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Positively curved manifolds with large spherical rank

Benjamin Schmidtf Krishnan Shankar** and Ralf Spatzier*

Abstract. Rigidity results are obtained for Rtemannian d -manifolds with sec > 1 and spherical
rank at least d — 2 > 0. Conjecturally, all such manifolds are locally isometric to a round sphere

or complex projective space with the (symmetric) Fubini-Study metric. This conjecture is
verified in all odd dimensions, for metrics on d-spheres when d / 6, for Rtemannian manifolds
satisfying the Rakic duality principle, and for Kahlenan manifolds
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1. Introduction

A complete Riemannian d-manifold M has extremal curvature e {—1,0,1} if its
sectional curvatures satisfy sec ^ c or sec ^ c. For M with extremal curvature e,
the rank of a complete geodesic y : R -» M is defined as the maximal number of
linearly independent, orthogonal, and parallel vector fields V(t) along y(t) satisfying
sec(y, V)(t) e. The manifold M has (hyperbolic, Euclidean or spherical according
as e is —1,0 or 1) rank at least k if all its complete geodesies have rank at least k.

Riemannian manifolds with sec ^ e and admitting positive rank are known to
be rigid. Finite volume Riemannian manifolds with bounded nonpositive sectional
curvatures and positive Euclidean rank are locally reducible or locally isometric
to symmetric spaces of nonpositive curvature [1,6]. Generalizations include [11]
and [28]. Closed Riemannian manifolds with sec ^ —1 and positive hyperbolic
rank are locally isometric to negatively curved symmetric spaces [12]; this fails
in infinite volume [8], Finally, closed Riemannian manifolds with sec ^ 1 and

positive spherical rank are locally isometric to positively curved, compact, rank one

symmetric spaces [25],
Rank rigidity results are less definitive in the sec >; e curvature settings.

Flyperbolic rank rigidity results for manifolds with — 1 ^ sec ^ 0 first appeared
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in [9]. Finite volume 3-manifolds with sec E — 1 and positive hyperbolic rank are

real hyperbolic [23], Complete Riemannian 3-manifolds with sec E 0 and positive
Euclidean rank have reducible universal coverings as a special case of [4], while the

higher dimensional sec E 0 examples in [26], [15] illustrate that rank rigidity does

not hold in complete generality.
Our present focus is the curvature setting sec E 1. Conjecturally, manifolds

with sec 5= 1 and positive spherical rank are locally isometric to positively curved

symmetric spaces. Note that the simply connected, compact, rank one symmetric
spaces, normalized to have minimum sectional curvature 1, have spherical rank:

n — 1 dim(5") — 1 for the spheres; 2n — 2 dim(CP") — 2 for complex projective
space; 4n — 4 dim(HP") — 4 for quaternionic projective space; 8 dim(OP2) — 8

for the Cayley projective plane. Our main theorems concern J-manifolds with
spherical rank at least d — 2, spaces that are conjecturally locally isometric to spheres

or complex projective spaces.

Theorem A. An odd dimensional Riemannian d-manifold with d E 3, sec E 1, and

spherical rank at least d —2 has constant sectional curvatures sec 1.

Theorem B. Let M be an even dimensional Riemannian d -manifold with d E 4,

sec 5: 1, and spherical rank at least d — 2. If M does not have constant sectional
curvatures i.e., sec ^ 1, then M satisfies:

(1) Every vector v e SM is contained in a 2-plane section o with sec(o) > 1.

(2) The geodesic flow (pt : SM —>• SM is periodic with 2n a period.

(3) There exists an almost complex structure J ; TM —TM if M is simply
connected.

(4) If M is simply connected and if sec < 9, then every geodesic in M is simple,
closed, and of length n. Moreover, M is homotopy equivalent to CP^^2.

A Riemannian manifold satisfies the Rakic duality principle if for each p e M,
orthonormal vectors v, w e SPM, and c e R, u lies in the c-eigenspace of the Jacobi

operator Jw if and only if w lies in the c-eigenspace of the Jacobi operator Jv. This

property arises naturally in the study of Osserman manifolds [19,20], See Section 2

for details.

Theorem C. Let M be a Riemannian d -manifold with sec E 1 and spherical rank at
least d — 2. If M satisfies the Rakic duality principle, then M is locally symmetric.

Theorem D. A Kählerian manifold with sec E 1, real dimension d E 4, and

spherical rank at least d —2 is isometric to a symmetric CP^2 with holomorphic
curvatures equal to 4.

Theorem A implies:

Corollary E. A Riemannian 3-manifold with sec E 1 and positive spherical rank
has constant sectional curvatures.
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Only the two- and six-dimensional spheres admit almost complex structures [5],
Hence, item (3) in Theorem B implies:

Corollary F. A Riemannian sphere Sd with d 2, 6, sec ^ 1, and with spherical
rank at least d —2 has constant sectional curvatures.

It is instructive to compare the sec ^ 1 case considered here with that of the

sec ^ 1 case of rank-rigidity resolved in [25], In both cases, each unit-speed
geodesic y : M. -» M admits a Jacobi field J(t) sin(t)E(f) where V(t) is a

normal parallel field along y contributing to its rank Hence, for each p e M, the

tangent sphere of radius jt is contained in the singular set for expp : TPM -* M.
In a symmetric space with | ^ sec $ 1, the first conjugate point along a unit-speed
geodesic occurs at time it, the soonest time allowed by the curvature assumption
sec ^ 1. Consequently, the rank assumption is an assumption about the locus of
first singularities of exponential maps when sec ^ 1. In symmetric spaces with
1 ^ sec ^ 4, the first and second conjugate points along a unit-speed geodesic

occur at times it12 and it, respectively. Therefore, when rank-rigidity holds in the

sec ^ 1 setting, the rank assumption is an assumption about the locus of second

singularities of exponential maps. Concerningfirst singularities, a simply-connected
Riemannian manifold with sec 5: 1 in which the first conjugate point along each

unit-speed geodesic occurs at time it12 is globally symmetric [22],
An alternative definition for the spherical rank of a geodesic y in a Riemannian

manifold with sec 5: 1 is the dimension of the space of normal Jacobi fields along y
that make curvature one with y. This alternative notion of rank is a priori less

restrictive since parallel fields V(t) give rise to Jacobi fields J(t) as described above.

The Berger spheres, suitably rescaled, have positive rank when defined in terms of
Jacobi fields [25] but not when defined in terms of parallel fields by Corollary E.

Moreover, there is an infinite dimensional family of Riemannian metrics on S3 with
sec ^ 1 and positive rank when defined in terms of Jacobi fields [24]. In particular,
there exists examples that are not locally homogeneous. Each such metric admits

a unit length Killing field X with the property that a 2-plane section a C TM
with X e a has sec(a) 1; the restriction of X to a geodesic is a Jacobi field
whose normal component contributes to the rank. There are no known examples
with discrete isometry group.

To describe our methods and the organization of the paper, let X {p e M \

secp 1} and Ö M\I denote the subsets of isotropic and nonisotropic points
in M, respectively. The goal is to prove that M is locally isometric to complex
projective space when Ö 0.

We start with a pointwise analysis of curvature one planes. Given a vector
v e SPM, let Ev denote the span of all vectors w orthogonal to v with sec(u, w) 1

and let Dv denote the subspace of Ev spanned by vectors contributing to the rank
of the geodesic yv(t). The assignments vi-r Ev and v \Dv define two (possibly
singular) distributions on each unit tangent sphere SPM, called the eigenspace and



222 B. Schmidt, K. Shankar and R. Spatzier CMH

spherical distributions, respectively (see 2.7 and 3.1). The spherical rank assumption
ensures that d — 2 d\m{SpM) — 1 ^ dim(D„) for each v SPM so that both
distributions are of codimension at most one on SPM.

The arrangement of curvature one planes at nonisotropic points p encodes what

ought to be a complex structure, a source of rigidity. More precisely, the eigenspace
distribution on SPM is totally geodesic (see Lemma 2.12) and of codimension at

most one. Subsection 2.3 builds on earlier work of Hangan and Lutz [13] where they
exploited the fundamental theorem of projective geometry to prove that codimension

one totally geodesic distributions on odd dimensional spheres are algebraic: there is

a nonsingular projective class [A] of skew-symmetric linear maps of ]R"+1 with the

property that the distribution is orthogonal to the Killing (line) field on S" generated

by [A], In particular, such distributions are projectively equivalent to the standard

contact hyperplane distribution. Note that when M is complex projective space, with
complex structure J : TM —» TM, the codimension one eigenspace distribution
on SPM is orthogonal to the Killing (line) field on SPM generated by [JP}.

As the spherical distribution D is invariant under parallel transport along
geodesies (Dyv(t) Pt(Dv)), its study leads to more global considerations in
Section 3.1. The sphere of radius n in TPM is also equipped with a kernel
distribution, v Kv : ker(d(expp)„) (see 2.4). As each w e Dv is an

initial condition for an initially vanishing spherical Jacobi field along yv(t), parallel
translation in TPM identifies the spherical subspace Dv with a subspace of Knv
for each v e SPM (see Lemma 3.6). When p e Ö, the eigenvalue and spherical
distributions on SpM coincide (see Lemma 3.4). As a consequence, the kernel
distribution contains a totally geodesic subdistribution of codimension at most one

on 5(0, jr). It follows that expp is constant on ,S'(0, n) (see Corollary 3.7) and

that geodesies passing through nonisotropic points p e Ö are all closed (see

Lemma 3.8). Moreover, when p e Ö, each vector v e SPM has rank exactly
d — 2 (see Lemma 3.12), or putting things together, the eigenspace distribution is a

nonsingular codimension one distribution on SPM. As even dimensional spheres
do not admit such distributions, M must have even dimension, proving Theorem A.
More generally, this circle of ideas and a connectivity argument culminate in a proof
that every vector in M has rank d — 2 when the nonisotropic set O ^ 0 (see

Proposition 3.13).
The remainder of the paper is largely based on curvature calculations in radial

coordinates with respect to frames adapted to the spherical distributions that

are introduced in Section 3.2. An argument based on these calculations and

the aforementioned fact that the spherical distributions are contact distributions,
establishes that if the nonisotropic set 0^0, then M Ö (see Proposition 3.14).
The proof of Theorem B follows easily and appears in Section 3.3. The proof of
Theorem C appears in Section 3.4. There, the Rakic duality hypothesis is applied
to prove that the family of skew-symmetric endomorphisms Ap : TPM —> TPM,
p e M, arising from the family of eigenspace distributions on the unit tangent
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spheres SPM, define an almost complex structure on M (see Lemma 3.22). This
fact, combined with additional curvature calculations in adapted framings, allows us

to deduce that M is Einstein, from which the theorem easily follows (see the proof
of Proposition 3.21).

Finally, Sections 4 and 5 contain the proofs of Theorem D in real dimension at
least six and in real dimension four, respectively. The methods are largely classical,

relying on pointwise curvature calculations based on the Kähler symmetries of the

curvature tensor and on expressions for the curvature tensor when evaluated on
an orthonormal 4-frame due to Berger [2,17], Essentially, these calculations yield
formulas that relate the eigenvalues of the endomorphisms Ap :TpM —» TpM to the

curvatures of eigenplanes in invariant four dimensional subspaces of TPM. When the

real dimension is at least six, there are enough invariant four dimensional subspaces

to deduce that M has constant holomorphic curvatures, concluding the proof in that

case. The argument in real dimension four proceeds differently by proving that M
satisfies the Rakic duality principle. When this fails, the decomposition of TM into
eigenplanes of A : TM TM is shown to arise from a metric splitting of M,
contradicting the curvature hypothesis sec ^ 1.

2. Notation and Preliminaries

This section contains preliminary results, mostly well-known, that are used in
subsequent sections. Throughout (M, g) denotes a smooth, connected, and complete
d-dimensional Riemannian manifold, X(M) the M-module of smooth vector fields

on M, and V the Levi-Civita connection. Let X, Y, Z, W e X(M) be vector fields.
Christoffel symbols for the connection V are determined by Koszul's formula

g(VxY, Z) ±{Xg(Y, Z) + Yg(Z, X) - Zg(X, Y)}

+ ±{g([Z, Y], Z) - g([7, Z], X) + g([Z, X], Y)}. (2.1)

The curvature tensor R : X(M)3 —X(M) is defined by R(X, Y)Z [Vy, Vy]Z—
V[y,y]Z and has the following symmetries

R(X, Y, Z, W) —R(Y, X, Z, W) R(Z, W, X, Y) (2.2)

where R(X, Y, Z, W) g(R(X, Y)Z, W). The sectional curvature of a 2-plane
section a spanned by vectors v and w is defined by sec(a) sec(u, w)
An almost Hermitian structure on M is an almost complex structure J : TM —»• TM
compatible with the metric: g(Z, T) g(JX, J Y) for all X, Y e X(M). A
Hermitian structure on M consists of an integrable almost Hermitian structure.
The Kähler form is the 2-form co defined by co(X, Y) g(JX, Y). A Kähler
structure on M consists of a Hermitian structure with closed Kähler form, dco 0,
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or equivalently, a parallel complex structure, V/ 0. If M is Kählerian, then

Vy JX J Vy X for all X, Y X(M), yielding the additional curvature identities

R(X,Y,Z,W) R{JX,JY,Z,W)
R(X,Y,JZ,JW) R{JX,JY,JZ,JW).

These curvature identities are the key properties of a Kählerian manifold used in
the proof of Theorem D.

2.1. Jacobi operators and eigenspace distributions.. Let SM denote the unit
sphere bundle of M\ its fiber above a point p e M is the unit sphere SPM mTpM.
For v e SPM define the Jacobi operator Jv : i;-1 —> v1- by Jv{w) R(w,v)v.
The symmetries (2.2) imply that Jv is a well-defined self-adjoint linear map of vx.
Its eigenvalues encode the sectional curvatures of 2-plane sections containing the

vector v.

Lemma 2.1. Let v,w e SPM be orthonormal vectors and assume that secp ^ e for
some eel. The following are equivalent:

(1) sec(u, w) — e

(2) w is an eigenvector of Jv with eigenvalue

(3) R(w, v)v ew

Proof. Only (1) => (2) is nontrivial. If {e, }"~j is an orthonormal eigenbasis
of Jv with corresponding eigenvalues A,, then A, ^ e for each index i. Express
w Ya=\ a'ei with YTiZi otf 1. Then e g(R(w, v)v, w) g(Jv(w), w)

ff1= \ afA,. Conclude that at 0 for indices i with A, > e. Therefore w is an

eigenvector of Jv with eigenvalue e.

Remark 2.2. An analogous proof works when secp ^ e.

Lemma 2.3. Let v,w e SPM be orthonormal vectors. If wx fl U"1 consists of
eigenvectors of Jv, then w is an eigenvector ofJv. Consequently, R(v, w, w', v)
g(Jv(w),w') 0 for any w' G wx D u-1.

Proof. The orthogonal complement to an invariant subspace of a self-adjoint operator
is an invariant subspace.

2.1.1. Specialization to manifolds with cvc(e).

Definition 2.4. A Riemannian manifold has constant vector curvature e, denoted by
cvc(e), provided that e is an extremal sectional curvature for M (sec $ e or sec ^ e)
and e is an eigenvalue of Jv for each v SM [23].

For each v SM, let Ev C u1 denote the (nontrivial) e-eigenspace of Jv.
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Convention 2.5. For each v e SPM, parallel translation in TpM defines an

isomorphism between the subspace u1- of TpM and the subspace TV(SPM)
of TV{TPM). This isomorphism is used without mention when contextually
unambiguous.

Convention 2.6. Given a manifold M, an assignment M 3 p \-> Dp c TPM
of tangent subspaces is a distribution. The rank of the subspaces may vary with

p e M and the assignment is not assumed to have any regularity. The codimension
of a distribution D is defined as the greatest codimension of its subspaces. When a

distribution D is known to have constant rank, it is called a nonsingular distribution.

Definition 2.7. The e-eigenspace distribution on SPM, denoted by E, is the
distribution of tangent subspaces

SpM 3 v i—> Ev CZ TV(SPM).

Its regular set, denoted by £p, is the open subset of SPM consisting of unit vectors v
for which dim(£„) is minimal.

Example 2.8. e-eigenspace distributions need not have constant rank. When M
is a Berger sphere suitably rescaled to have cvc(l), the curvature one 2-planes in
SPM are precisely the 2-planes containing the Hopf vector h e SPM. Therefore

dim(£),) dim(£_/!) 2, while dim(.E„) 1 for any vector v e SPM \ {±h}.

Lemma 2.9. For each p M the restriction of the -eigenspace distribution on

SPM to £p is smooth.

Proof. The operators Jv — e Id vary smoothly and have constant rank in £p. Therefore
the subspaces Ev ket(Jv — eld) vary smoothly with v e £p (see [7, Lemma 1]

for more details).

Remark 2.10. Let £ c SM denote the collection of unit tangent vectors v SM
with dim(£'t)) minimal. The same proof as that of Lemma 2.9 shows that the

assignment v Ev is smooth on £. Note that £ fl SPM may not coincide with £p.

A tangent distribution D on a complete Riemannian manifold S is totally geodesic

if complete geodesies of S that are somewhere tangent to D are everywhere tangent
to D.

Convention 2.11. Henceforth, unit tangent spheres SPM are equipped with the
standard Riemannian metric, denoted by (•, •), induced from the Euclidean metric
gp(-, •) on TPM. Moreover, geodesies in SPM are typically denoted by c while
geodesies in M are typically denoted by y.

Lemma 2.12. For each p e M, the e-eigenspace distribution E is a totally geodesic
distribution on SpM.



226 B. Schmidt, K. Shankar and R. Spatzier CMH

Proof. Let v £ SPM and w £ Ev. The geodesic c(t) cos(t)v + sin(f)in satisfies

c(0) uandc(O) w. Calculate — sin(t)Jw(v)+cos(t)Jv(w). By
assumption, Jv(w) cw. By Lemma 2.1, Jw(v) ev. Therefore Jc(t)(c(t))
e(— sin(f )t> + cos(t)w) cc(t). Hence c(t) e Ec(t), concluding the proof.

2.2. Conjugate points and Jacobi fields. Let M denote a smooth, connected, and

complete Riemannian manifold.

Convention 2.13. Henceforth, geodesies are parameterized by arclength. Moreover,
the notation yv(t) is frequently used to denote a complete unit speed geodesic with
initial velocity v yv (0) e Sy(0)M.

Let expp \ TpM M denote the exponential map and r : TpM \ {0} -» SPM
the radial retraction r(u) pj. Critical points of exp^ are conjugate vectors. For a

conjugate vector v £ TpM, let

The multiplicity of v is defined as dimj/G). For t > 0, let 5(0, t) denote the sphere

in TPM with center 0 and radius t. Gauss' Lemma asserts Kv C Tv(S(0, ||w||)).
Let v £ TpM be a conjugate vector and y(t) — expp(f r(u)). The point

q exp/,(u) is conjugate to the point p along y at time t ||u||. The point
q — expp(u) is a first conjugate point to p along y if v is a first conjugate vector,
i.e. tv is not a conjugate vector for any t e (0,1). Denote the locus of first conjugate
vectors in TpM by FConj(p). The conjugate radius at p, denoted conj(p), is

defined by conj(/?) inf„6FConj(/)){IM|} when FConj(p) 0 and conj(p) oo

otherwise; when FConj(p) 0, the infimum is realized as a consequence of
Lemma 2.14 below. The conjugate radius of M, denoted conj(M), is defined by

conj(M) infp6M{conj(/7)}.
Equivalently, conjugate vectors and points are described in terms of Jacobi fields

along y. A normal Jacobi field along y (t) is a vector field /(f), perpendicular to y (f)
and satisfying Jacobi's second order ode: J" + R(J, y)y 0. Initial conditions

/(f), J'(t) £ y(t)1- uniquely determine a normal Jacobi field. Let p y(0),
v y(0) e SPM, and w £ v1. The geodesic variation a(s, t) c\yp{t(v + sw))
of y(f) a(0,t) has variational field /(f) -^ct(s,t)\s=o, a normal Jacobi field
along y with initial conditions /(0) 0 and /'(0) w given by

If J (a) 0, then (2.5) implies that aw £ Kav. In this case av is a conjugate vector
and y(a) is a conjugate point to p y(0) along y. All initially vanishing normal
Jacobi fields along y arise in this fashion, furnishing the characterization: y(a) is

conjugate to y (0) along y if and only if there exists a nonzero normal Jacobi field

/(f) along y with /(0) J(a) 0.

Kv ker(d(exp/7)„) c TV(TPM). (2.4)

/(f) d(exp/,),u(fu;). (2.5)
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For y(f) a geodesic and to > 0, let Vy° denote the vector space of piecewise
differentiable normal vector fields X(t) along y(t) with X(0) X(to) 0. The
index form Iy° : Vy° x V'y —» R is the bilinear symmetric map defined by

/<°(X, Y) r g(X', Y') - g{Rix, y)y, 7) dt.
Jo

The null space of Iy° consists of normal Jacobi fields J(t) along y(t) with
/(0) /(to) 0. By the Morse Index Theorem [10, Chapter 11], there exists

X G Vy° such that Iy° (X, X) < 0 if and only if there exists 0 < s < to such that y(s)
is conjugate to y(0) at time s. In particular, the property of being a first conjugate
point along a geodesic segment is a symmetric property.

Lemma 2.14. FConj(p) is a closed subset ofTpM.

Proof. Assume that v, e FConj(p) converge to u e TPM. Let ll — ||r>; ||, t ||u||,
and wl r(u,), w r(v) e SPM. As u; is a conjugate vector, there exists a

normal Jacobi field Jl (t) along yWi (t) with J, (0) Jt (tf) 0 and || //(0) || 1. A
subsequence of the Jacobi fields Jt(t) converges to a nonzero Jacobi field J(t)
along Yw (0 with 7(0) J(J) 0. Therefore v is a conjugate vector. If
v f. FConj(p), there exists 0 < ,s < 1 such that sv is a conjugate vector. Therefore
there exists X e V'yw with I'Yw (X, V) < 0.

An orthonormal framing {e\,... ,en-\} of a neighborhood B of w in SpM
induces parallel orthonormal framings {Ei(t),..., En-i(t)} along geodesies with
initial tangent vectors in B, yielding isomorphisms between V'Yh V'Yw for each

b e B and t '' 0. Under these isomorphisms, /ywi (X. X) ^ y^ i X. X) by

continuity; therefore, IYw (X, X) < 0 for all i sufficiently large, contradicting
vt e FConj(p).

2.3. Codimension one totally geodesic distributions on spheres.. Given a nonzero

skew-symmetric linear map A : -»• Rrf and v e Sd~1, parallel translation
in Rd identifies v1- and TvSd~]. As A is skew-symmetric and non-zero, the

assignment Sd~1 B v Av e TvSd~x defines a Killing field on Sd~l. Let
Ev spanjr, Av}1- denote the subspace of TvSd~l orthogonal to Av. Then
Sd~l B v i—> Ev C TvSd~l defines a codimension one totally geodesic distribution
on 5^_1 with singular set X := {x e Sd~x \ Ex TxSd~1} ker(A) n Sd~l as

a consequence of the following well-known lemma.

Lemma 2.15. Let X be a Killing field on a complete Riemannian manifold (S, g). If
a geodesic c(t) satisfies g(c, V)(0) 0, then g(c, X)(t) 0.

The skew-symmetric linear map A and each nonzero real multiple rA yield the

same codimension one totally geodesic distribution £ on 5". In [13], Hangan and

Lutz apply the fundamental theorem of projective geometry to establish the following:
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Theorem 2.16 (Hangan and Lutz). Let E be a nonsingular codimension one totally
geodesic distribution on a unit sphere Sd~x C Then d — 1 is odd and there exists

a nonsingular projective class [A] e PGL(Md) ofskew-symmetric linear maps such

thatfor each x e S^-1, Ex span{x, Ax}-1-.

The elegance of their approach lies in the fact that no a priori regularity assumption
is made, while a posteriori the distribution is algebraic. The following corollary is

immediate (see [13]).

Corollary 2.17. A nonsingular codimension one totally geodesic distribution on an
odd dimensional unit sphere is real-analytic and contact.

Corollary 2.18. Let E be a nonsingular codimension one totally geodesic distribution
on an odd dimensional unit sphere Sd~l. The line field L on Sd~l defined
by L E1- is totally geodesic if and only if [A2] [—Id], where [A] is as in
Theorem 2.16 above.

Proof. Assume that [A2] [—Id], Choose a representative A e [A] with unit-
modulus eigenvalues. Then ||Au|| 1 and A2v —v for each v e Sd~1. The

geodesic c(t) cos(t)v + sin(f)Au satisfies c(0) e Lv. Then c(t) e Lcp) since

c(t) — sin(/)u + cos(t)Av Ac(t), concluding the proof that L is totally
geodesic.

Conversely, assume that L is totally geodesic. Let v e Sd~l and choose a

representative A e [A] satisfying ||du|| 1. The geodesic c(t) cos(t)v +
sin(f)Au satisfies c(t) e Lc(t) for each t e KL Set t f and conclude that
the 2-plane spanned by v and Av is invariant under A. As ||/fu| 1 and A is

skew-symmetric, A2v — —v, concluding the proof.

Let X {x e Sd~] \ Ex TxSd} denote the singular set for a codimension

one totally geodesic distribution E on Sd~l. Given a subset U C Sd_1, let S (U)
span{f/}nSrf_1 denote the smallest totally geodesic subsphere of Sd~l containing U.

Lemma 2.19. The singular set X satisfies L (X) X.

Proof. There is nothing to prove if X 0. If x e X, then —xeX since each

great circle through —x also passes through x. It remains to prove that for linearly
independent x\, x2 e X, the great circle C\ := Sp({xi, x2}) C X.

If *3 e C\ \ {±X!, ±x2}, then the line Li := TX3C\ is a subspace of EX3 since

x\ e X. Let L2 be any other line in TX3Sd~' and let C2 denote the great circle

containing X3 with tangent line L2.
Let p e C2 \ {±X3}. As xi, x2 e X are linearly independent, the tangent lines

at p to the great circles in the totally geodesic 2-sphere E(C 1 U C2) that join x\
to p and x2 to p are transverse subspaces of Ep fl TpE(C\ U C2). Therefore

TpE(Ci U C2) C Ep. In particular, the tangent line to C2 at p is a subspace of Ep,
whence the line L2 is a subspace of EX3, as required.
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Corollary 2.20. The singular set X ofa codimension one totally geodesic distribution
on Sd~l does not contain a basis ofRd.

The following simple lemma is applied to Riemannian exponential maps in
subsequent sections.

Lemma 2.21. Let E be a codimension one totally geodesic distribution on Sd~l, X
a set, and f : Sd~f —>• X a function. Iff is constant on curves everywhere tangent
to E, then f is constant.

Proof. Let x e Sd~1. The assumption implies that / is constant on the union
of geodesies with initial velocity in Ex, a totally geodesic subsphere of Sd~l of
codimension at most one. Any two such subspheres intersect.

3. Proofs of Theorems A, B, and C

Throughout this section M denotes a complete d -dimensional Riemannian manifold
with sec ^ 1 and spherical rank at least d — 2. Then M is closed and has cvc(l).
In particular, for each v e SM, the 1-eigenspace Ev of the Jacobi operator Jv (see

Definition 2.7) is a nonempty subspace of v±.
Recall that a point p e M is isotropic if sec (a) is independent of the 2-plane

section o <ZTPM and nonisotropic otherwise. Hence, p is an isotropic point if and

only if Ev c1 for each v e SPM. Let X and Ö denote the subsets of isotropic
and nonisotropic points in M, respectively. Note that X is closed in M and that Ö is

open in M.

3.1. Preliminary structure and Proof of Theorem A. This subsection discusses

a number of preliminary structural results that culminate in a proof of Theorem A.
For p M and v e SPM, let Pt : TPM —> TVv(t)M denote parallel translation

along the geodesic yv(t). Define the subspace Dv c u1- by

Dv span{u; e | sec(yv(t), Ptw) 1 Vf e R}

span{u; e v1 Ptw e Ey(f) Vf e R}.

Note that Dv is a subspace of Ev for each v e SPM. The spherical rank assumption
implies dim(D„) ^ d — 2. In particular, the 1-eigenspace distribution E is a

codimension one totally geodesic (by Lemma 2.12) distribution on SPM when

p e O.

Lemma 3.1. For each v e SPM

(1) Dv D-v

(2) Ifw e Dv, then sec (yv(t), Ptw) I for all tel.
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Proof. (1) is immediate from the definition of Dv. For (2), let {ui,..., u^} be a

maximal collection of linearly independent vectors in

{w t;"11 Ptw e Ey(t) Vt e R}

and express w aiui- As Ey(t) is a subspace, Ptw — Y^= \ ai Ptui e Ey(t)
for each t el, concluding the proof.

The rank of a vector v e SPM is defined as dim(Z)l)). The rank of a one
dimensional linear subspace L ^ TPM is defined as the rank of a unit vector tangent
to L. The rank of a geodesic is the common rank of unit tangent vectors to the

geodesic.

Definition 3.2. The spherical distribution on SPM, denoted by D, is the tangent
distribution defined by

SPM 3 v i—> Dv c TV{SPM).

Let Vp denote the subset of SPM consisting of rank d — 2 vectors and let
T> — UpeAfEp denote the collection of all rank d —2 unit vectors in SM.

As parallel translations along geodesies and sectional curvatures are continuous,
the rank of vectors cannot decrease under taking limits. This implies the following:

Lemma 3.3. For each p e M, the regular set T>p is open and the spherical
distribution D on SPM is continuous on its regular set T>p.

Lemma 3.4. Ifp is anonisotropicpoint, i.e. p O, then the spherical distribution D
and eigenspace distribution E coincide on SPM.

Proof. If not, then there exists a rank d — 2 vector v e Vp with the property
that Ev Ty(SpM). Consider the codimension one totally geodesic subsphere
S C SPM containing v and determined by TVS — Dv, namely S expV(DV).

Given x SPM \ S sufficiently close to v, let C(v,x) denote the great circle

through v and x. Lemma 3.3 implies that the tangent line TxC(v,x) is transverse

to the subspace Dx. As E is totally geodesic and Ev TV(SPM), it follows
that TxC(v,x) C Ex. Conclude that Ex TX(SPM). Lemma 2.20 implies that
E T(SPM), a contradiction since p e O.

Convention 3.5. Parallel translation in TPM identifies the spherical distribution D
on SPM with a distribution defined on the tangent sphere .S'(0, n) C TPM. The
latter is also denoted by D when unambiguous.

Lemma 3.6. Let v e SPM. If w Dv, then J(t) sin(t)Ptw is a Jacobi field
along yv(t). In particular, Dnv C Knv, where Knv ker(d(exp/,)^w) (see (2.4)).
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Proof. Lemma 2.1 and Lemma 3.1(2) imply

J"{t) + R{J, Yv)Yv(0 sin(t)(—Ptw + R(Ptw, yv)Yvit)) 0

for all t e R. As J(ir) 0, w Knv by (2.5).

Corollary 3.7. If p £ O, then the restriction ofexpp to the tangent sphere S(0, n)
is a point map.

Proof. The map exp^ is constant on curves tangent to the kernel distribution defined

by 5(0, n) 3 ttv i—> Knv c Tkv(S(0, jt)). The distributions E and D coincide on

SPM by Lemma 3.4. Lemma 3.6 implies that exp^ is constant on curves tangent to
the distribution E. Lemma 2.21 implies the corollary.

Let </>t : SM —* SM ,t eWL, denote the geodesic flow. For T > 0, let

Fixr {u £ SMlfjv u}.

Lemma 3.8. If p £ Ö, then SPM C Fix2jr.

Proof. Corollary 3.7 implies expp(5(0, jt)) {p'\ for some p' £ M. The lemma
is a consequence of the following claim.

Claim. For v £ SPM, the geodesies Yv(t) and Y-v(t) satisfy Yv(jt) —y-v(jr).

There exists a positive < inj(M) such that yv (e) e Ö since Ö is open in M.
Let w yv(e)- Corollary 3.7 implies that q' := yw(ir) y-w(n) y_t)(7r — e).
The geodesic segments yw{[n ~ n]) and y_,j([7r — e, 7r]) each have length e and

meet at the points p' and q'. As e < inj(M), these segments coincide, implying the

claim.

Lemma 3.9. Let v £ SpM have rank d —2 and let w be a unit vector in fl Dxj-.

The initially vanishing normal Jacobi field J(t) along yv(t) with 7(0) 0 and

J'(0) w has the form J(t) f(t)Ptw where fit) is the solution to the ODE

f" + sec(PtW, Yv)f 0 with initial conditions /(0) 0 and /'(0) 1.

Proof. The initial conditions /(0) 0 and /'(0) 1 imply the initial conditions

/(0) 0 and 7'(0) w. The hypotheses and Lemma 2.3 imply that Ptw is an

eigenvector of Jyv{t) with eigenvalue sec (Ptw, yv)(t). Consequently,

J" (t) + RiJ, Yv)Yvit) [fit) + sec iPtw, yvit))fit)]Ptw 0

concluding the proof.

Corollary 3.10. A vector v e SPM has rank d — 1 ifand only ifnv £ FConj(p).

Proof. If v has rank d — 1, then Lemma 3.6 implies that ixv £ FConj(p). If v has

rank d —2 then there is an initially vanishing Jacobi field of the form described by
Lemma 3.9. The function /(t) vanishes strictly before n by the equality case of the
Rauch Comparison Theorem [10, Chapter 11],
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Recall that FConj(p) denotes the locus of first conjugate vectors in TPM.

Corollary 3.11. If there exists p e M with FConj(/>) 5(0,7r), then M X,
i.e. M has constant curvatures equal to one.

Proof. Let Up M \ Cut(p). By Corollary 3.10, all vectors in SPM have rank
d — 1. By Cartan's theorem on determination of the metric [10, Theorem 2.1, p. 157],

Up C X. Therefore, M closure(f/^) C X.

Lemma 3.12. If v e SPM has rank d — 1 and the restriction ofexpp to 5(0, n) is

a point map, then M X.

Proof. It suffices to prove FConj(p) 5(0, n) by Corollary 3.11. Let X
FConj(p) n 5(0,7r). The vector Ttv e X by Corollary 3.10; therefore X is a

nonempty subset of 5(0, n). The subset X is closed in 5(0, it) by Lemma 2.14. It
remains to demonstrate that X is an open subset of 5(0, n).

This fails only if there exists x e X and a sequence x, e 5(0, n) \ X converging
to x. As expp is a point map on 5(0, ir) each x, is a conjugate vector. As

x, £ FConj(p) there exists s, e (0,1) such that stxt e FConj(p). By Lemma 3.9,
there exist Jacobi field Ji(t) f (t) Ptuh along the geodesies yr(x,)(0 with
/i(0) f(si) fi(n) 0 for each index i. Note that mines',, re —s,} > inj(M)/2.
Therefore, 5; x, converge to a conjugate vector sx with 0 < .s- < 1, a contradiction.

Proposition 3.13. SM V or M I.
Proof. Assume that X is a proper subset of M, or equivalently, that O f 0.

Corollary 3.7 and Lemma 3.12 imply Vp SPM for each p e Ö. Therefore
T> 0. As V is an open subset of the connected SM, it remains to prove that V is

a closed subset of SM.
This fails only if there exists a sequence of rank d — 2 vectors u, e V with vl

converging to a vector v e SM of rank d — 1. Lemma 3.8 implies each of the

geodesies yVl is closed and has 2n as a period; therefore, yv is a closed geodesic

having 2n as a period. Let pt e M denote the footpoint of each ry and p e M the

footpoint of v. As the rank of u; is d — 2, the geodesic yV[ enters Ö at some time t,.
Replace v, with w, yVl (f). After possibly passing to a subsequence, the sequence
of rank n — 2 vectors wt with footpoints qt e Ö converge to a rank d — 1 vector w
with footpoint q.

Continuity of exp : TM —» M and Lemma 3.7 imply that exp? restricts to a

point map on the tangent sphere 5(0, n) C TqM. Lemma 3.12 implies M X, a

contradiction.

Proofof Theorem A. Seeking a contradiction, assume that M ^1 Then SM V
by Proposition 3.13. For p e M, the spherical distribution D is a nonsingular
codimension one tangent distribution on Sp M, an even dimensional sphere since M is

odd dimensional. This distribution is continuous by Lemma 3.3, a contradiction.
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3.2. Adapted Frames. This subsection consists of preliminary results that will
culminate in the proof of Theorem B in the next subsection. If M does not have

constant curvatures equal to one, then Theorem A implies d dim(M) is even and

Proposition 3.13 implies every tangent vector has rank d — 2 (SM V). These

are standing assumptions on M throughout this subsection. The main result is the

following proposition; its proof appears at the end of this subsection.

Proposition 3.14. IfM does not have constant curvatures equal to one, then M has

no isotropic points (M O).

Lemma 3.15. For each p e M, the spherical distribution D is a smooth tangent
distribution on SPM.

Proof. It suffices to prove smoothness of D on a metric ball B contained in the

tangent sphere SPM. As the center bo of B is a rank d — 2 vector, there exists

a unit vector w e b$ and a to > 0 such that sec(Yb0(to), Pt0w) > 1. Therefore

Yb0(to) £ O, and since Ö is open, Yb(to) e O for all b e B after possibly reducing
the radius of B.

Lemma 3.4 implies öyÄ(;0) Eyh(to) f°r each b e B. The unit tangent
vectors Ybifo) vary smoothly with b B. Remark 2.10 implies P>ybq0) varies

smoothly with b e B. The lemma follows since is obtained by parallel translating
along Yb f°r time to the subspace Dyh(t()) to Tb(SpM).

The proof of Proposition 3.14 is based on a curvature calculation in special
framings along geodesies. To introduce these framings, let p M, v e SPM, and

let {ei,..., ed-i} C TV(SPM) be an orthonormal basis with e\,..., Dv.
Define Eo(t) Ptv y„(t) for t > 0 and Ei(t) Ptei for i e {1,..., d — 1}
and t > 0.

Definition 3.16. The parallel orthonormal framing {E0(t),..., Ea-\(t)} along the

ray : [0, oo) —> M is an adapted framing.

The following describes curvature calculations in polar coordinates using adapted
framings.

Suppose that ß c isa metric ball of radius less than n. Then TB is trivial
and the restriction of the spherical distribution D to B is trivial. By Lemma 3.15, there

are smooth unit length vector fields e\,..., e^_2 on B tangent to D. An orientation
on SPM determines a positively oriented orthonormal framing {cq,..., e^-x} of B.
For each b e B, let {Eo(t),..., Ed~\(t)} be the associated adapted framing along
the ray Yb

Now fix v e B. For T > 0 such that Tu is not a conjugate vector, expp carries
a neighborhood U of Tv in TPM diffeomorphically onto a neighborhood V of
expp(Tu) in M. After possibly reducing the radius of B, the radial retraction of U
to the unit sphere r((7) coincides with B. The collection of adapted framings along
geodesic rays with initial tangent vectors in B restrict to an orthonormal framing
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{Eo,..., Ed-1} of the open set V in M. To calculate the Christoffel symbols in this

framing, first define af : B -» R byij

d-1
[el,eJ] J2a'ijek- (3.2)

k 1

As Tu is not a conjugate vector, the geodesic spheres S(p,t) with center p and radius f
close to T intersect the neighborhood V in smooth codimension one submanifolds.
The vector fields E\(t),..., Ed-\(t) are tangent to the distance sphere S(p,t)
in V and have outward pointing unit normal vector field Eo(t). In what follows,
g' := E0(g) denotes the radial derivative of a function g.

For each unit speed geodesic y(t) with initial velocity vector in B, let Jx (t)
denote the Jacobi field along y with initial conditions Jx (0) 0 and J[{0) ex e

Ty(o)(SpM). Lemmas 3.6 and 3.9 imply

Jx{t) sin(r)£,(0, i -2},
Jd-x(t) f{t)Ed-X{t),

where /(t) is the solution of the ODE

/" + sec(Z<o, Ed-Of 0, with /(0) 0, /'(0) 1.

For t close to T, define Ft : B —>• M by Ft(b) expp(tb). The chain rule and (2.5)

imply
dFt(et) Ji(t) (3.4)

for i e {1,2,..., d — 1}. Use (3.2), (3.4), and the fact that the Jacobi fields Jx are
invariant under the radial (geodesic) flow generated by Eo to deduce

d — 1

[Jl,Jj] YJ 4 Jh, ZeoJ, [Eo, Ji] o. (3.5)
k—1

Use (3.3) and (3.5) to calculate that for i, j e {1,..., d — 2}:

[E0, E,] — cot Ex

[E0,Ed-\] Ed-\f
-2d 2 „k „d-1 f

k — 1

d-2
[.Ei,Ed_,] £ a-^Ek + (^i - ^P)Ed-l.

k=i
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Lemma 3.17. Let iff ,d — 2}. The orthonormal framing {Eo,..., E^-i]
has Christoffel symbols given by Ve0E)c 0 for each k {0,..., d — 2} and:

V£, Eo cot £j
d 2 ~k ~i _i_

V_e Ej - cot<5/ £o + J] ° -£*1 ^ 2 sin

21 /
V F _ V 1 +ak^-l I akilf\FVe.E,-, - + —^ Et

k=1 v ^ '

f^Ed_xEo — —Ej-i

7 k=l v J 7

where f{t) is the solution of the ODE

f" + sec(£0, ^-i)/ 0, with /(0) 0, /'(0) 1.

Proof. Calculate using (2.1) and (3.6).

Use Lemma 3.17 to derive the curvature components: For iff e {1,..., d — 2},

~{ad 1 / csc)'
R(El,EJ,E0,Ed-i) (3.7)

(a1d-if csc~Ej(fWjR(Ed_l,E0,EJ,Ed_l) ^^ (3.8)

ProofofProposition 3.14. The goal is to prove X M or 1 0. The set of
isotropic points X is closed in M and M is connected. It suffices to prove that X is

open in M. Let p e X and v e SPM. As v has rank d —2, there exists a positive
s < tt such that q := yv(.v) is the first conjugate point to p along the geodesic yv(t).

Claim. X contains an open neighborhood ofq in M.

Assuming the claim holds, X contains an open neighborhood of the point pin M
since the property of being a first conjugate point along a geodesic is symmetric.
Hence X is open in M.
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Proofof the claim. Let w —yv(s) and note that p yw (.v). Let B be a small
metric ball in SqM containing w and trivialize the tangent bundle of B with
orthonormal vector fields {e\,... ,ed-\} with ei(b) e Df, for each b e B and

i e {1,..., d — 2}. Consider the induced adapted framings {Eo,..., Ed-1} along
geodesies with initial velocity vectors in B.

If q is not contained in an open neighborhood of isotropic points, then there exists

a sequence qt Ö converging to q. As all vectors have rank d — 2 the spherical
distributions on Sgi M converge to the spherical distribution on SqM.

As qt e Ö, Lemma 3.4 implies that the spherical distribution on each SQi M
is totally geodesic. Therefore, the limiting spherical distribution on SqM is

totally geodesic. By Corollary 2.17, the limiting distribution on SqM is a contact
distribution. In particular, the function

a\iX {[ei,e2],ed-i)

is nonzero on B. Use (3.7) to calculate

Q.^ ^ (Wj)
R(EltE2, Eo, Ed-Mt) "V (COS(0/(0 - sin(0/'(0) (3-9)

sin3 (r)

for t e (0,51) along yw(t).
As p el, the curvature tensor vanishes on orthonormal 4-frames at the point p.

Therefore as t converges to s, the left hand side of (3.9) converges to zero. As aff1
is nonzero on B, (cos / — sin /') —> 0 as t —> s.

Only the Jacobi field Jd-\{t) can vanish before time n. As p is conjugate to q,

f(t)-^0ast->s. As s < it, sin(5) ^ 0. Conclude that f(s) f'(s) 0, a

contradiction since Jj-i (0 /Ed-1 (0 is a nonzero Jacobi field along yw (t).

3.3. Proof of Theorem B.

Proofof (1). Let v e SPM. Since every tangent vector has rank d — 2, dim(Z)„)
dim(uJ-) — 1. Proposition 3.14 and Lemma 3.4 imply Dv Ev. Lemma 2.1

concludes the proof.

Proofof (2). Proposition 3.14 and Lemma 3.8 imply that SM c Fix23r.

Proofof (3). As in the proof of (1), Dv Ev and din^D^) dim(u-L) — 1

d — 2 for all v SM. Lemma 2.12 implies that for each p e M, the

eigenspace distribution E on SPM is a nonsingular codimension one totally geodesic
distribution. Theorem 2.16 yields a nonsingular projective class [Ap\ PGL(TpM)
for each p e M, varying smoothly with p e M by Remark 2.10. For each p e M
there are precisely two representatives of the projective class [Ap\ having determinant

one. As M is simply connected there exists a smooth section p m>- Ap g \Ap\.
Item (3) is therefore a consequence of the polar decomposition of Ap, see [3,
Lemma 2.32, p. 64] for details.
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The proof of item (4) of Theorem B requires some preliminary lemmas.

Corollary 3.7 and Proposition 3.14 imply that the restriction of expp to the tangent
sphere 5(0, n) C TpM is a point map for each p e M. Define the map F : M —»• M
by F(p) expp(S(0, n)). Then F2 Id by item (2) of Theorem B.

Lemma 3.18. F is an isometry of M.

Proof. The map F sends each complete geodesic in M into itself while preserving
the lengths of subsegments.

Lemma 3.19. If F has a fixed point, then F Id.

Proof By Lemma 3.18, it suffices to prove if F{p) p, then the derivative map
d Fp Id. The eigenvalues of the derivative map dFp are square roots of unity
since F2 Id. If v e TPM is a unit length eigenvector of eigenvalue —1, then

dFp(u) yv(ii) —v. Therefore, yv(it + t) yv{—t) for all t. By the chain rule,

yv{it + t) —yv{—t) for all t. When t — ~ this implies yv(y) —yv{§), a

contradiction.

Lemma 3.20. If sec < 9, then F has a fixed point.

Proof. If F has no fixed points, then the displacement function of F,x id(x, F(x)),
obtains a positive minimum value at some p e M as M is compact. A minimizing
geodesic segment y that joints p to F{p) has length L $ diam(M) < n by
Toponogov's diameter rigidity theorem [27] (see also [21, Remark 3.6, pg. 157]).
Let m denote the midpoint of the segment y. The union y U F(y) forms a smoothly
closed geodesic of length 2L since otherwise d(m, F(m)) < L d(p, F(p). By
item (2) and since F has no fixed points, 2L e {In/{2k + 1) | k ^ 1}. Therefore,

inj(M) ^L^7r/3. As M is simply connected, even dimensional, and positively
curved, inj(M) conj(M). The Rauch comparison theorem and the assumption
sec < 9 imply that conj(M) > n/3, a contradiction.

Proofof (4). Lemmas 3.19 and 3.20 imply that F Id. It follows that each geodesic
in M is a closed geodesic having n as a period. If a closed geodesic of length ir is

not simple, then there exists a geodesic loop in M of length at most tt/2. In this case,

inj(M) ^ 7t/4, contradicting inj(M) conj(M) > tt/3. Therefore, each geodesic
in M is simple, closed, and of length n.

Each unit speed geodesic starting at a point p e M of length n has equal
index k 1, 3,7, or dim(M) — 1 in the pointed loop space Q(p, p) by the Bott-
Samelson Theorem [3, Theorem 7.23]. The multiplicity of each conjugate point
to p in the interior of these geodesies is one since the spherical Jacobi fields defined
in Lemma 3.6 do not vanish before time jr. If k ^ 3, the Jacobi field given by
Lemma 3.9 has a pair of consecutive vanishing times 0 < t\ < ?2 < n satisfying

t2~h -'S tt/k ^ 7t/3. This contradicts conj(M) > n/3 as sec < 9. Conclude that
k 1 and that M has the homotopy type of CP*"^2 by [3, Theorem 7.23],
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3.4. Proof of Theorem C. Recall that a Riemannian manifold satisfies the Rakic

duality principle if for each p e M, orthonormal vectors v,w e SPM, and lei,
v is a A-eigenvector of the Jacobi operator Jw if and only if w is a A-eigenvector of
the Jacobi operator Jv. This subsection contains the proof of Theorem C, an easy

consequence of the next proposition.

Proposition 3.21. Let M be a complete and simply connected Riemannian d -

manifold with d ^ 4 even, sec J? 1, spherical rank at least d — 2, and no isotropic
points. If M satisfies the Rakic duality principle, then M is isometric to CP^2
endowed with the symmetric metric having constant holomorphic curvatures equal
to 4.

The proofof this proposition appears at the end of the subsection. As a preliminary
step, observe that the proof of item (3) of Theorem B shows that there exists a

smooth section p i-> Ap e SL(TPM) where each Ap is skew-symmetric and

satisfies Dv span{u, Apv}1- for each v e SPM. Define A : SM —> R by
X(v) secfu, Apv) where p denotes the footpoint of the vector v e SM.

Lemma 3.22. A2p — Id for each p e M.

Proof The proof of item (1) of Theorem B shows that Apv is orthogonal to the

1-eigenspace Dv of the Jacobi operator Jv. Therefore A(u) > 1 and Apv/\\Apv||
is a unit vector in the A(u)-eigenspace of Jv. Similarly, A(Apv/\\Apv\\) > 1 and

A2p v/|| A2v || is a unit vector in the X(Apv/1| Apv ||)-eigenspace of the Jacobi operator
Japv/\\apv\\- The Rakic duality property implies that v is a unit vector in the A(u)-
eigenspace of the Jacobi operator JapvI\\a„v\\- The Jacobi operator JapvI\\apv\\
has two eigenspaces, the 1-eigenspace DapvI\\apv\\ °f dimension d — 2 and its one
dimensional orthogonal complement, the X(Apv /\\Apv\\) eigenspace. Conclude
that for each v e SPM, X(v) A(Apv/\\Apv\\) and by skew-symmetry of Ap
that v —A2pv/\\A2pv\\. As A2v is a multiple of v for each v SPM and Ap is

skew-symmetric of determinant one, A2 — Id.

Fix p M and a metric ball B in the tangent sphere Sp M. Let {e\,..., e^-1} be

a smooth framing of B with {e\,..., e^-2} tangent to the spherical distribution D.

Lemma 3.23. Thefield e^-\ satisfies ^ed-\ed-x 0 on B with respect to the round
metric on SPM. Equivalently, 0 for each j e {1,..., d — 2}.

Proof The first assertion is a consequence of Corollary 2.18 and Lemma 3.22. The
second is derived from (2.1)

2(Ved_led^l,eJ) {[ed-\,ed-\\,ej) - <[erf_i,e7], + {[ej ,ed-1\,ed-l)
— ?ad~1— j d—1"
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Consider the adaptedframing {Eo(t),..., Ed-1 (t)} along geodesies with initial
velocity in B induced by the framing {ex,..., e^_x} of B. Let e < inj(M) and let

J{b,t) f{b, t)Ed-\(t) be the Jacobi field along y^(/) defined by Lemma 3.9.

Then / > 0 on B x (0, e).

Proposition 3.24. The function f : B x (0, e) —R is radial: Ej(f) — 0 for each

j £ {1,..., d — 1}, or equivalently, f(b,t) does not depend on b £ B.

— F fV
Proof Lemma 3.23 and (3.8) imply R(Ed-\,Eo, Ej, Ed-1) —j— for each

j £ {1,— 2}. For each b £ B and t £ (0, e), Ed-\(b, t) is an eigenvector
of eigenvalue X(Eo(b, t)) for the Jacobi operator JE0(b,t)- The symmetry property
implies that Eo(b, t) is an eigenvector of the Jacobi operator JEd-X(b,t)- Conclude

Ej (/)' 0 for each j £ {1, • • •, d — 2}. Use (3.6) to calculate

0 Ej(fY
E0Ej(f)
[EcEjKft + EjEoV)
- cot Ej (/) + Ej(f')
E](f -cot/).

Let g f — cot /. Corollary 2.17 and the fact that the time t-map of the radial
flow generated by E0 carries the spherical distribution D to the distribution spanned

by {Ei (t),..., Ed-2(t)} on expp(tB) C S(p,t) imply that the latter distribution is

contact. Conclude that Ed-i(g) 0 and that g is a radial function.
Therefore

h g_ f sin -cos/ / f_A'

sin sin2 \ sin J

is a radial function. Let k ^ and consider the restriction k(t) to a geodesic YbU)
with b £ B. By L'Hopital's rule and the initial condition /'(0) 1, limf_*o k(t)

1. By the fundamental theorem of calculus, k(t) — 1 + /0' h(s)ds is a

radial function. Therefore / k sin is a radial function.

ProofofProposition 3.21. It suffices to prove that X : SM —> M is constant by [7,
Theorem 2, p. 193]. Fix p £ M and a metric ball B c SPM as in Proposition 3.24.

Proposition 3.24 implies that X is constant on B since by the Jacobi equation, X(b)
rrt

lim^o j^(b, t) for each b £ B. As SpM is connected, A : SPM -> R has

a constant value X(p). Each point p £ M is an Einstein point with Ricp
(A(p) + d — 2)gp. The adaptation of Schur's Theorem for Ricci curvatures [18,
Note 3, Theorem 1, p. 292] implies that M is globally Einstein. Therefore A(p) is

independent of p £ M.

Proofof Theorem C. Apply Theorem A, Proposition 3.14, and Proposition 3.21.
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4. Proof of Theorem D in real dimension at least six

Throughout this section, M is Kählerian with complex structure J : TM —> TM,
real even dimension d ^ 4, sec 5= 1, and spherical rank at least d —2. This section
contains preliminary results, culminating in the proof of Theorem D when d > 6.

As M is orientable (complex), even-dimensional, and positively curved, M is

simply connected by Synge's theorem. As M is Kählerian, its second betti number

b2(M) f 0, whence M is not homeomorphic to a sphere. Therefore M does not
have constant sectional curvatures.

Proposition 3.14 now implies that M has no isotropic points (M Ö).
Proposition 3.13 implies that every vector in M has rank d — 2. Lemmas 2.12
and 3.4 imply that that the eigenspace distribution is a nonsingular codimension one
distribution on each unit tangent sphere in M. By Theorem 2.16, there exists a

nonsingular projective class [Ap\ e PGL(TpM) of skew-symmetric maps such that

Dv Ev {t>, Apv}1- for each p e M and v e SPM.

4.1. Relating the complex structure and the eigenspace distribution. Fix p M
and choose a representative Ap e [Ap\. Assume that V o\ © 02 is an orthogonal
direct sum of two /^-invariant 2-plane sections. There exist scalars <jx\ and

0 < p,2 such that || for each unit vector ly e oy. There is no loss in
generality in assuming ßi ^ ß2 and if equality ji\ ß2 holds, then X\ ^ A2.

For a unit vector v e SPM, let X(v) sec(v,Apv). Then Apv is an

eigenvector of the Jacobi operator Jv with eigenvalue X(v) > 1. Note that A(i>)
is the maximal curvature of a 2-plane section containing the vector v. Therefore,

X(Apv/\\ Apv\\) ^ X(v) with equality only if A2pv and v are linearly dependent. For

a vector vt e cr,, let in A(vi}/jii. With this notation, v, —vl.

Lemma 4.1. Assume that {u,v,uj} C V are orthonormal vectors with u,v e ct, and
w Oj with i 7^ j e {1,2}. Then R(u, v, w, u) 0 and R(u, w, w, u) 1.

Proof. As u e a,, an Ap-invariant 2-plane, the orthogonal 2-plane Oj is contained
in Eu. In particular, w e Eu, implying the lemma.

Lemma 4.2. Let i>, eo,,i 1, 2, be unit-vectors. Ifv avi+bvj is a unit-vector,
then A(u) a2X\ + b2Xz-

Proof. Observe that X(v)\\Apv\\2 R(v, Apv, Apv, v) or equivalently

X(v)(a2 p,2 + b2 ßl) R(avi +bv2,aß\Vi +bß2V2,aßiVi +bp,2v2,avi +bv2).

Expanding the above, using Lemma 4.1, and simplifying yields

X{v){a2p2l + b2pt\) aVjAi + a2b2(ß\ + pt\) + b4p,\X2 + <F (4.1)
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where

$ 2a2b2ßxß2[R(vx,vx, v2,v2) + R(vx, v2, h, «2)]- (4.2)

The vector w := bß2v\ — aß 1 v2 is orthogonal to both v and Apv so that
1 sec(u, w). Equivalently

(a2ß2 + b2ß2) R{av\ + bv2, bß2vx — aßxv2, bß2vx — aß\v2, avj + bv2).

Expanding the above, using Lemma 4.1, and simplifying yields

d> a2b2{ß\Ai + ß\X2) + a2ß\(a2 — 1) + b2ß2(b2 — 1). (4.3)

Substituting (4.3) into (4.1) and simplifying using a2 + b2 1 yields the desired

formula for A(u).

Corollary 4.3. Ifß 1 < ß2, then X\ < X2.

Proof. In the notation of Lemma 4.2, choose the vector v so that a b y/l/2.
As ß\ < ß2, the vectors v av x +bv2 and A2v —{aß\v\ +bß\v2) are linearly
independent. Therefore

X(v) sec(v, Apv) < sec(Apv,A2v) X(Apv/\\Apv\

By Lemma 4.2,

Ml1!- ^ Ii ß2-Ai + -A2 < ———2 1 4 TT 22 2 ßi + ßi Tx+ßi
,2 \ / ,,2

Z Z - z Z--Uvi + niJ \^i + p 2

or equivalently, (]-- ^ < ^2 -\2 ßi + ßiJ \ß\ + ß22 2)

iß2 ß2 1

If A2 ^ Ai, it follows that .—-—^ < —=—-— a contradiction.
2 ß\ + ß22 ß\ + ß22 2

Given unit vectors e, e <r, i 1,2, consider the following components
of the curvature tensor: a R(e\,e\,e2,e2), b — R(ei,e2,ei,e2), and

y R(e2, ex, ex. e2). By the Bianchi identity,

a + ß + y 0. (4.4)

Lemma 4.4. In the notation above, ß y > 0, a —2y < 0, and ß2(X2 — 1) +
ß2(Xx — 1) 6ßxß2y. Moreover, (Aj — 1)(A2 — 1) ^ 9y2.

Proof. Set Vx <?i, v2 e2, and a b — and use (4.2) and (4.3) to deduce

Pi(A2 - 1) + ßl(Xx - 1) lßxß2{ß ~ a). (4.5)

after simplification.
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Similarly, set rq ex, v2 e2, and a h ~ and use (4.2) and (4.3) to
deduce

Mi (A2 - 1) + - 2miM2(y ~ a). (4.6)

As fii > 0 and A; > 1, (5.3) and (4.6) imply that ß y. By (4.4) a —2y which

upon substitution into (4.6) yields

M?(A2 - 1) + ßl&i - 1) 6ßiji2Y

from which the remaining inequalities are easily deduced.

Lemma 4.5. In the notation above, A i ^ 3y + 1 ^ A2. Equality holds in either case

only ifAi A2 3y + 1 and /r 1 M-2-

Proof If Ai ^ 3y + 1, then 9y2 ^ (Ai — l)2 $ (Ai — 1)(A2 — 1) $ 9y2, implying
that Ai A2 3y + 1 (and Mi P-2 by Corollary 4.3). Lemma 4.4 and the

derivation of Berger's curvature inequality [2,17] imply

2y -a R(e x,ex,e2,e2)

7[sec(ei + e2, ex + e2) + sec(ei + e2, ex - e2)\
6

+ ^[sec(e! - e2, ex - e2) + sec(ei - e2, ex + e2)]
6

- 7[sec(ei - e2, ex + e2) + sec(e! - e2, ex - e2)\
o

- 7[sec(ei + e2, ex - e2) + sec(ei + e2, eX + e2)].
6

If ct C V cti © CT2 is a 2-plane section and v 6 (J is a unit vector, then

sec(a) ^ X(v) L A2 where the last inequality is a consequence of Lemma 4.2.

Hence 1 ^ sec ^ A2 on V. These inequalities and the above formula for 2y yields
the inequality A2 5= 3y + 1 where equality holds only if sec(<?i + e2, ex + e2) A2.

Hence, equality holds only if A2 sec(ei + e2,ex + e2) ^ A((ei + e2)/^/2)
|(Ai + A2) A2, or equivalently if A1 A2 (and ji \ ji2 by Corollary 4.3).

Lemma 4.6. For each nonzero vector v TPM, there exists c(v) el \ {0} such

that ApJpV c{y)JpApv.

Proof Let v e TPM \ {0}. Lemma 2.1 and (2.3) imply that JP(EV) EjpV.
Therefore

span{/pU, EJpV) span^u, JP(EV)} /P(span{u, £„})
JpHApv)1-) Jp(Apv)x,

where the last equality uses the fact that Jp acts orthogonally.
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Conclude that both the vectors JpApv and ApJpv are perpendicular to the

codimension one subspace span) Jpv, EjpV}, concluding the proof.

Lemma 4.7. Either APJP JpAp or APJP —JPAP.

Proof. As both ApJp and JPAP are non-degenerate, Lemma 4.6 implies that there

is a nonzero constant c e R such that ApJp — cJpAp. Taking the determinant

yields cd 1, whence c ±1 since d is even.

Proposition 4.8. APJP JpAp.

Proof. Let o\ be an 4^-invariant 2-plane section. If o\ is Jp-invariant, then the

restriction of Ap and Jp to o\ differ by a scalar, hence commute, concluding the

proof in this case by Lemma 4.7.

Hence, if the proposition fails, then APJP —JpAp and a\ is not invariant
under Jp. The following derives a contradiction.

Let {e\, e2} be an orthonormal basis of 0\. There exists a nonzero constant /x
such that Ape\ /xe2 and Ape2 —p-ei. Rescale Ap and replace e2 with — e2, if
necessary, so that /x 1. If A* denotes the adjoint of Ap, then A* —Ap on the

subspace u\.
As Jp is orthogonal, {e3 Jpe\,e4 Jpe2) is an orthonormal basis of

o2 := Jp(<7\). The following calculations will demonstrate that {et, e2, C3, e4) form
an orthonormal 4-frame. As gp(e\,ef) gp{e\, Jpe\) 0 gp(e2, Jpe2)
gp(e2, «4), it remains to verify the equalities gp(e\, ef) 0 gp(e2, e2). Calculate

gp{ei,e4) gp(ei,Jpe2) gp{exJpApex)

gp(eu-ApJpei) gp(-A*pei,Jpei)

' dpef) gp(e2, Jpef)

Ep(Jp^2,—^i) —

to conclude that gp{e\,e4) 0. Finally,

gP{e2, e3) gp{Jpe2, Jpef) g^(e4, ~ei) 0

concluding the proof that {ei, e2, e2,e4} are orthonormal. Let A sec(o*i) and note
that

A R(ei,e2,e2,ei) R{Jpe\,Jpe2, Jpe2, Jpe 1) R(e3, e4, e4, e3) sec(o2).

As Ap(a2) ApJpiaf) -JpApiaf) -Jp{oi) a2, the 2-plane a2 is
A p-invariant. Lemma 4.2 implies that A is the maximum sectional curvature on the

subspace V ai©a2. By Berger's curvature inequality (\2,17]), R(ej, e2, e4, e3) ^
I (A — 1). Consequently,

2
A R(ei,e2,e2,ei) R(elte2, Jpe2, Jpef) R(ei,e2,e4,ef) ^ -(A - 1),

or equivalently, A ^ —2, a contradiction.
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Lemma 4.9. Assume that V o\ ® 02 is an orthogonal sum of Ap-invariant and

Jp-invariant 2-plane sections. Let vl G a, be unit vectors and v, Apvt/jj.t. If
Jpv 1 üi, then Jpv2 V2- If Jpv\ — tq, then Jpv2 —v2. In both cases

Y R(V2,V1,v1,V2) 1.

Proof The assumptions imply that there are constants c\,c2 {—1,1} such that

Jpvl c, vl for i 1,2. The first assertion in the lemma is the equality c 1 C2 as

will now be demonstrated. Note that

Y R(v2,v i,vi,v2) R(Jpv2,Jpv\,vi,v2) R(c2v2,civi,vi,v2) cxc2

where Lemma 4.1 is used in the last equality. By Lemma 4.4, y > 0 whence c\ C2

and y 1.

Corollary 4.10. If (j d TpM is a 2-plane section satisfying .1 p[o) — 0*, then

Jp{o) o.

Proof After possibly rescaling Ap, there exists an orthonormal basis {ei, e2} of a
satisfying Ape 1 e2 and Ape2 —e\. If Jp{o) ^ a then Jp(o) D 0 {0}.
Letting e2 Jpe 1 and e4 Jpe2, the vectors {e\, e2, e2, ef) span a 4-dimensional
subspace of TPM.

By Proposition 4.8, Ape2 e4 and Ape$ —e2 since

Let tq e' +f4 and v2
e> f4 and use the above to calculate vi ez T3 and

v2 e2^3. Verify that o\ span{ui, i>i} and o2 — span{u2, v2} are orthogonal
A^-invariant and /p-invariant 2-planes and that Jpv\ —vi and Jpv2 v2. This

4.2. Proof of Theorem D when d dim®(M) ^ 6.

Lemma 4.11. For p e M, Ap has at most two distinct eigenvalues.

Proof. If not, then there exist three orthogonal Ap-invariant 2-planes at, i 1,2,3
and constants 0 < pt\ < p.2 < P<3 such that ||A(u;;)|| pt for each unit vector

wt G ct,. Let A, sec((7,). As gt\ < p,2, Corollary 4.3 implies that X\ < X2. By
Lemmas 4.5 and 4.9, X2 > 4. As pt2 < Corollary 4.3 implies that A2 < A3. By
Lemmas 4.5 and 4.9, A2 < 4, a contradiction.

and

Ape 3 — APJpe\ — JpApe \ — dpe2 — e4

Ape&r — ApJpe2 — JpApe2 — Jpe\ — e2.

contradicts Lemma 4.9.

Lemma 4.12. If d dimp(Af) ^ 6, then Ap has a single eigenvalue for each

p G M.
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Proof. If not, Lemma 4.11 implies that there exist constants 0 < pt\ < pt2
and 4p-eigenspaces E\ and E2 such that TPM is the orthogonal direct sum

TPM Ei © E2 and ||dp(u,)|| p, for each unit vector v, e £,, i 1,2.
As dimR(M) ^ 6, one of the two eigenspaces E\ or E2 has real dimension at least

four.

Case I. dimiR(.E'i) >? 4 Choose orthogonal dp-invariant 2-planes ü\ a2 C E\ and

03 C E2. Let Aj sec(a,) for each i 1,2, 3. As pi < p2, Corollary 4.3 implies
that Ai < A3 and A2 < A3. Apply Lemmas 4.5 and 4.9 to the four dimensional

subspaces ay © 03 and o2 © 03 to deduce Aj < 4 and A2 < 4. Apply Lemmas 4.4
and 4.9 to the four dimensional subspace ai © a2 to deduce Ai + A2 8, a

contradiction.

Case II. dim® (£2) ^ 4 Choose orthogonal dp-invariant 2-planes o\ C £1 and

a2,a3 C E2. Let A, sec(a,) for each i 1,2,3. As p\ < p2, Corollary 4.3

implies that A1 < A2andAi < A3. Apply Lemmas 4.5 and 4.9 to the four dimensional

subspaces o\ © o2 and o\ © a3 to deduce A2 > 4 and A3 > 4. Applying Lemmas 4.4
and 4.9 to the four dimensional subspace o2 © 03 to deduce A2 + A3 8, a

contradiction.

Remark 4.13. When dimR(M) ^ 6, Theorem D is easily derived from Lemma 4.12
and Theorem C. This approach is taken when dimp 4 in the next section.

In the remainder of this section, a more elementary proof is presented for the

case when dimp(M) ^ 6. This alternative proof is based on the well-known
classification [14, 16] of simply-connected Kählerian manifolds having constant

holomorphic curvatures.

Corollary 4.14. A 2-plane a C TPM is holomorphic ifand only ifAp(a) a.

Proof Fix p e M and let a C TpM be a 2-plane. If dp (a) a then Jp{a) 0
by Corollary 4.10. Conversely, assume that Jp{a) a and let v e o be a

nonzero vector. The 2-plane fi span]?;, Apv) is dp-invariant by Lemma 4.12.

By Corollary 4.10, a is Jp-invariant. As v lies in a unique holomorphic 2-plane,

a fi, so that a is Ap-invariant.

Corollary 4.15. Ifd — dimp(M) >: 6, then X(v) Afor every unit vector v SM.

Proof. Given v e SPM, the 2-plane ai span]?;, dpuJ is dp-invariant by
Lemma 4.12. As dimp(M) ^ 6, there exist orthogonal Ap-invariant 2-planes

o2,03 C a^-. Let A, sec (a,) for i 1,2, 3 and note that A(u) Ai.
Applying Lemmas 4.4 and 4.9 to the three four dimensional subspaces a, © o},

i, j 6 ] 1,2, 3} distinct, yields the linear system

Ai + A2 Aj + A3 A2 + A3 8,

whose solution Ai A2 A3 4 is unique.
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Theorem 4.16. A Kählerian manifold with sec ^ 1, real dimension d ^ 6, and

spherical rank at least d — 2 is isometric to a globally symmetric CP^2 with
holomorphic curvatures equal to 4.

Proof. It suffices to prove that all holomorphic 2-planes in M have sectional curvature
equal to four by [14,16]. Let p e M and let o C TPM be a holomorphic 2-plane.
Let v e o be a nonzero vector. By Corollary 4.14, a is 4^-invariant, so that

sec(cr) sec(u, Apv) X(v). By Corollary 4.15, X(v) 4.

5. Proof of Theorem D in real dimension four

This final section completes the proof of Theorem D, establishing its veracity when
d dimR(M) 4. The approach, alluded to in Remark 4.13, is to appeal to
Theorem C. The main step in proving that M satisfies the Rakic duality principle is

to establish the analogue of Lemma 4.12 when d 4. The following lemma, likely
well-known, is used for this purpose.

Lemma 5.1. Let B be an open connected subset of a Riemannian manifold (M, g)
admitting a pair oforthogonal and totally geodesic foliations J~\ and J-Then B is

locally isometric to the product T\ x .7-2.

Proof If H TT\ and V TT2, then the tangent bundle splits orthogonally
77? H © V. By de Rham's splitting theorem, it suffices to prove that the

distribution H is parallel on B. Let h, h denote vector fields tangent to H and let v, v
denote vector fields tangent to V.

As H is integrable, 0 g([h,h], v), implying g(V^, v) g(V^A, v). As H is

totally geodesic, g(V/,/z, v) — —g(V^/z, u). Conclude that

g(V^/i,u) 0. (5.1)

Similarly, the fact that V is integrable and totally geodesic implies that

g(Vsu, h) 0. As H and V are orthogonal, this implies

g(VsA, v) 0. (5.2)

By (5.1) and (5.2), H is parallel on B, concluding the proof.

Recall from the proof of item (3) of Theorem B that there exists a smooth section

p 3 M Ap SL(TpM).

Proposition 5.2. Assume that d dimß(M) 4. Then for each p e M, Ap has a

single eigenvalue.
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Proof. If not, then there exists a metric ball B in M with the property that for each

b e B, Ab has two distinct eigenvalues. For each b e B, there exist constants
0 < H\(b) < 112(b) and orthogonal eigenplanes o\ (b) and 02(b) of Ab satisfying
||^4i(u,)|| iit(b) for each unit vector v, e a,(b). As the Ab vary smoothly with
b e B, the functions /t,; : B -» R and the orthogonal splitting TB 0\ ® o2 are
both smooth. Define A; : B —> M by A; (b) sec(cr; (b)) for i — 1,2.

After possibly reducing the radius of B, there exist smooth unit vector fields Vi
and V2 on B tangent to o\ and 02 respectively. By Corollary 4.10, the two 2-plane
fields ay and 02 are /-invariant. Therefore, letting v, J vt, the smooth orthonormal

framing {vi, üi, U2, v2} of TB satisfies a, span{u,,ü,} for i 1,2. Define

y : B —> R by y R(t>2, ui, üi, «2)- Again by Corollary 4.10, the Ab-invariant
2-planes a, (b) are Jb-invariant and by Lemma 4.9, y 1 on B.

Corollary 4.3, implies that Aj (b) < A2(b) and Lemma 4.5 implies

Xi(b) <4< X2(b) (5.3)

for each b e B.
The goal of the following calculations is to show that the orthogonal distributions

o\ and 0*2 are integrable and totally geodesic. As J is parallel,

g(WXJY, Z) g(JVXY, Z) -g(VxY, JZ) (5.4)

for all smooth vector fields X, Y, Z.
Use (5.4) to conclude

g(VVlv2, Vi) —g(V„2ü2, ui). (5.5)

Use the differential Bianchi identity,

0 (V„2/?)(ui, üi, ui, u2) + (VVlR)(v1,v2,v1,v2) + (VölÄ)(u2,ut,i;i,t;2)

to derive

(Ai - l)g(V„2u2, üi) + 3g(V„2ü2, vi) 0. (5.6)

Use (5.3), (5.5), and (5.6) to conclude

g(V„2u2, üi) g(VU2ü2, vi) 0. (5.7)

Set w 1 := üi andtüi := Ju> 1 —vi. Repeating the above calculations with w\
and wi in place of vi and vi, respectively, yields the following analogue of (5.7)

g(Vu2V2, wi) g(VV2v2, u>i) 0, (5.8)

or equivalently,
g(V„2v2, vi) g(VV2v2, vi) 0. (5.9)
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Set w2 := V2 and w2 := JW2 —v2- Repeating the above calculations with w2
and W2 in place of V2 and v2, respectively, yields the following analogues of (5.7)
and (5.9)

g(Vw2w2, vi) g(VW2wz, vt) 0, (5.10)

and g(Vw2W2,V!) g(VW2w2,vi) 0, (5.11)

or equivalently,

g(Va2v2, vi) g(Vo2v2, ffi) 0, (5.12)

and g(Vü2ü2, ffi) g(Vv2v2, vi) 0. (5.13)

The 2-plane field a2 is integrable and totally geodesic by (5.7), (5.9), (5.12),
and (5.13).

Switching the roles of the indices 1 and 2 in the differential Bianchi calculation
above, yields the following analogue of (5.6)

(A2 - l)g(VUl vi, v2) + 3g(VUl vi,v2) 0. (5.14)

Now, arguing as in the case of the 2-plane field a2, the 2-plane field ai is also

integrable and totally geodesic. As the tangent 2-plane fields o\ and 02 are orthogonal,
integrable, and totally geodesic, B is locally isometric to a Riemannian product by
Lemma 5.1. This contradicts the curvature assumption sec ^ 1.

Theorem 5.3. A Kählerian manifold with sec ^ 1, real dimension d 4, and

spherical rank at least 2 is isometric to a globally symmetric CP2 with holomorphic
curvatures equal to 4.

Proof. It suffices to prove that M satisfies the Rakic duality principle by Theorem C.

Let p e M and let v, w e SPM be a pair of orthonormal vectors. The Jacobi

operator Jv has two eigenspaces, namely the two-dimensional 1-eigenspace Ev and

the one-dimensional A(t>)-eigenspace spanned by the vector Apv. Similarly, the

Jacobi operator Jw has a two-dimensional 1-eigenspace Ew and a one-dimensional

A(ie)-eigenspace spanned by Apw.
If w e Ev, then v e Ew by Lemma 2.1. If w lies in the A(u)-eigenspace of Jv,

then w is a multiple of Apv. By Proposition 5.2 the 2-plane a := span{u, w) is

Ap-invariant, whence X(w) sec(cr) A(u) and v lies in the A(ie)-eigenspace
of Jw.

Together, Theorems 4.16 and 5.3 complete the proof of Theorem D.
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