence of this, the De Rham cohomology class [O] (which is zero!)
has vanishing product with the Chern class of 7>:

Let us show that this implies the parabolicity of the leaves. This is a particularly
simple instance of the foliated Gauss-Bonnet theorem, see [Ghy]. In the opposite
case, we may put on the leaves of their Poincare metric g, which can be seen

as a hermitian metric on y It is a continuous metric [Ghy], §5.2, and it
can be regularized by a smooth hermitian metric on y

whose curvature along
the leaves is still strictly negative. For instance, this can be done with the help of
the flow of the above vector field v. Indeed, the leafwise riemannian metric 0* (g)
induces, by symmetrization, a leafwise hermitian metric 0*(g)^, and, for £ small,
the leafwise curvature of 0* (g)^ is strictly negative; a convolution of these leafwise
metrics produces the desired result. We then extend this smooth hermitian metric
on 7y Im#; to the füll 7>, on the füll *S, in any smooth way. The curvature form
0 G is negative on the leaves of and therefore

Remark 2.2. Let us stress a subtle detail of the previous proof. The current O can be
also considered as a current on the real threefold Af#j, or more precisely as the direct
image of a current Oo on under the inclusion map -> *S. This current Oo,

ci(7» • [<D] 0.

jß A 0 < 0.

This is in contradiction with the vanishing of ci (7V) • [<t>].
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however, is zzctf exact in (i.e., any current ^ on S with <Z*I> O cannot have

support contained in Thus, in order to get the vanishing of ci (7>) • [<t>], we
used also the fact that the tangent bündle extends to the füll *S, or more precisely
that its Chern class in ZZ^(M#j ^ jj) extends to *S, which is obvious in our case since

we have a global foliation on S. Now, one can imagine a more general Situation,
in which we have a Levi-flat hypersurface M in a class VIIo surface, such that the
Levi foliation is given by a closed 1-form (or, more generally, admits a transverse

measure invariant by holonomy). Is it still true that the leaves of this Levi foliation
are parabolic?

3. The structure of the singularities

In order to study Sing(F) and Z(&>), we need a general lemma on critical points.
Let 1/ be a smooth complex surface and let Z) c C/ be a compact connected

curve (with possibly several irreducible components). Suppose that the intersection
form on Z) is negative defmite, so that Z) is contractible to one point [BPV], p. 72.

After contraction, we get a normal surface 1/ and a point g e [/, image of Z); we do

not exclude that g is a smooth point. Let now ZZ be a holomorphic function on [/,
vanishing on Z), such that

Crit(Ä) Z>.

After contraction, we thus get a holomorphic function ZZ on 1/ with (at most) an

isolated critical point at g. If i? is a small ball centered at g, then ZZq ZZ~* (0) D i?

is a collection of Z discs ZZq ZZq passing through g, whereas ZZg Z7~* (e) D i?

(e small and not zero) is a connected curve with Z boundary components. The

topological type of ZZg does not depend on £ (small and not zero), it is the so-called
Milnor über of ZZ at g.

Lemma 3.1. t/mfer £/ze prev/oz/s nota/zon, swppose £/zotf £/ze gezzz/s o/Z/ze Mz'/zzor^zZer

o/ ZZ g zZ zero. TTzezz:

(1) g zZ a sra<96tf/z pozzz^ ö/C/;

(2) ZZ Zz<xs ß Morse /ype crzZz'coZ poz>z£ g.

Proo/ The hypothesis means that the Milnor über is a sphere with Z holes. By a

Standard construction (see the figure below), we may glue to IL U^^ZZ^ (r > 0

small) a collection of Z bidiscs in such a way that we obtain a normal complex surface

L and a proper holomorphic map

G: F —> B(r)

such that:
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(i) and G | ^
(ii) Gg G~* (e) is a smooth rational curve for every nonzero eeD(r);
(iii) Go G~* (0) is a collection of Z rational curves Gq Gq passing through

g, with Gq D //q for every y.

gluing

Remark that all the components Gq of Go have multiplicity 1, i.e. G vanishes

along Gq \ {^} at first order only. On the other hand, we may blow-up g to the original
Z), and we get a smooth complex surface F and a map

G : F — D(r)

whose über over 0 is Gq U U Gq U Z), with Gq the strict transform of Gq in F.
By construction, we have

mult (Gq') 1

for every y and

mult(C) > 2

for every irreducible component C of Z), since Crit(ZZ) Z).

Recall now [BPV], p. 142, that such a F can be also blow-down to the trivial
fibration D(r) x CP\ in such a way that the Singular über of G is sent to the

regulär über {0} x CPl In other words, that Singular über is obtained from a

regulär über by a sequence of monoidal transformations. It is then easy to see that
Z) necessarily contains a (—l)-curve: the reason is that a monoidal transformation
at a point belonging to an irreducible component of multiplicity m creates a new
irreducible component whose multiplicity will be not less than m. By iterating this

principle, we see that Z) contracts to a regulär point, whence the first part of the
lemma.
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Moreover, after this contraction the Singular über becomes a curve (the fiber Go

in the now smooth surface L) still dominating a regulär fiber, hence in particular it
has only normal crossings. Since all the components of Go pass through g, we get
Z 1 (Go is a Single smooth rational curve of selfintersection 0) or Z 2 (Go is

a pair of two smooth rational curves of selfintersection —1). In this second case, //
has at g a Morse type critical point. The first case cannot occur: // would be regulär
at g, but then at least one of the components of Z) (which contracts to g) would be of
multiplicity 1, i.e. would be not contained in Crit(//).

Remark 3.2. If ZZ: G —C, G cC^, has an isolated critical point whose Milnor
fiber has genus zero, then the critical point is of Morse type: it is a particular case

of the previous lemma, but it is also a consequence of classical formulae estimating
the genus of the Milnor fiber. However, some care is needed when is replaced
by a Singular surface. For instance, take the function zir on and quotient by
the involution (z, u;) i-> (—z, —u;). We get a normal surface G and a holomorphic
function ZZ on G with an isolated critical point whose Milnor fiber has genus zero.
This kind of examples (and more complicated ones) do not appear in Lemma 3.1

because, when we take the resolution G ^ G, the critical set of // is not the/hZZ

exceptional divisor Z).

We can now return to our compact complex surface *S.

Proposition 3.3. TZe zero Z(&>) zs coraposed onZy Zry ZsoZotedpo/nfa, oZZ o/Morse
/ype. Zn por^'cwZo^ ^Zze normoZ Z?wmZZe co/nc/des w/Z/z ^e^/Zotf ZZne Z?wmZZe L.

Proo/ Let Z) be a connected component of Z(&>). If it is a curve, then it is a tree of
rational curves with negative definite intersection form: this follows from results of
Nakamura on the possible configurations of curves on VIIo surfaces [Nak], and the
absence of elliptic curves and cycles of rational curves [Tom], [C-T]. In particular, Z)

is simply connected, and so the (twisted) closed 1-form cu is exact on a neighbourhood
G of Z): cu <ZZZ and Crit(ZZ) Z). We therefore are in the setting of Lemma 3.1,
and we have just to verify the genus zero hypothesis.

Now, Z) is contained in a Singular fiber which can be approximated by regulär
ones, on which we already know that the foliation has leaves C or C*. It follows
obviously that the Milnor fiber has genus zero, and so by Lemma 3.1 the contraction
of Z) produces a smooth point. But we are also assuming since the beginning that
is minimal, hence such a contraction cannot exist and so Z(ctf) is composed only by
isolated points.

By a similar argument, and again Lemma 3.1 (or its particular case explained in
Remark 3.2), all these points are of Morse type.
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4. The structure of the Singular flbers

The fact that / has only isolated critical points, all of Morse type, allows to describe
the structure of the foliation also on the Singular components of the fibers of /.
Basically, everything in this section is already contained in [Mil].

Let us firstly observe that, since / is the logarithm of a pluriharmonic function F,
all its critical points have index 2 [Mil], p. 39. Around such a point /? we may choose

holomorphic coordinates (z,u;) such that F(z,u;) Re(zu;) + c, c F(/?). It
follows that each connected component of any über M# is a real analytic subvariety of
iS of dimension 3, with isolated singularities, each one being topologically a cone over
T^. Moreover, when we cross a critical value the number of connected components
of the über does not change (even locally, around a critical point). It follows that

there exists a finite cyclic covering S" such that /' / o g: S" -> S* has

connected fibers.
Since the class of Inoue surfaces is invariant by finite coverings (by Inoue's results),

this means that, without loss of generality, we may suppose in the following that the
fibers of / are connected.

Let Cv(/) C S* be the set of critical values of /, and let / C S* be a connected

component of S* \ Cv(/). Set F# F|m#, and recall that, for every de/,
(M#, F#) is described by Proposition 2.1.

Lemma 4.1. TTze dzjfferendcFZe /ype o/(M#, F#) does no£ depend cn d e /.

Proo/ On / "* (/) we have a real codimension one foliation ^ given by the integrable
nonsingular 1-form d^F/F (or, locally, by the closed 1-form d^F). The foliation ^
is transverse to the fibers M#, de/, and its trace on M# is precisely the foliation
F#. Thus, the foliations F# are ZntegraZdy /zomotep/c, and it is a Standard fact [God],
1.3.8, to check that they are isotopically conjugate. Let us anyway recall the argument,
since it will be useful later in a slightly more general context. We can easily construct
a smooth vector field c on /"*(/) such that: (i) c is tangent to the leaves of
(ii) d/(c) 1. Then the flow of c sends fibers of / to fibers of /, by (ii), and it
conjugates the corresponding foliations, by (i).

Take now a Singular über M#, and set

\ Sing(M#), ^ ^|m° •

Call /i and F the intervals of S* \ Cv(/) adjacent to d (with /i F if / has

only one critical value) and take di e F, d2 £ /2- Set n equal to the cardinality of
Sing(Mtf).

Proposition 4.2. Fcr cvcry £ 1,2, dzcrc cv/ste n d/s/cnnt sraccdz cZcscd cnrvcs

yf > • • • > y« c
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ßZZ Zrmg^ftZ Z<9 ZZ^/öZ/ßZ/ön F#£, SWCÄ ZZzßZ/

(1) z/eacF yjy 7 1,...,«, w coZZaps^J Zo one po/nZ, we g£Z a ZopoZog/caZ space
Zzom^omorpZz/c Zo Af#, w/zZz a/oZ/aZ/on AomeomoTpA/c Zo F#;

(2) (Af^, F^) zs JZ^omorpZz/c Zo (Af^, F^) w/zA zZze c/rcZes yf,..., y^ removeJ.

Proo/ The idea is the same as in Lemma 4.1, but of course the singularities give
troubles.

On a neighbourhood of M# we still have a real codimension one foliation given
by the Kernel of <FF, but now it is Singular at Sing(M#) (and only there). Outside
those singularities, ^ is transverse to the fibers of /. Around a Singular point, we

may choose local holomorphic coordinates (z, u;) such that

F(z, u;) Re(zu;) + c,

so that ^ is given by the level sets of

G(z, u;) Im(zu;),

since <FF JG. Write z x + iy, u; s + iZ, so that F xs — yZ + c and
G xZ + ys. Let i>o be the (euclidean) gradient of F:

3 9 9 9

and note that JG(ro) 0, that is i>o is tangent to
This vector field has an hyperbolic behaviour: there is a stable manifold

{s —x, Z y}, corresponding to the eigenspace of i>o of eigenvalue —1, and an

unstable manifold W {s x,Z —y}, corresponding to the eigenspace of
eigenvalue +1. The trajectories of on JK** (resp. on JK") converge to the origin
0 when the time tends to +oo (resp. to — oo); all the other trajectories stay far from
0. Remark that F|^ has a maximum point at 0, whereas F|^ has a minimum
point. If £ > 0 (small), then F~* (c + e) is disjoint from and intersects JK" on a

closed curve y". Similarly, F~* (c — e) is disjoint from JK" and intersects along
a closed curve y£. Remark also that G is identically zero on U fLF so that the

curves y^ and y£ are tangent to F.
Consider now the normalized vector field u i>o/11 IP, which is smooth outside

the origin, and note that JF(u) 1 and JG(u) 0, so that the local flow of u

sends F-fibers to F-fibers by respecting the G-foliations on them. By the previous
analysis, for £ > 0 small the flow </>£ is well defined on F~* (c — e) \ y^, with values in
F~* (c) \ {0}, and it extends continuously to F~* (c — e) by sending y^ to 0. Similarly,

extends to a continuous map from F~*(c + e) to F~*(c) which collapses y^
to 0.

This local construction gives the desired result locally, on a neighbourhood of a

Singular point. By using a partition of unity, we can find a smooth vector field u
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on /~*(/i U ^2) U Af^, tangent to satisfying J/(v) 1, and such that on a

neighbourhood of any point in Sing(M#) it has the form described above. The flow
of this vector field gives then the global result.

Remark 4.3. The above proof furnishes also an explicit diffeomorphism from
M#i \ {)/j,..., y^} to \ {yj% y^}, which conjugates the foliations. It is

not difficult to see that this corresponds to a Dehn surgery from y^,..., y^) to

5. The planar case

Let us say that a smooth über M# is C if all the leaves of 3^ are isomorphic
to C, and C* if they are all isomorphic to C*.

Proposition 5.1. 7/TZ^re emfa <2 sra<96tfZ^Z?£r C, aZZ fAe/Ziers are sra<96tfZz

and C, and aS zs an /nane sn//a<re a//y/^ Sm

Proa/ Suppose, by contradiction, that there exists a Singular über M#, which can
be chosen so that (notation as in Proposition 4.2) is of type C. Hence, 3^ is

obtained from 3^ by collapsing some circles contained in some leaves. Since the
leaves of 3^ are simply connected, we see that at least one of these circles (call it y)
bounds on the corresponding leaf a disc Z) which does not contain any other circle.
When we collapse the circles, and in particular y to /? e Sing(M#), this disc becomes

a leaf L of 3^, simply connected and accumulating only to /?. The union

C L U {p}

is then a smooth rational curve in aS, invariant by 5^, and over which .P has only one

singularity, the point /?.

We can compute the selfintersection of C by using Camacho-Sad formula [Brl].
For a Morse type Singular point, the Camacho-Sad residue along a separatrix is — 1.

Hence we get

c - c -1.
But this is in contradiction with the minimality of aS.

Therefore, / has no critical point, and /: S -> S* is a smooth T-^-bündle, in
particular C2OS) 0. It follows from [Ino] that aS is an Inoue surface of type aSm-

Remark 5.2. It is worth observing that, in this quite special context, the proof of
Inoue's theorem can be highly simplified. Indeed, by the previous results, on the
universal covering aS of aS the foliation is given by a submersion tt : aS -> M (with
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Im(7r) Coming from the pluriharmonic function F on S) all of whose fibers are

isomorphic to C. The key point is to prove that such a universal covering is a product:

5 HxC.

Indeed, once we know this fact, it remains to study the action of T tti(aS) on

HxC. But we already know a lot of properties of such an action (for instance, T
is a semidirect product of Z and Z4 which acts on the H-factor in a special affine

way, etc.), and using that knowledge it is easy to conclude that S is an Inoue surface

of type aSm

In order to prove that £ is a product, it is sufficient to show that tt is a locally
trivial fibration, i.e. that every zgH has a neighbourhood 14 such that tt"* (14)
14 x C. By a classical theorem of Nishino [Nis], this is equivalent to show that
14 7T~*(t4) is Stein. By an argument of Ohsawa [Ohs], the Steinness of 14

follows from the existence of a smooth (not holomorphic!) foliation on 14 whose
leaves are holomorphic sections of tt over 14 (i.e., 14 is trivialisable by a smooth
foliation with holomorphic leaves).

Now, in our case such a foliation is easy to construct. On any fiber M# we can
take a real analytic foliation by real curves transverse to • By complexifying,
we get, on a neighbourhood of Af#, a real analytic foliation by complex curves,
transverse to F. Using the special form of 34 it is easy to see that this foliation,
lifted to aS, as the required property (here 14 is an horizontal strip in H).

6. The cylindrical case

We will now suppose that all the smooth fibers of / are of type C*.

Lemma 6.1. M# Z?£ a TTzen every Zeß/o/F^ zs ZsoraorpZz/c to C*.

Proo/ By the same argument of Proposition 5.1, we see that 34 is obtained from
34 ^ by collapsing circles in leaves which are not homotopic to zero. Since the leaves

of 341 are all isomorphic to C*, we deduce that every leaf of 3^° is, topologically,
a cylinder. More precisely, and using also the density of the leaves of 34 ^, we get
three possibilities for any leaf L of 3^°:

(i) L is a cylinder with both ends converging to Singular points /?i, /?2;

(ii) L is a cylinder with one end converging to a Singular point /? and the other end
dense in M#;

(iii) L is a cylinder with both ends dense in M#.

In the first case, we obviously have L ^ C*. More precisely, the union C
L U {/?i, /?2} is a smooth rational curve, and by using Camacho-Sad formula we get
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C • C —2. Remark that this case occurs only when two (or more) collapsed circles

belong to the same leaf.
In the second case, the end of L converging to p is obviously of parabolic type,

and we need to prove the same property also for the dense end. Take a relatively
compact annulus icL, not homotopic to zero. Since L has no holonomy, A can
be smoothly deformed in nearby leaves of 5^, where it remains not homotopic to
zero (this is an immediate consequence of the analogous property of 3^). Even if
this deformation is perhaps not conformal, it is at least quasi-conformal (compare
with the proof of Proposition 2.1). In particular, and since L accumulates to itself,
we get infinitely many disjoint annuli 4 C L, « G Z, all nonhomotopic to zero,
necessarily diverging toward the dense end of L. Moreover, these annuli are all
quasi-conformally equivalent, for some /: < 1 independent on n. Equivalently, the
moduli e (0,1) of ~ {z e C | /x„ < |z| < 1} stay in some compact subset

of (0,1). It follows from these properties that the dense end of L is of parabolic type
[Ahl], and hence L ~ C*.

The third case is completely analogous.

Example 6.2. Before continuing the proof, it may be useful to see an example showing
that Singular fibers of type C * cannot be excluded by some "local" argument, as it
was done in the planar case (local working in a neighbourhood of a Singular über).

Set 2? {z £ C | 1 < |z| < 3}, and let g: IE 2? be the fibration obtained by
pulling back the fibration zir: -> D under an embedding Z: 2? —D which sends

2 to 0. Thus, every über g~* (z), z 7^ 2, is a closed annulus, and the über g~* (2) is a

pair of closed discs intersecting at a Morse critical point. The boundary 3IE has two
connected components iVi and A^, both CR-isomorphic to5x§\ and the fibration
is holomorphically trivial (a product) around each component. We can glue together
Afi and A^ so that we obtain a complex surface E and an elliptic fibration g: E —>*2?,

with g~* (2) a rational nodal curve. ThefunctionF rog; E -> (l,3)(r(z) |z|)
is pluriharmonic, (z) is smoothly foliated by elliptic curves for £ 7^ 2, (2) is

singularly foliated by elliptic curves plus a rational nodal curve.
Now, we can modify the (trivial) gluing of A/i and A^ by inserting a rotation

Pa : -> 2? x §*, pa(z, tf) (<?2*z, s). The resulting surface E« has no more
a fibration over 2?, but still we have a pluriharmonic function F« : E« -> (1,3). If
of is irrational, the smooth fibers 2^~* (z), Z 7^ 2, are foliated by dense copies of C*,
and the Singular über 2^~* (2) is foliated by dense copies of C* plus a Singular point.

The previous lemma has the following important consequence.

Lemma 6.3. 77*e Z/ne fennd/e adm/Zs <2 conZ/nnons secZzon on S \ Sing(F) wA/cA
Zs nöwfere von/sA/ng.

Proo/ The complex curve C * admits a "almost canonical" holomorphic vector field:
the vector field z^, which can be almost uniquely characterized as a complete holo-
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morphic vector field whose flow is 27ri-periodic. There is however a minor ambigu-
ity, since also the vector field (conjugate to the previous one by the inversion

z^l/z, which exchanges the two ends) is complete and 27ri-periodic. This ambi-

guity can be removed when we take the Square: (z^)®^ (—z^)®^. This means

that, given any foliation 7 with leaves isomorphic to C *, we get a canomcaZ non-
vanishing section of TjP on S \ Sing(.7), by the previous recipe. The point to be

proved is that such a section is (at least) continuous.
This is equivalent to prove the following. Let 7 C be a local transversal to 7,

isomorphic to a disc, and let by be the corresponding holonomy tube [Br2], p. 734.
Remark that, as already observed in the course of the proof ofLemma 6.1, the foliation
.7 has no "vanishing cycles" in the sense of [Br2]. The holonomy tube by is then a

complex surface, homeomorphic to 7 x C *, equipped with a holomorphic submersion

<2r • by -> 7, all of whose fibers are isomorphic to C*, and a holomorphic section

g;r: 7 -> by. For every Z e 7 we have a unique isomorphism y from ßy*(0 to
C*, sending #r(Z) to 1 (really, there is again a Z2-ambiguity, which however can
be easily removed by prescribing an homotopy class). Therefore we get a canonical

trivialising map

w: by —> 7 x C*, (Z, y)

and the continuity of the above canonical section of 7®^ is clearly equivalent to the

continuity of w (for every transversal 7).
As shown in [Ghy], p. 78 (see also 1.2 in [Nis]), the continuity of w readily follows

from Koebe's Theorem. Let us recall the argument, for completeness.
Take a compact TT c ß (Zo) and an exhaustion of ß^ (Zo) by relatively compact

open subsets }„eN- By a Standard argument (e.g. Royden's Lemma), each can

beholomorphically deformedto thenearby fibers ß^(Z), Z e [/„ aneighbourhood
of Zo in 7. Thus, the maps y, Z e C/„, can be seen as all defined on the same domain
£2,j. By Koebe's Theorem, the distorsion of y on 7 C £2« is uniformly bounded by
a constant which tends to zero as « -> oo, since ß^* (Zo) is parabolic. We get in this

way that y uniformly converge to y^ as Z -> Zo, and since 7 was arbitrary we
get the continuity of w.

Remark that, a posteriori, the above map w will be even holomorphic, as well as

the canonical section of 7^.

Remark 6.4. The geometrical meaning of Lemma 6.3, or more precisely of its proof,
is the following: if we take in each leaf L ~ C* its canonical fibration by circles,
then we get in S \ Sing(7) a conZmwows fibration by circles. Due to the particular
structure of the fibers of /, provided by Propositions 2.1 and 4.2, one could try to
construct directly a fibration by circles on S \ Sing(7), tangent to 7, by using only
"topological" arguments. However, due to the possibly nontrivial monodromy of

/, in order to do so one should prove a fact which is not so trivial nor so evident,
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namely: the space of fibrations by circles on M#, tangent to 3^, is connected. Our
proof, which works with "canonical" objects, avoids this type of difficulty.

It is now easy to complete the proof of Theorem 1.

Proposition 6.5. Tjf ^Zzere emfa a xra<96tfZz 0/ /ype C *, ßZZ £Zz£ yzZ?£rx ßre
xra<96tfZz amZ ö/Zyp^ C*, ßnJ S Zx an Znowe ö//yp£ # r•* ^ p # r*

Proo/ By Lemma 6.3, the line bündle rjP is topologically trivial, i.e. it is flat:
indeed, the nonvanishing section on N \ Sing(J^) gives the topological triviality there,
and hence everywhere since Sing(J^) has (real) codimension 4. From Proposition 3.3
and Afy (8) 7> it follows that is flat too, and so (*S) 0. As explained
at the beginning, this is the same as ^(S) 0, the foliation is nonsingular, and *S is

an Inoue surface (of the claimed type).

As in the planar case, also in the cylindrical case we do not need the füll strength
of Inoue's theorem, since we can directly prove that a covering of is isomorphic to
H x C*.

Acknowledgements. I wish to thank the referee, who pushed me to expand some too
hermetic points of the first version of the paper.

References

[Ahl] L. Y. Ahlfors, on gnos/con/brraoZ raopp/ngs. Yan Nostrand Math. Stud. 10,

Toronto, Ont., 1966. Zbl 0138.06002 MR 0200442

[BPY] W. Barth, C. Peters, and A. Yan de Yen, Compact corapZox Ergeh. Math. Grenz-
geb. (3) 4, Springer, Berlin 1984. Zbl 0718.14023 MR 0749574

[Brl] M. Brunella, Foliations on complex projective surfaces. In Dynora/coZ systeras, Part

II, Pubbl. Cent. Ric. Mat. Ennio Giorgi Scuola Normale Superiore, Pisa 2003, 49-77.
Zbl 1070.32502 MR 2071237

[Br2] M. Brunella, Nonuniformisable foliations on compact complex surfaces. Mose. Afe/z.
/. 9 (2009), 729-748. Zbl 1194.32008 MR 2657280

[C-T] I. Chiose and M. Torna, On compact complex surfaces of Kähler rank one. Arno?: /.
Afe/i. 135 (2013), no. 3, 85-860. Zbl 06215454 MR 3068405

[Ghy] E. Ghys, Laminations par surfaces de Riemann. In Dynora/gno goorao/rzo comp/oxos,
Panor. Syntheses 8, Soc. Math. France, Paris 1999,49-95. Zbl 1018.37028 MR 1760843

[God] C. Godbillon, Fon/ZZotagos. F/Pdos goorao/rzgnos. Progr. Math. 98, Birkhäuser, Basel
1991. Zbl 0724.58002 MR 1120547

[H-L] R. Harvey and H. B. Lawson, An intrinsic characterization of Kähler manifolds. /nvonf.
Afe/z. 74 (1983), 169-198. Zbl 0553.32008 MR 0723213



874 M. Brunella CMH

[Ino] M. Inoue, On surfaces of class VIIo. /nvenf. Afe/z. 24 (1974), 269-310. Zbl 0283.32019
MR 0342734

[Lam] A. Lamari, Le cöne kählerien d'une surface. /. Afe/z. Rwres A/?/?/. 78 (1999), 249-263.
Zbl 0941.32007 MR 1687094

[Mil] J. Milnor, 7/1^0/7. Ann. of Math. Stud. 51, Princeton University Press, Princeton,
NJ, 1963. Zbl 0108.10401 MR 0163331

[Nak] I. Nakamura, Towards Classification of non-Kählerian complex surfaces. Swga&M 36

(1984), no. 2, 110-124; English tansl. Swga&M Expos/f/ons 2 (1989), no. 2, 209-229.
Zbl 0685.14020 MR 0780359

[Nis] T. Nishino, Nouvelles recherches sur les fonctions entieres de plusieurs variables com-
plexes. II. Fonctions entieres qui se reduisent ä Celles d'une variable. /. Afe/z. Äyoto
t/mv. 9 (1969), 221-274. Zbl 0192.43703 MR 0255842

[Ohs] T. Ohsawa, A note on the Variation of Riemann surfaces. Afagoya Afe/z. /. 142 (1996),
1-4. Zbl 1077.32502 MR 1399464

[Tom] M. Torna, On the Kähler rank of compact complex surfaces. Em//. Söc. Afe/z. Franca
136 (2008), 243-260. Zbl 1165.32010 MR 2415343

Received November 24, 2010

Marco Brunella, Institut de Mathematiques de Bourgogne - UMR 5584-9 Avenue Savary,
21078 Dijon, France


	A characterization of Inoue surfaces

