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Positively curved Riemannian metrics with logarithmic symmetry
rank bounds

Lee Kennard

Abstract. We prove an obstruction at the level of rational cohomology to the existence of
positively curved metrics with large symmetry rank. The symmetry rank bound is logarithmic
in the dimension of the manifold. As one application, we provide evidence for a generalized
conjecture of H. Hopf, which states that no Symmetrie Space of rank at least two admits a metric
with positive curvature. Other applications concern produet manifolds, connected sums, and
manifolds with nontrivial fundamental group.

Mathematics Subject Classification (2010). 53C20.
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A well-known conjecture of Hopf states that S2 x S2 admits no metric of positive
sectional curvature. More generally, one might ask whether any nontrivial produet
of compact manifolds admits a metric with positive sectional curvature.

Another way to generalize this conjecture is to observe that S2 x S2 is a compact,
rank two Symmetrie space. While the compact, one-connected rank one Symmetrie

spaces, i.e., Sn, PPW, CFn, HP", and CaP2, admit metrics with positive sectional

curvature, it is conjectured that no Symmetrie space of rank greater than one admits
such a metric (see, for example, Ziller [29]).

Since so little was known about these questions, K. Grove proposed a research

program in which attention is restricted to metrics with large symmetry. Beginning
with Hsiang and Kleiner [17] and continuing with Grove-Searle [14], Rong [22],
Fang and Rong [9], and Wilking [26], much has been achieved under the additional
assumption of symmetry (see also Wilking [27] and Grove [13] for surveys).

Our first result provides evidence for the generalized conjecture of Hopf under
the assumption of symmetry:

Theorem A. Suppose Mn has the rational cohomology ofa one-connected, compact
Symmetrie space N. If M admits a positively curved Riemannian metric with
symmetry rank at least 2 log2(ft) + 7, then N is a produet ofspheres times either a rank
one Symmetrie space or a rank p Grassmannian SO(p + q)/SO(p) x SO(q) with

pe{2,3}.
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Recall that the symmetry rank is defined as the rank of the isometry group. The

assumption that the symmetry rank is at least r is equivalent to the existence of an

effective, isometric Tr-action on M.
If we restrict to the case where N is an irreducible Symmetrie space, then product

manifolds are excluded and N has rank at most three. See Theorem 3.3 for a more
detailed Statement. For example, N cannot be S2 x S2 x Sn~4 or Sk x Sn~k with
1 < k < 16.

The obstruction (see Theorem C) we prove in order to obtain Theorem A is

at the level of rational cohomology in small degrees. Since taking products with
spheres does not affect cohomology in small degrees, and since the Grassmannians

SO(2 + q)/SO(2) x SO(g) and SO(3 + q)/SO(3) x SO(g) have the same rational
cohomology ring in small degrees as the complex and quaternionic projective Spaces,

respectively, our methods cannot exclude them.
The second main result is related to the Bott conjecture and a second conjecture of

Hopf. Recall that the Bott conjecture states that a nonnegatively curved manifold is

rationally elliptic, which, in particular, implies that the Euler characteristic is positive
if and only if the odd Betti numbers vanish (see Chapter 32 of Felix, Halperin, and
Thomas [10]). The conjecture of Hopf states that the Euler characteristic of an even-
dimensional, positively curved manifold is positive. Hence the conjectures together
would imply that even-dimensional, positively curved manifolds have vanishing odd
Betti numbers. The second part of the following theorem provides some evidence for
this Statement:

Theorem B. Let n > c > 2, and let Mn be a connected, closed, positively curved
Riemannian manifold with symmetry rank at least 21og2(ft) + § — 1. The following
hold:

• The Betti numbers (M) for 2i < c agree with those of Sn, CF1, or HP 4.

• Ifn 0 mod 4, then &2/ + 1 C^O 0 for 2i + 1 < c.

In order to explain our main topological result, which is the crucial Step in proving
Theorems A and B, we make the following definition:

Definition. For a closed, one-connected manifold M, we say that Q) is 4-

periodic up to degree c if there exists x e H4{M; Q) such that the map Hl (M; Q) —

Hl+4(M; Q) given by y i-^ xy is a surjection for 0 < i < c — 4 and an injection
for 0 < i < c — 4. If Q) is 4-periodic up to degree dim(M), we simply say
that Q) is 4-periodic.

In particular, if x 7^ 0 in the definition, then H4s(M; Q) Q for 0 < s < |.
However we abuse notation slightly by allowing x 0, hence we say that a rationally
(c — 1)-connected space has 4-periodic rational cohomology up to degree c.
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n.
Examples of «-manifolds with 4-periodic rational cohomology are Sn, CP^,

HP i, §2 x HP and S3 x HP^ ßy taking a product of one of these spaces
with any rationally (c — 1)-connected space, we obtain examples of spaces with
4-periodic rational cohomology up to degree c.

We can now State the main cohomological obstruction to the existence of positively
curved metrics with large symmetry rank.

Theorem C. Let n > c > 2. IfMn is a closed, one-connected Riemannian manifold
with positive sectional curvature and symmetry rank at least 2 log2(ft) + § — 1, then

H*(M; Q) is 4-periodic up to degree c.

We remark that, if c > the conclusion together with Poincare duality implies
that M has 4-periodic rational cohomology. On the other hand, c > | already implies
that M is homotopy equivalent to Sw, CP %, or HP * (see Theorem 2 in Wilking [26]).
Similarly, c > | and n > 6000 already implies that k) is 4-periodic for any
coefficient field k (see Theorem 5 in [26]). In our applications, we will think of c as

a fixed constant, which is small relative to n.
For example, taking c — 16 and restricting to the Situation where M has the rational

cohomology of a compact Symmetrie space, we obtain Theorem A by comparing
this obstruction with the Classification of Symmetrie spaces. See Section 3 for details.

Another, more immediate consequence of Theorem C follows by taking c 6

and concluding that the fourth Betti number of M is at most 1:

Corollary. No nontrivial connected sum with summands CPW and HP 2 admits a

positively curved metric with symmetry rank at least 21og2(4/i).

On the other hand, the manifolds CP" # CP", CP" # HP5, and HP5 # HP5
admit metrics, called Cheeger metrics, with nonnegative curvature (see Cheeger [6]).

A final corollary, which we prove in the discussion following Theorem 2.2, relates

to a conjecture of Chern. The conjecture is that, for a positively curved manifold,
every abelian subgroup of the fundamental group is cyclic. While this holds for
spherical space forms (see Wolf [28]) and even-dimensional manifolds by a classical
theorem of Synge, there are counterexamples in general (see Shankar [24], Bazaikin
[2], and Grove-Shankar [15]). However modified versions of the Chern conjecture
have been verified under the additional assumption that the symmetry rank is at least a

linear funetion of the dimension (see, for example, Wilking [26], Frank-Rong-Wang
[11], Wang [25], and Rong-Wang [23]).

Corollary. If M4n+l is a connected, closed manifold with positive curvature and

symmetry rank at least 21og2(4/i + 1), then Jti(M) acts freely and isometrically
on some positively curved rational homology (4k + 1 )-sphere. As a consequence,

7tf x 7t" where 7t' is cyclic with order a power of two and 7t" has odd
order.
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In the proofs of these results, we use many ideas from [26], [19], including
Wilking's connectedness theorem in [26] and the periodicity theorem in [19]. These
theorems place restrictions on the cohomology of a closed, positively curved manifold
in the presence of totally geodesic submanifolds of small codimension (see Section 1).

Since fixed-point sets of isometries are totally geodesic, these become powerful tools
in the presence of symmetry. The connection made in [26] to the theory of error-
correcting codes also plays a role. Here we will use the Griesmer bound, which is

well suited to the logarithmic symmetry rank bound with which we are working.
We actually obtain a stronger version of Theorem C, namely Theorem 2.2. It

states that, given the assumptions of Theorem C, there exists a c-connected inclusion
P c M of a compact submanifold P such that H*(P;Q) is 4-periodic. Moreover,
one can ensure that dim P dim M mod 4 and dim P > c + 4 > 6. The advantage
of this Statement is that one can apply Poincare duality to conclude the following
about P:

• the subring of H* (P; Q) made up of elements of even degree is isomorphic to

that of Sn, CP^, HPor S2 x HP^, and

• if dim M 0 mod 4, then P has vanishing odd-dimensional cohomology.

For i < c, the map Hl (M; Q) -> Hl (P; Q) induced by inclusion is an isomorphism,
so one can use these observations to conclude Theorem B.

This paper is organized as follows. In Section 1, we quote preliminary results
and prove a lemma using the Griesmer bound. In Section 2, we prove Theorems 2.2
and C. In Section 3, we study the topological obstructions imposed by Theorem C
and prove Theorem A.

Acknowledgements. This work is part of the author's Ph.D. thesis. The author would
like to thank his advisor, Wolfgang Ziller, for helpful comments and for suggesting
this line of work. The author would also like to thank Anand Dessai for useful
discussions and Daryl Cooper and Darren Long for directing me to [8]. The author
is partially supported by NSF grants DMS-1045292 and DMS-1404670.

1. Preliminaries and the Griesmer bound

An important result for this work is Wilking's connectedness theorem:

Theorem 1.1 (Connectedness Theorem, [26]). Suppose Mn is a closed Riemannian
manifold with positive sectional curvature.

(1) If Nn~k is a closed, embedded, totally geodesic submanifold ofM, then N
M is (n — 2k + \)-connected.

(2) If N" kl and kl are closed, embedded, totally geodesic submanifolds of
M with k\ < kiy then N\ D N2 N2 is (n — k\ — kf)-connected.
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Recall an inclusion N ^ M is called c-connected if tt; (M, N) 0 for all i < c.
It follows from the relative Hurewicz theorem that the induced map Hf(N ; Z) ->
Hi(M; Z) is an isomorphism for i < c and a surjection for i c. The following
is a topological consequence of highly connected inclusions of closed, orientable
manifolds:

Theorem 1.2 ([26]). Let Mn and Nn k be connected, closed, orientable manifolds.

If N M is (n — k — l)-connected with n — k — 21 >0, then there exists e G

Hk(M;Z) such that the maps Hl (Af; Z) -> Hl+k(M; Z) given by x ex are
surjective for l < i < n — k — l and injective for l < i < n — k — l.

In particular, in the case where / 0, the integral cohomology of M is ^-periodic
according to the following definition:

Definition 1.3. For a space Af, a coefficient ring R, and a positive integer c, we
say that R) is ^-periodic up to degree c if M is connected and there exists

x G Hk(M; R) such that the map Hl (M; R) Hl+k(M; R) given by y i-^ xy is

a surjection for 0 < i < c — k and an injection for 0 < i < c —k.
If, in addition, M is a c-dimensional, closed, R-orientable manifold, we say that

R) is ^-periodic.

In [19], the action of the Steenrod algebra was exploited to prove the following:

Theorem 1.4 (Periodicity Theorem, [19]). Let Mn be a closed, one-connected

Riemannian manifold with positive sectional curvature. Let N" kl and be

connected, closed, embedded, totally geodesic submanifolds that intersect transversely.

(1) If 2ki + 2k2 < n, the rational cohomology rings ofM, N\, N2, and N\ D N2

are A-periodic.

(2) If 2k\ + k2 < n and N2 is simply connected, the rational cohomology rings of
N2 and N\ D N2 are A-periodic.

Next we record two additional results concerning torus actions on positively
curved manifolds:

Theorem 1.5 (Berger, [3], [14]). Suppose T is a torus acting by isometries on a
closed, positively curved manifold Mn. Ifn is even, then the fixed-point set MT is

nonempty, and ifn is odd, then a codimension one subtorus has nonempty fixed-point
set.

Theorem 1.6 (Maximal symmetry rank, [14]). IfTr is a torus acting ejfectively by
isometries on a closed, positively curved manifold Mn, then r < Moreover,

ZI

ifequality holds and M is one-connected, M is diffeomorphic to Sn or CP 2.
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A corollary of Theorem 1.6 is the following, which we will use in the proof of
Theorem 2.2:

Corollary 1.7. Let Mn be closed, positively curved manifold with symmetry rank r
such that

r > 21og2(«) + | - 1

where 8{n) is 0 ifn is even and 1 ifn is odd. Ifn>c>2, then, infact, n > c + 8.

Proofof Corollary 1.7. The assumption n > c >2 implies r > 2. By Theorem 1.6,

we have n > 3. But now the bound on r implies r > 3, so Theorem 1.6 implies
n > 5. Repeating this argument twice more, we conclude n > 9, which implies

n + 1 c c + 8— > r > 21og2(9) + - -2 > —.
It follows that n > c + 8, as claimed.

Finally, we use the Griesmer bound from the theory of error-correcting codes

to prove the following proposition. The estimates are specilically catered to our
application. The proof indicates the general bounds required.

Lemma 1.8. Let n > c > 2. Assume T is a torus that acts effectively by isometries

on a positively curved manifold Mn withfixedpoint x. Let 8(n) 0 ifn is even and

8{n) 1 ifn is odd.

(1) //
dim T > 21og2 n + ^ — 1 — 8(n),

there exists an involution o E T such that the component Mf of the fixed-point
set ofa that contains x satisfies cod(Mf) 0 mod 4 and 0 < cod(Mf) <
n—c

2 *

(2) Let g be an involution as above such that Mf has minimal codimension. If

dim T > log2 n + ^ + 1 + log2(3) - 8(n),

there exists an involution x e T satisfying M* 2 cod(Mf) 0 mod 4,

cod(Mf H Ml) 0 mod 4, and 0 < cod(MXT) < ^=£.

By the connectedness theorem, the inclusions Mf ^ Af, Mf D Ml ^ MJ,
and Ml ^ M are c-connected. Since c > 2, this implies that all three submanifolds

are one-connected if M is. In particular, Mf D Ml M^f^ where (er, r) is the

subgroup generated by er and r.
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The only part in the proof where we use positive curvature is to conclude that

n > 10 in the first Statement by Corollary 1.7. Given this, the bound on dirnT
implies

dim T > log2
n — c + 1 c

+ —
2 2

+ 1.

Similarly, the bound in the second Statement together with a proof like that of Corollary

1.7 implies

dim T > log2
n — c + 1 c

+ —
2 2

+ 2.

We proceed to the proof. The first Step is to establish the following inequality:

Lemma 1.9. Ifn > c > 2 and r > |~§] + log2 |"n~2+1~\> then

-c + 1"n

L2J <
r—1

E
/'=()

,-i-1

ProofofLemma 1.9. We proceed by contradiction. Suppose the opposite inequality
holds. The bounds on n, c, and r imply that r > [§] + 1 and that TU > 1, hence

we may split the sum into two pieces and estimate as follows:

r-r§l-l
i E :

i =0

n — c + 1
r—1

+ E
i=r-r§l

Calculating the geometric sum and rearranging, we obtain

n — c + 1

> 2r l~2~l n — c + 1

+
"C"

2 V 2 2 -2- J

Observing that the integers n, c, and n — c + 1 cannot all be even, we conclude that
the term in parentheses is at least 1, hence taking logarithms yields a contradiction to
the assumed bound on r.

We proceed to the proof of Proposition 1.8.

Proof Set s dim T. Choose a basis of TXM such that the image of Z2 c T under
the isotropy representation T SO(TxM) liesinacopy of c Tm c SO(TXM)
where m [|J. Observe that we are identifying the 2 x 2 matrix blocks ±I2 with
±1 G Z2. Denote the map Z2 by i, and observe that i is injective since the
action of T is effective.

Consider the first Statement. The bound on s and the assumption n > c >2 imply
s > 2. Consider the map Z2 Z2 that sends o e Z2 to the Hamming weight of
l(g), reduced modulo 2. The Hamming weight of t(a) is the number of nontrivial
entries of t(a) e TL, hence the Hamming weight of t(a) is equal to half of the
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codimension of M%. Since the map Z2 -> Z2 is a homomorphism, we conclude that
there exists Z2_1 c Z2 such that every er £ Zs2~x has the property thaU(a) has even

Hamming weight, which is to say that cod(M^) 0 mod 4.

It therefore suffices to prove the existence of er £ Z2_1 \ {id} with cod(M^) <
Suppose that no such er exists. Then every er £ Z2_1 \ {id} has cod(M^) >

[rc~2+1] • Equivalently, the Hamming weight of the image of every er £ Z2_1 \ {id}
is at least \ \^~2+1]. We now apply the Griesmer bound from the theory of error-
correcting codes:

Theorem (Griesmer bound, [12]). IfZ2 -> Z2 is a homomorphism such that every
nontrivial element in the image has Hamming weight at least w, then

i =0

This bound implies

n

L2J

(s-l)-l

i E
i =0

i-i-1 n — c + 1

n — c + 1 ~c~
+ —

2 2

By the comments following the Statement of Proposition 1.8, we have

s — 1 > log2

hence we have a contradiction to Lemma 1.9, as desired.

We now prove the second Statement of Proposition 1.8. First, observe that the
lower bound on s implies s > 4. Let er £ Z2 be as in the Statement. By reordering
the basis of TXM, if necessary, we may assume that all of the nontrivial entries of
l{o) come before the trivial entries. Let w be the Hamming weight of i(cj)9 so that

l{o) £ Z2 takes the form

L(cr) (—1, —1 —1,1,1 1)

where w is the number of (— l)s.
We dehne three linear maps Z2 Z2. For the hrst, assign r £ Z2 to the

Hamming weight of t(r), reduced modulo 2. Equivalently, the hrst map assigns r
to the produet of the entries in t(r). For the second, assign r to the produet of the
last (m — w) entries of t(r). For the third map, assign r £ Z2 to the hrst component
ofi(r).

The intersection of the kernels of these three maps contains a Z2 3. Let r £ Z2 3.

By the dehnition of the hrst two maps, cod(M£) 0 mod 4 and cod(M% PI M^)
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0 mod 4. By the definition of the third map, M* 2 It therefore suffices to prove
that some r e Zs2~3 \ {id} has

Consider the composition
\ {id} has cod(Af*) < lL2£.

r2~ cZ* Z? zr
where the last map is the projection onto the last (m — 1) components. By our choice
of Z2~3, this composition is injective and the Hamming weights of the images of

zr3r G

cod (M£) >
in Z2 and Z2

1
are the same. Hence if every r e

n—c +1
Zs2

3 \ {id} has

2
then there exists a homomorphism Z2 —Z2 such that

the image of every nontrivial r G Zs2
3 has Hamming weight at least \

Applying the Griesmer bound, we conclude

n

L2J

(s-3)—1

E
/=()

2~/_1 n — c + 1

2

Now the bound on s implies that the i s — 3 term in the sum would be 1, hence we

may add one to both sides of this inequality to conclude

(s-2) —1

£ E
/'=()

1
— c + 1

As established after the Statement of Proposition 1.8, the bound on s implies

s — 2 > log2

so we have another contradiction to Lemma 1.9. This concludes the proof of Proposition

1.8.

n — c + 1 ~c~
+ —

2 2

2. Proof of Theorem C

In this section, we use the following notation:

Definition 2.1. For integers n, let 8(n) be 0 if n is even and 1 if n is odd, and for
n > c > 2, let

fc(n) 2 log 2n+ ^ - 1 ~S(n).

Given an isometric action of an r-torus on a closed, positively curved n-manifold
with r >2 log2 n +1 — 1, Theorem 1.5 implies that a subtorus of dimension r—8(n) >
fc (n) has a fixed point. Using this, one can conclude Theorem C from the following:
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Theorem 2.2. Let n > c > 2. Assume Mn is a closed, one-connected, positively
curved manifold, and assume a torus T acts effectively by isometries with dim T >
fc{n). For all x £ MT, there exists H c T such that Ff*(M^; Q) is 4-periodic
and the inclusion M^ ^ M is c-connected.

Moreover, H maybe chosento satisfy n mod 4, dim{M^) > c + 4,

andproperty thateveryfree group action —> M commuting with the action

ofT restricts to a it-action on

Here, and throughout this section, we use the notation MH to denote the fixed-

point set of H c T, and we write M^ for the component of MH containing x.
In the case where M is not simply connected, we consider the universal cover M

of M. The torus action on M induces an action by a torus T of the same dimension

on M. Moreover, the fundamental group n n \ (M) acts freely on M and its action

on M commutes with the action of T. Theorem 2.2 with c — 2 implies the existence

of a 2-connected inclusion TV M of a compact submanifold N such that tt acts

freely on N, N has 4-periodic rational cohomology, dim Af dimM mod 4, and

dim N > 6.

Adding the assumption that dim M 1 mod 4, we conclude that dim N > 9. By
4-periodicity and Poincare duality, it follows that N is a simply connected rational
homology sphere. This proves the first part of the corollary stated in the introduction.
The second Statement follows directly from Theorem D in Davis [8]. Indeed, one

only has to check that tt\ (M) acts by orientation-preserving isometries, which follows
from the classical theorem of Weinstein.

We note that, in the case where dim M 3 mod 4, the corresponding conclusion
is that tti (M) acts freely on a simply connected rational homology (4k + 3)-sphere
or a simply connected rational S3 x MFk. However this does not appear to be very
restrictive. It is known, for example, that every finite group acts freely on some
rational homology 3-sphere (see Cooper and Long [7]). Moreover by taking the

(k + l)-fold join of this action, one immediately obtains a free action of this group on
a simply connected rational homology (4k + 3)-sphere (see also Browder and Hsiang
[5] for an earlier proof of this latter fact). Hence this argument does not immediately
yield an analogous obstruction if dim M 3 mod 4.

We spend the rest of this section on the proof of Theorem 2.2. First observe that
the assumption in the theorem implies n > c + 8>10by Corollary 1.7, so the
theorem holds vacuously in dimensions less than 10. We may therefore proceed with
the induction step. For this purpose, we assume the following:

• c > 2,

• M is a closed, one-connected, positively curved n-manifold with n > c,

• T is a torus acting effectively by isometries on M with dim T > fc(n), and

• x is a fixed point in MT.
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To simplify the Statement we wish to prove, we make the following definition:

Definition 2.3. Let c, Af, T, and x be as above. Denote by C the set of M^ where

H c. T ranges over subgroups such that

• the inclusion M^ M is c-connected,

• dim(Mx//) n mod 4,

• dim(M^) > c + 4, and

• every free group action commuting with the action of T restricts
to a TT-action on

Observe that our goal is to prove the following:

Claim. There exists M^ e £? with 4-periodic rational cohomology.

Our first step is to draw a conclusion from our induction hypothesis. To State the

lemma, we require one more definition:

Definition 2.4. For a submanifold Af c M on which T acts, let ker(r|7v) ^ T
denote the kernet of the inducedT-action on Af. Also let dkAf dimker^l#), that
is, the dimension of the kernel of the induced T-action on N.

Since T is fixed, the quantity dk N is well defined. We now put our induction
hypothesis to use:

Lemma 2.5. Some M ^ e " has 4-periodic rational cohomology, or the following
holds: For all Q, N gC with Q c Af c M and dim Q < n,

(1) dim Q > n/2(äkQ)l2 and

(2) ifk < n/{3 • 2dkiV), then

dim Q >

k if 2 dkN — dkQ > —3,

2k if 2dkN — dkQ > —1,

3k if 2dkN — dkQ > 0.

Proof. Suppose for a moment that there exists Q " such that dim Q < n and

dim Q < n/2(dk ö)/2. Then T/ker(r|g) is a torus acting effectively on Q with
dimension

dim T - dk Q > fc(n) - 21og2(«) + 21og2(dim Q) fc(dim Q).

Since dim Q < n, the induction hypothesis implies the existence of a subgroup
H' c T/ker(r|g) suchthat



948 L. Kennard CMH

• Qx has 4-periodic rational cohomology,

• Qx Q is c-connected,

• dim (Qx dim Q mod 4,

• dim dim (Qdim) > c + 4, and

• every free group action that commutes with the action of T/ ker {T \ q
restricts to a it-action on

Letting H be the inverse image of Hf under the quotient map T -> T/ ker(r|g),
we conclude that Q^ Moreover, since Q G C, we have M^ G C. Hence

Mx G C and has 4-periodic rational cohomology.
We may assume therefore that no such Q exists. Letting Q and N be as in the

assumption of the lemma, we immediately obtain the estimate dim Q > «/2(dkß)/2.
The second estimate on dim Q follows directly from the first together with the estimate

on k.

Since our goal is to prove that some M^ G C has 4-periodic rational cohomology,
we assume from now on the second Statement of Lemma 2.5.

Next we begin the study of fixed-point sets of involutions. Using Proposition 1.8

and the periodicity theorem, we prove the following:

Lemma 2.6. Some M^ G C has 4-periodic rational cohomology, or there exists an
involution er G T such that M° G C and

(n—
c n\

—2—' 3/

Proofi Recall that x e M has been fixed. Also recall that dim T > fc{n). By the
first part of Proposition 1.8, there exists an involution er G T satisfying cod(M^)
0 mod 4 and 0 < cod(M^) < ä^£.

By choosing er among all such involutions so that cod(M^) is minimal, we ensure
that dk(M^) < 2. Indeed, if dk(M^) > 3, then a Z| would fix M° and we could
choosecr' G Z|\(a) withcod(M^) 0 mod 4. Because the action ofT iseffective,
we would have 0 < cod (M% < cod(M^), a contradiction to the minimality of
cod(M^).

Suppose for a moment that dk(M%) 2. There exists a 7L\ in T that fixes M^, so

we can choose o' G Z| \ (er). It follows that M° c c M with both inclusions
strict. Since er' and er are involutions in T, M° is the transverse intersection of M^
and M°°f. Moreover, Lemma 2.5 implies cod(M^) < n/2 since dk(M^) 2,
hence

2cod(M*') + 2 cod(M') 2cod(M^) < n.

The periodicity theorem implies that Q) is 4-periodic. Since M G

C, the proof is complete in this case.
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Finally, suppose that dk(Mf) < 1. By Lemma 2.5,

cod«) < (» - ^) < 5-

hence we just need to show that Mf e *C.

First, the bound on cod(M^) and the connectedness theorem imply that Mf ^
M is c-connected. Second, our choice of er implies dim(M^) n mod 4. Third,
the bounds cod(M^) < and n > c + 8, the latter Coming from Corollary 1.7,

imply that dim(Mf) > > c + 4. Finally, the assumption that c >2 implies that

dim(Mf) > §. By the connectedness theorem, Mf is the unique component of MG
with dimension at least n/2, which implies that every jr-action on M that commutes
with T preserves MG and hence restricts to a jr-action on MG. These conclusions

imply MG gC.

Since our goal is to prove that some Mf e * has 4-periodic rational cohomology,
we may assume the existence of an involution er e T as in this lemma. Inotherwords,
we may assume that the pair (M, er) satisfies Property (*) according to the following
definition:

Definition 2.7. We say that (N, a) satisfies Property (*) if N e *£ and er is an

involution in T/ ker(r|7v) such that NG e * and

Here and throughout the rest of the proof, codr Q cod Q — cod R denotes the
codimension of Q c R. As established before the definition, there exists at least

one pair satisfying Property (*). We focus our attention on a particular minimal pair.
Specifically, among pairs (N,a) satisfying Property (*) with minimal dimAf, we
choose one with minimal cod^r (N£).

With N fixed, we will denote by T the quotient of T by the kernel ker(r|7v) of
the induced T-action on N. Observe that T acts effectively on N and has dimension
dim T — dkN. Moreover, we wish to emphasize that the involution er lies in T.

The strategy for the rest of the proof is to choose a second involution in T in
a certain minimal way, analyze the consequences of our minimal choices to prove
Lemma 2.9 below, then to conclude the proof of Theorem 2.2.

To begin, we prove the following:

Lemma 2.8. There exists an involution x E T such that codjsi(N^) 0 mod 4,

codjv(A/iCT'T>) 0 mod 4, and

dim N — c
0 < codjv(Vt) <

2

Moreover, for any such x,
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• A7 G C, and

• N°T G C and G C z/A^7 D A7 A na£ transverse.

Proofi The existence of such a r follows from Proposition 1.8 once we establish that

dimT > log2(dim A) + ^ + 1 + log2(3) — <5 (dim A).

Moreover, we see that this is the case by combining the following facts:

• dim T dim T — dk A by definition of dk A,
• dimT > fc(n) by assumption,

• 4 < cod#(A^) < «/(3 • 2dkj/v) because (A, er) satisfies Property (*), and

• <5(dim A) S(n) because dim A n mod 4.

For the second claim, let r be any involution satisfying these properties. First
let H c T be such that A If p: T T is the projection map, then

A7 MxH,p where (H, is the subgroup of T generated by H and

p~l(x). Similarly, N%x m{xH'p~1{ox)) and m{xH'p~1{{o'x))).

Second, the inclusions N° D A7 A7 A are c-connected by the connect-
edness theorem together with the upper bounds on co&n{N°) and cod^vCA^7). In

particular, N° D A7 is connected since c > 2, so we have N^,x^ N° D A7. Also

by the connectedness theorem, the inclusion Nx°^ N%x is (c + l)-connected.
Since N e C, this proves that the inclusions of A7, A^7, and N^,x^ into M are
c-connected.

Third, the dimensions of A7, A^77, and Nx°^ are congruent to n modulo 4 since

dim A n mod 4, cod^A^7) 0 mod 4,cod#(A7) 0 mod 4, cod^A^'^)
0 mod 4, and

codjvCA^77) cod^vCA^) + cod^CA7) 0 mod 4.

Fourth, the previous paragraph together with the minimality of cod^r (A7) implies

dim(A7) > 4 + dim(Ai<J'r^), hence

dim(A7) > 4 + (dimA -codTv(A^) -cod^vCA7)) > c + 4.

If Nx D A7 is not transverse, then the codimension a of c N°T is positive.
By the previous paragraph, a 0 mod 4 and hence a > 4. Hence

dim(A^7) > dim(Aja'7)) dim A - codN(N%) - codN(Nx) + a > c + 4.

Finally, let tt x M M be a free group action commuting with the T-action

on M. We wish to show that the jr-action restricts to jr-actions on A7, N^'x\ and

N°T- This follows from the following observations:
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• By assumption, TV e C, so the jr-action restricts to a jr-action on N.

• By assumption, the dimensions of Nf and Nf in N are at least \ dim N, hence
the connectedness theorem implies that Nf and Nf are the unique such com-
ponents of Na and NT, respectively. It follows that the jr-action preserves Nf
and Nx.

• Since tt preserves Nf and Nf, it also preserves Nf PI Nf
• Since tt preserves N^,x\ the fact that Nx°^ ^ NfT implies that tt also

preserves N£T.

This concludes the proof that Nf e * and that N£T, Nx^ e * if Nf n Nf is not
transverse.

We now choose r e T such that

codn(Nx) codN(Njf,T^) 0 mod 4

and
dim N — c

0 < cod;v(Vc) <
2

and such that cod#(A(£) is minimal among all such choices.

Having chosen r, we use the minimality of dim TV and cod#(A(£) to obtain the

following:

Lemma 2.9. Both of the following hold:

(1) dk(A^T) — dk N > 2 or the intersection Nf D Nf is transverse in N.

(2) dk(A^) — dk N < 3 with equality only ifNf D Nf is not transverse in N.

Proof We prove the first Statement by contradiction. We assume therefore that

dk(NfT) < 1+dk N and that N%C\Nfis not transverse. The first assumption implies
that T/ ker(r|#o-r) T/ ker(r|#o-r) has dimension at least dim T — dk TV — 1. Let
ö denote the image of er under the projection T -> T/ ker(r|#o-r), and observe that

(NfT)°x The second assumption implies that the inclusion Afj*7'^ c NfT
has positive codimension. Moreover, this codimension is at most \ cod# (AP7) by the

minimality of cod#(AP). Putting thesefacts together, we see that (AP77, ä) satisfies

Property (*). Since dim(NfT) < dim N, this is a contradiction to the minimality of
dim AP

Proceeding to the second Statement, suppose for a moment that dk(AP) > 4 +
dk AP Then there exists a 4-torus inside T that fixes AP. It follows that we may
choose a nontrivial involution t ^ x inside this 4-torus such that

cod#(AP) cod#(A^j<7'^) 0 mod 4.
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Because the action of T is effective, i $ (r) implies that Nf c AP. c N with
both inclusions strict. Moreover, since Nf % AP7, it follows for free that AP % Nf.
Hence we have a contradiction to the minimality of codn(N£)9 and we may conclude
that dk(A^) < 3 + dkAP

For the equality case, suppose that dk(A^) 3 + dk N and that AP7 PI N* is

transverse in AP Since a 3-torus inside T fixes we may choose an involution
l e T \ (r) such that cod^iNf) 0 mod 4 and with all inclusions

strict. Since AP7 PI is transverse, it follows that codn(Nx°^) 0 mod 4 as well,
hence we have another contradiction to the minimality ofcodWe are ready to conclude the proof of Theorem 2.2. We do this by breaking the

proof into cases and showing in each case that N* has 4-periodic rational cohomology

or that AP7 P N£ is not transverse and has 4-periodic rational cohomology.
Since we have already established that N£ e * and that ^ e * if AP7 P N£ is

not transverse, this would conclude the proof of Theorem 2.2. The three cases are as

follows:

Case 1: 2dkN - dk(A£) < -2.
Case 2: 2dkN — dk(N£) > — 1 and AP7 P N£ is not transverse.

Case 3: 2dkN — äk(N£) > — 1 and AP7 P N* is transverse.

Clearly one of these cases occurs, so our task will be complete once we show,
in each case, that N* has 4-periodic rational cohomology or that AP7 P N* is not

transverse and has 4-periodic rational cohomology. We assign each case its

own lemma.

Lemma 2.10 (Case 1). If 2dkN — dk(Af7) < —2, one of the following holds:

(1) Nf has 4-periodic rational cohomology, or

(2) Nx°^ has 4-periodic rational cohomology and AP7 P Nf is not transverse.

Proof First observe that dk(A^) > 2 4- dkN since, by definition, dk Af > 0. We

may therefore choose an involution t e T such that Nf c Nlx c N with both
inclusions strict. In addition, we may assume cod^(A^) 0 mod 4 in the case
where dk(Af7) > 3 + dk N. Choose a basis for the tangent space TXN so that the

images of er, r, and i under the isotropy representation f: T -> SO(TxN) have the

following block representations:

4>{<j) diag (—/ -/-////),
fix) diag (-/ -I I -I -I I),
f(L) diag (-/ //-///),
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wheretheblockshavesizeZ>,a—b,k — a,m—b,(l—a) — (m—b), anddin^Afj0^),
where k codn(N£)9 l codn(N£)9 and m codn(Nx)9 and where a

cod (Afj0^ c NXT) and b cod (Afj0^ c AA7').

Suppose for a moment that b 0 or b a. Our choice of r implies that
cod(A^jcr'T^) 0 mod 4 and hence a 0. Since b 0 or b a, this means
b 0 mod 4 and hence

cod(A^) m k + m — b — cod(A^j<7'^) mod 4.

By our choice of r, we must have that m 2 mod 4. By our choice of i, we must have

dk(A^) < 2 + dk N. Combining this with the assumption in this case, we conclude
dk N 0 and dk(A^) 2 + dk N. The first of these equalities implies N M by
Lemma 2.5. Using Lemma 2.5 again, we conclude dim(A^) > \ dim N. Since Nx
is fixed by a 2-torus, there exists an involution x' e T\( r) such that Nf c Nx c N
with both inclusions strict. Hence Nf is the transverse intersection in N of Nx and

NXT and since the codimensions of these submanifolds satisfies

2codN(N*') + 2codN(N') 2codN(Nf) < n,

the periodicity theorem implies that Nf has 4-periodic rational cohomology.
Now suppose that 0 < b < a. First observe that a > 0 implies that Nf D Nx

is not transverse. Second, observe that (NfT)Lx and {N°T)TXL intersect transversely in

NXT, have codimensions b and a—b, respectively, and have intersection The
codimensions b and a — b are positive, and they satisfy

2b + 2(a — b) 2a < dim(A(£) — k + 2a dim(^T)

by Lemmas 2.5 and 2.9. It follows from the periodicity theorem that Nx°^ has

4-periodic rational cohomology. This concludes the proof in Case 1.

Lemma 2.11 (Case 2). If 2 dk N — dk(A^7) > —1 and Nx D Nx is not transverse,

then Nx°^ has 4-periodic rational cohomology.

Proof. First observe that dk(NfT) > 2 + dk N by Lemma 2.9, hence we may choose

an involution i e T such that NfT c^ciV with both inclusions strict. Choose a

basis for the tangent space TxN so that the images of er, r, and i under the isotropy
representation f\T —> SO(TxN) have the following block representations:

4>{<j) diag (—/ -/-////),
0(r) diag(-/ //-/-//),
0(0 diag (/ -//-///),
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wheretheblockshavesizea, b, k—a—b, m—b, (/ —a) — {m—b), anddin^Afj0^).
Here k,l,m,a, and b have the same geometric meaning as in Case 1. The difference is

in the order of the blocks, which indicate that Nfx c Nx in this case white Nx c A^
in Case 1.

Observe that a > 0 because A^ D Nx is not transverse. In addition, observe
that the assumption in this case implies dim(A^) > 2k by Lemma 2.5. Finally, by
replacing t by tat if necessary, we may assume that b <

First suppose b > 0. Then {NX)LX and (NX)XL intersect transversely in Nx with
intersection Since the codimensions, b and k—a—b, are positive and satisfy

2b + 2(k — a — b) < 2k < dim(^),

theperiodicity theoremimplies that (Nx)x D (NX)XL has 4-periodic rational
cohomology.

Now suppose b — 0. Then (NXTL)X and (NfXL)xx intersect transversely inside

NXTL with positive codimensions a and m. Usingtheestimatesa < k anddim(A^) >
2k, it follows that

3a + m < dim(A^) — k + 2a + m dim(NfXL).

Moreover, (NfXL)xx Nxx G C by Lemma 2.8, so (NXXL)XX is one-connected.

By the periodicity theorem, ^ (NXXL)X D (NXXL)XX has 4-periodic rational
cohomology. This concludes the proof in Case 2.

Lemma 2.12 (Case 3). If 2 dkN — dk(Nx) > — 1 and Nf D Nf is transverse, then

Nx has 4-periodic rational cohomology.

Proof Let k codjsr{Nf) and / codn{Nx). As in the proof of Case 2, we have

dim(A^) > 2k.
First we consider the case where dk(A^) > 2 + dk N. This implies the existence

of an involution i e T such that Nx c Nx c N with both inclusions strict. By
replacing i by rufnecessary, we may assume that its codimension m satisfies m < ^.
Since Nf D Nx is transverse, Nf D Nx is as well. Since the codimensions of this
transverse intersection satisfy

2k + 2m <2k -\-1 < n,

the periodicity theorem implies that Nf has 4-periodic rational cohomology.
Second we consider the case where

dk(^CT'T>) > 2 + dk

This implies the existence of an i e T such that *2| NZ id and such that

{NIYX N c (Nl)lx c Nl
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with both inclusions strict. It follows that (Nf)Lx and (NX)XL intersect transversely in

Nx and have codimensions, say, b and k — h. Since

2b + 2(k — b) 2k < dim(A^),

the periodicity theorem implies that Nf has 4-periodic rational cohomology.
Third, we consider the case where 2dk A — dk(AA) > 0. Lemma 2.5 implies

dim (AP) > 3k, hence 3k + l < n. Since Nf and AP intersect transversely, the

periodicity theorem implies AP has 4-periodic rational cohomology.
Finally, if none of these three possibilities occurs, the assumption in this case

implies that dkN 0, dk(AP) 1 + dk N, and dk(A^i<J'r^) < 2 + dk N. Using
Lemma 2.5, we can further conclude N M and dim(A^jcr'T^) > | dim N. Hence

2k + 21 2cod(A^a'T)) < n,

so the periodicity theorem applied to the transverse intersection of Nf and AP implies
that AP has 4-periodic rational cohomology. This concludes the proof of Case 3, and

hence concludes the proof of Theorem 2.2.

3. From Theorem C to Theorem A

The proof of Theorem A contains three steps. The first Step classifies one-connected,

compact, irreducible Symmetrie Spaces that have 4-periodic rational cohomology
up to degree 16. We will also need to prove the basic fact that an /i-dimensional,
one-connected, compact, irreducible Symmetrie space with Hl(M;Q) 0 for all
3 < i < 16 is S2, S3, or Sn. The second Step is a lemma about product manifolds
whose rational cohomology is 4-periodic up to degree 16. The final Step combines
these lemmas to classify one-connected, compact Symmetrie spaces whose rational
cohomology is 4-periodic up to degree 16. From Theorem C, these results immedi-
ately imply Theorem A.

The first lemma concerns one-connected, compact, irreducible Symmetrie spaces:

Lemma 3.1. Let Mn be a one-connected, compact, irreducible Symmetrie space.

(1) IfH4(M; Q) Q and H*(M; Q) is 4-periodic up to degree 16, then M is

• CFq or SO(2 + q)tSO(2) x SO(q) with q f or
• or SO(3 + q)/SO(3) x SO(g) with q | or q respectively.

(2) IfWiMiQ) 0 for all 3 < i < 16, then M is S2, S3, orSn.

Observe that periodicity up to degree c > 16 implies either that H4(M; Q) ^ Q
or that M is rationally (c — l)-connected. In the former case, dim H16(M; Q) > 1
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by periodicity up to degree 16, so we may as well assume that n > 16 in the first
Statement of the lemma.

The only facts about 4-periodicity up to degree 16 that we will use in the proof
are the following: bi bi+4 for 0 < i < 12, b^ < 1, and £4 0 only if bi 0 for
all 0 < i < 16. Here and throughout the section, bi denotes the i-th Betti number
of M.

Proof. We use Cartan's Classification of simply connected, irreducible compact
Symmetrie spaces. We also keep Cartan's notation. See Helgason [16] for a reference.

One possibility is that M is a simple Lie group. The rational cohomology of M
is therefore that of a product of spheres Sni x Sn2 x • • • x SHs for some s > 1 where
the rii are odd. In fact, the dimensions of these sphere are known and are listed in
Table 1 (see Mimura and Toda [20] for a reference). Since M is simply connected,

we may assume

3 /71 < ri2 < • • • < ns.

By the Künneth theorem, HA{M; Q) 0, so we must be in the case where Hl (M; Q)
is zero for all 3 < i < 16. But the data in Table 1 imply that s 1 and hence that

M S3. This completes the proof in the case that M is a simple Lie group.

Table 1. Dimensions of spheres.

G «1, ri2,... ,ns

Sp («) 3,7,... An — l
Spin (2« + 1) 3,1,... An - 1

Spin(2«) 3,7,..., 4« — 5, 2« — 1

U(n) 1,3,...,2« - 1

SU(«) 3,5,...,2n - 1

g2 3,11

f4 3,11,15,23
e6 3,9,11,15,17,23
Ey 3,11,15,19,23,27, 35

Eg 3,15,23,27, 35,39,47,59

Now we consider the irreducible spaces which are not Lie groups. We have that

M — G/H for some compact Lie groups G and H where G is simple. The possible
pairs (G, H) fall into one of seven classical families or are one of 12 exceptional
examples. First, it will be clear in each case that M ^ Sn and dim M > 4 implies
Hl (M; Q) 7^ 0 for some 3 < i <16, hence the second part of the lemma follows.
To prove the first part of the lemma, we calculate the first 15 Betti numbers in each
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of the 7 + 12 19 cases, then we compare the results to the requirement that they
be 4-periodic as described above. We summarize the results in Tables 2 and 3.

Table 2. Classical one-connected, compact, irreducible Symmetrie Spaces of dimension at least
16 that are not listed in the conclusion of Lemma 3.1. The pairs (p, q) satisfy 4 < p < q for
the real Grassmannians and 2 < p < q for the complex and quaternionic Grassmannians.

G/H
Pg/h(0- 1 if Reference

Obstruction
rk(G) rk (H) if not

SU(n)/SO(n), n - [4] b5 > 0

SU(2«)/Sp(«), > 4 - [4] b5 > 0

SO (p+ q)/SO(p) x SO - [21] 1 < b4

SU (p+ q)/S(\J(p)xU(<7)) 2t4 + - \ < b4

Sp(«)/U(«), > 4 t2 + t4+ 2t64 - b2 < b6

Sp (p+ q)/Sp(p) x Sp(<?) +00
(N+ 00V

SO(2n)/U(«), t2 + t4 + 2t64 b2 < b6

Table 3. Exceptional one-connected, compact irreducible Symmetrie Spaces.

G/H
Pg/h(J)— 1 if

rk(G) rk
Reference

if not
Obstruction

E6/Sp(4) - [18] bg > 0

e6/f4 - [1] bg > 0

E6/SU(6) x SU(2) t4 + t6 + - 00V

E6/SO(10) x SO(2) +00
(N+ 00V

E7/SU(8) ?8 + - b4< bs

E7/SO(12) x SU(2) +00
(N+ 00V

E7/E6 X SO(2) t4+ ts + 4 - 04V00

E8/SO(16) f8 + 00V

E8/E7 x SU(2) t4 + t8 + 4 - bs <
F4/Sp(3) x SU(2) t44-2?8 4 - b4<bs

F4/Spin(9) r8 + --. 00V

G2/SO(4) + 00

04A00

To explain our calculations, we first consider the case M G/H where G and

H have equal rank. Let Sni x • • • x SHs and Smi x • • • x Sms denote the rational
homotopy types of G and H, respectively. Then one has the following formula for
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the Poincare polynomial of M (see Borel [4]):

(l _ tni +1)... (i _ tns + 1)
PmC) !><«)>'

(1

For each simple Lie group G, the dimensions of the spheres are listed in Table 1.

When rank(G) rank(//), we compute the Poincare polynomial of M and list the
relevant terms in Tables 2 and 3. In the case where rank(G) ^ rank(//), we simply
cite a source where the cohomology is calculated.

The tables give the pair (G, H) realizing the space, the first few terms of the
Poincare polynomial if rank(G) rank(//), and the relevant Betti number inequal-
ities that show M is not rationally 4-periodic up to degree 16.

We remark that, in Table 2, we exclude Spaces with dimension less than 16, as

such spaces M have H16(M; Q) 0 and therefore H4{M; Q) 0 by periodicity.
We also exclude the rank one Grassmannians and the rank two and rank three real

Grassmannians, as these are the spaces that appear in the conclusion of the lemma.

With the first Step complete, we prove the following lemma about general products
M Mf x Mn whose rational cohomology is 4-periodic up to degree c. The lemma

roughly states that, if a product has 4-periodic rational cohomology, then one of
the factors has 4-periodic rational cohomology. Moreover, most of the cohomology
is concentrated in that factor. In the proof, we use the füll strength of periodicity,
not simply the corollary that the Betti numbers are 4-periodic. For example, while
S4 x S8 x S16 x • • • x S2 has 4-periodic Betti numbers, its cohomology is not
4-periodic.

Lemma 3.2. Assume that H1 (M; Q) 0, that H * (M; Q) is 4-periodic up to degree

c with c >9, and that M M' x M" with dim H4{M'\ Q) > dim Q).
If M is not rationally {c — \)-connected, then H4(Mf ; Q) Q and the following
hold:

(1) H* (Mr; Q) is 4-periodic up to degree c,

(2) H1 (M"\Q) 0,for 3 <i <c, and

(3) ifH2(M'\Q) y^O orH3(M';Q) ^ 0, thenH2(M";Q) H3(M"; Q) 0.

Proofof lemma. For simplicity we denote the Betti numbers of Af, M\ and M" by
bi, b[, and b", respectively. Observe that we must show that H * (M'; Q) is 4-periodic,
that b" 0 for 3 < i < c, and that b^ 0 if bf2 > 0 or bf3 > 0.

Let x G H4(M; Q) be an dement inducing periodicity. If x 0, then c > 8

implies M is rationally (c — l)-connected. Assume therefore that b^{M) 1 (i.e.,
that r/0).



Vol. 89 (2014) Positively curved Riemannian metncs 959

We first claim that b\ — \. Suppose instead that 0 b\ — b'[. The Künneth
theorem implies 1 b\ — b2b2, and hence — b2 1- Using periodicity andthe
Künneth theorem again, we have

0 b1 b5 bf5+b% + bf3+b%,

and hence that all four terms on the right-hand side are zero. Similarly, we have

2 bf2 + b'{ b2 b6 bf6 + b'i

Finally, we obtain

1 b4 bs > bf2bl + b'6b'{ bf6 + bl 2,

a contradiction. Assume therefore that b\ — 1 and hence that b'l b2b2 0-

Let p: M -> M' be the projection map. It follows from b\ — b\ — 1 and the
Künneth theorem that the composition

4

H4(M') =* H4(M') ® H°(M") 0//4_/(M') ® //4(M)
y= 0

is an isomorphism. Choose x G H4(Mf;Q) with p*(x) x. We claim that x
induces periodicity in up to degree c.

First, b\ — \ implies that multiplication by x induces a surjection H°(Mf) ->
Second, consider the commutative diagram

Hl (MO c > ®7 Hl~J (MO 0 HJ (M") —^ Hl (M)
1 1

H'+4(M') ©y //!+4"7 (M') ® HJ (M") Hl+4(M),

where the vertical arrows from left to right are given by multiplication by x, x (g) 1, and

x, respectively. Because multiplication by x is injective for 0 < i < c — 4, it follows
that multiplication by x is injective in these degrees as well. It therefore suffices to
check that multiplication by x is surjective for 0 < i < c — 4. We accomplish this by
a dimension counting argument. Specifically, we claim b[ Z^+4for0 <i < c — 4.

Indeed, for all 0 < i < c — 4, we have from periodicity, the Künneth theorem, and

injectivity of multiplication by x the following estimate:

1 1 1

=bt bl+4 > b['+4 + y>;+4_x > b'u4 + J2K-Jb"-
j —0 J=0 J= 0

Equality must hold everywhere, proving b[ b'l+4 and b"+A 0 for all 0 < i <
c — 4. This completes the proof of the first part, as well as the second part, of the
lemma.
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Finally, suppose that bf2 > 0 or bf3 > 0. Then

^4 (b2 + b3)b2 < bq. + b$ 1 + b\ b^

implies b2 0, and

K + (&2 + W <b5+b6 b2 bf2 bf6

implies b3 =0.

We are ready to prove Theorem A. In fact, we prove the following stronger
theorem:

Theorem 3.3. Suppose Mn has the rational cohomology ofa one-connected, compact
Symmetrie space. Let c > 16, and assume M admits a metric with positive curvature
and symmetry rank at least 2 log2 n + | — 1. There exists a (possibly trivial) produet
S ofspheres, each ofdimension at least c, such M has the rational cohomology of
(1) S,

(2) SxR with R e {CFq, SO(2 + q)/SO(2) x SO{q)}, or

(3) SxRxQ with R e {MFq, SO(3 + q)/SO(3) x SO(q)} and Q e {*, S2, §3}.

Consider the special case where M is a produet of spheres. This theorem implies
that each sphere has dimension at least c, which is at least 16, so N cannot be
S2 x S2 x Sn~4 or Sk x Sn~k with 1 < k < 16, as claimed in the introduetion.

Observe that the Lie group E8 has the rational cohomology of a produet of spheres
in dimensions 3,15, It follows that the rational cohomology of E8 x HP3 is 4-

periodic up to degree 15, so we must take c > 16 in the Statement of this theorem.

Proof Let Nn be a one-connected, compact Symmetrie space such that H * (N; Q)
Q). Assuming without loss of generality that n > 0, Lemma 1.6 implies

n > 16. Write N N\ x • • • x Nt where the N( are irreducible Symmetrie Spaces
and b4(N\) > b^Ni) for all i.

Theorem C implies that H*(N; Q) is 4-periodic up to degree c. If H4(N; Q)
0, thenN andhenceeachNf isrationally (c —1 )-connected. Sincec > 16,Lemma3.1
implies that N is a produet of spheres of dimension at least c.

Suppose therefore that H4(N\ ; Q) H4(N; Q) Q. By Lemma 3.2, N\ is

4-periodic up to degree c and //7 (Nf; Q) 0 for 3 < j < 16 and i > 1. If N\ is

CFq or SO(2 + q)/SO(2) x SO(?), then taking M' Nx and M" N2 x • • • x Nt
in Lemma 3.2 and applying Lemma 3.1, we conclude that every A; with i > 1 is a

sphere of dimension at least c. This concludes the proof in this case.

If N\ is not CFq or SO(2 + q)/SO(2) x SO(g), Lemma 3.1 implies N\ is MFq
or SO(3 + q)/SO(3) x SO(q). If b2{N{) b3(Ni) 0 for all / > 0, then once
again we have that each N( with i > 1 is a sphere of dimension at least c. Otherwise,
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we may reorder the Nj so that b2{N2) > 0 or b3(N2) > 0. By Lemma 3.1, N2 is S2

or S3, and by taking Af' N\ x N2 and M" — N3 x • • • x Nt in Lemma 3.2, we
conclude that Ni is a sphere of dimension at least c for all i > 2. This concludes the

proof.
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