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Gaussian distribution for the divisor function and Hecke
eigenvalues in arithmetic progressions
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Abstract. We show that, in a restricted ränge, the divisor function of integers in residue classes

modulo a prime follows a Gaussian distribution, and a similar result for Hecke eigenvalues of
classical holomorphic cusp forms. Furthermore, we obtain the joint distribution of these
arithmetic functions in two related residue classes. These results follow from asymptotic evaluations
of the relevant moments, and depend crucially on results on the independence of monodromy
groups related to products of Kloosterman sums.
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1. Introduction

The distribution of arithmetic functions in arithmetic progressions is one of the corner-
stones of modern analytic number theory, with a particular focus on issues surrounding
uniformity with respect to the modulus (see [7] for a recent survey). Besides the case

of primes in arithmetic progressions, much interest has been devoted to the divisor
function d(n) and higher-divisor functions, in particular because - in some precise
sense - a good understanding of a few of these is equivalent to knowledge about the

primes themselves (see, e.g., [6], Theoreme 4).
The consideration of the second moment for primes p < X in arithmetic progressions

to moduli q < Q < X/ (log X)A leads to the Barban-Davenport-Halberstam
theorem (see, e.g., Theorem 17.2 of [14]), which has been refined to an asymptotic
formula for Q — X by Montgomery [22]. Similarly, Motohashi [23] evaluated

asymptotically the variance of the divisor function d(n) for n < X in arithmetic
progressions modulo q < X.

*Ph. M. was partially supported by the SNF (grant 200021-137488) and the ERC (Advanced Research Grant
228304); E. F. thanks ETH Zürich, EPF Lausanne and the Institut Universitaire de France for ßnancial support;
S. G. thanks EPF Lausanne for ßnancial support.
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We will show that one can determine an asymptotic distribution for the divisor
function d(n) for n < X in arithmetic progressions modulo a Single prime p, provided
however that X is a bit smaller than p2.

Theorem 1.1 (Central Limit Theorem for the divisor function). Let w be a non-zero
real-valued smooth function on R with compact support in ]0, +oo[ and with L2
norm ||u;||. Fora prime p, let

Sd(X,p,a)= d(n)w(j)>'x'n> 1

n=a mod p

and

*+ool / n \ l p-\-oo / X \Md(X,p) =-^2d(n)w(—)--- J^ (log x + 2y 2 log p)w y—Jdx

(1)

i J2 d(n>(j) + 0(-3Z(lo§Z))'
^ n> 1 ^

where y is the Euler constant. For a E

^ Sd(X,p,a)-Md(X,p)
Ld(X, —-—77;L } (X/p)112

Let O(x) > 1 be any real-valued function, such that

O(x) —> +00 as x -> +00, O(x) Oe(xe),

for any e > 0 and x > 1. For any prime p, let X p2/0(/?). Tlien as p —> +00
over prime values, the random variables

Ed (X,p,a)
a i->

IMIA 2(log^O?))3

on F*, with the uniform probability on ¥*, converge in distribution to a Standard
Gaussian with mean 0 and variance 1, i.e., for any real numbers a < ß, we have

1

p- 1
rFx, ^ Ed(X,p,a)

a e F„ \ a <p \w\\y/jt 2(10gO(/?))3
<ß) ~ ~^= fJ p^oo ^2TT Ja

£ 2/2Jl

In fact, our results are more general, in three directions: (1) we will consider,
in addition to the divisor function, the Fourier coefficients of any classical primitive
holomorphic modular form / of level 1 (e.g., the Ramanujan r function); (2) we
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will compute the moments of the corresponding random variables and, for a fixed
moment, obtain a meaningful asymptotic in a wider ränge of X and p; (3) we will
also consider the joint distribution of

a >-> (Ed(X,p,a),Ed(X,p,y(a)))
when y is a fixed projective linear transformation (e.g., y(a) a + 1, y(a) 2a,
y(a) —a, y(a) 1/a, which illustrate various interesting phenomena.) For all
these results, the crucial ingredients are the Voronoi summation formula, and the
Riemann Hypothesis over finite fields, in the form of results of independence of
monodromy groups of sheaves related to Kloosterman sums.

We now introduce the notation to handle these more general problems. As in
the Statement above, we fix a non-zero smooth function w : R -> R, with compact
support in [wq, wi] with 0 < wo < vui < +oo. For any modulus c > 1, let

Sd(X,c,a)= d(n)w(^j.
n> 1

n=a mod c

This sum has, asymptotically, a natural main term (see, e.g., [19]) which we
denote by Md(X,c), and which coincides with Md(X,p) when c p is prime
(see (31) below). The number of terms in Sd(X, c,a) is ^ X/c and the square root
cancellation philosophy suggests that its difference with the main term should be of
size

Sd(X, c,a) — Md (X, c) « (X/c)^X, (2)

as long as X/c gets large. Thus the map

ry r (H, i n,\* 17 rv ^ _Z: a £ (Z/cZ) Ed(X,c,a) —
(X/c)1/2

is a natural normalized error term that we wish to study as a random variable on

(Z/cZ)x equipped with the uniform probability measure (here and below, we some-
times omit the dependency on p and X to lighten the notation Z).

Similarly, consider a primitive (Hecke eigenform) holomorphic cusp form / of
even weight k and level 1 (these restrictions are mainly imposed for simplicity of
exposition). We write

f(z) J2pf^"(k 1)/2e("z)
n> 1

its Fourier expansion at infinity, so that p/(l) 1 and p/(n) is the eigenvalue of the
Hecke Operator T(n) (suitably normalized). We let

Sf(X,c,a)= J2 Pf(n)w(j)>
n=a(modc) n> 1

S/(X, c,aMf(X, c)
Ef(X,c,a)

(X/c)1/2
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for c > 1 and any integer a. Note that, in this case, the integral representation

n 2+i oo1 1 fMf(X,c) -x —
C 27t l J2-

w(s) Xs L(s, f)ds

in terms of the Mellin transform w of w shows that the main term is very small,
namely

Mf(X,c)«/,^i c~lX~A(3)

for every positive A, uniformly for c > 1 and X > 1.

We will study the distribution of

a i-> Ef(X,p,a), a \-> Ed(X,p,a)

for p prime using the method of moments. Thus, for any integer k > 1, we dehne

M*(X,c;k) - V E+(X, c,a)K, * d or /. (4)
C

Aa mod c
(a,c) 1

The hrst moment is very easy to estimate, and besides Motohashi's work (which
considers the average of (X, c; 2) over c < X), the second moment has recently
been discussed by Blomer [2], Lü [20] and Lau-Zhao [19]. In particular, Lau and

Zhao obtained an asymptotic formula in the ränge X1^2 < c < X (see (10) below;
note that the ränge c < X1/2 seems to be much more delicate.)

We will evaluate any moment, in a suitable ränge. Precisely, in §3 we will prove:

Theorem 1.2. Let the notation be as above, with * d, the divisor function, or
* /, / a Hecke form ofweightk and level 1. Let p be a prime number. Then,for
every integer k > 1, for every positive 8, for every positive c, for every X satisfying

2 < X1/2<p < X1'8,(5)

we have the equality

/ / d1\k/2 / y \l/2+e\
M*(X,p-,K) C*(K) + o(p-1'2+f^) +(—) (6)

where the implied constant depends on (S,c, /c, *, w), and the constant C*(k) is given
by

C±{k) (7)

with
r0 ificisodd,

mK (8)
K- -f •if k is even,

2^2(k/2)\
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and

for some polynomial Pw (T) e M[T], depending only on w, ofdegree 3 with leading
term 7t~2\\w\\2T3. Here, for a cusp form f, the L2-norm of f is computed with
respect to the probability measure

3 dxdy
7r j2

on SL2(Z)\H, and the L2-norm of wiscomputed with respect to the Lebesgue
measure on R.

Remarkl.3. In the case/c 2, and in the ränge X1/2 < c < X, Lau andZhao ([19],
Theorem 1 (2)) have obtained

\t\^ E P/wf o+o((jf^fzT)om
a 1 n=a(mod c) i\c

1 <n<X

for any modulus c > 1 (not only primes), and a similar result for the divisor function.

We will make further comments on this result afterthe proof, in Section 3.5. Since

mK is the k-th moment of a Gaussian random variable with mean 0 and variance 1,

we obtain the following, which implies Theorem 1.1 in the case * d:

Corollary 1.4 (Central limit theorem). Let O(x) > 1 be any real-valued function,
such that

O(x) —> +oo as x +oo, O(x) Oe(xe),

for any c > 0, uniformly for x > 1. For any prime p, let X p2/ 0(/?). Then as

p +oo over prime values, the random variables

E+(X,p,a)
a \->

7
—

V^vw

on F* converge in distribution to a Standard Gaussian with mean 0 and variance 1.

As far as we know, this is the first result of this type. We will prove this in
Section 3, and give further comments, in Section 3.6.

Remark 1.5. It is natural to ask if a corresponding property holds for Maass forms.
This is indeed the case, and indeed the result can be extended to cusp forms on GL^
for all N > 3, see [18].
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Among the other natural generalizations of Corollary 1.4, we consider next the
Fxlp •following one: givenamapa i-> y(a) onF* whatistheasymptoticjointdistribution

of
a m- (E+(X, p, a), E+(X, p, y(a)))

We study this when y is given by a fractional linear transformation. Precisely, let

y (ac hfjgl2(Q) n M2(Z) (11)

be a fixed invertible matrix with integral eoeffieients. For p \ det y, the matrix y
has a eanonieal reduetion modulo p in PGL2(F;7), whieh we denote by Jtp(y). In the
usual manner, y (or 7tp(y)) defines a fractional linear transformation on by

1 az + b
z P4 I-^ y • zr cz + d

By Corollary 1.4, we know that, in the ränge of validity of this result, both

E+(X,p,a) -a)
Z: a i->

/
— and Zoy:a\-> /

(12)
C+,w C+,w

seen as random variables defined on the set

{a e Fp | a, y • a ^ 0, oo}

converge to the normal law. We then wish to know the asymptotic joint distribution
of the vector (Z, Zoy), and we study this issue, as before, using moments.

For k and X positive integers, let

M*(X, p-,k,X;y):=— V" E+(X, p,aY E+(X, p,y a)x (13)
P

ÖGFp
a, y-a^0,oo

be the mixed moment oforder (k,X).
In analogy with Theorem 1.2, we will estimate these moments in §4. To State the

result, we note that if y is diagonal, there is a unique triple of integers (aY, yi, y2),
such that we have the eanonieal form

Vay(q1y2) ' 71 - 1 and (Y1'?2) 1- (14)

We further introduce the arithmetic funetions

>,f n - n
pa\\a pa\\a

(15)
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for a > 1, and paj 0 for a < 0, pad P-a^d for a < 0. For * /, we also

define the constant

Cf II / II2 (4tt )^F (Ä:)-1. (16)

Our result is:

Theorem 1.6. Let y be defined by {11).

(1) For every integers k and X,for every 8 and c > 0, for every prime p > po(y)
and X satisfying (5), there exists C*(/c, X, y) such that

i / d2\ (/c+a)/2 f X \1/2+\
M*(X,p;k,X-,y) C*(ic,X,Y) + Oyp 2+(y) +V~] j' (17)

(2) If y is non-diagonal, then

C*(/c,A,y) C*(/c)C*(A). (18)

(3) Ify is diagonal, and written in the canonical form (14), then

C+(k,X, y) <

where

0 ifk + X is odd,

Xj(c*,w)^~v(c*,weise,

0<v<min(/e,A)
v=k=X mod 2

(19)

Cf,w,y ~ cfPyly2,f(/: w{y\t)w{y2t)dt

andfor * d, we have

cd,w,y — PyiY2,w

for some polynomial PyiY2^w(T) £ M[r], ofdegree < 3 and with coefficient ofT3
given by

w(Yit)w(Y2t)dt^T3.

In (17), the implied constant depends at most on (y, S,s,/c, X), and in (19), we
make the Convention that 0V 1 if v 0.

Of course, if y is the identity, we recover Theorem 1.2. More generally, we can

now determine the joint asymptotic distribution of (Z,Z o y) in the same ränge as

Corollary 1.4.

Recall that a pair (X, Y) of random variables is a Gaussian vector if and only if,
for every complex numbers a and ß, the random variable aX + /3Y has a Gaussian
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distribution (see, e.g., [15], pp. 121-124). If (X, Y)isaGaussianvector, itscovariance
matrix cov(X, Y) is defined by

rnvfY y\=( E(X") " E^2 E^XY) " E(X)E(YA
n ; l E(XY) - E(X)E(Y) E(Y2) - E(Y)2 ' (20)

where E denotes the expectation of a random variable. Recall also that a Gaussian

vector (X, Y) has independent components if and only if E(XY) E(X)E(Y), i.e.,

if the covariance matrix is diagonal (see, for instance, Theorem 16.4 in [15]).

Corollary 1.7. Let <t> be afunctionas inCorollary 1.4, andlet X p2/Q(p). Then,

for * f or d, as p tends to infinity, the random vector (Z, Z o y) converges in
distribution to a centered Gaussian vector with covariance matrix

CD if y is not diagonal, (21)

ify is diagonal, (22)
1 G*,y,w

^d-k,y,w 1

where the covariance G+^y^w is given by

G*,v,w ^ f w(yit)w(y2t)dt.
INI2 JRThus from Corollary 1.7 (noting that pa d ^ 0 for any integer a ^ 0), we get a

criterion for asymptotic independence of (Z, Z o y):

Corollary 1.8. We adopt the notations and hypotheses of Corollary 1.7. Then as p
tends to oo, the random variables Z and Z o y tend to independent Gaussian random
variables, ifand only ifone of the following conditions holds:

(1) Ifyis not a diagonal matrix, i.e., a \-+ y • a is not a homothety.

(2) Ify is a diagonal matrix and

f* oo

w{y\t)w{y2t) dt 0./j —(

(3) If+ f, y is a diagonal matrix in the form (14), and there exists a prime p
and a > 1 such that pa \\y2Y1 and such that

(p +1 )pf(pa)pf(p)pf(pa~1)-

Remark 1.9. (1) Corollary 1.8 shows for instance that, for p 00, the random
variables a ^ E*{p2/Q{p), p, a) and a ^ E*{p2/Q{p), p, y • a) converge to
independent Gaussian variables, if y is one of the functions

y-a=a + l, y-a —a, y-a — X/a.
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The case of y • a 2a is more delicate, since it depends on the value of the

integral /0+O° w(t)w(2t) dt. For instance, this integral is zero when one has the

inequalities w0 < wi < 2w0 < 2w\, where as before supp(u;) C [w0,wi]. The

possible dependency here refleets the obvious fact that if n a mod p and d \ n,
then 2n 2a mod p and d \2n.

(2) We do not know if any primitive Hecke form / of level 1 exists for which
Condition (3) in this last corollary holds for some pa! Certainly the "easiest" way
it could apply would be if, for some p, we had p/{p) 0, but the existence of
a primitive cusp form of level 1 and a prime p with pp{p) 0 seems doubtful
(e.g., a conjecture of Maeda suggests that the characteristic polynomials of the Hecke

Operators T(p) in level 1 are irreducible.) On the other hand, if we extend the result
to forms of fixed level N > 1, it is possible to have p/{p) 0 for some p (e.g., for
weight k — 2 and / corresponding to an elliptic curve.)

1.1. Sketch of the proof. We will sketch the proof in the case of cusp forms, which
is technically a bit simpler, though we present the actual proofs in a unified manner.
For Theorem 1.2, the crucial starting point is the Voronoi summation formula, as

in [2], [19], which expresses Ef(X, c,a) for any c > 1 in terms of sums weighted
by some smooth function of the Fourier coefficients p/(n) twisted by Kloosterman
sums S(a,n;c). One then sees that the main contribution to this sum comes from the

n of size roughly Y c2/X (see Proposition 2.1).

Considering the k-th moment, we obtain therefore an average over a mod p of
a product of k Kloosterman sums S(a,rii; p), where all variables rii are of size ap-
proximately p2/X. The sum over a e F^, when the variables rii are fixed, can be
evaluated using deep results on the independence of Kloosterman sheaves (see Proposition

3.2). This allows us to gain a factor p1^2 compared with a direct application of
the Weil bound for Kloosterman sums, except for special, well-understood, configu-
rations of the rii modulo p. These configurations lead, by combinatorial arguments,
to the Gaussian main term of Theorem 1.2. (Note that we can take no advantage of
the summation over the variables rii, which turn out to have a short ränge in the cases
where our result is non-trivial, see Section 3.5.)

The study of mixed moments (see Theorem 1.6) has a lot of similarities. The only
significant difference lies in the study of the independence of Klosterman sheaves,

when some of them are twisted by the rational transformation y. However, Proposition

3.2 is general enough to show that these sheaves are dependent if and only if
we are in the "obvious" cases. The main terms then require some computations of
integrals using properties of the Bessel transforms.

1.2. Possible extensions. A Gaussian law similarly appears if one studies the ran-
domvariablem i-^ E+{X, p, P(a)), where P is anon-constantfixedpolynomial with
integer coefficients. The fact that P is not necessarily a bijection on does not affect
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the Gaussian behavior. The proof of this extension requires a suitable generalization
of Proposition 3.2.

It also seems that the present method can be extended to the study of the distribution
of sums of the shape

<S* (X, p, Ka) *(n)a

n> 1

where r*(-) is either d{•) or p/(-), and Ka(n) K(an) for a fairly general trace
function K as in [8]. The shape of the analogue of Theorem 1.2 would then depend
on the nature of the geometric monodromy group of a suitable "Bessel transform" of
the sheaves underlying K{•).

1.3. Notations. We use synonymously the notation f(x) g(x) for x e X and

/ 0(g) for x e X. We denote e(z) e2lllz for z e C. For c > 1 and a, b

integers, or congruence classes modulo c, the Kloosterman sum S(a, b\ c) is defined

S(«.*c)= E
x mod c
(x,c) 1

where x is the inverse of x modulo c. The normalized Kloosterman sum is defined

by

Kl2(a,b-,c)= cl/2
and for (a, b, c) 1 it satisfies the Weil bound

| Kl2(a,b;c)\ < d(c). (23)

To lighten notations, we define

Kl2(a;c) := Kl2(a,l;c),

and reeall the equality Kl2(a, Z?; c) Kl2(a^; c), whenever (Z?, c) 1.

We will use the Bessel functions J^~\, where k > 2 is an integer, 70 and K0;
preeise definitions can be found for instance in [12], Appendix B.4, and in [26].

Acknowledgements. We thank G. Ricotta for pointing out a computational error in
the first draft of this paper.

2. Preliminaries

We gather in this section some facts we will need during the proof of the main results.
The reader may wish to skip to Section 3 and refer to the results when they are needed.

We begin with the Voronoi formula in the form we need:
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Proposition 2.1 (Voronoi summation). Let * f,for a cuspform f oflevel 1 and

weight k, or * d. Let c be any positive integer, with c prime if * d. Thenfor
any X > 1 andfor any integer a, we have the equality

V 1/2 / c \ 1/2
E+(X, c,a) zJnW

C
c\\c n^O
C\>1

where n runs on the right over non-zero integers in Z and

(25)

(26)

fory> 0, (27)

for y < 0,

for y > 0, (28)

for y < 0. (29)

In particular, if c — p, a prime, we have

(X\i/2 InX\
—J ^2 J Kl2(a,n;p). (30)
P n^o P

For the proof we recall the Standard Voronoi summation formula (see, e.g., [14],
p. 83, for * / and (4.49) in [14] for * d, which we rewrite as a Single sum over
positive and negative integers instead of two sums).

f^jKl2(fl,/i;d), (24)

and

T/W= 10 otherwise,

xd(n)

pOQ

Wf{y) 27tik I w{u)Jk-i{An^Jüy)du
Jo

Wf(y) 0,

pOO

Wd(y) —271 / w{u)Yq{A7x +Juy)du,
J0

p oo

4 / u;(w)^0(47T |)JW,

Lemma 2.2. c be a positive integer and a an integer coprime to c.

(1) For any smooth function w compactly supported on ]0, oo[, we have

n>1 «>1

if f is a cuspform oflevel 1 and weight k.
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(2) For any smooth function w compactly supported on ]0, oo[, we have

*+oo
(logx + 2y — 21ogc)w(x)dx

(31)
n>1

\C J C J0

+
c

n^O

ProofofProposition 2.1. We consider the case of * /, the divisor function being
handled similarly (it is easier since c is prime; the definition (1) of the main term is

designed to cancel out the first main term in (31)). Using orthogonality of additive
characters, and separating the contribution of the trivial character from the others, we
write

_IEp/W„(i) + I E e{^)Ev(n)w{^).
n>1 1 <b<c—l n>1

which yields the expression

1<b<c—\ n> 1

We split the second according to the value of the g.c.d d (b,c)9 writing

d (b,c), b db i, c Jci,

and note that
1 < ci < c, l < b\ < c\.

We then get

w.«> ^E E «(-t)E^w-(J)«(T)
v J d\c l<b<c n> 1

ci |c 1<^1<C1 n> 1

C1>1 (^l,Cl)=l

We can now apply Lemma 2.2 since {b\,ci) 1, and we get

«>1 «>1 1
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The proposition now follows since the terms with n < 0 are identically zero for
this case.

We will need some basic information on the behavior of the Bessel transforms

WAy).

Proposition 2.3. Let w be a smooth function with support included in ]0, +oo[. Let
W*(y) be one ofthe Bessel transforms ofw as defined in Proposition 2.1, for some

integer k > 2 in the case * / ofweight k.

(1) The function W+ is smooth owIx, andfor every A > 0 and j > 0, we have

yjwtj)(y) «Uj min(l + |log \y\\, M-'4), (32)

for yA0.
(2) We have

WW+W IMI, (33)

where the L2-norm ofW* and w are computed in L2(RX) with respect to Lebesgue
measure.

(3) More generally, for any two non-zero real numbers m and n, we have

[ W+{mt)W+{nt)dt f w(mt)w(nt)dt.
J—oo J—oo

Proof (1) (Compare, e.g., with [2], p. 280, or [19], Lemma 3.1) We begin with the

case j 0. For y small, we use the bounds

/yfc-l(x) «yfc 1, Y0(x)«1 + |logx |, «1 + 1 log xc I

for 0 < x < 1 which immediately imply that

WAy)«l + |iog|j|| (34)

in all cases.

To deal with the case where \y\ > 1, we first make the change of variable

v 4tt ^/u\y |

in the integrals (27) (resp. (28), (29)), so that we always get

w-(y) i7ii u,(TA?)vB°w'Iv-

where B0 cJ^-1, 0, cY0 or cK0, for some fixed multiplicative constant c e C.
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We denote a (167r2y2)-1. To exploit conveniently the oscillations of the
Bessel functions B0 we integrate by parts, using the relations (see [11], 8.472.3,
8.486.14)

(xv+1Zp+i(x))' exv+1Zv(x),(35)

where

+ 1 if Zv Jv or Yv,

[-1 if ZV KV.

For * /, remembering that w vanishes at 0 and oo, we obtain, for instanee, the

equality

Wf(y) --py j (lav2wf(av2) + (1 — k)w(av2)^Jjc(v)dv (y > 0).

By iterating i>\ times, and then arguing similarly for * d9 we see that there
exist eoeffieients such that

i r°° / J' \
W*( y)-j—r / (av2)v(36)

V 0

where By 0, Yy or Ky corresponding to the different cases * / or
* d, y > 0 or y < 0.

Since w has compact support in [w;0, w\], the above integral can be restricted to
the interval

I:= [(u,0/a)1/2,(w>i/a)1/2],

and using the estimates1

Jk-X+i(v) «£ v~l/2,Yt(v)<^1 v~1/2, Kt(v) v~1/2

for v > 1, we obtain the inequality

W*iy) « | y\~l J v~l+^dv« | (3?)

for \y | > 1. Since l > 0 is arbitrary, this gives the result for j 0.

We can reduce the general case to j 0 using the formulas (see [11], 8.472.2,
8.486.13)

xZ'v(x) vZv(x) - xZv+i(x),
from which it follows that

äff00 \
w(u)Zv(4ji +Juy)duj

poo pOO
/ w(u)Zv(Ajt^/üy)du — 2n^/y / w(u)^/uZv+\(An^/üy)du.

J0 J0

V

2

1 For the last one, one knows in fact that Ki (v) decays exponentially fast for v — +oo.
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Applying the previous method to the relevant Bessel functions then leads to

yW+(y) <&*,A min(l + | log |j||,

and by induction a similar argument deals with higher derivatives.

(2) In the case * /, the identity

r+oo p + OQ

/ Wf{u)2du / w(u)2du || w ||2
J0 J0

is a direct consequence of the unitarity of the Hankel transform, i.e., of the Fourier
transform for radial functions (see, e.g., [19], Lemma 3.4). The case * d is less

classical, although it is formally similar, the hyperbolas xy — r replacing the circles
x2 T- y2 r2 (see §4.5 of [14]). We use a representation-theoretic argument to get
a quick proof. The unitary principal series representation p tt(0) of PGL2(R) (in
the notation of [4], p. 10) can be defined by its Kirillov model with respect to the
additive character \/f(x) e(x), which is a unitary representation of PGL2(R) on
L2(RX, \x\~1dx). In this model, the unitary Operator

on L2(RX, \x\ xdx) is givenby

f dt
Tcp{x) / <p(t)$>(xt) —

«/rx IG

where ^ is the so-called "Bessel function" of p (with respect to t/l see [4], Theorem

4.1). By Proposition 6.1 (ii) of [4] (see also [1], §6, §21), we have

j —2tt ^/uYo(4jt *Ju) fovu>0,
\A^f\u\K(){An ^f\u\) for u < 0.

Hence by (28) and (29), we see that

Wd(y) \y\~l'2T{(p)(y), where <p(x)
lf x >

(3g)
10 lf x < 0.

The unitarity of T means that

[ \T(?){y)\2^- f \cp(x)\2^-
iix \y\ iix m

i.e.,
/» /»+oo

/ \Wd{y)\2dy/ \w(x)\2dx \\w\\2.
«/Rx J 0
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(3) We consider different cases. If mn > 0, changing t to —t allows us to assume
that m and n are positive. Then a simple polarization argument from (33) shows that

/+ OO /»OO

W+(mt)W+(nt)dt / wm(u)wn(u)du, (39)
-(X) J — oo

where u i-> wm(;u) is the function for which the Bessel transform of is t i-> W+(mt)
and similarly for wn(u). But it is immediate that wm(u) (1 /m)w{u/m), and

therefore (39) gives the result.

If mn < 0, then since the support of w is contained in [0, +oo[, we have

w(mt)w(nt) 0 for all t, hence

w(mt)w(nt)dt 0,

and we must show that the integral of W+(mt)W+(nt) is also zero. If * /, a cusp
form, this is immediate since Wf(y) 0 for y < 0, so that Wf(mt)Wf(nt) — 0 for
all t.

For + d, we use representation theory as in (2). With the same notation as used

there, and for any real-number a ^ 0, we denote

"• K(S

so that, by definition of the Kirillov model (see [4], §4.2, (4.1)), we have

Ua(<p)(x)

for (p e L2(Rx, \x\~ldx). Observe that, in PGL2(M), we have

(0 -l\ (a 0\ _
1 0 \ fO -1\ _ (a~l 0\ (0

(1 o) (o ij ~ v o -«yv1 °/v° V l1 ° /'
hence

ToUa ua-1 o T.

Using this and the unitarity of T, we deduce that

f (T(p)(ax)(T<p)(bx) (Ua(T<p),Ub(T<p))
Jr kl

(nu^Kpinuh-Kp))
{Ua-i<P,Ub-i(p)

f ^(~)^(f)n fJR \a/ \b/\x\ r |x|

L
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Now, applying (38) and the fact that Wis real-valued, we derive

/ Wd{ax)Wd{bx)dx / w{ax)w{bx)dx
t/M. t/M.

for all non-zero a and b.

Remark 2.4. One can also give a direct proof of the last part of this proposition using
known properties of Bessel functions: the crucial point is that the function

poo

f(a,b)= / Y0(a^/
J o

is antisymmetric, which follows from an explicit evaluation using [ 11 ] (6.523) and [24]
(p. 153, 2.34). Conversely, the results for cusp forms can be proved using represen-
tation theory, the discrete series representation of weight k replacing the representa-
tion p.

Our last preliminary results concern the sums which will give rise to the leading
terms in the main results. Recall the definitions and (16).

Proposition 2.5. Let p be a prime number, 8 > 0 a parameter and X > 1 such that

xl/2 <p< X1'8.

LetY p2/X.For* e {d, /}, andfor a and b coprime non-zero integers, not
necessarily positive, let

E/an\ /bn\
T*(a«)T*(^«)W^(—)w*(y )•

0

l<\an\, \bn\<p/2

(1) 1f+ /, we have

&+(a,b,Y) CfPab,f(^j w(at)w(bt)dt^Y + 0(Y1^2+e)

for any > 0.

(2) 7/* d, there exists apolynomial Pab E R[T] ofdegreeatmost3, depending
on w, such that

£d(a,b,Y)Pab{\o%Y)Y + 0(Y±+)

for any c > 0, and with coefßcient ofT3 given by

^2pab,d(f w(a(40)

In both cases, the implied constants depend on (8,c, +,a,b).
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We will use Standard complex Integration techniques, and first determine the

relevant generating series (it is here that it is important that / be a Hecke eigenform.)
We denote

F*(s) ^>*(«)2n s,

n> 1

so that

W.fxf)w=-{Pö-
if / is a Hecke eigenform, where L(s, f x /) is the Rankin-Selberg convolution
L-function, and

Fd(s)
?(2sy

In both cases, F+(s) extends to a meromorphic function, with polynomial growth
in vertical Strips, for Re(s) > 1/2. It has only a pole at s 1 in this region (of order
1 if * /, and order 4 if * d).

Lemma 2.6. Let * f or d, and let a, b be non-zero coprime integers, not neces-

sarily positive. Let

F*,a,b(s) y^,T+(an)T+(bn)n~s.
n> 1

//'* / and ab < 0, we have F+^a^ 0. Otherwise, we have

Z7 ^ 17 r \ TT < v„\F^b(s) FW) 11 KO") -7—j )•

pvP\\ab F

In particular, F+^a^ always extends to a meromorphic function for Re(s) >1/2,
with polynomial growth in vertical strips.

Proof One sees immediately that it is enough to treat the case where a, b > 1 and
ab 7^ 1. Then the assumption that (a,b) 1 allows us to write

F-k,a,bis) F+^ab^\(s)

so that we can further reduce to the case where b 1, in which case we write
F*,a,i F+ja. Now, writing any integer n > 1 (uniquely) as n — jm where j > 1

has all prime factors dividing a and m > 1 is coprime with a, and summing over j
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first, we get

F*AS) E E T*0m)r*(ajm)(jm) s

1 </ |a°°

X X T*(m)

j \a°° (m,a)=l

2m S

^w(nx-(/)2^ ^,s) x **uMaj)r

ks

p\a k>0 j \ac

by multiplicativity of r*.
Now write

a=npvp
p\a

the factorization of a. Again by multiplicativity, we get

X t*U)t:*(aj)j~s Y[^2T*(Pk)T*(Pk+Vp)P~

j |a°° p\a k>0

Let
G, J2^(PkMPk+l)P~ks

k> 0

for some fixed prime p and integer i > 0. For i > 1 and k > 1, we have

i*(pk+l) i*(pk)i*{pl) -
and therefore

Gi T*(p')Go - p~sx*(p'~l)Gi

for i > 1. In particular, the case i 1 gives

(1 + p~s)Gi t*(/?)G0,

which then implies that

a- ('«>'>

for i > 1. Now, since vp > 1 by definition, it follows that

p\a

as claimed.
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ProofofProposition 2.5. Using Proposition 2.3, (1), we obtain first

£+(a,b,Y) &l{a,b,Y) + £°(-a,-b,Y) + 0{p~l)

where, for any coprime integers a and b, we put

£+(a,b,Y)
n> 1

We now estimate these sums. Let

/»OO

<Pa,b(s) — I W+{ax)W+(bx)xs~l dx,
J0

be the Mellin transform of the function x i-> W+(ax)W+(bx).
For Re(s) > 0, this is, by Proposition 2.3, (1), a holomorphic function which is

bounded and which decays quickly in vertical Strips. We have the integral represen-
tation

£°(a,b, Y)2- fF^a,b{s)Ysya>b{s)ds,
ZI 7t J(2)

and we proceed to shift the contour to Re(s) 1/2 + 6, for a fixed 6 > 0. The

integral on the line Re(s) 1/2 + 6 satisfies

2- f F^b(s)Yscpa,b(s)ds «ZlTt J(1/2+6)

where the implied constant depends on (*, a, b, 6, w). On the other hand, the unique
singularity that occurs during the shift of contour is the pole at s 1 so that

£°(a,b, Y) res,=1 F^,b(s)Ys<pa>b(s) + 0(Yl'2+e)

and hence

£*(a,b, Y) res^=i F+^^Y*<pa>b{s)
+ res,=1 + 0<T1/2+).

If * /, then the two residues vanish if ab < 0, while if ab > 1, one residue is

zero and the other is equal to

reSs=i F^i^iC^r'VlöUölOO FfMm(s).

Since

<Pa,bO) + <P-a-bO) / Wf(at)Wf(bt)dt / U){at)w{bt)dt
JR JR
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by Proposition 2.3, (3), and since it is well known that

resi=1 F/(s) \\ f \\2 (An)k T (k)-1 Cf,

(fromRankin-Selbergtheory, see, e.g., [13], (13.52), (13.53)), we see that Lemma 2.6

gives the result in the case of a cusp form.
On the other hand, if * d, then by Lemma 2.6 both and Ff-a-b have

a pole of order 4, and they satisfy

resi=1 Fd,a,b{s)YS (fa,b(ß)YQa,b{\ogY)

where the polynomial Qa^ has degree at most 3 and has eoeffieient of T3 given by

6 £(2) ur Wd(at)Wd(bt)dt^T3.

Hence the sum of both terms has the desired form with Pab Paj} Qa,b +
Q-a,-b, and since

/> + oo /»+oo /»

/ Wd(at)Wd(bt)dt + / Wd(—at)Wd(—bt)dt / w(at)w(bt)dt,
J0 J0 Jr

again by Proposition 2.3, (3), this concludes the proof.

3. Proof of Theorem 1.2

3.1. First step. Let p be a prime such that the condition (5) holds. To shorten the

notation, we write
Y p2/X, (41)

which is > 1 under our assumption. We also write simply W IL* depending on
whether we treat the case of cusp forms or of the divisor function.

From (30) in Proposition 2.1, we deduce

n\,...,nK^0 (42)
x Kl2(ö«iKl2(an*;/?),

1 <a<p

which we write in the form

M*(X,p\K) := ^72 (Ei + S2) (43)

where Xd corresponds to the contribution of the (n\,..., nK) such that l < \m\ <
pj2 for all i and X2 is the complementary contribution of those (ni,...,nK) such

that \rii | > p/2 for one i at least.
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3.2. Study of E2. We first deal with S2, which is easy. By symmetry, we may
restrict to the case where \n\ \ > p/2. By Deligne's bound

| pf{n)\< (44)

(in the case of a Hecke eigenform /) and the Weil bound (23) for Kloosterman sums,
we have in both cases

s2«( £ x (2:^(i»i)|w(f)|)'"'.

Applying (32) with A > 3, we deduce

S2 « (Ya/pA~l)YK~l
for any > 0 and hence

By assumption, we have p < Xl~8, hence taking A A(8,k) sufficiently large
we prove the inequality

E2«*_1, (45)

which combined with (43) is acceptable in view of the error term claimed in (6).

3.3. Study of Ei. The study of Ei is the crux of the matter. To handle precisely the

sum of Kloosterman sums over a in (42), which is a sum over a finite field, we will use
a deep result in algebraic geometry. But first of all, we must prepare the combinatorial
configurations of the arguments n 1, nK, in order to be able to detect the main term.
We shall even put it in a more general setting to cover the proof of Theorem 1.6. The

following definition deals with the decreasing sequence ofmultiplicities.

Definition 3.1 (Configuration). Let p be prime and let

ß:= G8i,...,j8*)e(PGL2(Fp))"

be a k-tuple of projective linear transformations modulo p. There exist an integer v

satisfying 1 < v < k, a v-tuple ji (pi,..., pv) of positive integers pt satisfying

/H > P2 > ''' > > 1 and p\ H b pv k.

and v distinct elements (o\,..., crv) e (PGL2(F^))V, such that we have

{ßl,...,ßK}
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and

\{i 1 <i <k, ßi=| fij
for all j, with 1 < j <v. The integer v and the v-tuple (fi\,..., /xv) are unique,
and the latter will be called the configuration of ß, the integer v will be called the

length of the configuration and the entries /xy its multiplicities.
If all the multiplicities fij are even, we will say that ß has a mirror configuration.

In particular its length /x is even.

In the next proposition, we will see that the asymptotics for a sum of products of
Kloosterman sums shifted by the projective transformations ßi depends only on the

configuration of ß, rather than on the precise values of the ßi.

Proposition 3.2. Let p be a prime. Let k > 1, ß (jöi,..., ßK) e (PGI^F^))*
be a K-tuple ofelements of the projective linear group with associated configuration
IL (/Xi,...,/Xv).

Consider the sum

<S>{ic,ß,p)= ^ K\2(ßi-a;p)...Kl2(ßK-a;p).
a mod p

ßi-a^0,oo(l<i<ic)

We then have

<o(jc,ß,p) A(ji)p + 0K(p?), (46)

where A(ji) is the product ofintegrals

A(p<) ^ — j (2cos 9)ßl sin2 9d6^ ^ — j (2cos 9)ßv sin2 9d9^j.

The product A(ji) is an integer, which is positive if and only if ß is in a mirror
configuration and 0 otherwise, in which case we have

<5(ic,ß,p) 0(p?).

Finally we have

A(2,2,..., 2) 1. (47)

This is a generalization of a result of Fouvry, Michel, Rivat and Särközy (see Lemma

2.1 of [10]), which only dealt with the case where the ßi are all diagonal and

distinct modulo p. Actually, Proposition 3.2 is a special case of a more general class

of estimates concerning sums of products of trace functions; see [9] for details, in
particular Corollary 3.3.
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Proof By the definition of the configuration, the sum equals

<5(ic,ß,p)= J2 Khio! a; p)ßl .Kl2(ov a; p)ßv,
aeFp, Oj-a^0,oo

(1 <i<v)

where the elements er;, 1 < i < v, are distinct in PGL2(F;7).
For l 7^ p, let Xi, be the (normalized) l-adie Kloosterman sheaf eonstrueted by

Deligne and studied by Katz in [16]. This is a lisse Q^-sheaf of rank 2 on

which has trivial determinant. For some isomorphism 1: Qi -> C, it satisfies

^(traee(FroböjF/?\Xi)) — Kl2(a; p)

for any a e F^. Moreover, XI is Lie-irreducible, tamely ramified at 0 with a Single

unipotent Jordan block, and wildly ramified at 00 with Swan conductor 1 and with a

Single break at 1 / 2.

Given y e PGL2(F;7), let y* XI be the pullback of XI by the fractional linear
transformation y: x i-> y • x; this sheaf is lisse on F^ — {y_1 ({0, 00})} and for any

a e Fp such that y - a 7^ 0, 00, it satisfies

L(trdLce(Fvoba^p\y*XI)) -Kl2(y - a; p).

Katz [16] computed the geometric monodromy group of XI, and showed that it
is equal to SL2, and coincides with the arithmetic monodromy group of XI. The

same is therefore true for y*XI.
We make the following:

Claim. For g\ and cr2 distinct elements of PGL2(F;7) and j£? any rank one sheaf,
lisse on some non-empty open subset of the sheaves or* XI (8) j£? and g^XI are

not geometrically isomorphic.

Proof. We may assume that o\ — Id and that o — o2 is not the identity. If o is a

homothety, the claim was proven in [21], Lemme 2.4. We now reduce to this case.
Assume that Xl§§f£ and er * XI are geometrically isomorphic. Since f£ is of rank 1,

its only possible breaks at infinity are integral, and hence XI (8) f£ is wildly ramified
at 00. So a* is also wildly ramified at infinity, which means that o • 00 00.
Furthermore, XI (8) f£ is also ramified at 0, and hence er*XI must also be ramified,
which means er • 0 0. But this implies that er is a homothety, and we apply the

result of [21].

Since the 07, (7 1,..., v) are distinct elements in PGL2(F;7), it follows from
the Goursat-Kolchin-Ribet criterion (see Proposition 1.8.2 in [17]) that the geometric
monodromy group of the direct sum

G^Xl® •••®G*Xl
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is equal to its arithmetic monodromy group and is the füll product group

SL2 x • • • x SL2,

which indicates an asymptotic independence of the values of the Kloosterman sums
K12(<t; • a; p) as a varies over such that er; • a ^ 0, oo (i 1,..., v).

Using Katz's effective form of Deligne's equidistribution theorem ([16], §3.6),
we deduce that

——— V* K12(cti • a, 1; p)ßl.Kl2(crv• a, 1;
p —1

aeFp, Gj.a^0,oo
(1 <i<v)

v

U^((2cosm-)+ Oßl,...,ßv(p~l/2),
i 1

where the implied constant is independent of p and /xst denotes the Sato-Tate prob-
ability measure on [0, tt], which is given by

MST(/(O) ~ T m Sin2 ddd
n Jo

(recall that [0, tt] is identified with the set of conjugacy classes of the compact group
SU2(C) via the map

g G SU2(C) i-^ trace(g) 2cos0,

and that the Sato-Tate measure is the image of the probability Haar measure of
SU2(C) under this map.)

It follows by character theory of compact groups that

mult (p) /xst((2cos 6)ß)

is precisely the multiplicity of the trivial representation in the p-th tensor power Std®M

of the Standard 2-dimensional representation of SU2(C). In particular, mult (p) is

a non-negative integer, and it is zero if and only if p is odd (this is obvious when

writing the integrals; representation-theoretically, mult(p) 0 if p is odd because

acts by multiplication by (— l)ß on Std®M, and mult(p) > 1 for p even,
because Std®M is self-dual so mult (2p) is the multiplicity of the trivial representation
in End(Std®M), and the identity endomorphism gives an invariant subspace; in fact,
one can check that mult(2p) (2^)/{p + 1), a Catalan number.)

As a consequence

V

A(iiu...,pv) H mult(/r;-),
i l
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is a non-negative integer, and it is non-zero if and only if all the /x; are even, which
corresponds precisely to the mirror eonfiguration. Since mult(2) 1, we also have

A(2,...,2) 1.

Remark 3.3. Expanding the Kloosterman sums, we see that © (k ß, p) is a character

sum in k + 1 variables. The proposition shows that this character sum has square-root
cancellation, except if ß is in mirror eonfiguration. As in [8], we see that the structure
of ©(/c, ß, p) (as a sum of products of Kloosterman sums) is crucial to our success,
since it reduces the problem to detecting cancellation in the Single variable a.

If k — 2 and if ß\(a) b\a and ß2(o) b2a are diagonal, we can use
the fact that the Kloosterman sum is the discrete Fourier transform of the function
x i-> e(x/p) (and 0 i-^ 0) to get

<3(2,001,02 ),p)=^2 Kl2(bia;p)Kl2(b2a-p)^ —h-Aj _ 1

ae¥£ xeFp
P P

by the discrete Plancherel formula. This is essentially a Ramanujan sum, and hence we
see that the second moment (as in (10)) does not require such delicate considerations.
Moreover, because the error term is here p~l (instead of p~l/2), the error term
for the second moment is better than for the others, which explains the greater ränge
of uniformity in the formula (10) of Lau and Zhao. More generally, for k — 2

and arbitrary ß\, ß2 G PGL2(F;7), the sum ©(2, {ß\, ß2), p) can be identified with
a special case of a correlation sum as defined in §1.2 of [8], for the trace weight
K(n) e(n/p). The results of [8] (Theorem 9.1, §11.1) imply the Statement of
Proposition 3.2 for k — 2.

We can now continue our study of the sum £\ defined in (43). Since we have

p \ rii, we have

Kl2(arii', p) Kl2(ßi • a; p),
where ßi e PGL2(F;7) corresponds to the matrix

(o Ü (mod p).

We denote ß (ßi,..., ßK). We also denoteby /i(ß) the eonfiguration of ß. Thus,

by Proposition 3.2 and by (32), we have the equalities

S1 =p £•••£
l<\ni\,...,\nK\<p/2

+0(Pi( e ^a»i)K(f)D')
1<|n\<p/2

pVhM + 0(pl2+eYK), (48)
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say, for any > 0.

Collecting (43), (45) and (48), the proof of Theorem 1.2 is already complete when

k is odd, since trivially Hi5m 0 in that case.

3.4. Study of Xi,m for even tc. We remark that, by the definition of Ei, we have
the congruence rii rij mod p if and only if rii — nj. In the summation over
n (ni,..., nK) defining Eiwe ean restriet the summation over the set of n
such that the associated ß is in mirror configuration by Proposition 3.2.

We now show that, in fact, the main contribution comes from the n in mirror
configuration such that the configuration of the associated ß is (2,2,..., 2). It is

easy to see that, for the remaining w, the associated configuration fi {p\,..., pv)
is such that the length v is at most k/2—1 distinct elements, and satisfy p i > 4.

The equality (47) and some combinatorial considerations lead to the following
equality:

£i,M 3-5---C#c - 1)( J2 **(n)2w(j)2y
l<\n\<p/2

+ °( E E fi E
l<v<§ —1 ßi>—>ßv>2 i ll<\n\<p/2

2\ßi,ßi>4
ßl H \-ßv=K

mK( J2 **(")2w(y)2y + 0(YK/2~1+f) (49)

l<\n\<p/2

for any > 0, the error term arising easily from (32) (recall that mK is given by (9)
and is the k-th moment of a Standard Gaussian). We therefore see that the proof
of Theorem 1.2 is completed by combining (43), (45), (48) and (49) together with
Proposition 2.5, applied with a b 1.

3.5. Further remarks. We compare here the estimate of Theorem 1.2 with other
bounds for the moments which ean be derived straightforwardly from earlier results.
For simplicity, we restriet our attention to the case of cusp forms.

First, we note that it is fairly easy to deduce from Proposition 2.1 and from
Proposition 2.3 that

Ef(X,c,a)«/ y—dic)5'2,(50)

for any c > 1, X > c and any integer a. When c < X2/3, this Statement is better
than the bound

Ef(X,c,a) « Xll2+ec~1/2

Coming from Deligne's estimate for pp (n) (this is very similar to the result first proved
by Smith [25], (4), which has the same ränge ofuniformity; see also the remarks in [2]
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(p. 276) and the work of Duke and Iwaniec [5], Theorem 2). Combining these two
bounds in the definition (4) of M, we obtain

/c2W 2 / X2\k/2
Mf(X, c; k) « *6(y) min f 1, — J

However, for k > 2, we ean also write

Mf(X, c;k) < ^ max \Ef(X, c,a)\^ ^ |£/(X, c, a)\2^,
a mod c

and then using the result (10) of Lau and Zhao, we deduce a second inequality

^
/C2 W2"1

Mf(X,c;K)«eX(j j (51)

whieh holds uniformly for xi < c < X. We then see that our result in Theorem 1.2,

for c — p a prime, improves (51) for

xi < p < xi and k > 3. (52)

We eonelude by noting that Theorem 1.2 ean be extended without much effort
to cusp forms / of arbitrary level and nebentypus, whieh are not necessarily Hecke
forms. On the other hand, it does not seem straightforward to extend the result to an

arbitrary composite modulus c > 1.

3.6. Proof of Corollary 1.4. Corollary 1.4 is an easy consequence of the fact that

convergence to a Gaussian ean be detected by convergence of the moments to the
Gaussian moments (see, e.g., [3], Theorem 8.48, Proposition 8.49). For p prime, let

X /?2/0(/?), <£>(/?) -> +oo, <£>(/?) < p.
Denoting

M+(X,P;K) 1 y- fE+(X,p,a)\K
P ix ^ ' '

we see from Theorem 1.2 that for any > 0, we have

M *{X,P-K)=mK + 0(<$>(PT1'2+ + p-li+HpY'2) —> mK

as p -> +oo. Since this holds for any fixed integer k > 1, this finishes the proof.

Remark 3.4. (1) If X p2~8 for some fixed 8 > 0, we ean not prove the Central
Limit Theorem, but nevertheless, we still deduce that the /c-moments converge to
Gaussian moments when
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(2) In this result, the Gaussian moments arise in Proposition 3.2, and in fact the
combinatorics of the computation is the same as in a Standard case of the Central
Limit Theorem, namely the convergence in distribution to a Standard Gaussian of a

sequence

v _ 2cos(Xi) H b 2cos(X„)
T n ~ 7=

where the (X/) are independent random variables (defined on some probability space)
distributed on [0, tt] according to the Sato-Tate measure.

(3) It is natural to expect that an asymptotic formula

(53)

should be true uniformly for any even /c, and

xi+e <p<X1'8,

for some fixed 8 (0 < 8 < 1/2), which (with a corresponding upper-bound for the
odd moments) would extend Corollary 1.4 to this ränge. This conjecture is true for
k — 2 (by (10)), and is in agreement with the Square root cancellation philosophy (2).

Another partial indication in favor of this conjecture is that a lower bound of that
size holds: considering * / for simplicity, and taking k >2 even, we have

Mf(X,p\2) < (Mf(X,p-K))i.(iJ2 0' *'
P 1<a<p

and, by combining this with (10), we obtain the lower bound

Mf(X,p\K) » 1

uniformly for xi < c < X1_s.

4. Proof of Theorem 1.6

The proof of this Theorem has many similarities with the proof of Theorem 1.2,

particularly in the computation of the error terms. We will mainly concentrate on the

study of the main term of the mixed moment M+(X, p;K,X;y).
We suppose that (5) is satisfied and that p is sufficiently large in terms of y. We

Start from the definition (13) and apply the same computations leading to (42), (43)
and (45) to write the equality

M*(X,p-,K,X-,y) + OsiX'1))
pY 2

(54)
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where

S3= £"•£ (55)

l<\mi\,...,\mK\<p/2

x E-E
i<I"iI,-,I«aI<W2

x ^ Kl2(mia; /?)••• YA2{mKa\j>) Kl2(«i(y K12(«a(k •

l<a<p
a,y-a^0,oo

Since p divides none of the m; or rij, we see that the inner sum over a is equal to
(B(k + X, ß, p), as defined in Proposition 3.2, where

ß ihm\ > • • • > > hni ° y, hn^ o y), (56)

and Am denotes the homothety

/>,„ ("J j) G PGL2(Fp).

To apply Proposition 3.2, we have to understand which ß are in mirror eonfig-
uration, in the sense of Definition 3.1. This depends on whether y is diagonal or
not.

4.1. When y is not diagonal. If y is not a diagonal matrix, then

hmj hjij ° y

for any i 1,..., k and for any j 1,..., X. Henee, in that case, the configuration
of ß defined by (56) has (before ordering the elements by decreasing order) the shape

(Hl,..., Hv, n[,..., n'v,)

where

n in[,..., Hv')

are the eonfigurations of

(hmi •> • • • > ^mK)> ihn\ ° Y> • • • > hn\ ° y)>

respeetively. It follows from Proposition 3.2 that

<5(k + X,ß,p)

^2 Kl2(mia;p)...Kl2(mlca;p)Kl2(ni(ya);p)...Kl2(nx(y-a);p)
1 <a<p

a,y-a^0,oo

A(pl)A(PL')p + Ok,x(P12). (57)
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Hence by (54), (55) and (57) and by computations similar to those we did in §3.3,

we deduce the equality

M*(X,P\k,X\ y) r^(s3,MWS3,M(A) + 0(^+fr+i)) + 0{p~l),
(58)

with

%W= E'"E
l<\mi\,...,\mK\<p/2

S3,m(A)= E'-'E z,(n1)...zi,(nx)w
l<\ni\,...,\nx\<p/2

If k or X is odd, the product A{/l)A{/l') is zero, hence (18) follows in that case.

If k and X are both even, then as in (49), we prove that the largest contribution comes
from the case where ji (2,..., 2) and /i' — (2,..., 2). Hence, by a computation
similar to (49) and (6), we get the equality

s3 ,«W {c*w + o(y-i+e)}ri
and a similar one for E3jm W- Hence, by (58), we complete the proof of (18).

4.2. When y is diagonal. We then write y in the canonical form (14) and we suppose
that

p > maxflyil, \y2\).

Then, by making the change of variable a y2Ci\ we find that the sum over
a of normalized Kloosterman sums appearing in the last line of (55) is equal to
(B(k + X, ß, p) as defined in Proposition 3.2, with

ß (hy2mi > • • • > ^72^/c ' hy-^m > • • • > hyinx) - (59)

If the configuration of ß is not a mirror configuration, we have

<5(k + A, ß,p) 0(p3).

In particular, if k ^ X mod 2, we deduce by (55), (32) and by similar treatment
of the error terms as above, that

£3 « p^+'YK+x. (60)

Combining this with (54) we complete the proof of (19) when k and X have

opposite parity.
Now assume that k and X have same parity. The combinatorics involved is then

more delicate than in §4.1, because me must take into account the cases of crossed
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mirror configurations, namely situations when some of the y2m; are equal to some
of the y\rij.

To be precise, we can decompose Ü3 (see (55)) into

£3 Bnm +ß + (6!)
0<v<min(/c,A)
v=k=X mod 2

where

• Bnm corresponds to the contribution of the (y2mi, • • •, Y2tnK, Yin 1 > • • • > Y\nx)
whieh are not in mirror eonfiguration,

• B^ corresponds to the contribution of the (y2m 1,..., y2m^, yi« 1,..., Y\nx)
whieh are in mirror eonfiguration, but that eonfiguration is not (2,..., 2),

• Bm(v) corresponds to the contribution of the (y2mi,..., y2m/c, yi«i,..., Y\nx)
whieh have a mirror eonfiguration equal to (2,..., 2), and where exactly v of
the y2m; (1 < i < k) are equal to v of the Yinj (1 5 j < A).

The same computation as for (60) gives the relation

ßnm ^ pX+eyK+X
^

whieh, when combined with (54), fits with the error term in (17).
We can also estimate by following the same technique whieh led to the error

term in (49), and obtain
^ /c+A -1

Bo « pY—~1+e,

whieh, by (54), is absorbed by the error term in (17).
The case of Bm(v) is more delicate to treat. For the terms in that sum, exactly v

of the y2m; (1 < i < k) are equal to v of the Yiftj (1 < j < A), and the remaining
y2m/ (resp. Yinj) are in eonfiguration (2,..., 2). The condition y2m; Yinj can
be parametrized by m; Y\t and rij y2Z where t is a non-zero integer. Appealing
to Proposition 3.2, and applying some combinatorial considerations, we deduce the

formula

Bm(v)
V 'V7 1<|K1?I, \Ylt\<p/2

x(l.3-(*:-v-l))( J2 *K.m)w2(y))
2

l<\m\<p/2

x (l • 3 • • • (A — v — 1))( J2 ^)W2(Pj)^ + 0(p^Y^). (62)

1<|n\<p/2
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In this expression, the first term corresponds to the choice and to the contribution
of the v integers m; and v integers rij which satisfy the condition Yinj-
The second factor corresponds to the contribution of the k — v remaining m; which
are in configuration (2,..., 2) between themselves, and the third factor to the X — v

remaining nj in configuration (2,..., 2) between themselves. Finally, the error term
comes from the error term in (46).

Using the arithmetic sums 33*(m,n,Y) defined in Proposition 2.5, we can thus
summarize (62) in the form

k* Af
p — —

2 2 " ((/c — v)/2)! ((A — v)/2)! (63)

•£*(1,1,Y)*¥~v $*(y1,y2,Y)v + 0(p?+Y^).
We now obtain (19) by combining (41), (54), (61), (63) and Proposition 2.5.

5. Proof of Corollary 1.7

We now deduce Corollary 1.7 from Theorem 1.6. The probabilistic tool is the fol-
lowing Standard lemma:

Lemma 5.1. Let (Xw, Yn) be a sequence of real-valued random variables. Let Q be

a positive definite Symmetrie 2x2 matrix. Suppose that, for any integers k,X > 0,

we have

E (X£Y*)—

asn +oo, where mK^(Q) E(A/CB^) for some centered Gaussian vector (A,B)
with covariance matrix Q. Then (Xw, Yn) converges in law to (A, B).

This follows from the case of individual sequences using the characterization of
the Gaussian vector (A, B) by its linear combinations aA + /3B being Gaussian.

We apply this lemma to the sequence (Zp ,Zpo y) for p prime, as in the Statement

of Corollary 1.7. Note that if d, the main term C^(/c, A, y) still depends on p
(because of the polynomials of (log p1 /X) which it involves). However, under the

assumptions of Corollary 1.7 on X and p, we see that in all cases, for fixed k > 0

and X > 0, the limit
C*(/c, X, y)

X lim
p^+oo {c*^w)(K+)^/2

exists, and that

lim E(ZKJZP o Yr) LKfX. (64)
p^+oo v p
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If y is not diagonal, we get by (18) and (7) that LKx mKmx which coincides

obviously with the mixed moment E(A*B^) where (A, B) are independent centered
Gaussian variables with variance 1, so we obtain Corollary 1.7 in that case.

If y is diagonal, we must check that LKx corresponds to the mixed moments of
a Gaussian vector (A, B) with covariance matrix given by (22). For this purpose, we
use the formula (19) and note that

(c*,u;) 2 V

_ (C*,W,y\v ^v

as p —> +oo, with notation as in (19) and Corollary 1.7. Thus, abbreviating G

G*,y,w, we compute the 2-variable exponential generating series of LKx by writing

Y —LKX.UKVX^ ic!A! '

/c,A>0

E »'0 (!)»"-
k,A>0 0<v<min(/c,A)

v=k=A mod 2

,-v Uv+2kvv+21

,£(-+«)><--+»)>( • » h"21
* Gv(UVy v m2kU2k v

~ ^v! (2 ~k)\A~önTv>0 k>0V 'V

(V2 V2\
exp(- + G(/F + T).

Since this is well known to be the exponential generating series of the moments of
the Gaussian vector with covariance matrix (22), we obtain the desired convergence
in law.
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