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Abstract. We generalize an equidistribution theorem ä la Bader-Muchmk for operator-valued
measures constructed from a family ofboundary representations associated with Gibbs measures
in the context of convex cocompact discrete group of isometries of a simply connected connected
Riemanman manifold with pinched negative curvature We combine a functional analytic tool,
namely the property RD of hyperbolic groups, together with a dynamical tool an equidistribution
theorem of Paulin, Pollicott and Schapira inspired by a result of Roblin In particular, we deduce

irreducibility of these new classes of boundary representations.
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1. Introduction

Viewing the group SL(2,E) as a group acting by isometries of the hyperbolic
plane we have an induced action on the geometric boundary of the hyperbolic plane
which is identified with the circle. The Lebesgue measure is quasi-invariant under
this boundary action (i.e. the sets of Lebesgue measure zero are preserved under
the action) and so there is a naturally associated unitary representation of SL(2, M)
on L2(§1) called the quasi-regular representation. The quasi-regular representation is

irreducible and is part of a family of irreducible unitary representations of SL(2, E)
on L2(S1) called the principal series which forms one of the families composing
the unitary dual. For a general locally compact group G, especially when G is

a discrete countable group, there is no hope of computing its unitary dual so we
will restrict ourselves to the problem of determining when the associated quasi-
regular representation of a G quasi-invariant action is irreducible. From a dynamical
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viewpoint the associated quasi-regular representation is interesting because it reflects
the ergodic theoretic properties of the action such as ergodicity and mixing.

Early on, Furstenberg [24] showed that when G is a semisimple Lie group the

space G/P equipped with Haar measure where P is a minimal parabolic subgroup,
nowadays called the Poisson-Furstenberg boundary, can be realized as the Poisson

boundary of a random walk on a lattice in G. Motivated by these results we
further restrict the problem which we state as the following conjecture of Bader
and Muchnik [10]:

Conjecture 1.1. For a locally compact group G and a spread-out probability
measure p on G, the quasi-regular representation associated to a p-boundary of G

is irreducible.

For the rest of the paper we will restrict ourselves to the case when G is a discrete
countable group. Analogously to the case of SL(2, M) the action of the free group F„
on its boundary is quasi-invariant with respect to the Patterson-Sullivan measure
class and thus there is the associated quasi-regular representation. Figä-Talamanca
and Picardello (see [25] and [27]) construct the analog of the principal series which
are unitary representations of F„ on L2(3F„) and show they are all irreducible.
For homogeneous trees Figä-Talamanca and Steger [26] show similar irreducibility
results for lattices in the automorphism group. Kuhn and Steger [36] have also

constructed different examples of irreducible representations of the free group. The

conjecture has also been solved for some actions of simple algebraic groups by Bekka
and Cowling in [11], When G is a lattice in a Lie group Cowling and Steger [21]
showed that the irreducible representations of the ambient semisimple Lie group
restricted to G remain irreducible. In particular the quasi-regular representation
of SL(2,M) on L2(§1) restricted to lattices is irreducible. Later on in the context
of CAT(-l) spaces for which a discrete group of isometries G acts cocompactly,
Connell and Muchnik (see [18] and [19]) proved when the geometric boundary is

equipped with a certain class of Gibbs measures that it can be realized as the Poisson

boundary of a random walk in G. This result led Bader and Muchnik [10] to prove
the conjecture for the action of the fundamental group of a compact negatively curved
manifold on the geometric boundary of the universal cover of the manifold, endowed

with the Patterson-Sullivan measure class. Recently the first named author has also

generalized the main theorem of Bader and Muchnik in [ 10] to the context of CAT(-1)
spaces and so irreducibility of boundary representations associated with Patterson-
Sullivan measures. Moreover Garncarek [29] has generalized the irreducibility result

of [10] for the action of a Gromov-Hyperbolic group on its geometric boundary
endowed with the Patterson-Sullivan measure class. He has also deduced thanks to
the work of ] 13] that if a symmetric random walk on a Gromov-Hyperbolic group has

finite exponential moment with respect to a word metric and such that the associated

Green metric satisfies the Ancona inequality then the action on the Poisson boundary
with respect to the harmonic measure is irreducible thanks to the work of f 13]. It is
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not clear at all to us if any of the measures constructed in [19] have finite exponential
moment and satisfies the Ancona inequality and therefore it is not clear at all that

our result of irreducibility would follow from an application of these two results.

Hence it legitimates our dynamical approach to prove irreducibility of quasi-regular
representations associated with the class of measure arising as conditional measures
of the Gibbs measures, called Gibbs streams in [19] or also called Patterson densities

in [43]; generalizing the Patterson-Sullivan measures class.

Bader and Muchnik prove in [10, Theorem 3] an equidistribution theorem for
some operator-valued measures associated with Patterson-Sullivan measures. This
theorem can be thought of as a generalization of von Neumann's ergodic theorem

for quasi-invariant measures for fundamental groups acting on the geometric
boundary of universal covers of compact negatively curved manifolds endowed

with the Patterson-Sullivan measures. These quasi-regular representations are
called boundary representations. It turns out that the irreducibility of boundary
representations follows from this generalization of von Neumann's ergodic theorem.

We generalize the results of Bader and Muchnik to the action of a convex

cocompact discrete subgroup of isometries of a pinched negatively curved manifold

on its boundary endowed with the Gibbs streams measure class rather called in this

paper Patterson densities measure class. The Patterson densities are constructed by
first assigning a weight to each element of the orbit and then proceeding as in the

construction of the Patterson-Sullivan measures which we think of as the unweighted
case.

Historically it was Sinai who first merged the field of equilibrium statistical

mechanics from which the concept of Patterson density is imported from with the field
of hyperbolic smooth dynamical systems. Given a Holder-continuous potential F on

the unit tangent bundle of a compact negatively curved manifold, the pressure of F
associated with the geodesic flow is given by

P(F) sup Ihm — / Fdml,
my J

where the supremum is taken over all measures on the unit tangent bundle which

are invariant under the fundamental group of the manifold and the geodesic flow
and hm is the metric entropy of m associated with the geodesic flow. Bowen [7]

proved for negatively curved manifolds that there exists a unique measure called
the Gibbs measure which achieves the supremum and is in fact the eigenmeasure
associated to the transfer operator of F. As we said, the Patterson densities arise as

conditional measures of the Gibbs measure and when F 0 the Patterson densities

are the Patterson-Sullivan measures and the Gibbs measure is the Bowen-Margulis-
Sullivan measure that maximizes the entropy.

The main tools of this paper are the property RD (Rapid Decay) that hyperbolic

groups satisfy (see [32] and [33]) combined with a spectral characterization

of the amenability of the action on the boundary (see [35] and [5]) together



352 A. Boyer and D. Mayeda CMH

with an equidistribution theorem of Paulin-Pollicott-Schapira inspired by Roblin's

equidistribution theorem which is itself based on the mixing property of the geodesic
flow. Indeed this idea of using the mixing property of the geodesic flow goes back

to Margulis [38] who used it in order to count the closed geodesies on compact
negatively curved manifolds. However, the first object to understand is the Harish-
Chandra function associated with Patterson densities. This function plays a major
role in harmonic analysis of spherical functions and in the theory of irreducible
representations of semismple Lie groups, see for example [28].

Notation. Let M be a complete connected Riemannian manifold with pinched
negative curvature. Let X M, let q : X -> M be a universal Riemannian covering

map with a covering group T viewed as a non-elementary discrete group of isometries
of X, denote the sphere at infinity by dX and endow X X U dX with the cone

topology.
The limit set of T denoted by Ar is the set of all accumulation points in dX of

an orbit. Namely Ap := Tx H dX, with the closure in X. Notice that the limit set

does not depend on the choice of x e X. We denote by £2F the subset of TlX of
tangent vectors to the geodesic lines in X whose endpoints both lie in Ap. Following
the notation in [18], define the geodesic hull GH{Ap) as the union of all geodesies
in X with both endpoints in Ap. The convex hull of Ap denoted by CH(Ap), is the

smallest convex subset of X containing GH(Ap). In CAT(-l) spaces we always have

CH(Ap) G//(Ap). We say that T is convex cocompact if it acts cocompactly
on CH{Ap).

Let p : T1 X —» X be the base point projection map from the unit tangent bundle

to X. Let g (gt)tR be the geodesic flow on Tx M and 'g (gt)teR the one

on TxX and equip the unit tangent bundle with the following metric

dTi a-(v, w) —f d (p(gt (v)), p(gt (w)))e~'2/2r/f,
V Tt JK.

where we use the notation v for an element in Tx X (and v for an element of dX).
Let F : TXM —> 1 be a Holder-continuous map, called a potential, and let

F F o q be the T-invariant potential associated on Tl X. In this work, as it has

been suggested by Kaimanovich, we assume that F is symmetric, that is F is invariant
by the antipodal map

i: \ eTxX -v eTxX. (1.1)

For all x, y X, let us define

py _ rd(x,y) _/ F:= F(g,(v))dt
Jx JO

where v (x, vx,y) TxX and vx,y is the unit tangent vector at x to a geodesic
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from x through y. Set:

dF(x,y) := f F. (1.2)
J X

A priori dF is not non-negative and is far to be a distance, nevertheless the symmetry
of F implies

dF(x, y) dF(y, x). (1.3)

Define the Gibbs cocycle as

rv< ~ rVt ~CF(x,y):= lim / F— F lim dF(y, vt) — dF(x, vt), (1.4)
t^+OOjy Jx t^+OO

where vt is any geodesic ray ending at a point v in dX. Observe that if F —1 the

Gibbs cocycle is nothing else than the Busemann cocycle, that is the horospherical
distance from jt to y relative to v.

The foundations ofPatterson-Sullivan measures theory are in the important papers
[42,50], See [14,16], and [44] for more general results in the context of CAT(-l)
spaces. These measures are also called conformal densities. In this paper we are

dealing with the Patterson density o/(T, F) where F is the potential function defined
above and T a discrete group of isometries of X.

Recall that means y*v(F) v(y~x B) where y is in T and B is a Borel
subset of some measure space. More specifically we say that vF is a Patterson

density of dimension a e R for (F, F) if vF is a map which satisfies the following
conditions:

• vF is a map from x e X \-r vF e M(X), i.e. vF is a positive finite measure.

• For all x and y in X, vF and vF are equivalent, and we have

dfy_(v) ecr°U,y),
dv*

• For all y e T, and for all x e X we have y*vF vFx.

In this context define the critical exponent of (T, F) for c > 0 large enough as

arF:=limsup- V QdF{x,yx)
n

n—c<d(yx,x)<n

Even if the construction of a Patterson density was not done in this general
context with a potential function, the technic is exactly the same. We attribute the

following proposition to Patterson in his seminal paper [42], ensuring the existence
of a Patterson density:

Proposition 1.2 (S.-J. Patterson). If oy,f < °o. then there exists at least one
Patterson density ofdimension oy.f with support exactly equal to Ay-
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A Patterson density vF of dimension a gives rise to a unitary representations

(nvF)xex defined forx e X as:

nvF : T U{L2(dX, vFx))

{xvr{Y)t){v) yx)S(Y~lv), d-5)

where £ e L2(dX, vF) and v e dX.
The representations {ttvf)X£x are unitarily equivalent. Let x be in X and

denote jtvf by nx. The matrix coefficient

4>x ' r -> {nx{y)Hxi lax) e 0-6)

is called the Harish-Chandra function, where I ax denotes the characteristic function
of 8X.

Construction ofergodic operator-valued measures. The Banach space ofbounded

linear operators from the Banach space of continuous functions on a locally compact
space Z to the Banach space of bounded operators on a Hilbert space jf will
be denoted by X(C(Z), The Banach space X(C(Z), is naturally

isomorphic to the dual of the Banach space C(Z)<g>Jf <g>Jf where <8> denotes the

projective tensor product: Thus <5E(C(Z), S(Jf)) will be called the space of operator-
valued measures.

Pick x in A, and a positive real number p and define for all integers n > 1 the

annulus

C„(x) {y e T | n — 1 < d(yx, x) < n}.

Let Dy be the unit Dirac mass centered at a point y e X. Consider the sequence of
operator-valued measures defined for all integers n > 1 as:

Mnx:fe C(X) h* cr,Fe-ar F" £ tdF^x)Dyx(f)^f\ e S(l2^ vx ))•
yeC„(x) Fx(y)

(1.7)
with the normalization constant

cr f » (L8)
1 - e~ar-F

where \\mp || is the mass of the so-called Gibbs measure associated with vF. We refer

to Section 2.3 for definitions and properties of Gibbs measures. The normalization
constant cy.f ensures that for any x in X

cr,Fe~ar Fn J2 zdF(x'Yx)DYx ® Dy-ly - vF ® vF,
yeC„(x)

as n goes to +oo with respect to the weak* convergence on C(X)*.
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If / e C(X), we denote by f\ax its continuous restriction to the space dX.
Let m(f) be the operator in S(L2(dX,vF)) acting on L2(dX,vF) by

multiplication and define the operator-valued measure Mx as:

Mx:feC(X)H>m(f\ax)Plax e £(L2(dX, vF (1.9)

where P\ax denotes the orthogonal projection on the space of constant functions.

Main results. The main result of this paper is the following theorem:

Theorem 1.3 (Equidistribution ä la Bader-Muchnik). Let F be a convex cocompacl
discrete group of isometries of a complete connected Riemannian manifold with
pinched negative curvature X. Let F : T1X —> M be a Holder-continuous
T-invariant potential and let vF be a Patterson densityfor (T, F) ofdimension Off.

Assume that F is symmetric and assume that the Gibbs measure associated
with vF is mixing with respect to the geodesic flow. Then for each x in CH(Ap) we
have

Mnx Mx

as n —> +oo with respect to the weak* topology of the Banach space

£(C(X),£(L2{dX, vf))).

In other words we have for all f e C(X) and all !•, rj e L2(dX, vF):

lim
n—>+oo

(MXfK.r,) ^Jdv^^f^rjdv^.
With the same hypotheses of the above theorem, we deduce immediately an

ergodic theorem ä la von Neumann for the Patterson density (T, F associated with vF

on dX.

Corollary 1.4 (Ergodicity ä la von Neumann). For all x e CH(Ap)

.r.;! ^(r)yeC„ (x)

as n —> Too with respect to the weak operator topology on JB(L2(dX, vF)).
In the same setting of Theorem 1.3 we have:

Corollary 1.5 (Irreducibility). Assume that F is cohomologous to a symmetric
potential and assume that the Gibbs measure is mixing. For all x e X, the

representations rcx : E ^ V.(L2(dX, vF)) are irreducible.

Remark 1.6. The assumption of mixing of Gibbs measures with respect to the

geodesic flow is automatic in the case of constant curvature, hence all boundary
representations of convex cocompact groups associated with a Patterson density
with a Holder-continuous potential F cohomologous to a symmetric potential is

irreducible. Note that this property does not depend on the base point.
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We obtain also the following theorem which classifies the unitary representations
associated with a Patterson density. We refer to Subsection 2.2 for the definitions
concerning items (3) and (4).

Theorem 1.7. Let T be a convex cocompact discrete group of isometries of X, pick
a point x in X and let and v(f be Patterson densities associated with Holder-
continuous r-invariant symmetric potentials F and G on T1X. Assume that the

Gibbs measure is mixing with respect to the geodesic flow. Then the following
assertions are equivalent:

(1) The unitary ttvf and nva are equivalent as unitary representations.

(2) The measures and vcf are in the same class.

(3) The potentials F and G have the same periods.

(4) The Gibbs cocycles associated with F and G are cohomologous in restriction
to f2T.

The method of the proof of Theorem 1.3 consists of two steps: given a sequence
of functionals of the dual of a separable Banach space, we shall prove:

Step 1 : The sequence is uniformly bounded: existence of accumulation points (by
the Banach-Alaoglu theorem).

Step 2: Identification of the limit using equidistribution theorems (only one
accumulation point).

Structure of the paper. In Section 2 we remind the reader of some standard facts
about the geometry in negative curvature, Gibbs cocycles and about Gibbs measures

generalizing the Bowen-Margulis-Sullivan measures on the unit tangent bundle to

provide the generalization of Roblin's equidistribution theorem by Paulin, Pollicott
and Schapira. In Section 3 we prove fundamental estimates on the Harish-Chandra
function. In Section 4 we prove uniform boundedness for the sequences of operators
using property RD of de la Harpe et Jolissaint and the amenability of the action on the

boundary, thus concluding Step 1 of the proof of Theorem 1.3. In Section 5 we use

Paulin-Pol Iicott—Schapira's equidistribution theorem to achieve Step 2 of the proof
of Theorem 1.3. In Section 6 we prove our Theorem 1.3 and its corollaries as well as

Theorem 1.7.
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2. Preliminaries

2.1. Geometry of negative curvature and potential functions. Recall that X is

a complete simply connected Riemannian manifold with dimension at least 2 and

pinched sectional curvature —b2 < K < — 1 with b > 1, equipped with its
Riemannian distance denoted by d. The geometric boundary or the boundary at

infinity, also called Gromov boundary is denoted by dX. We consider T a non-
elementary discrete group of isometries of X.

2.1.1. Busemann functions, Bourdon's metric. Let x be in X, let r be a geodesic

ray and define the Busemann function associated with the geodesic ray r as

br(x) lim d(x,r(t))—t.
t—>00

Let x and y be in X and consider the unique semi-infinite geodesic [xy) passing

through x and y, starting at x. Define wx as the unique point at the boundary so that

wx := lxy) ^ dX. (2.1)

The limit lintf-nx, d(x, r(t)) — d(y, r(t)) exists, is equal to br(x) — br(y), and is

independent of the choice of r. The horospherical distance from x to y relative to v

is defined as

ßv(x,y)= lim d(x,r(t)) — d(y,r(t)). (2.2)
t—>OQ

Recall that the Gromov product of two points a,b e X relative to x e X is

(a,b)x ]^{d{x,a) + d{x,b) - d(a,b)).

Let v, w be in dX such that v ^ w. If an —> v e dX, bn -> w e dX, then

(v,w)x= lim (an,bn)x
n—> oo

exists and does not depend on the sequences a„ and b„. If r is a geodesic ray
representing v we have:

(v,y)x= lim l-(d(x,r(t)) + d(x,y)-d(r(t),y)),
t-t+oc 2

then we obtain:

ßv(x, y) 2(v,y)x -d(x,y). (2.3)

Thus, if z e X is a point on the geodesic connecting v and w, then

(v, w)x ^(ßv(x, z) + ßw(x, z)).
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The geometric boundary is endowed with the Bourdon metric which defines
the same topology on the boundary as the cone topology (see [17, Chapitre III.H,
Proposition 3.7 and Proposition 3.21]. Indeed the formula

dx(v,w) e~iv'w)x (2.4)

defines a metric on dX when we set dx(v,v) 0. This is due to Bourdon and we
refer to [14, Theoreme 2.5.1] for more details. We have the following comparison
formula:

dy(v, w) + ßw(x'y^dx(v,w). (2.5)

If x and y are points of X and R is a positive real number, we define the shadow

Or(x, y) to be the set of v in dX such that the geodesic ray issued from x with limit
point v hits the closed ball of center y with radius R > 0.

The Sullivan shadow lemma is a very useful tool in ergodic theory of discrete

groups, and it has been generalized to the context of Gibbs measure by Moshen
in [39], see also [43, Proposition 11.1].

Lemma 2.1. Let T be a discrete group of isometries of X and vF be a Patterson

density of dimension a for (T, F). For all a > or,f and for any compact subset

K C X there exists a positive contant C > 0 such thatfor all x and y in FK C X:

±^edF(x,y) -ad{x,y) < vF(0R(x,y)) < CerfF^' y"> ~ ad(x>y\

Assuming that T is convex cocompact we will use the above lemma with K C

CH(Ap) being the closure of a fundamental domain of the action of T acting
on CH(Ap). If T is cocompact, then the limit set is the entire geometric boundary
and the shadow lemma holds everywhere on X.

We say that A is a 5-hyperbolic space if we have the following inequality: for all

x, y,z,t e X
(.x,z)t > min{(x, y)t,(y, z)t} - 8, (2.6)

see [17, 3.17 Remarks (4), p. 433]. Using the Bourdon metric on the boundary
we can compare a shadow to certain balls. More precisely we have the following
proposition. This lemma, rather easy and well known, will be very useful since the

boundary admits the structure of a metric space.

Lemma 2.2.

(1) Let R > 45. Then

B(wyx,e~d^x'y)) C 0R{x,y).

(2) Let any R > 0, and set C e2S+R. Then

OR(jc, y) C B(wy,Cz~d{x'y)).



Vol. 92 (2017) Boundary representations associated with Gibbs measures 359

Proof. We first prove the first inclusion. Let v such that (u, wx)x > d{x,y). We
let z be on [jtu) such that d(x,z) d(x,y). We have

d(y, z) — d(x, y) + d(x, z) - 2(y, z)x.

We have

(y, z)x > min{(j, wy)x, (z, wyx)x} - 8

min{d(x, y), (z, wy)x} - 8

> min{d(x, y), (z, v)x, (v, wy)x} - 28

> min{uf(x, y),d(x, z),d(x, j)} — 28

d(x, y) — 28,

it follows that d(y, z) < 48.

We now prove the second inclusion. Let v e 0/i(x,y) such that [xv) n
Bx (y, R) 0 and let z G [xv) so that d(y, z) < R. We have

(u, wy) > min{(u, y)x, (j, wy)x} - 8

min{(u, y),d(x, y)} — 5

> min{(u, z)x, (z, y)x,d(x, y)} - 28

— min{tf(x, z), (z, y)x,d(x, j)} — 28

> min{c?(x, y) — R, d(x, y) — R, d(x, _y)} — 28

d(x, y) - R - 28.

2.1.2. Gibbs Cocycle and some geometric properties. Given F : TxX -»• E a

T-invariant Holder-continuous potential we define, as in 1.4 from the Introduction,
the Gibbs cocycle Cf (x,y) where v e dX and x,y G X. We shall give some

properties of the Gibbs cocycle but first of all note that if F — 1 then

C» (x,y) ßv(x,v).

Hence, for every JGlwe have:

Cv~S(x>y) C^(x,y) + sßv(x,y). (2.7)

Observe that if x belongs to the geodesic ray from y to v then

CvF(x,y) j*F.
The Gibbs cocycle satisfies the following cocycle property: for all x,y,z e X and

v G dX we have

Cf (x,z) C,f (.x,y) + CF (y,z) and CvF(y,x) -CF(x,y), (2.8)
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and the following F-invariance property: for all y e T, all x, y e X and v e dX:

Cyv(Yx'Yy) Cy (x,y). (2.9)

We now provide a lemma stating some useful properties and local estimates of the
Gibbs cocycle.

Lemma 2.3. Fix R > 0 and assume that F is bounded on p~1(CH(Ap)) C Tl X.
There exists positive constants C(R), D(R) and E(R) so that:

(1) For all x e CH(Ar) and for all y e X such that d(x,y) < R and for all
v e dX we have

\CF(x,y)\<C{R).

(2) For all x in X, for all y e CH(Ap) andfor all v e Or(x, y) we have

\CF(x,y) + dF(x,y)\ < D(R).

(3) For all x e CH(Ar) andfor all y, z such that d(y, z) < R we have

\dF(x, y) — dF(x, z)\ < E(R).

For a proof of items (1) and (2) see [43, Lemma 3.4] and for item (3) see

[43, Lemma 3.2].

2.2. Gibbs Cocycles, cohomology, periods and unitary representations. Following

[37], we recall some fundamental correspondences between potential functions,
Hölderian cocycles, and periods. We complete theses fundamental observations by
adding a correspondence dealing with unitary boundary representations.

We say that a function defined on the boundary dX is Holder-continuous if it is
Holder-continuous with respect to Bourdon's metric associated with some base boint
in X. Note that this definition does not depend on the choice of the base point. We

say that a cocycle C : F x dX E is a Hölderian cocycle if for all y the map C(y, •)

is Holder-continuous and if it satisfies the cocycle equality

C(yiy2,v) C(yi,y2u) + C(y2,u),

for all yi,y2 e T and for all v e dX. We say that two cocycles C and C' are

cohomologous if there exists a function H : dX —> R such that

C(y,f)-C'(y,£) H(y$)~H($). (2.10)

Let y be a hyperbolic isometry, also called a loxodromic element, and denote by y+
its attractive fixed point. Observe that the quantity

C(y,y+)
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depends only on the conjugacy class of y. Let x be on the axis of y and consider the

cocycle
C : (y, v) e F x dX i-» CF (x, yx).

Observe that

C(y, y+) fXF
Jyx

and by assumption on the symmetry of F we have also

Cvx ~
C(y, y+) / F.

JX

We call the quantity f^x F the period of y and we denote it by Per(,). The set

Per(F) := {Per(,) with y a loxodromic element}, (2.11)

is called the periods of F. Observe that if F 1 then Per(,) is nothing but the

translation length of y and Per(F) is the length spectrum of M.
Remark 2.4. Observe also that this definition of periods of F coincides with the

definition of periods ofa Hölderian cocycle in [37].

Let F* TxX —> R be another Holder-continuous T-invariant function. We

say that F* is cohomologous to F if there exists a function differentiate along every
flow line G : T1 X —> R such that

F*(v)-F(v) -f G(gtv). (2.12)
dt |r=o

Consider the cocycle

CF : (y, v) h> Cf (x,yx).

First note that if F is bounded then C F is Holder-continuous. Then observe that if F*
is cohomologous to F then CF and CF are cohomologous (see [43, §3.3 Remarks

and Proposition 3.5] for more details). The periods are an invariant of the cohomology
class of potentials and also of cocycles. We have

Proposition 2.5. Let F and G be two Holder continuous T-invariant functions on
the unit tangent bundle of X. Pick x e X. The following assertions are equivalent

(1) vF and are in the same class.

(2) The functions F and G have the same periods.

(3) The Gibbs cocycles CF and CG associated with F and G are cohomologous in

restriction to f2T.

Proof. Thanks to Remark 2.4 we refer to [37, §111, Proposition 1 ] for the equivalence
between (1) and (2) and between (1) and (3). For (2) implies (3) we refer to [43,
Remark 3.1].
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At the level of unitary representations we say that jtvf and jcvg are equivalent if
there exists a unitary operator U : L2(dX, vF) —> L2(dX, vx) such that:

U7tvf=7Tv§U- (2-13)

Lemma 2.6. Let vF and vF* be two Patterson densities of dimension a. Pick x
in X and consider the unitary representations ttvf and n f*- If F and F* are
cohomologous then ttvf and tivf* are equivalent.

Proof Since F and F* are cohomologous then the cocycles

CF : (y, v) i-»- CF(x, yx) and CF : (y,v) i->- CF (x, yx)

are cohomologous. Thus the multiplication operator by eiH from L2(dX,vF)
to L2(dX. vF intertwines the unitary representations tzvf and ttvF* where

H : dX —» M satisfies the identity (2.10).

2.3. Gibbs measures and Roblin-Paulin-Pollicott-Schapira's
equidistribution theorem.

2.3.1. Hopf parametrization. Let us now recall a parametrization of T1 X in terms
of the boundary at infinity of X.

If v (x, ü) is an element of Tx X, consider the unique geodesic defined by v

represented by an isometry r : M. —» X such that r(0) q(v) and [=Qr v.
We denote by v_ and u+ the endpoints of the geodesic such that r(—oo) and

r(+oo) v+.
Let us define d2X — dX x dX — A, where A is the diagonal of dX x dX. For

every base point Xo in X, the space TlX may be identified with d2X x E, by the

map which maps a unit tangent vector v to the triple (u_, v+,t) where t represents
the algebraic distance on the image of the geodesic represented by r between r(0)
and the closest point of the geodesic to Xo This parametrization, depending a priori
on x0, differs from the one defined by another base point x'0 only by an additive term
on the third factor (independent of the time t

2.3.2. The potential gap. For all x in X and for all v, w e dX define the gap map
as

We observe that DXtp generalizes Bourdon's metric dx since for F —1 we obtain

Dx^f dx. Note the T invariance property DYX<F{yv, yw) Dx<p(v, w) for all

y e r and for all v, w e dX.
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2.3.3. The Gibbs states of (r, F). Let o be a real number and let (v£ )xex be a

Patterson density of dimension a for (F, F). Once we have fixed a base point xo e X
and used the Hopf parametrization, define the Gibbs measures on T1 X associated
with (wf )xeX as

(v-)d V*0 (v+)dt

DF-o,X0(V->V+)
dmiv)="VXo;"-""Xoy"+'"\ (2.14)

The groups T and R act on d2X x R via y(v~, v+,t) (yv-, yv+, t) and via the

goedesic flow s(v-, v+,t) — (u_, v+,t +5). Observe that both actions commute.
Thus define mp onT\T1A' Tl M, and we call mp the Gibbs measures onT1 M
associated with (v^)xex- If IImf\\ < 00 we say that mp is finite. The finiteness

of the Gibbs measures will always be satisfied when we consider convex cocompact

groups.

2.3.4. Mixing property of Gibbs measures. We say that gt is mixing on TXT1 X
with respect to mp if for all bounded Borel subsets A, B C we have

limt^+00mp(A O gt(B)) mp(A)mp(B).
There exists a condition which guarantees that the geodesic flow on TlX

is mixing: it is related to the non-arithmeticity of the spectrum of T, see [9].
More precisely: the translation length of an element y e T is defined as

t(y) inf{d{x,yx),x e X). The spectrum of T is defined as the subgroup
of R generated by t(y) where y ranges over the hyperbolic isometries in T. We

say that T has an arithmetic spectrum if its spectrum is a discrete subgroup of R.
We refer to [43, Theorem 8.1 J for a proof of the fact that the non-arithmeticity
of the spectrum implies the mixing property of the geodesic flow with respect the

to the Gibbs measures. The non-arithmeticity condition is verified in the following
cases: for isometries group of Riemannian surfaces, hyperbolic spaces and isometries

groups of CAT(-l) spaces with a non-trivial component in their limit set. We refer

to [22] and to [44, Proposition 1.6, Chapitre 1] for more details.

We have finished the preparations to state Theorem 1.3 and its corollary which
will be one of our main tools. The main idea of these equidistribution results goes
back to the pioneering work of Margulis [38] who made a connection between the

mixing property of the geodesic flow with the counting of closed geodesies on a

compact negatively curved manifold. The form of the following equidistribution
results, due to Paulin, Pollicott and Schapira [43, Theorem 9.1], is inspired by the

results of T. Roblin in [44, Theoreme 4.1.1], We refer also to [8] for an introduction
to Roblin's equidistribution theorem.

Theorem 2.7 (Paulin, Pollicott and Schapira). Let T be a discrete group of isometries

ofX and assume that op,F isfinite andpositive. Assume that m p is finite and mixing
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under the geodesic flow on Tl M. Then for all x,y e X andfor all c > 0:

E cäF""'y,Dr-„»D„^v^^
{y&T\n—c <d{x ,yy)<n)

as n —+00 with respect to the weak* convergence of C(X x X)*.
As a corollary we obtain the following result that we shall use in the Step 2 of the

computation of the limit in Section 5.

For a subset A in dX with a vertex x, denote by 'CxiA) that is the union of the

geodesic rays or lines starting from x and ending at A, and this a subset offx (A) C X
so that CX(A) n dX — A.

Corollary 2.8. Let F be a discrete group of isometries of X. Assume that m f is

finite and mixing under the geodesic flow on Tl M. IfU and V are two Bore! sets,
then for all x,y X andfor all c > 0:

lim sup a"'AZV-(Jr'Fn edF{x,yx)iDyx ® Dy-ix)(Xvx{U) ® X~ex(V))
"^+0° * 6 '

c„W
< yf {V)vFx (V).

We recall that we have defined the normalization constant cy,f as

GT,F \\tnF II

3. The Harish-Chandra function

The goal of this section is to prove the following estimate on the Harish-Chandra
function.

Proposition 3.1 (Harish-Chandra's estimate). Let vF {vF)x^x be a Patterson

density of dimension oy,f- There exists a constant R > 0 and a constant C > 0

(depending on R) such thatfor all y e T satisfying d(x, yx) > R with x in CH(Ar)
we have

C~ld(x, yx)MF(x' y- I°FFd(x' F*)

< My) < Cd{x,yx)MF{-x^x^-^°XFdix,yx)

Remark 3.2. It would be probably more appropriate to call these estimates Harish-
Chandra Anker's estimates because Anker has improved estimates established by
Harish-Chandra in the setting of semisimple Lie groups. He improved notably the

lower bound by adding a polynomial, see [6].
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3.1. Some technical lemmas. The following lemma is due to S. Alvarez in [3],
Since our methods are rather analytical and since our conventions are different, we

give another shorter proof.

Lemma 3.3. For any R > 45, there exits r > 0 such that for all x, y, z aligned in

this order we have for all v e 8X\Or(x, y):

ßv(y,z) < r-d(y,z).

Proof. We have ßv(y,z) 2(v,z)y — d(y,z). The hyperbolic inequality (2.6)

implies that (v, z)y < (v, wzy)y + 5. An upper bound of the quantity (u, wy)y is

equivalent to a lower bound of dy(v, wy). We have ßwz (x, y) — d(x, y) (because

wy wx) and ßv(x, y) 2(v, y)x — d(x, y). Thus the hyperbolic inequality (2.6)

implies

ßv(x,y) + ßwz(x,y) 2(v,y)x > 2min{(u, wyx)x, (wyx, y)x) - 25

2min{(u, wx)x,d(x, y)} — 25.

Since v e 3X\Or(x, y) we have dx(v, wx) > e~d<-x>yl by Lemma 2.2, equivalently
(v,w%)x < d(x,y). Thus

£(ßv(x,y) + ßw*(x,y)) >
e~* e~s

dx(v,wx) dx(v, wzy)'

By the conformal equivalence of the metric on the boundary we have:

dy(v, wzy) dx(v, wzy)e~2^x> y) + y)\

hence

e~s < dy(v, wy),

and we set r — 45 to conclude the proof.

Before proceeding we will need to set up some notation. We follow the

decomposition used by Alvarez in [3],

Definition of Fix R > 0 such that Lemma 2.2 is available. Let y be in F

such that d(x, yx) > R and consider the geodesic [xwxx) starting at x and passing

through yx and ending at wxx dX. Let zt for i — 0,..., N be a finite sequence of
points belonging to [xwxx) aligned in the following order: zn, Zo, withz0 yx
and so that the choice of zyy satisfies d(x,Zff) < R/2, and af(z,,z, + i) R/2.
Observe that d(x, yx) d(x, zyy) + ^V-f •
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For i notice that Or(x, zx-\) C Or(x,z,). Indeed, let £ be in

Or(x, Zi-i) and thus (£, z,-i)x > d(x, z,_i) — R. We have

(£,Zi)x > min{(^,zl-l)x,(zl,zl-i)x} -8
min{(£, d(x, z,)} - 8

> min{c/(x, z,_i) — /?, rf(jc,z,)} — 5

min{fif(jc, z,) — R/2,d(x, z,)} — <5

d(x, Zi) — R/2 — 8

> Ö?(jc,zt) — R,

where the last inequality follows from the fact that R > 28.

We set

A,,R(Y) '= ORix.z^XORix^t-1).
Observe that A^r 93f\0/?(jc, zjv-i).

We can decompose the boundary as the following disjoint union

3I-uf=1ia(/)üös(tj4 (3.1)

Proposition 3.4. We suppose here that F is symmetric. Let vF be a Patterson

density ofdimension a > ctr.F so that the estimates in Moshen's Shadow lemma hold
(Lemma 2.1). There exists a constant C > 0 such that for all y e T, v AltR(y),
and 1 < i < N we have that

c-iedF{z,,yx) - ad(z,,yx) <eCF~a(z,,yx) < C(JF(z,,yx) - ad(zt,yx)_

Proof. Recall that C/_a(z,, yx) CF (z,, yx) + aßv{z,, yx).
If ßv(Z;, yx) > 0 then Lemma 3.3 implies that d(z,, yx) < r for some positive

real number r. Therefore the estimates follow from Lemma 2.3(2). Now we call z'
the point of the intersection of the horosphere centered at v passing through yx and

the geodesic passing through v and yx. If ßv(zlyyx) < 0, then yx,z' and v are

aligned in this order. Thus we can write

rv, rz' i* V[

lim / F I F + lim / F.
t-t+ oo JyX JyX r-> + oo Jzr

Since ßv(yx,z') d(yx,z') we have

fz'
cv~° (z< - Vx) cv~° (zi >z')+ F -a,

J yx

besides, the symmetry of F implies

Cjf ~CT(z,, yx) CF~a{z,, z') + (dF(zyx) - ad(z', yx)). (3.2)
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Notice that

d(z,, z') < d(zt, yx) + d(yx, z')

<i(z,, yx) + ßv(yx,z')
d(z,, yx) + ßv{yx,z,)

< d(z,, yx) + r - d(yx,z,)
r.

Thus, the fist term on the right hand side equality (3.2) is bounded by Lemma 2.3(1).
In the second term on the right hand side equality (3.2) the quantity dF (z', yx) <
dF(zl,yx) + E(r), for some positive constant E(r) by Lemma 2.3(3); and the

triangle inequality implying d(z', yx) < d(zt, yx) + r completes the proof.

Proposition 3.5. There exists a positive constant C > 0 such thatfor alii — 1,..., /V

and for all v e Ahn(y) we have:

c-\&-\od(x,zl)Qod{x,zl) <e§ßv(x,zt) sCe-\ad(x,zl)Qad{x,zl)_

Proof. The proof is based on the hyperbolic inequality (2.6).
Let us prove the right hand side inequality. We have

ßv{x,z,) 2(v,z,)x - d(x,Zi).

We shall just control the Gromov product (v, zt)x for v e A,,r.
For all i, for all v we have:

(u, wvxx) > min{(u, z,)*, (z(, w%x)x} - S

min{(v,z[)x,d(x,zl)} -S
(v,z,)x -S.

Therefore,
^-±ad(x,z,)

g2 < e<rl"^ßv{x,Z,) aÄe 2

df(y,wYxx)

If v e Aur then v is not in Or(x,z,-i), and thus v is not in B(wxx, e~d(x>z'-A)

hence by Lemma 2.2 we have dx(v, wvx) > e~d(x'zi-A — e-d(x,zt)--z^ -^e (jecjuce

ejßv(x,z,) < Qa(S + R/2)e-\od(x,zl)&od(x,zl)_

We prove now the left hand side inequality. To do so, write ßv(x,Z{)
ßv(x,zl-1) + ßv(z,-i,zt). Note that for all v e dX we have ßv(zl-i,zl) > —R/2.
Now write again

ßv(x,Zt-i) 2(u, z,_i)x - d(x.Zi-i).



368 A. Boyer and D. Mayeda CMH

We have

(v, z,-i)x > min{(u, wyx)x, (wyx, zl-X)x} - S

— min{(u, wyx)x,d(x, z,_i)} — S.

If v is in AhR, then v is not in B(wyx. e~d(x>zi-Ay Hence (v, wxx)x < d(x, z,-X).
It follows that

(v,Zi)x > d(x, zt-\) — S.

We deduce that

e^ßv(x,Zl) > Q<j(S-RI4)fi-\od{x,Zl-l)Qod{x,Zl-l)
_

Since we have d(x, z,_i) d(x, zt) + R/2 it follows that

e§ßvix^t) > &a&e-\ad{x,zi)&ad{x,zi)_

Hence, we set C Qa(s+R/2) to conclude the proof.

3.2. Proof of estimates. We are ready to establish the Harish-Chandra estimates.

Proof. We only prove the upper bound, the lower bound follows by the same method.
Pick a: G CH(Ay) and write the Harish-Chandra function as a sum of integrals

over the partition (3.1) as follows:

<f>x(y) J2f eKF"a(*<^)jV;f(„)+ f e±Cv~a(x>yx)dv?(v).
i \'Ai.R JOR(x,yx)

To prove the proposition we will show that each integral is comparable to

e\dF{x, yx) - yod(x, yx)

The upper bound over Or(x, yx).

[ Q\CvF-a(.x>Yx)dvFAv)
J 0R(x,yx)

< CVf(Or(X, yx))z~l2dF(x- Yx) + Yx)

< Ce^dF (x>yx) ~ \od{x,yx)^

where the first inequality follows from Lemma 2.3(2) since yx is in CH(Ay), and

the second inequality follows from the upper bound of Mohsen's shadow Lemma

(Lemma 2.1), the compact K being the closure of a fundamental domain of the

action of T on CH(Ap).
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The upper bound over Ai,r (y). We have established two useful inequalities dealing
with the terms we shall control: the first one follows from Proposition 3.4. There
exists C > 0 such that we have for all i, for all v A,,r(y):

t\CF~a(znYx) <Ct\dF{z,,yx)- \ad{z„yx)_ (3 3)

The second one is from Proposition 3.5. There exists C > 0 so that

e§ßv(x,zt) < Ce-\od(x,zl)ecsd(x,zl) (3 4)

Combining these two estimates will yield the bound over A1jr{y). We will use a

constant C which absorbs the other constants. Now estimating over Aur{y) we get,

f skCvF~a(x>Yx)dvF(v) f ekCvF~a(z"Yx)ekCv (x>z>)

'Ai.r(v) JA,,R{Y) 1_.O /v _ \ „e2aPv(x>z'>dvF(v)

Inequality (3.3) < CeW^2" Yx) ~ ad&>Yx))

L

/Ja,

Ai,r(v)

Lemma 2.3(2) < (dF^> Yx) ~ < Yx)) e~\dF {x, z,)

S^x'z^dvF(v)
1 A,,r(y)

Inequality (3.4) < CtW& - Y*) ~ °d^ • Yx)) t~\dF {x, zt)

.&~l2°d{x,zl)eod{x,zl)vF{AiR{y))

Ce2^F^z" Yx)Q~\°d{x, Yx)Q—\dF{x,Zi)

.t"d(X.2,)vF(AiMy))

Moshen's shadow Lemma < Ce2" '' 2""'L. 2'

_ead(x,zt)ec

Ce2" _ §'

\dF(z,,yx) - \od{x,Yx)f-\dF(x,zt)

vud(x, zt) dF(x, zt) - ad(x, z,-)

_ rAdF(x<Yx) ~ Id(x,yx)

Combining the upper bound over Or{x, yx) with the upper bound over AhR(Y)
for all / 1,..., N leads to

MY) < C(N + i)eyF(x> Y*) - ld(x> YX),

Since NF= d(zN,yx) < d(x,Yx) we obtain the left hand side inequality of
Harish-Chandra's estimates.
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Remark 3.6. In particular we prove that there exists C > 0 such that for all i

f ekCv~C(x,Yx)dvF(v) < c&\dF{x,yx)-\ad{x,yx) (35)

4. Uniform boundedness via RD

4.1. Quasi-regular representations. Let T be a discrete countable group acting on
a measure space (S, v) with a T-quasi-invariant measure v. This action gives rise
to a unitary representation after correction by the square root of the Radon Nikodym
derivative of the action:

nv : T -* U(L2(S,v))

defined for £ e U(L2(S, v)) and for s e S as

i
(My)£)CQ Cs)£(y_1-0- (4-1)

This unitary representation is called the quasi-regular representation associated with
T r> (S, v) (also called Koopman representation).

In the following we will denote by Ar : T —> K(£2(T)) the left regular
representation.

Recall that a unitary representation n is weakly contained in a unitary
representation p if for all functions / ^(r) we have

M/)ll < IIP(/)II- (4-2)

We refer to [12, Appendix F] and to [23, Section 18] for more details.
Let p be a unitary representation of F and let gbea bounded measure on T and

define the operator p(/x) as:

P(/l> := ^M(y)p(y)>
yer

and observe p(p) e &(L2(S, v)).

4.2. Spectral characterization of amenable action. The ideas of this subsection

are related to the ideas of Nevo in [40] where we can find that for hyperbolic groups
it is possible to bound operator norms of unitary representations which are weakly
contained in (a tensor power of) the regular representation using property RD, and the

resulting effective ergodic theorem. Moreover in [41], it is shown that the operator
norm of any probability measure on a group, acting in the unitary representation
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associated with any of the Poisson boundaries, is equal to the convolution norm in
the regular representation. The same results holds for the operator norm in the unitary
representation associated with any quasi-invariant measure on the boundary.

It is well known that the amenability of a discrete group can be characterized

by the fact that the trivial representation is weakly contained in the left regular
representation. Kuhn was probably inspired by this property to prove an analog
result for quasi-regular representations associated with ergodic amenable actions in
Zimmer's sense in [35]. We describe briefly which notion of amenable action we
shall consider.

We know since Spatzier in [47] that the action of tt\ (M), the fundamental group of
a compact manifold with negative sectional curvature M, on the geometric boundary
of the universal cover of M is amenable in Zimmer's sense with respect to the standard

measure class. Eventually, Spatzier and Zimmer showed in [48, Theorem 3.1] that
this action is amenable with respect to any quasi-invariant measure. Later, after the

work of Adams [1], Kaimanovich [34] proved that the action of a closed subgroup of
isometries of a hyperbolic space with a finite critical exponent (-critical exponent- in
the usual sense without a potential function) is topologically amenable. In this paper,
we consider the action of a discrete group of isometries on the geometric boundary
as a topological space. The notion of topological amenability is the more appropriate
notion we shall consider since the space appears naturally as a topological space
rather than only as a measurable space.

Definition 4.1. An action T 5 on a topological space S is topologically amenable

if there exists a sequence of continuous maps

p." : s e S i-> p." e Prob(T)

of probabilities on T such that

lim sup ||y*At" — p."s\\ —> 0
rc-++ooJS

as n -* oo.

It turns out that in the case of a topological space topologically amenable and

amenable in Zimmer's sense are equivalent, see [5J. Therefore we will not have to

pay attention to any quasi-invariant measure on the geometric boundary.

It is shown in [2] that for a locally compact group G acting on (S, p.) that

the definition of amenable action in Zimmer's sense is equivalent to the existence

of a G-equivariant conditional expectation from L°°(G x S) to L°°(S). Hence

if T is a discrete group of isometries of a complete simply connected pinched

negatively curved Riemannian manifold X, with a finite critical exponent, we have

that (T x dX, dX) is a F-pair in the sense of [4].
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We deduce from [4, Corollary 3.2.2] the following.

Proposition 4.2. Let T be a discrete group of isometries of X a complete simply
connected Riemmanian manifold with pinched curvature, with a finite critical
exponent. For any quasi-invariant measures v on the geometric boundary dX we
have for any bounded p, measure on V

IM/OII < ||Ar(/r)||.

Remark 4.3. Indeed, by [46, Lemma 2.3] due to Shalom with the same hypothesis
we have the other inequality and thus we obtain for any bounded p measure on T an

equality
\\jtv(p)\\ || Ar (m) II •

4.3. Property RD. The property RD comes from the theory of C*-algebras and has

been introduced in the important paper [31] by Haagerup.
A length function | • | on a discrete countable group T is a function | • | : T —»• R+,

satisfying |e| 0 where e is the neutral element of T, |y_I| |y| and |yiy21 <
lyil + lyzl- Let 5 > 0 and define the Sobolev space associated with F denoted by

Hs(r) as the space

H°(D := j/ : T —> C such that ||/||2^ := J] |/(y)|2(l + |y|)2i < oo}.
r

Given a discrete countable group equipped with a length function | | we say
that T satisfies property RD with respect to | • | if the space Hs convolves

HS{T) * l2(V) C ü2(T) in the following way:

3C,j > 0 such that for all / HS{T),£ e 12{T),

we have ||/ * £||2 £ C||/||tf.v||£||2.

In terms of operator norm, property RD means that there exist two positive
constants C and 5 > 0 such that the multiplication operator by convolution by a

function in HS{T) is continuous:

3C, s > 0 such that for all / e HS(F), we have ||Ar(/)II < C ||/||//-s.

This inequality means, in operator algebraic terms that we have the continuous
inclusion

HS(T) ^ C;(T). (4.3)

Remark 4.4. If we specialize the property RD to the abelian group Z (with its
standard word length function) we obtain the well known fact, using the Fourier
transform, that an element in L2(§1) with Fourier coefficients "Rapidly Decreasing"
to 0 define a continous function on the circle S1.
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It is obvious that convex cocompact groups in CAT(-l) spaces are Gromov

hyperbolic. Hence they have RD and the next proposition follows. We extract the

following inequality expressed in norm of convolution operators established in [33].

Proposition 4.5. Let X be a complete simply connected Riemannian pinched
negatively curved manifold and let V be a convex cocompact discrete group of
isometries of X. Pick a point x in X and recall the definition of an annulus
Cn := Cn(x). Let Xn be the characteristic function ofCn, then

ür(fXn)\\<Cn\\f\\2.
Proof In [33, Proposition 3.2.4], Jolissaint proves that there exists a positive
constant c, depending only on the action of T on X, with the following property:

Let kj.m e N. If k, I and m satisfy \k — l\ < m < k + I with /, g are in the

group algebra C T are supported in Cf and C/ respectively, then

\\{f *g)Xm\\2Sc\\fh\\g\\2.

If k,l and m satisfy \k - l\ > m or m > k + I, then

Wif *8)Xmh 0-

Following the techniques in [31, Lemma 1.3, Lemma 1.4] and in [33,

Proposition 1.2.6] we have: for / supported in C& and for all g supported in C/
that

IK/ * g)Xmh < E IK/ * gXl)Xmh
l> 0

k+m

<c\\fh E Wsxih
l \k—m\

2 min (k>m)

<C\\f\\2Y\\gXm+k-l\\2
l> 0

2 min (k,m) ±

<C||/||2*i( Ell^+^ll")5-
l >0

Thus

\\f *g\\l E IK/ *g)Xm\\l
m> 0

2 min (k,m)

<C2k\\fhY( E hXm+k-lWl)
m l>o

<c2k2\\f\\l\\g\\l
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Thus we obtain for / supported in C^ and for all g e l2(T) that

sup ||/**||<C*||/||2,

with some positive constant C > 0.

We use the equality on operators norms given by the amenability of the

action on the boundary and we express the inequality of norm operators given in

Proposition 4.5 in its dual form with the matrix coefficients associated with the

boundary representation. We obtain:

Proposition 4.6. Let X be a complete simply connected Riemannian pinched
negatively curved manifold and let T be a convex cocompact discrete group of
isometries of X. Let v be a T-quasi-invariant measure on dX and consider izv its
associated quasi-regular representation. There exists C > 0 such that for all unit
verctors t-, q e L2(dX, v) we have

Proof. Observe that it is sufficient to prove the above inequality only for positive
vectors £, q in L2(dX, v).

Using Proposition 4.2 and Proposition 4.5 we have for a positive function /
supported in the annulus C„

with £ and q two nonzero unit positive vectors in L2, and notice that /' is a positive
function on T supported on Cn. We have

i)I2 - c"2-
yeC„

Xv(f)II IIM/)II <Cn\\f\\2.

Consider

/(•) Xcn(-)(^v(-)^rj)-

0< £ (nv(y)l, q)2 (n„(/)£, q)

yeC" < \\nv(f)\\
<Cn\\f\\2

yeC„

1 / 2
Divide each term of the above inequality by (J2yec„ (^vOO?, h)2) and take the

square to obtain:

yec„
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4.4. Uniform boundedness. We shall consider the operator:

r; := cFtre-ffn E (4.4)

yeC„G)

with cr,f given in (1.8) and recall that Cn(x) {n — 1 < d(x, yx) < n}. Observe
that T" is nothing else than

n KQx).
where 1y denotes the unit function on the compact set X.

The Harish-Chandra estimates are fundamental to prove the uniform boundedness

of the sequence of operators defined above. The potential function F is always
assumed to be symmetric.

Proposition 4.7. We have sup„ \\Tf\\ < +oo.

Proof. Pick x e X, let v be a Patterson density of (T, F) of dimension a
and consider nv the quasi-regular representation associated. Then Proposition 4.6

implies for all unit vectors £, rj e L2(dX, v) we have

E \{*v(y)$,v)\2 <Cn2.
yeC„(x)

Observe that Cauchy-Schwarz inequality implies that for all unit vectors

£, t], e L2(dX. v) we have

E In)(*v(y)¥< i')\ < Cn2.

Y^Cn (x)

Therefore for all unit vectors £, rj, rf we have

Cn2 > E IXoOXf. 7)<My)(;'> l')\
rec„(x)

E Mü Wr)
yeC„(x)

Proposition 3.1 > C V d\x.~
vo««) *'(V)

> n2C'e~an E e

yeC„ (x)

dF(x.vx)\^^y)^ l}(nv(YW, i)\
4>x(y)

C J. .-an v- _^(*.VJrtl<My)M)(*v0')t,»7)l
> nz cr,Fe ^ e .*2^CPF \ yeC„(x)

<Px(V)
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Applying the above inequality for r{ 1 we obtain for all unit vectors £

and r/ in L2(dX, v):

Cm1 > —n2\(T^,r])\.
cr,F

Hence

sup || T" || < oo,
n

and the proof is done.

Remark 4.8. Notice that Bader and Muchnik in [10] use a different method to prove
uniform boundedness of the sequence of operators. Our method combining the

property RD with the equality concerning the spectral radius gives another short

proof of the uniform boundedness when the quasi-invariant measure is the Patterson-
Sullivan measure class.

Remark 4.9. Notice also that this uniform bound for the Patterson-Sullivan measure
class gives a sharp estimate of the spectral gap of Ap (/x„) where fin is the probability
measure on the groups supported over an annulus Cn

~\QAXc"'

More specifically we obtain

C~lnQ~^°rn < ||A(/x„)|| < CnQ~^avn,

for some positive constant C > 0 and where oy is the usual critical exponent in the

Patterson-Sullivan theory, with a potential F 0.

5. Analysis of matrix coefficients

5.1. Technical tools. Let r be a discrete group of isometries of X and let vF be a

Patterson density of dimension a. Let (dx)xex be a family of visual metrics.
Let U be a subset of dX and a > 0 be a positive real number and define Ux(a)

the subset of dX as

Ux(a) {v| inf dx(v, w) < e~a}. (5.1)
weU

We will write U(a) instead of Ux(a) once x has been fixed. Recall that

na>0U(a) u.

In order to have Harish-Chandra's estimates available we pick x e CH(Ap) for
the rest of this section. The following lemma generalizes Lemma 5.2 of 110],
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Lemma 5.1. Let a > 0 be a positive real number, let y be in T and let wvxx e dX.
Consider the ball DX defined as Ba B (wxx, e~a) and let U be a Borel subset of
DX\Ba. There exists Ca such that we have

{nx(y)hx,Xu) <
ca

<Px{y) d(yx,x)

Proof. Define the following sets of indices

/ {/' such that A^r{y) D 3X\Ba 0},

and

J {/ such that e~d(-x'z'-A > e~a}.

If/ is in/, then Altn(y) is not included in Ba. Since A^r(y) C B{wyxx ,Ce~d(~x'z'~^)
then B(Wx*.Ce~ä(-x'z'-]^) cannot be included in Ba where C e2l5+R (see

Lemma 2.2). This means that i satisfies Ce-^*'2'-1^ > e-a.
There is only a finite number of i such that d(x,zt-\) < a + log(C)

a + 28 + R. Hence by denoting Na := |T| the cardinal of J, we obtain

|/| |{/ such that A,^r(y) H dX\B 0}| < |/| Na.
Since U is in 3X\Ba we have:

(x(y)hx, Xu)<£[ eCF~°>»(x> yx)dvF (u)
~7 Ja, v(y)ndx\Be

<y [ zCF-°>v{x'yx)dvFx(v)
JA,,R(y)ndX\Be

Remark 3.6 < CWaef yx"> ~ d^x' yx»

Left hand side inequality of Ca
< ®^(v). LI

Proposition 3.1 d{x,yx)

It turns out that the following results are very close to the results of [10, Section 5].
We shall indicate all the minor modifications that we need to do to achieve Step 2.

Recall the notation of a cone of basis A C DX of vertex x in X:

ZX(A).

Proposition 5.2. Pick x e CH{Ap) and let pn e ^(O such that

SUp \\Pn\\o < TOO,

and which satisfies

for all y e f.

lim ß„{y) 0,
n—>+oo
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Then for every Borel subset U C dX we have for all a > 0

lim sup
n->-+oo y6p Yx^y) «->+oo p

Proof Let U be a Borel subset of dX and let a be a positive number and consider U(a)
(see Definition (5.1)). Let No be nonnegative integer. Considerthe following partition
of T:

r r, u r2 u r2

with

Ti {y e r\d(x,yx) < N0},

r2 {ye r\yx e -ex(U(a))} n Tl
and r3 {y e r\yx £ Vx{U{a))} n Tf.

Note that yx £ ~x(U(a)) is equivalent to wxx £ U(a). Therefore

U n B(wYxx,e~a) 0

so that Lemma 5.1 is available. The proof follows now exactly the proof of [10,
Proposition 5.1] and [15, Proposition 5.1].

5.2. Application of Paulin-Pollicott-Schapira's equidistribution theorem. The

purpose of this section is to use Corollary 2.8 for computing the limit of the sequence
of operator-valued measures

We assume here that is a Patterson density of dimension and that the
Gibbs measure is mixing with respect to the geodesic flow. The following proposition
generalizes Proposition 5.5 of [10],

Proposition 5.3. Let U,V,W C dX be Borel subsets such that vx (dU)
vFx (dV) vx (dW) 0. Then we have:

lim (Mnx(x-ex(U))Xv, Xw) nf (£/ n W)vF(V).
tl —* +00

We need some lemmas to prepare the proof of this proposition.

Lemma 5.4. Let U be a Borel subset ofdX with vx (3U) 0 and let W be a Borel
subset ofdX such that vx (dW) 0, satisfying U n W 0. Then we have

\imsuv(Mxp(x-eAU))hx-Xw) 0.
«—>+oo
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Proof. For all integers n we have:

{'M"x{x-ex(U))Ux • Xw)

„ „—err Fi \ ' „dF(x,yx) n X(y)\ftx < Xw)
-cr.Ft 2^ e DYx{X-ex(U)) —7-j

yeC„(x) 9xKY)

sr I Mx(y)hx,xw)
£/"(r) Mr)

where the inequality follows from the fact that nx preserves the cone of positive
functions, and where

PniY) cr,Fe~crr-FnedF(x'Yx)Xc„(x)(Y)Dyx(x-ex(U))-

Observe that Corollary 2.8 implies that

sup \\nH\\ti < +oo.
n

Proposition 5.2 implies forZt > 0:

lim s,u^{Mnx{x^x{U))hx, Xw)
n —> -f~oo

< limsup Pn(Y)DYX{x-ex(wm)
n-*+0° yeT

limsupcr,Fe ar-F" ^ edF(x,vx)DYX{x-ex(U)F-ex(W(b)))
4-oo vyeCn{x)

limsupcr,fe ar-Fn ^ zdF{x'Yx)DYX{x-ex{Ur\wm)-
"^+°° ysCn(x)

Note the general fact 3(A 0 B) C dA U dB. Since all, but at most countably many
of the sets W{b) have zero measure boundary Corollary 2.8 implies that

\\ms\iv{Mnx(x-ex(u))hx,Xw) < vf (U n 1V(b)).
«—>• + 00

With the hypothesis U D W — 0, we have by letting b —» +oo

limsup(^(^(C/))l9A',/Wr) 0.
H—>-fOO

Lemma 5.5. Let U be a Borel subset ofdX and let V be a Borel subset ofdX. For
a > 0 we have

Wmsav{Mnx(xvAU))Xv ,hx)
n-*-+oo

< limsupcr.Fe-"1^" edF{x'yx)Dy-\x{x-eAU))DyX(x-ex(vta)))-
"^+°° yeC„W



380 A. Boyer and D. Mayeda

Proof. We have for all integer n:

CMH

(M"(xiex(U))XVi la*)
(Xv,<M"(x?AU))*hx)

„ „-or fn \ ' „dF (x.yx) n /„ )l9*' XV)
-er,fe ^ e Dy-'x(X^AU)) j-r~z

yec„(x) Vxyy)

- / ,(^(y)ldx,Xv)
£y?/"(r) MO

with
Mn(y) cr,Fe~arFnedF(x'rx)Xc„M(y)Dy->x(X'ex(U))-

Applying Proposition 5.2 to fin defined above we obtain for all a > 0:

lim sup{Mnx(x-ex(U))Xv, hx)
n—t+oo

< limsupcr,.Fe-<Tr-/r" ^ Dy-ix(x-exm)Dyx(X-ex(V(.a)))-
n—t+oo yeC„(x)

Lemma 5.6. Let U, V, W c dX be Borel subsets such that

vFx (dU) vF(3K) vF (dW) 0.

Then

lim sup(A{"0tex(U))xv, Xw) < vx(U n W)vF{V).
n—>+oo

Proof. Let a > 0 and b > 0, and consider V(a) and W(b) such that vF (3W(b))
0 vF(dV(a)). Let W{b)c 3X\W(b). Set f/, U n W(b) and U2

UnW(b)c. Observe that U\ P\W(b)c 0 U2LiW(b). It is easy to see that we can
extend U\ and U2 to X by ~X(U\) and 'X(U2) such that ~X(U) 'x(Ui)U'x(U2)
since U — U\ U U2. We have:

(M"x(x-ex(u))xv,Xw) {<M-"(x,ex(iU\))xv, Xw) + {^"(x^x(.u2))xv, Xw)

< (M"(xiex(.Ui))xv,hx) + (<M-x(x^x(u2))hX'Xw)-

Applying Lemma 5.4 to the second term and Lemma 5.5 to the first term of the right
hand side inequality above, we obtain:

lim sav(Mnx(x*AU))Xv,Xw)
n-*+00

< lim super,Fe~CTr /r" ^ Dy-\x{X'ex(ux))DYx{X'ex(v(a)))-
n-++oo „
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Then, since vF (dU\) 0 vF(dV(a)), Corollary 2.8 leads to

lim sup(M$(x-ex(u))Xv,Xw) < vF (U IT W{b))vF {V{a)).
«->+00

Because the above inequality holds for all but at most countably many values of a
and b, by letting them go to +00 we obtain the required inequality.

ProofofProposition 5.3. By Lemma 5.6 it is sufficient to prove that

liminf{M$(xvau))Xv, Xw) vF (U n W)vF{V).
n—>+oo

If B is a Borel subset of dX, we set B° B and B1 dX\B. We have

(M"( ly)l3jy, lg^} (M" (X^ex(U0) + X~x(Ul))X V° + Xvl> Xw° + Xwl)

F i^-xix-eY(U'))Xyj> Xwk)
',J,k

{^x^X'x(.u))Xv,Xw) + F. (Mx(X-er<U'))Xvj > Xw*)•
«,7,*^(0,0,0)

Since liminf„^+o0(<A^(1^)13*. lax) lim„_^+00(^(lr)l3^, la*} ||v,f ||2

we have:

||vf ||2 < liminf(^(^(c/))/K,/w) + V limsup(^(/ex([/I))^K,,
ft f ~T~ OO »1

t,j,k7^(0,0,0)

< limsup(^(^x(c/))^K,/fw} + F lirasuP(^(ft,([/'))7fo7^)
n^+0° i,7,Jfc^(0,0,0) "^+°°

< F vf(t/!'n wk)vFx{VJ)
i,j,k

\\^\\2,

where the last inequality comes from Lemma 5.6. Hence the inequalities of the above

computation are equalities, so

liminf (M»(X*AU))Xv,Xw) vF (U n W)vFx (V)
rt^ + OO

\imsup{M^(x^ex(u))xv, Xw)
«—>+00

and the proof is done.



382 A. Boyer and D. Mayeda CMH

6. Conclusion

6.1. Standard facts about Borel subsets of measure zero frontier. Recall two
standard facts about measure theory:

Lemma 6.1. Assume that (Z, d, ji) is a metric measure space. Then the o-algebra
generated by the Borel subsets with measure zero frontier generates the Borel

a-algebra.

Let xa be the characteristic function of a Borel subset A of dX.

Lemma 6.2. Assume that (Z.d, p) is a metric measure space such that p is a

finite Borel measure. Then the closure of the subspace spanned by the characteristic

functions ofBorel subsets having zero measure frontier is

Span^l/z^A) 0}L L2{Z,p).

6.2. Proofs.

Proofof Theorem 1.3. Let vF be a T-invariant Gibbs conformal density of dimension

or,F with F a symmetric potential function and T convex cocompact. Let x be

in the CH(Ar) and consider nx associated with vF. There are two steps.

Step 1: is uniformly bounded. Note that the norm of operators of M"
is less or equal than the norm of M"(1Y)- Recall that

M"X(1Y) T"x

where T" is the sequence of operators defined in (4.4). Proposition 4.7 completes
the first step.

Step 2: Computation of the limit of As in [10] and in [15], the sequence

(Af")„N* has actually one accumulation point that we denote by M. We shall

compute it:
Since we assume that the Gibbs measure is mixing it follows from Proposition 5.3

and from the definition (1.9) of Mx that for all Borel subsets U,V,W C dX satisfying
vF (dU) vF {dV) vF(dW) 0 we have

{M'i?(X'ex(u))Xv, Xw) vx(U n W)vF(V) (Mx{x-ex(u))xv,Xw)-

Observe also that the above equality holds for all balls of the space X instead of CX(U)
and everything is null in this case. Since fx(U)\U C dX such that vF(dU) — 0}
together with the balls of X generate the Borel a-algebra of X and since the equality
holds for all Borel subsets having zero measure boundary Lemma 6.2 completes the

proof.
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Proof of Corollary 1.4. Observe that Mx(\y) is the orthogonal projection onto the

space of constant functions and apply the definition of weak* convergence to the

triple (ly, £, rj) for £, rj e L2(dX, vF)-

Proof of Corollary 1.5. Since (tzvf)x&x are unitarily equivalent, it suffices to prove

irreducibility for some ttvf with a: in X. We pick x in CH(Ap). Since F is

cohomologuous to a symmetric potential by Lemma 2.6 we can assume that F
itself is symmetric. Therefore Theorem 1.3 shows that the vector lg^ is cyclic for
the representation uvf by applying the weak* convergence to the triple (/, Isx I)-
Moreover, Corollary 1.4 shows that the orthogonal projection onto the space of
constant functions is in the von Neumann algebra associated with ttvf. Thus, a

classical argument [29, Lemma 6.1] completes the proof.

Before giving the proof of Theorem 1.7 we say that an operator T e iB(Jf),
where Jf L2(X,m) is a Hilbert space for some measure space (X,m), is a

positive operator if it preserves the cone of positive functions. For example,

any quasi-regular representation is a positive operator as well as the operators we
consider in (4.4).

Proofof Theorem 1.7. The implications: (2) =4> (3) => (4) => (1) follow from
Proposition 2.5. We only have to prove (1) =4 (2). We follow a standard method,
see for example [29, Lemma 7.3]:

Let Tip := nvF and jtg '= kvg be equivalent unitary representations associated

with vF and with F and G two symmetric potentials. There exists U a unitary
operator from L2(dX, vF) to L2(dX, v£) satisfying

UtcF TTgU.

The map
<J> : T e W*G(V) ^ U*TU e ^(T)

is a spatial isomorphism of von Neumann algebras. It follows from the irreducibility
of these representations (Corollary 1.5) that the von Neumann algebras

W;F(D £(L2(dX, uf)) and W*a(T) B(L2(dX, vf)).

Consider now the maximal abelian von Neumann algebras

L°°(dX.vF) C £(L2(dX,v£)) and L°°(dX. vG) C B(L2(dX, v®))

acting on L2 by multiplication. Now observe that the set of projections

{p G S(L2(dX, vF)) such that p and 1 — p are orthogonal positive projections}

is equal to the set

{Xb where B is a Borel subset of 93f}.
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Since the isomorphism O preserves the cone of positive operators and since

L°°(dX, vF) is generated by its projections xb with B Borel subsets, the

automorphism <J> restricts to an algebra isomorphism from

<& : L°°{dX, vG) -* L°°(dX, vF).

It is well known that there exists tp : (dX, vF) —> (dX, vG) a measure class preserving
Borel isomorphism such that

$(/) / 0 <P

for all / e L°°(dX, vG). Therefore vG and vF are in the same class.
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