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On Welschinger invariants of symplectic 4-manifolds
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Abstract. We prove the vanishing ot many Welschinger invariants ot real symplectic 4-
manifolds. In some paiticular instances, we also determine their sign and show that they are
divisible by a large power ot 2. Those results are a consequence of several relations among
Welschinger invariants obtained by a real veision ol symplectic sum formula In particular, this

note contains proofs of results announced in [4].
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1. Introduction

A real symplectic manifold (A. co. r) is a symplectic manifold (A. a>) equipped with
an antisymplectic involution r. The real part of (A, co, r), denoted by RA, is by
definition the fixed point set of r. We say that an almost complex structure J tamed

by to is r-compatible if r is 7-antiholomorphic, i.e. J o dz —tlx o J.
Let Ar (A. a>.x) be a real symplectic manifold of dimension 4. Let C

be an immersed real rational J-holomorphic curve in A for some r-compatible
almost complex structure J, and denote by L the connected component of RA
containing the 1-dimensional part RC of RC. Fix also a r-invariant class F in

H2(X \L: 'LjTL). Any half of C \ RC defines a class C_ in H2(X, L; Z/2Z) whose

intersection number modulo 2 with F, denoted by C • F, is well defined and does not
depend on the chosen half. We further denote by m(C) the number of nodes of C
in L with two r-conjugated branches, and we define the F-mass of C as

m(C) + C F.

*Both authors were supported by the Brazilian-French Network in Mathematics Part ot this work was

accomplished at the Centre Intertacultaire Bernoulli (CIB) in Lausanne, Switzerland, during the semester

piogram "Tropical geometry in its complex and symplectic aspects"
**E B was also partially supported by the ANR-09-BLAN-0039-01
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Choose a connected component L of MX, a class d e H2(X: Z), and r, 5 e Z>o
such that

a(X) • d — 1 r + 2s.

Choose a configuration x_ made of r points in L and s pairs of r-conjugated
points in X \ MX. Given a r-compatible almost complex structure 7, we denote

by C(d, x, J) the set of real rational 7-holomorphic curves in X realizing the class d,
passing through x, and such that L contains MC. For a generic choice of J, the set

C(d,x, J) is finite, and the integer

Wx^,L,F{d.s)= J] (-If' f(C)

CeC(d,x,J)

depends neither on x, 7, nor on the deformation class of Xr (see [14,25])1. We call
these numbers the Welschinger invariants of Xr. When F [MX \ L], we simply
denote WxR,L.(d, s) instead of WXR,L,[RX\L](d. x). Note that Welschinger invariants

are non-trivial to compute only in the case of rational manifolds.
A real Lagrangian sphere of Xr is a Lagrangian sphere globally invariant

under r. Two disjoint surfaces S and S' in X are said to be connected by a chain

of real Lagrangian spheres if there exists real Lagrangian spheres Si S^ in X
such that S, n S7 =0 if |; — j \ > 2, and S, and S, + i intersect transversely in a

single point, as well as S and So, and S' and S^.
The next two theorems are the main results of this note.

Theorem 1.1. Let Xr be a real syniplectic 4-manifold, and suppose that F has a

x-invariant representative connected to L by a chain of real Lagrangian spheres.

(1) Ifr > 2, then

Wx^L,F(d.s) 0.

(2) If r 1 and c'i(X) • d > 2, then

t I < A)d-4
2 2 1 WxR,L,F(d.s).

If in addition F [MX \ L\, then

d2-c 1 (A) d+2
(-D 4 Wx^L(d.s) > 0.

Welschinger originally considered in (25] only the case when F [MX\L] In this case m/ f(C)
is the number ot solitary nodes of RC Later. Itenberg. Kharlamov, and Shustin observed in 114] that

Welschinger's proof extends literally to arbitrary r-invariant classes in HjlX \ L\1ä/21j) See also (9)
for a related discussion

Note that our convention differs slightly from [14], where the sign of a curve m C(d,x, 7) depends
on the panty ol m(C) + C_- (F + [MX \ L]) instead ot m(C) + C • (F)
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Theorem 1.1 is an immediate consequence of Theorem 2.3 and Corollary 2.6

respectively given in Sections 2.3 and 2.4. The invariant Wx^,L,o{d ,s) does not
seem to satisfy a vanishing statement analogous to Theorem 1.1(1) (see [5,11,14]),
implying that the set C(d,x,J) is usually non-empty. Theorem 1.1(2) partially
generalizes L24, Theorems 1.1, 2.1, 2.2, and 2.3] and [5, Proposition 8.2],

Theorem 1.1 can be specialized to real algebraic rational surfaces, whose
classification is well known (see [17,21] for example). A real algebraic rational
surface is always implicitly assumed to be equipped with some Kühler form.

Let Q be the subgroup of the r-invariant classes in H2{X \ L; Z/2Z) generated
by the kernel of the natural map H2(X \ L;Z/2Z) —> H2(X\ Z/2Z), and by the

classes realized by smooth real symplectic curves with either positive genus or self-
intersection at least —1. We show in Propositions 4.2 and 4.3 that WXn,L,F and

WXr,l,F' are equal in absolute value if F — F' e Q. We denote by FL(X^, L)
the group of r-invariant classes in H2(X \ L'^h/lh) quotiented by Q. All groups
FL(X%, L) are computed in the case of real algebraic rational surfaces in Section 4.

In particular, we prove in Proposition 4.8 that they only depend on a minimal model
of Ar and on the choice of L.

Theorem 1.2. Let Ar be a real symplectic 4-maniJold equal, up to deformation and

equivariant symplectomorphism, to a real algebraic rational surface, and suppose
that F is non-zero in %(Ar, L). Then the conclusions of Theorem 1.1 hold in the

following cases:

• Ar is obtained from a minimal model by blowing up pairs of complex
conjugated points and real points on at most two connected components of
IRA', one of them being L;

• Ar is a Del Pezzo surface;

• F [RX\ L].

Remark. In a burst of enthusiasm, we forgot in [4, Proposition 3.3] the assumption
that Ar has to be symplectomorphic/deformation equivalent to a real algebraic
rational surface.

Theorem 1.2 follows from the classification of real algebraic rational surfaces

and Theorem 1.1, which in its turn is a direct consequence of Theorem 2.3 and

Corollary 2.6 below. Our strategy to prove these latters is to degenerate Ar into a

reducible real symplectic manifold A^r, and to relate enumeration of curves in A^r
and in Ar. This degeneration can be thought as a degeneration of Ar to a real nodal

symplectic manifold, and can be described by the contraction of a real Lagrangian
sphere Sy by stretching the neck of a r-compatible almost complex structure in a

neighborhood of Sy (see [8,24]). In this note we use an equivalent description in
terms of symplectic sum [10, 15]), see section 2.2 for more details.
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In particular, Corollary 2.6 follows from Theorem 2.5, which can be seen

as a real version of the Abramovich-Bertram-Vakil formula [1, Theorem 3.1.1],
[23, Theorem 4.5]. Another but related treatment of contraction of Lagrangian
spheres contained in RA has previously been proposed by Welschinger in [24],

The paper is organized as follows. We state Theorems 2.3 and 2.5 in Section 2,

and give their proof in Section 3 using a real version of the symplectic sum formula.
We end this paper by explicit computations in the case of real algebraic rational
surfaces in Section 4.

Acknowledgements. We are grateful to Simone Diverio, Penka Georgieva,
Umberto Hryniewicz, Ilia Itenberg, Viatcheslav Kharlamov, Leonardo Macarini, Frederic

Mangolte, Brett Parker, Christian Peskine, Patrick Popescu, Jean-Yves Welschinger,
and Aleksey Zinger for many useful conversations. We are also indebted to the

anonymous referee for many valuable comments on the first version of this paper.

2. Auxiliary results

2.1. Preliminaries. In the whole text, we denote by Xq CP1 x CP1, by tops
the Fubini-Study form on CP", and by l\ and l2 respectively the homology classes

[CP1 x{0}] and [{OjxCP1] in H2(X0; Z). Recall that H2(X0; Z) is the free abelian

group generated by l\ and l2. Up to conjugation by an automorphism, there exist
four different real structures on (CP1 x CP1. tops © tops), and the class l\ + l2 is

invariant for exactly three of them, see for example [17,21], These latter are given
in coordinate by:

• Thy(z,w) (z,w),RXhy Sl x Sl]
• rei(z,w) (w,z),RXei S2;

• Tem(z, w) (-k, -®), WXem 0.

Note that Xhy and zem act trivially on H2(Xo'. Z/2Z), while rei exchanges the

classes /] and l2. Note also, with the convention that j(0) 0, that

/(MA/,3,) 0. and /(RAe/) 2.

Lemma 2.1. Let E be a smooth symplectic curve in (Xo.cops © tops) realizing
the class l\ + l2 in H2(X0\Z). The group H2(X0 \ E'.'LJTL) is isomorphic to

TLfTL, and is generated by any representative disjoint from E of the class l\ + l2 in

H2(X0\Z/2Z).

Proof. The first Chern class of (X0,cops ®cofs) is dual to /i + l2. Hence it follows
from the adjunction formula [19, Chapter 2] that E is an embedded sphere. The

lemma can be proved exactly as Lemma 4.1, nevertheless we provide an alternate

proof.
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Let J be an almost complex structure on X0 tamed by cops © ^FS such that E is

/-holomorphic. Since both classes I\ and l2 have the same symplectic area, a class

a 11 + b 12 has positive symplectic area if and only if a+b > 0. Asa consequence, any
/-holomorphic curve realizing the class l\ is an embedded sphere. The Gromov-
Witten invariant of (Vo, cops © cops) for the class /j is equal to 1, and /f 0, so

there exists a unique /-holomorphic sphere realizing the class 11 and passing through

any given point of X0. Recall that any intersection of two distinct /-holomorphic
curves is positive. Since [E] •l\ 1, we deduce a S2-fibration Ao —> E whose fiber

over a point p e E is the ./-holomorphic sphere realizing the class l\ and passing

through p. In its turn, this induces a R2-fibration X0\ E —» E, and so Xq \ E has

the same homotopy type than E. This proves that H2(X0 \ E\Z/2Z) ~ Z/2Z.
Since [E]2 2 in X0, there exists a representative E of the class l\ + l2

in H2(X0:Z/2Z) disjoint from E. The class [F] is obviously non-zero in
H2 (Xo \ E\ Z/2Z), and so generates the group.

Lemma 2.2. Suppose that E is a smooth real symplectic curve in (Xo.cops ©
WFS-Tw) realizing the class l\ + l2 in 112(2(0'. Z), and that T> is an embedded

Tei-invariant disk with (YD c E. Then the group IEIXq, E; Z/2Z) is isomorphic to

ZjXL and generated by D.

Proof. Recall that E is an embedded sphere. The long exact sequence of pairs gives
the exact sequence

H2(E;Z/2Z)±> H2{X0\Z/2Z)U H2(X0. E: Z/2Z) - 0.

The map / is clearly injective, so H2(X0. E\Z/2Z) is isomorphic to Z/2Z and

generated by j{f) y'(/2).
Denote by D\ and D2 the two halves of E \ dD. Since E is a real symplectic

curve, the involution ce/ exchanges D\ and D2. The surface D, UD realizes a class

in H2{X0". Z/2Z), and we have

/1+/2 [D1UD2] [D1UP] + [D2 u T>\ in H2(X0: Z/2Z).

Since re/ exchanges the classes [D\ Ufj and [D2 U V], both of them are non-null,
i.e. [D! U D] 11 and [D2 U D] /3_,. Hence by the long exact sequence of pairs,
the class realized by D\ U D in H2(Xo. F;Z/2Z), which equals the class realized
by D, generates the group.

Example. In the case when X0\E is the affine quadric with equation ,v2 + y2 + z2 1

in C3, the sphere Xo D R3 is an example of generator of H2(Xo \ F;Z/2Z), and

the disk Xo n (/R x /R x R>o) is an example of generator of H2(X0. £; Z/2Z), see

Figure 2c.
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2.2. Vanishing Lagrangian spheres. Let Ar (I.w.r) be a real symplectic
manifold of dimension 4. A class V in //2(A:Z/2Z) is called a real vanishing
cycle if it can be represented by a real Lagrangian sphere Si/. By stretching the

neck of a r-compatible almost complex structure in a neighborhood of SV, one

decomposes X into the union of X \ Sy and T* Sy This operation can be thought
as a degeneration of Ar to a real nodal symplectic manifold for which V is precisely
the vanishing cycle. Equivalently, the class V is a real vanishing cycle if and only
if, up to deformation, Ar can be represented as the real symplectic sum of two real

symplectic manifolds (Ai.&q.ri) and (Ao.(i>fs © rufs.r0) along an embedded

symplectic sphere E of self-intersection —2 in A! (hence of self-intersection 2 in A0)
where:

• E is real and realizes the class l\ + l2 in H2{Xq. Z);

• V is represented by the deformation in A of a representative of the non-trivial
class in H2(Xq \ E\ "LITL).

By abuse, we still denote by V the non-trivial class in H2{Xq \ E\L/TL). We refer
to Section 3.2 for more details about the symplectic sum operation. We denote by A#
the union of (A], a>\. t]) and (Aq.cdfs © A)) along E, by L# the degeneration
of L as Ar degenerates to A#, and by L, the intersection L# n A, Note that by
construction we have 9L, C

Recall that T*S2 is equivariantly symplectomorphic to the complement of a

smooth real hyperplane section E of a smooth real quadric in CP3. This real quadric
is precisely the summand (Ao,cl>fs © <»>fs• *o) of X$. We depicted in Figure 1

all possibilities for MA0 and Sy. Choose a diffeomorphism between T* S2

and the line bundle OCPi(—2) of degree —2 over E CP1, which restricts to
a symplectomorphism between the complements of the zero sections (note that
does not preserve the fibration). The summand (Ai.ttq. ri) of Ajj is obtained by

b) ro rei and RE ^ 0 c) ro — xe{ and RE 0 d) ro xem

Figure 1. Possibilities for (Äq, ro) and S\r
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removing from X a small tubular neighborhood of Sy, and by gluing back via
a small neighborhood of the zero section of OCP\(—2). The homology groups
H2(X\:Z) and H2(X\'L) are canonically identified, the class [£] being identified
with the class tp"1 ([£]). We implicitly use this identification throughout the text.

Let f be a r-invariant class in H2(X$ \ L#;Z/2Z) having a r-invariant
representative F, and define F, F D X,. Note that by construction we have

dF, C E. Throughout the text, we always assume that F satisfies the following
conditions:

• either F D 1RE 0, or there exists a neighborhood U of R£ in X$ such that

F fi U C RAjj (i.e. F is either disjoint from RE, or is locally contained in

IRXfl around R£);

• one of the two following assumptions hold:

(Hi) F0 U £0 is a cycle representing a multiple of V in E/2(Xo: Z/2Z);

(H2) tq Tei, and Fo U L0 T> or Fo U L0 T> U Sy, where V is a

r-invariant embedded disk with dV c E (all possibilities are depicted
in Figure 2).

2.3. Vanishing Welschinger invariants. Next theorem is a key ingredient in the

proof of Theorem 1.1, and will be proved in Section 3.4.

Theorem 2.3. Suppose that Fo U To satisfies assumption { H\) and contains MVo,
and that Lo is a disk.

(1) If r > 2, then

aJMf ^ 0 and Tn C Sy b)R£ 0 and Lo 0 c) R£ 0 and L0 0

Figure 2. Possibilities for Fo U Lo under the assumption (H2)

WxR ,L,F(CT.v) 0.
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(2) Ifr 1 and ci(X) d — 1 >2, then

c i (X) d—4
2 2 \WXr ,l,f(c1,s) and (-1)

t/2-t | (X) d +2
WX^L(d.s) >0.

Note that the assumptions of Theorem 2.3 imply that To re; and IRE ^ 0.

In the Lagrangian sphere contraction presentation, the condition that L0 is a disk
translates to the condition that L n Sy is reduced to a single intersection point.

2.4. From X\ to X. Here we reduce the computation of Welschinger invariants

of Ar to enumeration of real 7-holomorphic curves in (X\.cl>i,t\) for a

x\-compatible almost complex structure J for which E is 7-holomorphic.

Definition 2.4. Let / be a T\-compatible almost complex structure on (Xi.oji, ri)
for which the curve E is Jholomorphic, and let C\ be an immersed real rational

Jholomorphic curve intersecting E transversely. We denote by a the number of
points in RCi (T RE, by h the number of pairs of rj-conjugated points in C\ (T £,
and by mLx^x(C\) the number of intersection points of a half of C\ \ RCi with

L\ UTi. Finally, let k > 0 be an integer.

(1) If Jo satisfies assumption (H\), then we define

I i -k=ak+2bk

ana

2 r \ {-\)mL^^(Ci)+yb 2b if a 0 and k h:
o,k 1

j q otherwise.

where y 0, 1 is such that [J0 U L0] yV in H2(X0\ Z/2Z).

(2) If J0 satisfies assumption (H2), then we define

_
-N (C|) if k a h 0:

F-Ltt,roA((2i) 0 otherwise

As above let d e H2(X; Z) and r, s e Z>0 such that

ci(X)-d - 1 r + 25.

Choose a configuration x made of r points in L\ and .v pairs of r-conjugated points
in Ai \ RAj. Let J be a T\-compatible almost complex structure for which E is

Jholomorphic.
For each integer k > 0, we denote by C\^(d,x_, J) the set of all irreducible

rational real Jholomorphic curves in (AJ u>\, T\) passing through all points in x,
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realizing the class d — k[E], and such that L\ contains the 1-dimensional part
of RCi. For a generic choice of J satisfying the above conditions, it follows from
Lemma 3.1 and Proposition 3.3 that the set C\^(d,x_, J) is finite, and that any curve
in C\^(d,x_, J) is nodal and intersects E transversely. Moreover C\^{d,x_, J) is

non-empty only for finitely many values of k.
We prove next theorem in Section 3.3. Recall that notations have been introduced

in Section 2.2.

Theorem 2.5. Suppose that L i fi 0 if r > 0. Then for a generic choice of J, the

two following claims hold.

(1) IfFo satisfies assumption (H\), then, with the convention that /(0) 0, one
has

wwid.s) Y. E
k>0 Ci 6Ci ji (d.x,J)

(2) IfJ-o satisfies assumption (H2), then one has

Wxm,L,F(d,s) r, E-Ln.^o.oiCi).
C1 eCi 0(d,x,J)

Applying Theorem 2.5(1) with F [MA \ L], one obtains [4, Theorem 2.2],
Some instances of Theorem 2.5(1) when RAo Sl x Sl have been known for
sometimes, e.g. [6,7, 16,20]. Since the publication of [4], an algebro-geometric
proof of Theorem 2.5(1) appeared in [5] and in [11] in the particular cases when A
is a Del Pezzo surface of degree two or more. Theorem 2.5(2) immediately implies
the following corollary.

Corollary 2.6. Suppose that V e H2(X \ L\Z/2Z) and that Fq satisfies
assumption (7/2). Then

WxR,L,Fid,s) Wxm,L,F+v(d,s).

2.5. Applications of Theorem 2.5(1). We do not explicitly use Theorem 2.5(1) in
the proof of Theorem 1.1, nevertheless its proof is almost contained in the proof of
Theorem 2.5(2). Theorem 2.5(1) has many interesting applications, in particular in

explicit computations of Welschinger invariants, see [5, 11]. We present two other

consequences.
We first relate some tropical Welschinger invariants to genuine Welschinger

invariants of the quadric ellipsoid. We refer to [13] for the definition of tropical
Welschinger invariants. The only homology classes of (A0. cofs®u>fs- tei) realized
by real curves are of the form d{l\ + 12) with d e Z>0. We say that a tropical curve
in R2 is of class (a. h) in the tropical second Hirzebruch surface TF2 if its Newton

polygon has vertices (0.0), (0,«), (b, a), and (2a + 6,0). We denote by Wff2(d)
the irreducible tropical Welschinger invariant of TF2 for curves of class (d, 0).
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Proposition 2.7. For any d e Z>o, we have

ti,s2(d11 + dl2. 0) H/tf2(ö').

Proof We consider the second Hirzebruch surface F2 equipped with its real

structure induced by the blow up at the origin ot the real quadratic cone with equation
x2 + y2 — z2 — 0. We denote respectively by h and f the class in H2(F2;Z) of
a hyperplane section and ot a fiber. According to (_ 18J, if xT is a tropically generic
configuration of 4d — 1 points in R2, then any rational tropical curve in TF2 of
class (d — k,2k) and containing xT has 4d unbounded edges of weight 1. Still
by [18], this implies the existence of a generic configuration x of Ad — 1 points
in RF2 such that any real algebraic rational curve in F2 of class (d — k)h +2k f and

containing x intersect the (—2)-curve only in real points. Now the corollary follows
from Theorem 2.5(1) applied with RAo S2.

It is proved in [12] that given a real tone Del Pezzo surface X equipped with its

tautological real toric structure and a class d e Fl2( A4 Z), we have

0) > Wx^igLxid. 1).

The same idea we used in the proof of Proposition 2.7 combined with Theorem 2.5

and [5, Theorem 3.12] provide a natural generalization of this formula in the

particular cases when A is a Del Pezzo surface ot degree at least three.

Proposition 2.8. Let (X. co) be a symplectic 4-manifold symplectomorpluc/deformation
equivalent to a Del Pezzo surface of degree at least three. If AA (A' .co. rj) and

A^ (A, u>. r2) are two real structures on (X. co), then for any d /^(A'. Z) one
has

W*i,L2(</,0)>0 ,f /(RA) < /(RA').

Proof. We first prove the proposition in the case when (X.co) is deformation

equivalent to CP2 blown up at six points. We consider CP2 and its blown up
equipped with the standard complex structure Jsl. Let us denote by CP^(k) the

blow up of CP2 in 6 — 2k real points and k pairs of conjugated points, such that
these 6 blown-up points do not lye on a conic, and no 3 of them lye on the same line.

We further denote by CP^(k) the blow up of CP2 in 6—2k real points and k pairs ot

conjugated points, such that this 6 blown-up points lye on a smooth real conic with a

non-empty real part, but no 3 of them lye on the same line. We denote by E the strict
transform of this conic in CP^(k). We also denote by CP62(4) the real structure on
the blow up CP2 in 6 points with a disconnected real part (see [17,211). We have

/(IP62(/c)) -5 + 2k for all k g {0. 1.2.3.4}.

Note that CP£(k) contains no complex algebraic curves C with C2 < —2, and that

the curve E and its multiples are the only algebraic curves in CP\(k) with self-

intersection strictly less that —1. Hence it follows from [19, Lemma 3.3.1] that Js,
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is generic enough for our purposes, as long as we consider generic configuration
of points in CP\(k). Theorem 2.5(1) applied to E in X\ CP\(k) allows one

to compute WCP2^ Lj (d, s) (when MA"o S1 x S1) and Wcp2(k+i) p {d. s)

(when RX0 S2) out of the sets C\^{d,x_. Jsl)• When s 0, it follows from

[5, Theorem 3.121 that there exists a configuration of real points x_ in CPg(/r) such

that for any k > 0, any curve in C\tk(d,x- Jst) intersects E only in real points
(i.e. b 0), and

(-l)m/1 R;vx/1(C|) > o.

Cl ^ {d,x,Jst)

Hence by Theorem 2.5(1) we obtain

E ('''/£i) E«-1»*"1 "'|U|<C,>

C, A (d,x,Jsl)

> 0.

The proof in the case of CP1 x CP1 is analogous using floor diagrams from [3].

Note that Proposition 2.8 does not generalize immediately to any symplectic 4-

manifold. Indeed, according to [2, Section 7.3] one has

^/c/>2,R/'2(9- 12) < WCP2iR/>2(9, 13),

i.e. Proposition 2.8 does not hold in the case of CP2 blown up in 26 points.

3. Real symplectic sums and enumeration of real curves

This section is devoted to the proof of Theorems 2.3 and 2.5. We start by performing
some preliminary computations in Section 3.1. We recall the symplectic sum
construction in Section 3.2, as well as a basic application to complex enumerative

problems. We prove Theorems 2.3 and 2.5 in Sections 3.3 and 3.4, by adapting
results from Section 3.2 to the real setting.

An isomorphism between two 7-hoIomorphic maps f\ : Ci —» X and
f~2 : C2 —^ A is a biholomorphism </> : Ci —> C2 such that f\ tp. Maps
are always considered up to isomorphisms.

Given a (a, );>i e Z^°0, we use the following notation:

+00 +00
I a I and la y^ / a,.

!=1 !=1

The vector in Z^°0 whose all coordinates are equal to 0, except the /th one which is

equal to 1, is denoted by e,.
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3.1. Curves with tangency conditions. Let (X, to) be a compact and connected 4-

dimensional symplectic manifold, and let E C X be an embedded symplectic curve
in X. Let d e Ü2(X; Z) and a, ß £ Z^°0 such that

Ia + Iß d [E\.

Choose a configuration x x° U xE of points in X, with x° a configuration of
ci(X) • d - 1 - d [E] + \ß\ points in X \ E, and xE [Pi,j}o<j<a,,i>i a

configuration of |or | points in E. Given J an almost complex structure on X tamed

by to and for which E is J-holomorphic, we denote by Ca^(d,x_, J) the set of
rational /-holomorphic maps / : CP1 X such that

• MCP]} d-

• X c /(CP1);
• £ does not contain /(CP1);
• f(CP1) has order of contact i with E at each points phJ;
• /(CP1) has order of contact / with E at exactly ß, distinct points on E \xE.

For a generic choice of J, the set of simple maps in Ca'^ (d, x, J) is O-dimensional.

However Ca'^(d,x, J) might contain components of positive dimension
corresponding to non-simple maps.

Lemma 3.1. Suppose that ß — (d • [E]) and a 0, or ß (d [E] — 1) and

a (1). Then for a generic choice of J, the set C01^ (d, x, J only contains simple

maps.

Proof. Suppose on the contrary that C01^ (d,x_, J) contains a non-simple map which
factors through a non-trivial ramified covering of degree S of a simple map /o :

CP1 —> X. Let d0 denotes the homology class (/o)*[CP1]. Since f0(CPl) passes

through Sei (X) d0 — 1 points, we have

c\ (X) • do — 1 >8ci(X)-d0-\ >0,

which is impossible.

Next proposition shows that the set of images of non-simple maps mCa'^(d, x, J)
is O-dimensional.

Proposition 3.2. Suppose that Ca,^(d.x_, J) contains a non-simple map f which

factors through a non-trivial ramified covering of a simple map fo '. CP1 -> X.
Denote by do the homology class (/o)*[C/>1], and let a'.ß' Z~0 such that

fo £ Ca 'P (do,x, J). Then for a generic choice of J, we have

Ci(X) do — 1 — do [E] + |jS'| |x°| k\ and \oi'\ I<2

with (kx.kf) (1,0), (0, 1), or (0,0). Moreover in the first two cases, the set of
such ramified coverings f is finite, and |a'| + \ß'\ > 2.



Vol. 90 (2015) On Welschinger invariants of symplectic 4-manifolds 917

Proof. Let 8 > 2 be the degree of the covering map through which / factors. In
particular we have d 8do. By Riemann-Hurwitz Formula, we have

8(\a'\ + \ß'\)-\a\-\ß\<28-2.
Combining the latter identity with \a'\ |or|, we get

\ß\ — \ß'\ > (8 — l)(|a'| + \ß'\ — 2). (3.1)

Since /0(CP') contains all points in x°, we have

Cl(X)-do-\-do-lE} + \p\ > \x°\=8cx(X)-d0-l-Sdo-[E] + \ß\,

and so

(8-l)(do-[E]-c1(X)-d0) > \ß\-\ß'\.
Combining this identity with (3.1), we obtain

0 > (8 - l)(Cl(X) -d0-d0- [E] + lot'l + \ß'\ - 2).

Since we have

8 >2, cl(X)-d0-d0-[E] + \ß'\-\ >0, and |a'| > 0,

we deduce that

Ci(V) • d0 — 1 — d0 • [E\ + \ß'\ ki and |a'|

with (ki, ^2) (1,0), (0,1), or (0,0). Moreover in the first two cases, all
inequalities above are in fact equalities. In particular there exists finitely many
coverings n : CP1 —> CP1 of degree 5 such that /0 o jt e Ca'^(d,x. J). Since
1^1 — \ß'\ > 0, we also deduce from (3.1) that \a'\ + \ß'\ >2.

Remark. The three cases from Proposition 3.2 show up, even in simple situations.
Let us consider for example X to be CP2 blown up at a point q. Denote by / the

homology class of a line, by lexc the class of the exceptional divisor, and by E
the pull back of a conic not passing through q. Then for any choice of J, the sets

C°>2e'(8(l - lexc)Apl J), Ces'es(8(l — lexc).@, J), and C°(8(1 - lexc), 0, J)
with 8 > 2 contain a non-trivial ramified covering of a line, the third set being of
dimension 5—1.

Proposition 3.3. Suppose that E is an embedded symplectic sphere with [E]2 > —2,

and that \ß\ > [P] • d — 1. Then for a generic choice of J, the set Ca,^(d.x, J)
contains finitely many simple maps. As a consequence, the set

CaJ{d,x,J) {/(CP^K/tCP1 ^ X)zCa>ß(d,x,J)}

is also finite.
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Proof. Suppose that Ca'^(d.x^.J) contains infinitely many simple maps. By
Gromov compactness Theorem, there exists a sequence (fn)n>o of simple maps
in Ca'P(d,x_,J) which converges to some J-holomorphic map f : C —>• X. By
genericity of J, the set of simple maps in Ca'^(d..\_. J) is discrete. Hence either C

is reducible, or / is non-simple. Let C \ Cm. C, Cm, be the irreducible

components of C, labeled in such a way that

• 7(c.) t £;

• f(c[) C E, and f*[c[] k,[E].

Define k Yl7= \ • The restriction of / to C, is subject to

Cy{X)-d -\-d -[E] + \ß\

points conditions, so we have

<-,(*) • (d - A-[£]) -m> ci(A-) -d-\-d -[E] + \ß\.

Since E is an embedded sphere, the adjunction formula implies that ci(A') • \E]
[E]2 + 2. Hence we get

d(X) -d -2k -k[E]2 -m > a(X)-d - 1 - d [E] + \ß\.

that is

0 > —d [£] + \ß\ + m- 1 + 2k + k[E]2.

Since d [£] > |^|, we are in one of the following situations:

(1) d [E] l/f | (in particular a 0):

(a) k 0, and in 1;

(b) [E]2 —2, k > 0, and m 1;

(2) d [E] \ß\ + 1 (in particular either ß (d • [E] — 1) and a (1), or
ß (d -[E]-2.\)y.

(a) k 0, and m 1;

(b) k 0, and m 2;

(c) [E]2 — 1, A' 1, and m 1;

(d) \E]2 — —2, k > 0, and m 1;

(e) [£]2 —2, k > 0, and in 2.

We end the proof of the proposition by ruling out all these cases one by one.
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(1 )(a) d [£] \ß\,k =0. and m 1:

As explained above, the map j has to factorize through a non-trivial ramified

covering of a simple map /0 : C P1 —>• X. But then /0 is subject to more point
constraints that the dimension of its space of deformation, which provides a

contradiction.

(1)(b) d [E] \ß\, [E]2 —2, k > 0, and m 1:

By genericity, the curve / (C j) is fixed by the c'i (2f) • d — 1 point constraints

and intersect E transversely. Any intersection point of f (C i\(C ,U...U C m,))
and E deforms to an intersection point of /„(CP1) and E for n » 1. Since

(d -k[E])-[E] d -[E\ + 2k, at least d [£] + k intersection points of f (C i)
and E deform to an intersection point of /„(CP1) and E for n >> 1. But
this contradicts the fact that two ./-holomorphic curves intersect positively.

(2)(a) d \E] \ß \ + 1, k =0, and in 1:

Since / is a non-simple map, it factorizes through a non-trivial ramified
covering of degree 8 > 2 of a simple map fo : CP1 —>• X. If
do /o/jCP1], the adjunction formula implies that the image of fo has

</q — c'i (X) do + 2

2

nodes. Each of this node deforms to 28 intersection point of /„(CP1) and

fo(CP1) for n >> 1. Since x_ C /„(CP1) n /o(CP 1), we get

d2 -cx(X) -do + 2
d-do> 25-5 — +c\(X)-d —2 d-d0 + 2(8-\)>d-do

which is a contradiction.

(2)(b) d [£] l/l + 1, k 0, and in — 2:

By genericity, the curve /(C| U C2) is fixed by the c\{X) d — 2 point
constraints, and intersect E transversely at non-prescribed points. This
contradicts the fact that either a 7^ 0 or ßj / 0.

(2)(c) d [E] \ß\ + 1, [E]2 1 ,k 1, and 111 1:

By genericity, the curve / (C1) is fixed by the c'i(X)-d —2 point constraints,
and intersect E transversely in d [E] + 1 non-prescribed points. Any such

intersection point distinct from f (C \ (T C,) deforms to an intersection point
of /„ (CP1) and E for n >> 1. Moreover since all intersection points of

f (C1) and E are transverse and non-prescribed, the component C
x

contains
the limit of the point corresponding to the extra constraint a 1 or Therefore
/„(CP1) and E for n >> 1 must have at least d [E] + 1 intersection points
for n » 1, which is a contradiction.
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(2)(d) d [£] \ß \ + 1, [E]2 —2, k > 0, and m 1:

Suppose first that /^ factorizes through a non-trivial ramified covering of
degree 8 > 2 of a simple map /o : CP1 —> X. Since /TCP1) satisfies

<?i (A') • d — 2 point conditions, we have that

cx(X) -do - 1 > ci(X)-d- 2 8cl(X)-d0-2> 0.

where do (fo)* [CP']. Hence we obtain that c\(X) do 1 and 8 2. In

particular the curve fo(CP1) is rigid, and intersect E at smooth points. Now
the same arguments used in the case (2)(a) provide a contradiction.

Hence f *s a simple map. Since /|c satisfies c/X) • d —2 point
constraints, it has at most one tangency point with E. The same argument
used in the case (1 )(b) implies that k 1 and f(C i) is tangent to E
at /(CT (T Cj). Hence f\c is fixed by this tangency condition and the

c\(X) • d — 2 other point conditions, and the component Ct contains the

limit of the point corresponding to the extra constraint ai or ß2. Thus we
obtain again a contradiction with the positivity of intersection points of E and

/„(CP1) for/r >> 1.

(2)(e) d -\E} \ß\ + 1, [E]2 -2,k> 0, and m 2:

By genericity, the curve /(C i U C2) is fixed by the c/X) • d — 2 point
constraints, and intersect E transversely at non-prescribed points. Hence
the same argument used in the case (l)(b) implies that k 1. Thus the

component C { contains the limit of the point corresponding to the extra
constraint a\ or ß2, which gives a contradiction as in the case (2)(d).

The finiteness of the set C"'^(d,x,J) follows from Proposition 3.2 and the

finiteness of simple maps in Ca ^ (do.x, J) for all possible a'.ß', and do with
d 8d0.

In the case when X CP1 x CP1, [E] l\ + l2, and |x°| < 1, the set

Ca'P(d,x, J) is always finite and made of simple maps.

Proposition 3.4. Suppose that X CP1 x CP1 and [E] / + l2. Then the

set Ca'ß (d, x, J) with |x°| 5 1 is empty for a generic choice of J, except in the

following situations where it contains a unique element:

• Cei'°(/,-,0,y), i 1,2;

• C°'eHhAp},J),i 1,2;

C^ih+hAphJ);
• Ce2'°(li +/2, {p},/).

Moreover, this unique element is an embedding.
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Proof. The first Chern class of X is dual to 2(/i + I2), so

c \(X) (al\ + bl2) — 1 — (a I \ + b/2) • [£] + \ß\ a + b — 1 + \ß\.

Suppose that a + b — 1 + |j8| 0 and that Ca^(al\ + bl2. 0, J) ^ 0. Since

(all + bl2) • [E] a + b > \ß\, and since two /-holomorphic curves intersect

positively, we obtain a + b 1 and \ß\ 0. By genericity of /, we have that

(all + bl2)2 > —1, i.e. 2ab > —1. From a + b 1, we deduce that a 0 or 1.

In the case a + b — 1 + \ß\ 1 and Ca^(al\ + bl2. {p\. J) ± 0, we prove
analogously that we are in one of the following situations:

• (a.b) (1,0) or (0, 1), and \ß\ 1;

• (a.b) (1, 1), (2,0), or (0,2), and \ß\ 0.

If X is equipped with the symplectic form cofs ® <f>fs and its standard complex
structure Jst, it is easy to check that the sets Cei'°(/,. 0. Jst), C°'£| (/,.{/?}. Jsl),
C2e\ 0(/j + /2, {/>]. Jst), and Ce2'°(l\ + /2, {p}. Jst) consists of a unique element.
This implies that when we vary both co and J, the corresponding sets still contain
at least one element. Moreover they cannot contain more than one element, since

the imposed constraints imply that two distinct curves would have an intersection
number strictly bigger than the one imposed by their homology class. Finally, all

./-holomorphic maps under consideration are embeddings thanks to the adjunction
formula.

Suppose now that Ca'°(2l, ,{p}, J) contains an element / : CP1 —> X. We

proved in the previous paragraph that there exists a map /o : CP1 —> X in
C°'e](I,. \p).J). Since we have f*[CP:\ (/o)*[CP1] 212 0, we deduce

that / factors through /0 and a degree 2 ramified covering of CP1. This contradicts

Proposition 3.2.

3.2. Symplectic sums. Here we describe a very particular case of the symplectic
sum formula from [15]. Recall that (Xi.wi) is a compact and connected

symplectic manifold of dimension 4, containing an embedded symplectic sphere E
with [E]2 —2. We furthermore assume the existence of a symplectomor-
phism (p from £ to a symplectic curve realizing the class I\ + /2 in (Xo.u>o)
(CP1 x CP1, cofs ® oJfs)- By abuse, we still denote by E the image cf>(E) in X0.
Since the self-intersection of E in 9f0 and X\ are opposite, there exists a symplectic
bundle isomorphism 1(r between the normal bundle of E in V0 and the dual of the

normal bundle of £ in X\. Out of these data, one produces a family of symplectic
4-manifolds (Yt.a),) parametrized by a small complex number t in C*, see [10].
All those manifolds are deformation equivalent, and are called symplectic sums of
(X0,a>o) and (Xi.coi) along E. Next theorem says that this family can be seen

as a symplectic deformation of the singular symplectic manifold X§ V0 Ue X\
obtained by gluing (Vq. coq) and (X\. cü\ along E.
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Proposition 3.5 ([15, Theorem 2.1]). There exists a symplectic 6-manifold (Y. coy)

and a symplectic fibration n : Y —> D over a disk D C C such that the centralfiber
jr —1 (0) is the singular symplectic manifold X$, and n~l(t) (Yt, m,) for t 0.

Topologically, Y, is obtained by removing a tubular neighborhood of E in A"i,
and gluing back X0 \ E via \j/. Note that the symplectomorphism f induces

a diffeomorphism from the normal bundle of E in X\ and Xq \ E. Hence

the homology groups H2(Xp.Z) and H2(Yt\Z) are identihed, the class [E] being
identified with the class Without loss of generality we may assume that

^*[£] h ~ 12 in H2(Xo\7j).
Let d e H2(Yt\ Z), and choose .y(f) a set of c\(X) d — 1 symplectic sections

D —> Y such that x(0) Pi E — 0. Choose an almost complex structure J on Y

tamed by coy, which restrict to an almost complex structure J, tamed by wt on each

fiber Yt, and generic with respect to all choices we made.

Define C(d, x(0), Jo) to be the set j/ : C —> A^j of limits, as stable maps,

of maps in C(d,x_(t), Jt) as t goes to 0. Recall (see [15, Section 3]) that C is a

connected nodal rational curve such that:

• x(0) C 7(C);

• any point p £ / (E) is a node of C which is the intersection of two
irreducible components C and C of C, with f(C C Xq and / (C )Cli;

• if in addition neither /(C nor f (C is entirely mapped to E, then the

multiplicity of intersection of both f(C and f (C with E are equal.

Given an element /' : C —» X# of C(d,x(0), Jo), we denote by C, the union of
the irreducible components of C mapped to X,.

Lemma 3.6. Given an element f : C X^ ofCid. xfü), Jo), there exists k e Z>o
such that

f *[C\] d — k[E] and f JC0] kl\ + (d [£] + k)l2.

Moreover c\{Xx) f\[C{\ Ci(Yt) d.

Proof. Let k such that f*[C\] d — k[E], and let f*[Co\ al\ + bl2. Using the

above identification of El2{X\\'L) and H2(Y,;Z), we have

d [E] /*[C0] • 0i - l2) b - a.

On the other hand, by considering a representative of E in X\ and another in X0, we
obtain

a+b /.[Co] • (h + h) id - k[E]) [E] d [E] + 2k,

which gives a k and b d • [E] + k.
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By [15, Lemma 2.2], we have

Cl(Y,)-d Cl(Vi) -lACi] + O(*o) -7*[Co] - 27*[C0] • [£].

Since ci(V0) is dual to 2(1 \ + /2), we deduce that c'i (V)) • / *[Ci] c\(Y,)-d.

Proposition 3.7. Assume that the set x(0) R Xo contains at most one point, and that

x(0) n Xi ^ 0 if x(0) n X0 ^ 0. Then for a generic Jo, the set C(d,x(0), J0)
is finite, and only depends on x(0) and Jq. Given f : C —> Xjf an element of
C(d.x(0), Jo), the restriction of f to any component of C is a simple map, and no
irreducible component of C is entirely mapped to E. Moreover the following are
true.

(1) If x_(0) n Vo 0, then the curve C\ is irreducible, and the image of any
irreducible component of Co realizes a class I,. The map f is the limit of a

unicpie element ofC(d, x(t), Jt) as t goes to 0.

(2) // x(0) fl Xo J po J, then the image of the irreducible component C of Co

whose image contains po realizes either a class I, or the class l\ + /2, while

any other irredui ible component of Co realizes a class I,.

(a) If f (C realizes the class I,, then the cur\>e Ci is irreducible and f |C|
is an element of Ce] iEl+2k~0e\(d _ k[E], x(0) U x_E. Jo), where

x_E / (C fl E. The map f is the limit of a unique element of
C(d, x_(t), J,) as t goes to 0.

(b) If f (C realizes the class I\ + /2, then f is an element of
C"'°(/i + /2, {po} U xE, J0), where x_E C /(Ci)n£, and a 2e\

or a — c2- In the former case, the curve C\ has two irreducible

components, and f is the limit of a unique element of C(d ,xft), Jt)
as t goes to 0; in the latter case, the curve C| is irreducible, and f is

the limit of exactly two elements ofC(d, x(f), J,) as t goes to 0.

Proof. The fact that no component of C is entirely mapped to E follows from
[15, Example 11.4 and Lemma 14.6]. By assumption we have [E]2 —2 in X\, so

the adjunction formula implies that c\(X\) [E] 0. Since the curve / (Cj) passes

through all the points in x(0) R X\ and realizes the class d — k[E] in J/2(X]; Z), the

following hold.

(1) If x(0) R Xo 0, then the map f |C| is constrained by c^V) d — 1

ci(Vi) • (d — k[E}) — 1 points in X\. Hence the curve C\ is irreducible,
the map / |C| is simple, and / (Ci) intersects E transversely in d • [E] + 2k

distinct points. The curve C is rational, and any /0-holomorphic curve in X0
intersects E, so we deduce that the curve Co has exactly d-[E]+2k irreducible

components. Furthermore the image of any of them realizes a class /,.
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(2) If_v(0)nAro !/?0}.then the map / |C| is constrained by • (d — k [£])
—2 points in X\ Hence we are in one ot the following situations

(a) The curve C\ is irreducible, and f '(£) consists in d [E] + 2k

distinct points As above, the curve C0 must have exactly d [£] + 2k

irreducible components, and the image ot any of them realizes a class /,.
Since / (C contains po, the map / |C| is also constrained by the point

/ (C) n £ Hence /|C| is a simple map by Lemma 3 1

(b) The curve Ci has two connected components, the map / |Cj is simple

and fixed by _\_(0) Pi A"i, and f {C\) intersects E transversely in
d [E] + 2k distinct points Hence the curve Co must have exactly
d • [£] + 2k — 1 irreducible components, one of them, say C

intersecting the two components of C\ The curve f (C has to realize the

class /1 + /2, and the image ot any other irreducible component of Co

realizes a class I, Since all these latter components are constrained by

/ (Ci) fl £, we deduce that C C

(c) The cuive C\ is irreducible, and / '(£) consists in d [E] + 2k — 1

distinct points Again, the curve Co must have exactly d [£] + 2^ — 1

irreducible components, the image of one of them being tangent to £
As in the case (2)(b), we deduce that this component must be C that

its image must realize the class /1 + I2, and that the image ot any other
irreducible component of Co realizes a class /,

Suppose that / restricts to a non-simple map on Ci, and let p ' CP1 —>

CP1 be the ramified covering through which /|C| factors Since

_r(0) !2 Xi ^ 0, Proposition 3 2 implies that at least two ramification

points of p should be mapped to £ Hence there should exist an

irreducible component C of C0 distinct from C and intersecting £
non-transversely This contradicts the fact that /*[C ] 1,

The statement about the number of elements ot C(d, Jt) converging to / as t

goes to 0 follows from [15] Let us recall briefly the behavior, close to a smoothing of
an intersection point p ot C\ and Co, of an elements ft.Ct —>• Yt ot C(d.\_(t), J,)
converging to / In local coordinates (/, v. v) at f(p), the manifold Y is given
by the equation xy t, the manifold X0 (resp 3C) being locally given by
{t 0 and v 0j (resp {t 0 and v 0}) It the order ot intersection ot f c
and £ at f(p) is equal to s, then the maps f C() and fc have expansions

x(z) azs + o(zs) and v(u;) bws + o(ws).

where z and w are local coordinates at p of Co and Cj respectively.
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For 0 < |/| << 1, there exists a solution p(t) e C* of

'
ß(')s -r.ab

such that the smoothing of C at p is locally given by zw — ß(t), and the map f, is

approximated by the map

{zw pt(t)} cC2i-> (t,azs,bws)

close to the smoothing of p (see [15, Section 6], and also [22, Section 6.2] for
details). Furthermore, such maps ft e C(d,.x_(t), Jt) converging to / are in one
to one correspondence with a choice of such p(t) for each point of Co H C\.

Next Corollary generalizes Abramovich-Bertram-Vakil formula.

Corollary 3.8. Suppose that x(0) D To 0, and let f : C X$ be an element of
C(d,x(0), Jo). Define Cy to be the set of elements f : C —» in C(d..v(0), Jo)

such that f |C[ f \c[- //\/*[Ci] d ~ k[E], then Cy has exactly {d'{EJ+2k}
elements.

Proof. It follows from Proposition 3.7 and Lemma 3.6 that //[Ci] d — k[E] if
and only if the image of exactly k irreducible components of Co realize the class f.
Since (d — k[E]) • [£] d [£] + 2k, the result follows.

3.3. Proof of Theorem 2.5. Theorems 2.3 and 2.5 are obtained by considering a

real version of the symplectic sum described in Section 3.2. We first provide the

proof of Theorem 2.5 since it is a immediate adaptation of Proposition 3.7 to the

real setting. We equip the disc D from Proposition 3.5 with the standard complex
conjugation, the symplectic manifold (X, .co,) with a real structure r,, and (Y. coy)
with a real structure ry such that the map n : Y —* D is real. Furthermore we choose

the set of sections x : D -» Y to be real. Note that each fiber Y, comes naturally
equipped with a real structure r, when t e K. If T n M£ 0,_then by perturbing JF

if necessary, we may assume that /(C) fl T n E — 0 for all f 6 C(d. .y(O), 70)-
Theorem 2.5 is obtained by choosing x such that x(0) fl To 0.

Proofof Theorem 2.5(1). Assume that x(0)n To 0 andx(0)flMTi C Li, and let
us choose a real element f : C —> T# of C(r/,x(0), Jo)- Denote by a (resp. b) the

number of real (resp. pairs of r0-conjugated) points of intersections of E and f (C).
The map f : C T is real, and by Corollary 3.8 the set Cj has exactly

• Y^k=a,+2b, (a )(b rea' elements if r0 acts trivially on H2(Xo: Z);

• 2k if a 0 and b k, and 0 otherwise, real elements if r0 exchanges f
and l2-
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By assumption (Hi), we have that J-oULo represents a cycle yV in H2(Xq: Z/2Z)
with y — 0. 1, so in both cases above we have

y(a + b). By Proposition 3.7, any element / of C(d.x(0). J0) is the limit of a

unique element of C(d,x(t). Jt), so this latter has to be real when /' is real and

t G R*. Hence to end the proof of Theorem 2.5(1), it remains to show that no
node appears in a neighborhood of E D f(C) when deforming f. This follows
from the description provided at the end of the proof of Proposition 3.7 of the local
deformation of f (since 5 1 in the present case). An alternative proof is to observe

that f (C) has as many nodes as any of its deformation:

(d-k{E})2-cdX,)-{d-k[E}) + 2 d2-ci(Yt)-d+ 2
+k(d-[E] + k)

since [E]2 —2 and cj (AT 1) • [£] 0.

Proof of Theorem 2.5(2). Assume again that x(0) H Xq — 0 and .x(O) D RA] C L\.
Recall that by assumption (H2) we have To rei, which implies in particular
that a 0. Suppose that b 0, and choose a pair [p. ro(/?)J of ro-conjugated
intersection points of E with f(C). Let f : C —>• be an element of C-j,
and denote by C p (resp. Cro(p)) the irreducible component of Co whose image

// / // —/
contains p (resp. To(/?)). Define the map / : C —» X% as follows: f (a / (x)

if x i Cp U C T0(p), and f"(x) r0 o f'(x) if .v G Cp U CX{)(p). The
—rr

map f is also an element of Cj, and it follows from Lemma 3.9 below that

/«z,#,^(/'(C')) -m(C')). Hence

^ iriL,Tg(f'(C')) 0.

f'eCT

and Theorem 2.5(2) is proved.

Given a point p H, we denote by Cp the (unique) /olAvholomorphic curve in
the class l\ passing through p.

Lemma 3.9. Let V c CP1 xCP1 be an embedded rei-invariant disk with dV C E.
Then if p G E \ <YD, the parity of the number of intersection points ofD with Cp
and Clcl (p) are different.

Proof. Denote by D1 and D2 the two halves of E \ dV. According to the proof of
Lemma 2.2, up to exchanging D\ and D2 we have [D\ UD] l\ and [D2 UP] 12

in H2(CP1 xCP1; Z/2Z). Any /oiXo-holomorphic curve in the class /, intersects E
in exactly one point, so the result follows from the fact that both Cp and CT(j/(p)

intersect D\ U P in an even number of points.
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3.4. Proof of Theorem 2.3. We prove Theorem 2.3 by choosing the set of
sections x_ so that _\r(0) n X0 is reduced to a single point. In this case, it follows from
Proposition 3.7 that an element f ofC(d.x(0). Jo) might be the limit of two distinct
elements ot C{d..xft), Jt). Next proposition is a real version of Proposition 3.7 in
this case.

Proposition 3.10. Suppose that .v(O) n Xq {po} and jv(0) fl RVj 7^ 0. Let

f : C —> be a real element of C(d, x(0), Jq), with a point p C) such that

f(C\) has a tangency with E at f (p). Given I 7^ 0, let f\ : CP1 —> Y, and
f2 ' CP1 —> Y, be the two deformations of f in C(d, x(t), J,) (see Proposition 3.7).

Then p is a real point of C, and both /i(CP') and f2(CP]) have a unique
node q arising from the smoothing of C at p. Moreover, there exists e ±1 such

that neither f\ nor fj are real when et < 0, and both f\ and f2 are real when

et > 0. In this latter case, up to exchanging f\ and f^, we have (see Figure 3):

• (q) £ MP

• £ MP1 and f2((ilPl)C\U =0, where U is the connected component
that contains q of the intersection of Y, with a small neighborhood in MF of
7(p).

f) < 0 no real deformation el > 0. two real deformations

Figure 3. Real deformations of a leal map / C —> X$ which is the limit of two maps

Proof. It follows from Proposition 3.7 that the point p is unique, and hence real.

Since /(C) has one node less that any of its deformation, we deduce that both

/i(CP') and f2{CP1) have a unique node q arising from the smoothing of C at p.
Since q is unique, it has to be real if the deformation is real.

Recall from the end of the proof of Proposition 3.7 how looks like a deformation
of / in a neighborhood of the smoothing of p. The manifold F is given in local
coordinates (/,.v, y) at f (p) by the equation xy t, the manifold A'o (resp. X\)
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being locally given by {t 0 and y 0} (resp. {t 0 and x 0}). Furthermore
the maps / C() and fC[ have expansions

where a, b e M*, and z and w are local coordinates at p of Co and C\ respectively.
ForO < I? | << 1, the two maps j\ and f2 correspond to the two solutions ß(t) e C*
of

Mt)2 ^T-
ab

For each solution, the smoothing of C at p is locally given by zw p.(t), and the

corresponding deformation is approximated by the map

close to the smoothing of p.
If tab < 0, then the two solutions of p.(t)2 — are complex conjugated, and

neither f\ nor f2 are real. On the opposite, if tab > 0, then the two solutions of
fi(t)2 ^ are real, and both j\ and /2 are real. Moreover the arcs of IKCo \ {p}
and MCi \ {p} are glued in a different way for f\ and j2 (see Figure 4). In particular
one of them, say f\, satisfies MP1, while f2 satisfies f2x(q) £ MP1.

Let U be the connected component that contains q of the intersection of Y, with
a small neighborhood in MF of f(p). We have to prove that /2(MP') ft U 0.

Suppose that this is not the case, and let 5 C Yt be a topological surface passing

through q, and locally a cylinder in the variable t at q. Then the set f-f](S)
would contain four points in a neighborhood of a smoothing of p. However the

set g~l (S) has only two points in {zw p(t)}, which contradicts the fact that f2 is

approximated by g, close to the smoothing of p.

x(z) az2 + o(z2) and y(w) bw2 + o(w2).

g, : {zw /a(t)} cC2b (t, az2, bw2)

Approximation by g,

Figure 4. Real deformations ot f C —> X$, intermediate step

Now we are ready to prove Theorem 2.3. Recall that by assumption L0 is a disk,
which in particular implies that tq rei.
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Proofof Theorem 2.3(1). Suppose that x(0) n Xo {/?ol, and x(0) fl RA'i is

non-empty and contained in L\. Without loss of generality, we may assume that

x(/) fl RF, C L when I > 0 (and so x(0 flRF, <f_ L when t < 0, since L' contains
the deformation of po). A schematic picture of the degeneration of MX, to is

provided in Figure 5. Denote by L the connected component of RA'i containing L\.
Since Lq is a disk, we necessarily have L' L, and L \ RE is disconnected.

x ni
L 5 (/ L'

RK,. t > 0

Figure 5. Degeneration of RY( to RX#

Let / : C —» Xff be a real element of C(d,.v(0), J0). Recall that C denotes the

irreducible component of C0 whose image passes through the point po-

Suppose first that f\[C ] /,-. Since rei exchanges l\ and I2, there exists an

irreducible component C of Co such that re; o f (C f (C However f (C )fl
f(C \p0), which contradicts that J0 is generic.

CTO C?<Z>

Figure 6. /(C) and its two real deformations

Hence /*[c'] l\ + h for any choice of /. Since ro rej and

any other component of Co realizes a class /,, the curve C is the only real

component of Co, and / (R£) consists of at most 2 points. Suppose that

f0 e C2e|,0(/1 + /2, {po} Ui£, Jo)- In particular, C\ has two irreducible

components C1 and C2- Since x(0) fl M2fi 7^ 0, both C1 and C2 must be real with

a non-empty real part. Since C has arithmetic genus 0, we deduce that / (RE)
consists of precisely 2 points, which are the intersection points of C with C\. Hence

both f(RC 1) and /(RC2) intersect R£ inexactly one point, where this intersection
is transverse. But this contradicts the fact that L \ RE is disconnected.

Hence f Ce2,0(/i + h-[po} U -1e<J0) for any choice of /, and

Theorem 2.3( 1) is now a consequence of Proposition 3.10 (see Figure 6).
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Proofof Theorem 2.3(2). Assume now that that x(0)nXo {po} and .y(O) fl MA] =0.
According to the proof of Theorem 2.3(1), the only maps f e C(d.x_(0). J0) with a

non-trivial contribution to Wxw,L,F(d. .v) satisfy/^' e C2ei '°(l\+h - {po} U 2LE.Jo)-
In particular, the curve C\ has two irreducible components, which are exchanged

_ n{X1<l-4
by the real structure on C. There are 2 2 ways of distributing the points in

x(0) fl X\ among these two components, which proves the result about divisibility
of WXm,L,F{d,s).

_Moreover C is the only real irreducible component of C and the map / ^ is an

embedding. The adjunction formula implies that the number of real solitary nodes

of /'(C) has the same parity than ä~~cdX)-d+2
^ ^

4. Real algebraic rational surfaces

Here we deduce Theorem 1.2 from Theorem 1.1 and the classification of real

rational algebraic surfaces (see for example [17,21]). The proof goes by explicit
computations of homology groups and direct application of Theorem 1.1. Recall that

any real algebraic minimal rational surface with a non empty real part corresponds
to exactly one of the following cases:

• CP1 x CP1 equipped with the real structure rei;

• CP2 equipped with the complex conjugation;

• minimal conic bundles;

• covering of degree 2 of CP2 ramified along a maximal real quartic;

• covering of degree 2 of the quadratic cone in CP3 ramified along a maximal
real cubic section.

We treat all these cases in Sections 4.2, 4.3, 4.4, and 4.5, and prove Theorem 1.2 in
Section 4.6.

4.1. Generalities. In this section, we fix once for all a real rational symplectic 4-

manifold Ar (X.a>. r) and L a connected component of MA. Since (X.co) is

diffeomorphic to either CP1 x CP1 or to CP2 blown-up at finitely many points,
all homology groups of A are known, and the intersection form on H2(X: Z/2Z) is

non-degenerate.

Lemma 4.1. The following hold:

• h2(X\L; Z/2Z) h2(X\Z/2Z) + bx (L) + bx (A \ L) - 1;

• the group //i(L;Z/2Z) is naturally isomorphic to the kernel of the natural

map 1 : H2(X \ L;Z/2Z) - H2(A;Z/2Z);
• hi(X \ L) 0 if[L] 0 in H2(X; Z/2Z), and h\(X \ L) 1 otherwise.
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Proof. Let U be a tubular neighborhood of L in X (in particular U retracts
to L). Since X is simply connected, the Mayer-Vietoris sequence applied to
X (X \ L) U U gives the exact sequence

0^ H2(U \ L;Z/2Z) U2"J2\ H2(L:Z/2Z) © H2(X \ L:Z/2Z) H2(X\Z/2Z)

4- H\(U \ L\Z/2Z) H\ (L: Z/2Z) (B H\(X \ L\Z/2Z) -> 0. (4.1)

The space U\L retracts to an S1 -bundle f : M ->• L over L, hence it follows from
Poincare duality that b2(U \ L\ Z/2Z) b\(U \ L\ Z/2Z). Together with the exact

sequence (4.1), this implies that

b2(X \ L;Z/2Z) b2(X;Z/2Z) + bx(L) + bx(X \ L) - 1.

Each loop y in L produces a surface in M. By the Gysin sequence,
this induces an injective map k : //](L:Z/2Z) //2(M;Z/2Z), and we have

(intersection numbers are in Z/2Z)

b2(M: Z/2Z) b\(L: Z/2Z) + 1 - L2.

The map : //2<M;Z/2Z) ->• H2{L\Z,/2Jj) admits a section if and only if
L2 0. In this case the extra generator of //2(M;Z/2Z) is precisely given by
the image of such a section. By dehnition of the Mayer-Vietoris sequence (4.1), we
obtain that

Ker l ~ Ker i2 Im k ~ H\ (L: Z/2Z).

Analogously, the natural map i/r* : H\(M\rL/2rL) —>• //](L;Z/2Z) is surjective
with kernel generated by the class v realized by a fiber of if/, and v 0 if and only
if L2 1. By definition of the Mayer-Vietoris sequence (4.1), the same holds for
the map i\. We deduce that b\(X \ L) 1 — rank 3. If S is a closed surface in X
intersecting L transversely in finitely many points p\...., we have

3([5]) [iA_l(/?i)] + • • + [f~l(Pk)\ ([^] • [L})v.

Hence the map 3 is null if and only if [L] is in the kernel of the intersection form on

H2(X\Z/2Z). This intersection form in non-degenerate, hence the map 3 is null if
and only if \L\ =0.

The consideration of the group Ji(Xr, L) is justified by the next two propositions.

Proposition 4.2. Let 8 be a x-invariant class in H2(X \ L; Z/2Z) realized by a

smooth real symplectic curve E. Assume in addition that S2 > — 1 if E is a sphere.
Then for any d £ H2(X\ Z), we have

-R,L,F(d-s) (—1) 2 Wx«,L,F+&{d, s).
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Proof. Choose a configuration x made oiC\(X) d — 1 —2s points in L and s pairs
of r-conjugated points in X \MA. Let 70 be a generic r-compatible almost complex
structure on X such that E is /0-holomorphic. By the same arguments used in the

proof of Proposition 3.3, if f : C —> X is a 70-holomorphic map from a nodal

curve of arithmetic genus 0, and such that /*[C] d and x C f(C), then C is

actually smooth and irreducible. Furthermore all intersection points of f(C and E

are positive, so the intersection ED f{C) is made of d-8 distinct points if /(C) (£_ E.
If / is in addition real and such that L contains /(MC), since both curves E and

/(C) are real with disjoint real parts, we have that f(C)-S and this equality
is preserved modulo 2 under deformation of both / and J0.

Assume now that Ar is a real algebraic rational surface. The real part of a real

symplectic curve C in X defines a class Ic in //i(A:Z/2Z). It follows from the

classification of real rational algebraic surfaces that any class in H\ (MA; Z/2Z)
is realizable by a real deformation of a real algebraic curve. If two real cycles in A
intersect in finitely many points, the parity of this number only depends on the classes

realized by these cycles in H2{X\ Z/2Z). Moreover the intersection form modulo 2

is non-degenerated on H\ (MA; Z/2Z). Hence the class lc only depends on [C] e

H2{X\ Z/2Z), and we denote it by l[c].
Proposition 4.3. Let S an element of Ker t ~ //i(L;Z/2Z). Then for any d e

H2(X \ Z), we have

WxR,L,F(d,s) (~\)s'1'' Wx&,L,F+s(d-S).

Proof. Let C be a real symplectic curve in A. Recall that S can be represented by
the restriction over a loop y of the boundary of a tubular neighborhood of L in A.
We denote by y' this representative of S. Without loss of generality, we may further

assume that y intersect MC transversely and in finitely many points. Note that the

tubular neighborhood of L in A can be chosen as small as needed. In particular, all
intersection points of y' and C are located in a neighborhood of MC H y, and each

such point corresponds to a pair of r-conjugated points of y' fl C.

4.2. Surfaces with TL(Ar, L) 0. We start by giving the list of real algebraic
minimal rational surfaces whose group //(Ar, L) vanishes. There are exactly four
of them.

Lemma 4.4. If Ar is either (CP1 x CP1. re;), or (CP2.conj or a minimal conic
bundle with a connected real part, then TL (Ar, L) 0.

Proof. One computes easily that W2((CP1 xCP l)\S2; Z/2Z) (resp. H2(CP2 \ MP2

Z/2Z)) is generated by the class realized by a real algebraic curve in the class

h + 12 (resp. a real conic) with an empty real part. There exist two minimal
conic bundles with a connected real part, namely Ar (CP1 x CP'.r/^),
and a minimal conic bundle with MA S2. This latter case is covered by
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Section 4.3, so assume that Vr (CP1 x CP1, thy)- By Lemma 4.1, we have that

b2(X \ MV; Z/2Z) b2(X; Z/2Z) + 2, and that the kernel of the natural map :

H2(X \RX; Z/2Z) -> H2(X; Z/2Z) is of dimension 2. Hence H2(X\RX\Z/2Z)
is isomorphic to Ker i x //2(V;Z/2Z). Any class in H2(X:'Z/2Z) is realized by
a non-singular real rational algebraic curve with a non-empty real part, and has

intersection number 1 with some other class in H2(V;Z/2Z). This implies that

Ker i is the set of thyp-invariant classes in H2(X \ MV;Z/2Z), and the lemma is

proved.

4.3. Minimal conic bundles. Let (V. r) be a minimal conic bundle whose real part
is made of n >2 spheres. Up to real deformation, we may assume that X has the

following afhne equation in C3:

2 n

y2 +z2 |~J (x — d i

1

where a\ < a2 < a2n are distinct real numbers, and r is the restriction of
the complex conjugation on C3. Forgetting the (y, z)-coordinates provides a real

projection p : X —> CP1. Given i 1..../?, we denote by £2,-1 (resp. S2,) the

Lagrangian sphere p~x {[a2l-2\a2i-i]) nR3 (resp. p_1 ([a2,-i: a2,]) nix (/R)2),
with the obvious convention that a2n +1 ti0, see Figure 7. We also denote by F
a generic fiber, by E2 an irreducible component of the singular fiber p~l(a2), and

by B a (non-real) section of p which does not intersect the curve E2. The real Picard

group of X is the free abelian group generated by E andc'i(A') (see [17,21]).

^2i-l S21 S2i+i

Figure 7. Real vanishing cycles of Conic bundles

Lemma 4.5. A basis of"H{Xr, £1) is given by ([£3] [£2„_x]).

Proof. We have the following intersection products in H2(X: TLjTE)-.

[£,][£,] 0 if \i-jI ^ 1, [£<] • [£i+i] 1

[£,] • [E2] 0 if / ^ 2,3, [£,] • [E2] 1 if / 2,3,

cx(X)-[E2] 1, ci(X)2 [B]-ci(X) [P]-c,(V) [£,]<,(*)
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and

[F]2 [F] [5,] [F] [E2] [B] [E2} [5] • [5,] [B]2 0.

[E2\2 1. [B] • [F] 1.

In particular (cq (Z), [5], [F], [E2], [S2].... [S2„-i]) is a free family of H2(X; Z/2Z),
and hence is a basis since b2(X; Z/2Z) 2/7 + 2.

From the intersection [Si] • [S2] 1, we deduce that [Si] 7^ 0 in H2(X\Z/2Z),
and Lemma 4.1 implies that b2(X \ E-.h/YL) — b2{X\7LjYE) — 1. A basis of
H2(X \ L^h/YL) is then given by

(ci(Z), [B], [F], [E2\, [S3] [S2„_,]).

since its rank in H2(X; Z/2Z) is at most its rank in H2(X \ E; Z/2Z). The classes

ci(Z), [F], and [S;] are r-invariant, and we have:

u{B] [B}+n[F} + cl(X), and r*[F2] [F2] + F.

It follows that (c'i (Z), [F], [S3] [S2n-i]) is a basis of the subspace of r-invariant
classes of H2(X \ E-^fTE), and the lemma is proved.

4.4. Minimal real Del Pezzo surface ofdegree 2. Let Q be the real quartic in CF2
whose real part together its position with respect to a bitangent H is depicted in

Figure 8a. We denote by (Z, r) the real double covering p \ X —* CP2 ramified

along Q, whose real part consists of four spheres. The real Picard group of Z is the

free abelian group generated by C] (Z) (see [17,21]).

a) b)

Figure 8. Real vanishing cycles of a minimal real Del Pezzo surface of degree 2

There exists a (—l)-curve E such that p(E) H. Let Si. S3, 5s, and S7 by
the four spheres of RZ. By the rigid isotopy classification of real plane quartics,
each pair of real spheres is connected by a r-invariant vanishing Lagrangian sphere.
Let S2 (resp. S4, Sö) such a sphere connecting Sj and S3 (resp. S3 and S5, S5

and S7) as depicted in Figure 8b.
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Lemma 4.6. A basis of"H(Xr, Si) is given by ([S3],.... [S7]).

Proof. We have the following intersection products in H2(X; Z/2Z):

[SiHS/] 0 if |/-y |#1, [S,] • [S,- + 1] 1, [S,-] •[£]= 0 if / ^ 2.

[S2]-[£] l,

cx{X)-[E] 1, a(X)2 [Si]-Cl(V) 0, and [E]2 1.

In particular (ci(V), [£], [S2], • • •, [S7]) is a basis of H2(X; Z/2Z), and (cq (2f), [£],
[S3] [S7]) is a basis of H2(X \ L;Z/2Z). The classes c\(X) and [S,-] are

r-invariant, and r*[£] t'i(V) + [£]. Hence (cj(X), [S3],..., [S2n-i]) is a

basis of the subspace of r-invariant classes of H2(X \ L;Z/2Z), and the lemma
is proved.

4.5. Minimal real Del Pezzo surface of degree 1. Let Q be the real cubic section

of the quadratic cone S in C P 3 whose real part together with its position with respect
to a tritangent hyperplane section H is depicted in figure 9a. We denote by (V, r) the

real double covering p : X — S ramified along Q whose real part consists of four
spheres and a real projective plane. The real Picard group of X is the free abelian

group generated by c\(X) (see [17,21]).

Figure 9. Real vanishing cycles of a minimal real Del Pezzo surface of degree 1

There exists a (—l)-curve E such that p(E) H. Let S\. S2. S5. S2 and N
be respectively the four spheres and the real projective plane of RV. By the rigid
isotopy classification of real cubic sections of S, there exist r-invariant vanishing
Lagrangian spheres S2. S4, S(,, -Sg, S9 as depicted in Figure 9b. Note that r acts

trivially on H2(X; Z/2Z).
Lemma 4.7.

A basis offL(XK, S,) is given by ([S3], [S7], [S9], [V]).
A basis ofU{XR, S7) is given by ([S^ [S5], [S8], [N]).
A basis oj"H{XN) is given by ([Si] [S7]).
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Proof. All intersection products of [5",] with [5/], [/V], and [£], can be read on

Figure 9b. The other intersection products in H2{X: Z/2Z) are:

a(X)2 [E]2 [/v]2 [E] Cl(X) [yv] • Cl(X) 1, [N] [e\ o.

Hence (c\(X), [5j] [5g]) is a basis of H2(X: h/TL), and we have

[A^] Cj(C) + [Si] + [S3] + [S5] + [S7] and [S9] [Ss] + [S2] + [S4].

The result about TL(Xr, Si) and T-L(X^, S7) follows immediately.
The generator of Ker t can be represented by B p~x(A), where A

is a hyperplane section of E. Hence ([B]. [£]. [Si] [S7]) is a basis of
H2(X \ N\ Z/2Z). Since [E] + r*[E] B, we get that ([/?]. [Sj] [S7]) is

a basis of the subspace of r-invariant classes of H2(X \ Ap Z/2Z), and the lemma
is proved.

4.6. Proof of Theorem 1.2. Lemmas 4.4,4.5,4.6, and 4.7 and Theorem 1.1 provide
a proof of Theorem 1.2 in the case of minimal real algebraic rational surfaces, and

when F [M2f \ L\. To end the proof, we start with the following remark:

if (X.T) is a blow up of (X. r) at a real point or at a pair of r-conjugated points,
and if L is the component of RX corresponding to L, then there is a natural injective
group homomorphism f : TL{XK, L) — 7i(X^,L). Theorem 1.2 now follows
immediately from next proposition.

Proposition 4.8. The map (p is an isomorphism.

Proof. This is clearly true when (X,7) is a blow up of (X, r) at a real point in

RX \ L or at a pair of r-conjugated points. Hence let us now assume that (X.T) is a

blow up of (X, r) at a point p e L. Since [L] ^ 0 in H2(X; Z/2Z), by Lemma 4.1

we have

h2(X \L;Z/2Z) h2(X \ L:Z/2Z) + 1

if (X. r) (CP1 x CP1, and

b2(X \ L; Z/2Z) b2(X \ L\Z/2Z) + 2

otherwise. In both cases, an extra generator of H2(X \ L;Z/2Z) is given by the

extra generator of Hi (L; Z/2Z). In particular this proves the proposition in the case

(X. r) (CP1 x CP1, Thy), and implies

dimH(9fR. L) < dim74(XR, L) + 1

otherwise. In this latter case, from the classification of minimal real algebraic
surfaces up to deformation, we may assume that there exists an algebraic curve C

in X such that C D L {p \ and that this intersection is transverse. Hence the strict
transform of C in X is a second extra generator of H2(X \ L: Z/2Z), which is either
not r-invariant or mapped to 0 in fl(Xr, L).
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