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On minimal spheres of area 4jt and rigidity

Laurent Mazet and Harold Rosenberg*

Abstract. Let Mbea complete Riemannian 3-manifold with sectional curvatures between 0

and 1. A minimal 2-sphere immersed in M has area at least 4tt If an embedded minimal sphere
has area 4tt, then M is isometric to the unit 3-sphere or to a quotient of the product of the unit
2-sphere with M, with the product metric. We also obtain a rigidity theorem for the existence
of hyperbolic cusps. Let M be a complete Riemannian 3-manifold with sectional curvatures
bounded above by — 1. Suppose there is a 2-torus T embedded in M with mean curvature one.
Then the mean convex component of M bounded by T is a hyperbolic cusp, i.e., it is isometric
to f xl with the constant curvature —1 metric: e~2t da^ + dt2 with^ a hat metric on T.

Mathematics Subject Classification (2010). 53C24, 53C42; 35J15, 35J20.

Keywords. Area of minimal sphere, rigidity of 3-manifolds, hyperbolic cusp.

1. Introduction

Consider a smooth (C°°) complete metric on the 2-sphere S whose curvature is

between 0 and 1. It is well known that a simple closed geodesic in S has length at

least 2TT (see [4] or Klingenberg's theorem in higher dimension [3], [2]). It is less

well known that when such an S has a simple closed geodesic of length exactly 2n,
then S is isometric to the unit 2-sphere S2. This result is proved in [1], and the authors
attribute the theorem to E. Calabi.

With this in mind, we consider what happens in a complete 3-manifold M with
sectional curvatures between 0 and 1 (henceforth we suppose this curvature condition
on M, unless stated otherwise).

Let £ be an embedded minimal 2-sphere in M. Then the Gauss-Bonnet theorem
and the Gauss equation teils us that the area of S is at least 4tt: indeed we have

with det(A) the determinant of the shape Operator which is non-positive. We prove
in Theorem 1, that when the area of £ equals 4tt, then M is isometric to the unit

47t f K?= det(A) + KTi] < f 1 A(E) (1)

*The authors were partially supported by the ANR-11-ISO 1-0002 grant.
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3-sphere S\ or to a quotient of the product of the unit 2-sphere with with
the product metric.

We remark that Theorem 1 does not hold for embedded minimal tori. Given s

greater than zero, there are Berger spheres with curvatures between 0 and 1, which
contain embedded minimal tori of area less than s. But a minimal sphere always has

area at least 4tt.
It would be interesting to know what happens in higher dimensions. In the unit

/i-sphere S", a compact minimal hyper-surface £ always has volume at least the
volume of the equatorial n — 1 sphere S"-1. Is there a rigidity theorem when one
allows metrics on Sw M) of sectional curvatures between 0 and 1? Two questions
arise. First, does an embedded minimal hyper-sphere £ in M have volume at least
the volume of Sf_1. If this is so, and if £ is an embedded minimal hyper-sphere with
volume exactly the volume of S"_1, is M isometric to Sj or to S"_1 x R?

In the same spirit as Theorem 1, we prove a rigidity theorem for hyperbolic cusps.
We recall that a 3-dimensional hyperbolic cusp is a manifold of the form f xl
with T a 2-torus and the hyperbolic metric e~2tda^ + dt2 with daq a Hat metric
on f. In Theorem 2, we prove that if M is a complete Riemannian manifold with
sectional curvatures bounded above by — 1 and T is a constant mean curvature-1 torus
embedded in M then the mean convex side of T in M is isometric to a hyperbolic
cusp.

2. Minimal spheres of area 4tt and rigidity of 3-manifolds

In this section, we prove a rigidity result for a Riemannian 3-manifold M whose
sectional curvatures are between 0 and 1. As explained in the introduction, any
minimal sphere in such a manifold has area at least 4tt.

We denote by Sj the sphere of dimension n with constant sectional curvature 1.

We then have the following result.

Theorem 1. Let M bea complete Riemannian 3-manifold whose sectional curvatures
satisfy 0 < K < 1. Assume that there exists an embedded minimal sphere £ in M
with area 4n. Then the manifold M is isometric either to the sphere Sj* or to a

quotient o/ §j x R.

Proof Let O be the map £xl^ Af, (p, t) i-> expp(tN(q)) where N is a unit
normal vector field along £. In the following we focus on £ x R+; by symmetry of
the configuration, the study is similar for £ x R_.

£ is compact, so there is an s such that O is an immersion and even an embedding
on £ x [0, e). Let us dehne

so sup{£ > 0 | O is an immersion on £ x [0 ,£)};
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sq can be equal to +oo. Using O, we pull back the Riemannian metric of M to
E x [0, £o). This metric can be written ds2 da2 + dt2 where da2 is a smooth

family of metrics on E. With this metric, O becomes a local isometry from E x [0, So)

to M and (E x [0, so),ds2) has sectional curvatures between 0 and 1. Moreover, E0
is minimal and has area 4tt. Actually, we will prove the following facts.

Claim. The metric daq has constant sectional curvature 1 so (E, da^ is isometric
to §2. Moreover, we have two cases:

(1) so 7t/2 and da2 sin2 tdaq, or

(2) Sq +oo and da2 da^.

Let us denote by E* E x the equidistant surfaces. We denote by H(p, t)
the mean curvature of E* at the point (p,t) with respect to the unit normal vector dt.
We also dehne X(p,t) > 0 such that H + X and H — X are the principal curvature
of E, at (p,t). We notice that X 0 if E* is umbilical at (p,t).

The surfaces T,t are spheres, so, using the Gauss equation, the Gauss-Bonnet
formula implies that

4n=f KS[=f (H + X)(H - X) + Kt f H2 - X2 + K,

where K^t is the intrinsic curvature of E* and Kt is the sectional curvature of the
ambient manifold of the tangent space to E*. Since Kt < 1, we obtain the following
inequality:

I X2 I H2 + Kt — An < j H2 + A(T,t) — An (2)

where A(E^) is the area of E*. In the following, we denote by F{t) the right-hand
side of this inequality.

Claim 1. F is vanishing on [0, So)-

Since E0 is minimal and has area 4tt, we have F(0) 0. We notice that this

implies that X(p, 0) 0, so E0 is umbilical and Kj^o — 1. Thus (E0,<icro) is

isometric to S2.

We have the usual formulae:

9 C 3H 1

-A(Zt) - 2H and — -(Ric(3,) + \At\2) (3)
dt Jxt ot 2

where At is the shape Operator of E* and Ric is the Ricci tensor of E x [0, so)- Since
the sectional curvatures of M x [0, sq) are non-negative, Ric is non-negative. So the
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second formula above implies that H is non-decreasing and thus H > 0 everywhere.
Let us now compute and estimate the derivative of F:

F'(t)J(2H^--2H3)-J

f H(Ric(dt) + \At\2 -2H2 -2)
JXt

[ 7/((Ric(3() — 2) + {(H + + (H —

JXt

f //((Ric(3?) — 2) + 2A2)
JUt

<2 [ HX2
Ja,

where the last inequality comes from Ric(3^) — 2 < 0 because of the hypothesis on the
sectional curvatures. Ifwechooses < £o, there is a constant C > 0 such that// < C
on I] x [0,s]. So for t e [0, e], using the inequality (2), we get F'{t) < 2CF{t).
Then F(t) < F(0)e2Ct 0 on [0,s]. So F < 0 on [0,£O) and, because of (2),
F 0 on [0, so); this finishes the proof of Claim 1.

The first consequence of Claim 1 is that all the equidistant surfaces Y<t are um-
bilical (see inequality (2)); so X 0. In the computation of the derivative of F, this

implies that

f H(Ric(3,) - 2) 0.
JVt

Since //(Ric(3^) — 2) < 0 everywhere, we obtain

//(Ric(9^) — 2) 0 everywhere. (4)

dH
Moreover the umbilicity and (3) imply that —— ^Ric(3^) + H2. We now prove

dt z
the following claim.

Claim 2. Let (p, ()gSx [0, Sq) (t > be such that H(p, t) > 0 then H{q, t) > 0

for any q E I]

In other words, when the mean curvature is positive at a point of an equidistant,
it is positive at any point of this equidistant. We recall that H is increasing in the t
variable, so when it becomes positive it stays positive.

So assume that H{p, t) > 0 and consider Q {q e I] | H{q, t) > 0} which is a

nonempty opensubsetof £. Letg e Q. Since H(q, t) > 0, Ric(9^)(g, t) 2by(4).
ThusRic(3t)(r,t) 2 for any r e Q. Soifr e Q, then, for s < t,Ric(dt)(r,s) > 0

for s close to t and, by (3), this implies that H(r, t) > 0 and r e Q. So Q is closed
and £2 This finishes the proof of Claim 2.
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Letusassumethatthereisansi > 0suchthatH(p,t) 0 for (/?,£) eSx [0,£i]
and H(p, t) > 0 for any (p, t) e £ x (fq, £o). Because of the evolution equation of
//, this implies that Ric(3^) 0 on I] x [0, s\]. On £ x (si, e0), wehaveRic(3^) 2

because of (4). So by continuity of Ric(3*), we get a contradiction and then we have

two possibilities:

(1) H 0 on £ x [0, eo) and Ric(3*) 0 on I] x [0, so)\

(2) H > 0 on £ x (0, eo) and Ric(3*) 2 on I] x [0, eo)-

In the first case, this implies that the sectional curvature of any 2-plane orthogonal
to £, is zero. Thus daf daf. Since the map O ceases to be an immersion only if
daf becomes Singular this implies that eo +oo. Thus £ x R+ with the induced
metric is isometric to S2 x R+ and O is a local isometry from S2 x R+ to M.

In the second case, the sectional curvature of any 2-plane orthogonal to T,t is equal
to 1. The sectional curvature of £* is also 1, since the inequality in (2) is an equality
by Claim 1. Thus daf sin2 tdao and eo ^/2. This also implies that <$>(/?, tt/2)
is a point. So £ x [0, tt/2] with the metric ds2 is isometric to a hemisphere of
and the map O is a local isometry from that hemisphere to M.

Döing the same study for £ x R_, we get in the first case a local isometry
O: S2 x R —M and in the second case a local isometry O: M. Since
S2 x R and are simply connected, O is then the universal cover of M and M is

then isometric to a quotient of S2 x R or Sj. Since O is injective on £ this implies
that in the second case, O is actually injective and then a global isometry.

Remark 1. In the proof, since O is injective on £, the possible quotients of S2 x R
are either S2 x R or its quotient by the subgroup generated by an isometry of the form
S2 x R —S2 x R, (p, t) i-^ (oi(p), t + to) with a an isometry of S2 and to ^ 0.

Remark 2. Something can be said about constant mean curvature H0 spheres in
a Riemannian 3-manifold with sectional curvatures between 0 and 1. Indeed, the

computation (1) implies that the area of £ is larger than 4jT2, which is the area of
1+Ho

a geodesic sphere in of mean curvature //0. Moreover, if £ has area t^2, the
above proof can be adapted to prove that the mean convex side of £ is isometric to
a spherical cap of § \ with constant mean curvature H0 (see Theorem 2 below, for a

similar result in the hyperbolic case).

Remark 3. Let M be a Riemannian «-manifold whose sectional curvatures are
between 0 and 1 and let £ be a minimal 2-sphere in M. A computation similar to (1)

proves also that the area of £ is larger than 4tt. It also implies that, if £ has area 4tt,
£ is totally geodesic and isometric to S2.
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3. Existence of hyperbolic cusps

Let (T2, g) be a flat 2 torus, the manifold T2xl+ with the complete Riemannian
metric e~2tg + dt2 is a hyperbolic 3-dimensional cusp. T2 x R is actually isometric
to the quotient of a horoball of H3 by a Z2 subgroup of isometries of H2 leaving the
horoball invariant. Any T2 x{t} has constant mean curvature 1. The following theo-

rem says that, in certain 3-manifolds, a constant mean curvature 1 torus is necessarily
the boundary of a hyperbolic cusp.

Theorem 2. Let M be a complete Riemannian 3-manifold with its sectional curva-
tures satisfying K < — 1. Assume that there exists a constant mean curvature 1 torus
T embedded in M. Then T separates M and its mean convex side is isometric to a

hyperbolic cusp.

As a consequence, the existence of this torus implies that M can not be compact.
The proof uses the same ideas as in Theorem 1

Proofi Let us consider the map O: T x R+ -> Af, (p, t) i-> expp(tN(p)) where N
is the unit normal vector field normal to T such that N is the mean curvature vector
of T. Let us dehne

Using O, we pull back the Riemannian metric of M to T x [0, £o); it can be written
ds2 dt2 + daf. We dehne Tt T x {t} the equidistant surfaces to T0. We
also denote by H(p, t) the mean curvature of the equidistant surfaces at (p, t) with
respect to dt. We hnally dehne X{p, t) such that H + X and H — X are the principal
curvatures of Tt at (p,t).

The surfaces Tt are tori so, by the Gauss equation and the Gauss-Bonnet formula,
we have

where Kt is the sectional curvature of the ambient manifold of the tangent space to
Tt. Since Kt < — 1, we obtain the inequality

We denote by F{t) the right-hand term of the above inequality. By hypothesis,
H(p, 0) 1 so E(0) 0 and F(t) > 0 for any t > 0. Let us compute the derivative
of F:

s0 sup{s > 0 | O is an immersion onfx

f H(Ric(dt)+ \At\2-2H2+ 2) f Ric(df) + 2) + 2A2)
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Since H(p, 0) 1, we can consider s e (0,£O) such that 0 < H < C on
T x [0, e]. Since Ric(3^) + 2 < 0 we get

Thus T7 (7) < F(0)e2Ct fort e [0, £]; thisimplies F{t) 0 on that segment. Wethen
obtain X 0 on T x [0, s\ (the equidistant surfaces are umbilical) and Ric(3^) —2

dH
since H > 0. Thus H satisfies the differential equation —— — 2 + 2H2. This

dt
gives that H 1 on T x [0, s\ since H 1 on T0. Thus we can let s tend to £o to
obtain that F(t) 0 on [0, £o) and Ric(3^) —2 and H 1 on T x [0, £o). Since
0 fTt H2 + Kt and Kt < — 1, it follows that Kt — — 1 for all t in the interval. We

then have proved that the sectional curvature of T x [0, £o) with the metric ds2 is equal
to — 1 for any 2-plane. Moreover, we get that daq is hat and that da2 e~2td(jQ.
This implies that O is actually an immersion on T x R+ (£0 +oo) and T x R+ is

isometric to a hyperbolic cusp. O is then a local isometry from this hyperbolic cusp
to M.

To finish the proof, let us prove that O is in fact injective. If this is not the case,
let S\ > 0 be the smallest s such that O is not injective on T x [0, £]. This implies
that there exist p and q in T such that either

• 0(/7,0) 0(g, £i), or

• 0(/7, £i) 0(g, £i) (with p ^ q in this case).

Let U and V be respective neighborhoods of (p, 0) (or (p, £i)) in T0 (or TS1) and

(<q, £i) in Tei such that O is injective on them. Since s\ is the smallest one, O(L) and

O(L) are two constant mean curvature 1 surfaces in M that are tangent at 0(g, £i).
Moreover, in the first case, O(L) is included in the mean convex side of O(L) so

by the maximum principle O(L) O(L). Thus O(T0) would be equal to <t>(Tei)

which is impossible since these two surfaces do not have the same area. In the second

case, 0(I/) is included in the mean convex side of O(L) and then O is not injective
on Ts for s near t9 s < t, which is a contradiction.
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