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An explicit cycle map for the motivic cohomology
of real varieties

Pedro F. dos Santos,* Robert M. Hardt?* James D. Lewis and Paulo Lima-Filho

Abstract. We provide a direct construction of a cycle map in the level of representing complexes
from the motivic cohomology of real (or complex) varieties to the appropriate ordinary
cohomology theory. For complex varieties, this is simply integral Betti cohomology, whereas

for real varieties the recipient theory is the bigraded Gal(C/R)-equivariant cohomology [19].
Using the finite analytic correspondences from [7] we provide a sheaf-theoretic approach to

ordinary equivariant 7?0(G)-graded cohomology for any finite group G. In particular, this

gives a complex of sheaves Z (p)M on a suitable equivariant site of real analytic manifolds-with-
corner whose construction closely parallels that of the Voevodsky's motivic complexes Z (p)m
Our cycle map is induced by the change of sites functor that assigns to a real variety X its

analytic space A(C) together with the complex conjugation involution.

Mathematics Subject Classification (2010). 14C15; 55N91, 14P15, 32C30, 49Q15.
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1. Introduction

The motivic cohomology of a smooth algebraic variety X over a perfect field F,
as defined by V. Voevodsky in [26], is the hypercohomology of certain motivic
complexes Z{p)m\x of Zariski sheaves on X.

In order to construct the motivic complexes, Voevodsky introduces the category
offinite correspondences, whose objects are the smooth schemes over F, and the

morphisms between X and Y are certain algebraic cycles in X x Y whose components
are finite over X. We give a succinct description of this category and the construction
of the motivic complexes in Section 5. For a thorough account of this theory we refer
the reader to [21],

The aim of this article is to provide a direct construction of a cycle map
from the motivic cohomology of real (or complex) varieties to the appropriate

*The first author was partially supported by FCT/Portugal through Project PTDC/MAT-
GEO/0675/2012.

**The second author was partially supported in by NSF DMS1207702.
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ordinary cohomology theory. In the case of complex varieties, this is simply Betti
(singular) cohomology with Z-coefficients, whereas in the case of real varieties
the natural counterpart is the bigraded Gal(C/E)-equivariant cohomology [8,9,19],
A conceptual explanation from the point of view of A'-homotopy theory for the

naturality of this equivariant cohomology theory as the target of the cycle map is

found in [6]. This article provides an alternative and direct explanation from a

sheaf-theoretic point of view.

Following an approach parallel to Voevodsky's we introduced in [7] the category
of finite analytic correspondences, whose objects are real analytic manifolds-with-
corner and whose morphisms are described in terms of certain subanalytic chains
in the product of two such manifolds. The benefit of using real analytic manifolds
and subanalytic currents lies in the existence of a suitable intersection and slicing
theory, developed in this context in [13] and [14]. These constructions are recalled
in Section 2 below.

In Section 3.2 we recall the definition and basic properties of RO(G)-graded
ordinary equivariant cohomology, introduced in [ 19]. This is a cohomology theory
indexed by the ring of orthogonal representations of the group G, which plays a similar
role in equivariant topology to the one played by singular cohomology in the non-
equivariant context. In particular, these theories coincide when the group is trivial.
Denoting by 1 the trivial irreducible representation, one gets a natural inclusion
Z Z • 1 C RO(G), and the groups that are indexed by trivial representations
coincide with the classical Bredon cohomology, introduced in [3] and [4],

We are mainly interested in the case where G 6 := Gal(C/E). Here one has

ÄO(@) Z • 1 © Z • £, where £ is the sign representation of Gal(C/E). In this case

we adopt the motivic notation H^p(M:Z) := Hg p>l+p^ (M: Z) and denote the

complex Z(V)q associated to F p I- simply by Z(p)M. This notation matches

Voevodsky's notation for motivic cohomology and these equivariant cohomology

groups give additional information about the 2-torsion component of the motivic
cohomology of real varieties. The bigraded equivariant ring structure for smooth

proper curves is computed in [9] and for smooth projective quadrics in [8]. The
results are quite close to calculations of motivic cohomology in [22] and [27].

For a fixed finite group G our approach is the following. Given an orthogonal
representation V of G, we use finite analytic correspondences to construct in
Section 3.2 a complex of abelian sheaves Z(F)g on a suitable equivariant site of real

analytic manifolds-with-corner.
Our first main result is the following.

Theorem 3.9. Let X be an oriented real analytic G-manifold. Then, for any finite
dimensional G-representation V, with dim V v, one has natural isomorphisms

H"(Zeq, Z{V)%\X) s H^n~v{X-Z),

between the hypercohomology of X with coefficients in Z(V)g\x and the

G-equivariant cohomology of X with Z coefficients, in the direction of V.
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In Section 5, we take advantage of the fact that the construction of the complexes

Z(V)q closely resembles Voevodsky's constructions to provide a very natural

description of the cycle map at the level of representing complexes. In a nutshell,

given a finite correspondence T e Cor(Ar, Y), where X and Y are smooth real

varieties, the corresponding complex algebraic cycle T(C) — with the analytic
topology — gives a real analytic current T(C) which becomes a finite analytic
correspondence in (.X^C), F(C))S. This natural construction yields our next
main result.

Theorem 5.7. Given a smooth real variety X, one has a map ofcomplexes ofZariski
sheaves cx : Z(p)m\x —> Rn*Z(p)Br|x(C) induced by n : X(C)eq -» XZax (5.2)
and natural in X. This map induces natural bigraded ring homomorphisms

cx : //£(*,Z(.))— H£;'(X-Z),

from motivic cohomology to ordinary RO(&)-graded equivariant cohomology.

We must point out that all the constructions done here, in the case of the trivial
group G {e} yield a complex of sheaves Z(p)b calculating singular cohomology
with coefficients in Z(p) — (2jtï)pZ C C. The same construction provides a cycle

map from the motivic cohomology to the singular cohomology of complex varieties,
satisfying the properties described in the theorem above.

Using this approach to equivariant ordinary cohomology, we present two basic

examples. In Section 3.4 we directly construct the well-known isomorphism

H£;P(*\Z) ^ Zx ®z---®zZx S ZX,

/Mimes

for all p > 1. Later, in Section 5.3 we use this example to provide a natural ring
homomorphism p : K*1 (F) :—» ®p>oH^p(F:Z) := @p>oH^p(X{C)\ Z).
from the Milnor A'-theory ring of a number field F to the "diagonal" part of ordinary
equivariant cohomology of A'(C), where X := Spec (F E). This map descends

to an isomorphism between K^f (F)/2K>l(F) and ®p>oH^p(F\Z). It is worth

mentioning that the Milnor ^-theory ring of a field F is precisely the diagonal part of
the motivic cohomology of Spec(F), that is, K^1 (F) s ©p>o//^(Spec(F), Z(p)).

In order to prove the main results, particularly Theorem 3.9, we need to endeavor

in sheaf-theoretic considerations of independent interest, similar to the discussions
in [21] related to complexes of sheaves with homotopy-invariant cohomology
presheaves. The main steps to prove Theorem 3.9 are summarized as follows.

(i) The sheaf a F associated to a homotopy-invariant presheaf P is also homotopy-
invariant.

(ii) The previous step along with standard spectral sequences arguments imply
that for all re Z the presheaf X i-> W{Xtq\aP*x) is homotopy-invariant,
when P* is a complex of presheaves with homotopy-invariant cohomology
presheaves.
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(iii) We show that Cech hypercohomology on G-Manw coincides with sheaf

hypercohomology, and prove a Grothendieck-like theorem establishing an

isomorphism between the Cech hypercohomology of an equivariant good cover
and the usual hypercohomology groups.

In order to keep the exposition as self-contained as possible, we provide the proofs
of these technical results in an appendix, where we briefly discuss G-Manw as a

site with enough points and the resulting canonical Godement resolutions of abelian
sheaves on G-Man^.

Acknowledgements. The authors would like to thank the referee for the valuable

suggestions and corrections.

2. Finite analytic correspondences

In this section we review the main properties of the category of finite analytic
correspondences Man^n introduced in [7]. The constructions take place in the

category Man<y of oriented real-analytic manifolds and real-analytic maps.

2.1. The category of finite analytic correspondences. Let fififi(M) be the group
of A-dimensional locally integral currents on an m-dimensional oriented smooth
manifold M [11, 4.1.24] and, for k > 1, let 3 : J^oc(M) —> <denote the

boundary map, adjoint to the exterior derivative of differential forms. For k 0, a

(locally) integral 0-current is simply a (locally) finite sum of point masses.

If X is an oriented real analytic manifold, a -dimensional locally integral
current T in X is called a k-dimensional subanalytic chain if spt(T) is contained in some
A-dimensional subanalytic set and spt(3T) is contained in some (k — l)-dimensional
subanalytic set in case k > 1.

It follows that T is a locally finite sum of chains corresponding to integration over
certain ^-dimensional oriented subanalytic strata of some subanalytic stratification
of X and, for A" > 1,3T similarly comes from (k — l)-dimensional strata of this
stratification; see [14, p. 64],

Notation 2.1. If A is a real analytic manifold, we denote by J^(X) C <f[0C(A) the

group of A-dimensional subanalytic chains on X.

Definition 2.2. A finite analytic correspondence T between oriented real analytic
manifolds A and Y, of dimensions m and n, respectively, is a current T e J^(X xY)
satisfying the following conditions:

(fac.1) T is a closed current (i.e. dT 0).

(fac.2) If rix : X x Y —> X denotes the natural projection, its restriction nx\spt(T)
to the support of T is a proper map.
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(fac.3) There is d > 0 so that for each x e X, one has #{n^1 (x) D spt(T)} < d.

Denote the abelian group of such correspondences between X and Y by J,fn(V. Y).

Example 2.3. (i) Let / : X —> Y be a real analytic map and let 1/ C X x Y
denote its graph, oriented so that the projection on X is an orientation-preserving
diffeomorphism. The current [[I/] e A{ff(X x Y) represented by integration over T/
is a finite analytic correspondence.

(ii) Let X(C) and T(C) be the complex analytic spaces associated to smooth

complex algebraic varieties X and Y, oriented by a choice of V—I, and

let T c X x Y be a finite correspondence from X to Y in the sense of [21], and

assume that X is irreducible. It follows from [2, Exposé XII, Props. 2.4 and 3.2]
that T(C) C X(C) x T(C) is a closed irreducible analytic subvariety which is finite
and surjective over X(C). In particular, T(C) represents an element |[r(C)| in
<ff?n(X(C), T(C)). See [16, Thm. 3.1.1],

We need a slightly extended version of the notions introduced above to include
oriented real analytic manifolds-with-corner [15]. Given two such manifolds X
and Y, we let (X, Y) be the group consisting of those T e <f},oe(X x Y) for

which one can find embeddings X C X and Y C Y as closed submanifolds-with-
corner of oriented real-analytic manifolds X and Y satisfying dim X dim X and

dim Y dim Y, together with T e S^n(X, Y) whose restriction Tl(A'xT) to XxY
(see [11, 4.1.7]) is equal to T. Note that if T e <f"n(X, Y) with X and Y manifolds-
with-corner, then T is not necessarily closed. From now on, the objects of Man^
will include all oriented real analytic manifolds-with-corner, and the morphisms are

analytic maps.
It is useful to think of the elements in dfn(X. Y) as multivalued maps from X to Y.

Actually, one can associate to a finite analytic current T e Jf?n(X, Y) a continuous

map from X into the group of integral 0-currents in Y, using the slicing techniques
introduced in [10]. In general terms, given a smooth map / : M -» N between
smooth manifolds and a current T of dimension k on M, the slicing of currents —
under appropriate conditions — produces for almost all y e N a current (T, /, y) of
dimension k — dim(TV) on M called the slice of T over y.
Proposition 2.4 ([7, Prop. 2.5]). Let X, Y e Man^ have dimensions m and n,
respectively. Denote by Jq(Y the group of integral 0-currents in Y with the flat
norm topology. Given T e Jfn(X. Y) the following holds:

(i) The slice (77 tzx x) existsfor all x e X and is a 0-dimensional integral current
in XxY.

(ii) The function fr : X —> (Y) sending x e X to 7Zy#{(T,ttx,x)) is

continuous (where Jty# denotes the push-forward ofcurrents, i.e. adjoint to the

pull-back offorms).

Let X, Y, and Z be oriented real analytic manifolds-with-corner of dimensions

m, n, and k, and use [X] to denote the current defined by integration on X
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(with the given orientation). Here, for sets or chains in the product space IxFxZ,
it will be convenient to abuse notation by identifying a corresponding chain or set

under the standard identifications of Z x Y x Z with the (I x f) x Z or with
X x (Y x Z). For example, if T is a correspondence from Y to Z, we will use,
in X x Y x Z, the notation [[Zj x T as an abbreviation for the chain r#([Zj x T),
where i{x, (y,z)) (x,y,z) for (x, (y,zj) e X x (7 x Z).

Proposition 2.5. For any analytic correspondences S e Jlfn(X,Y) andT e dffn(Y,Z),
the following statements hold:

(1) The intersection current (S x \Z\) D ([Z] x T) exists in X x Y x X.

(2) Let p pxz ' X x Y xZ-rf x Z he the projection Then the restriction
of p to the support of(S x [[Z]) H ([[Zj x T) is proper.

(3) The current T o S := p#[(S x\Z\)C\{\X\xT j] lies in âfn{X, Z), and is called
the composition ofT and S.

Proof First we need an easy remark about dimensions of subanalytic sets.

Iff : M —> N is an analytic map and A is a nonempty subanalytic subset of M
such that A fl f~l{y} is finite for all y e f(A), then dim A dim f(A).

In fact, A admits a locally finite partition M into analytic strata S so that fis
is an immersion and dim 5 dim f(S). Hence, dim A maxsgj^dimS
max5etA< dim f(S) dim f(A).

For the finite correspondences S from X to Y and T from Y to Z, we see that,
for each x e X, there are only finitely many y e Y with (x,y) 6 spt(r) and, for
each y e Y, only finitely many z e Z with (y,z) spt(S). Thus, for each x e X,
there are only finitely many points (x.y,z) e (spt(Z) x Z) Fl (X x spt(T)). We

may now apply the above remark to the projection onto X to see that

dim [( spt(Z) x Z) fl (Z x spt(7"))] dim X m.

Note that Sx[Z] is an (w Tridimensional subanalytic chain withspt(Sx[Zj)
spt(S) x Z and d(S x |Z]) - (9S)x[Z] + (-l)mSx3[Zl 0 + 0 and that fZ] x 7
is an (m + Tridimensional subanalytic chain with spt(|Z] x T) Z x spt(i) and

3([ZJ xT) 0.

Thus the two chains S x [Z] and [Z]xT have supports intersecting in the correct
dimension (m + k) + (m + n) — (m + n + k) m, which establishes the existence
of the intersection current in conclusion (1); see [14, §4.5],

For the properness in conclusion (2), assume that K is a compact subset of Z x Z
and denote by qx : X x Z X, qy : Y x Z Y, px : X x Y —* X, and

pY : Z x Y —> Y the evident projections. It follows that qx(K) is a compact subset
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of Z and, since S e is a finite correspondence the intersection A :=
Px1 (ix (-^)) n sPt(^) is a compact subset of X x Y. Therefore, py (/I) is a compact
subset of Y and the previous argument shows that B := qfx(py(A)) D spt7 is a

compact subset of Y x Z. It is clear that spt(S x [Z]) n spt([Z] x T) fl p~x (K) is

a closed subset of (A x Z) fl (qx(K) x B) c qx(K) x 5 and the latter is compact.
For conclusion (3) we now readily see that the push-forward current p#[(5 x |Z])

n([Z] x 7)] is a subanalytic chain with zero boundary because dp# p#3. It is a

finite analytic correspondence from X to Z because, as we saw above, the projection
of its support onto X is a finite to one map.

Proposition 2.6. With manifolds X, Y, Z and currents Se <l®n (X. Y) and Te dn (Y, Z
as in Proposition 2.5, suppose that W is an (.-dimensional oriented real analytic
manifold-with-corner, and R e âfn(W, X). Then

T o (S o R) (T o S) o R.

Proof. We use the formula [13, Th. 5.8(11)] to "lift" and apply the associativity of
the intersection product of chains that intersect suitably, as in [13, Th. 5.8(7)].

Specifically for the projection pwxz oflfxKxfxZ onto W x X x Z and

any subanalytic cycle Q in W x X x Y x Z that intersects Äx[f]x [Z] suitably,

Pwxz# Q intersects R x \Z\ suitably, and [13, Th. 5.8(11)] gives the formula

(r x |z|) n pwxz#Q pwxz#[(R x[r]x Jz]) n q].

Using the projections pwx '.WxXxZ—rWxX and pxz '. X xY xZ X xZ
and this formula, we now derive that

(To 5)o R

PWX»[(R x [Z]) n ([IF] x (r o S))]
PWX«[(R x [z]) n {m x pxz#[(s x [Z]) n ([*J x t)])]
pwx«[{R x izj) n pwxzAWl x [(s x izj) n ([z] x t)])]
pwx»[(R x IZj) n pwxzMw1 x 5 X [Z]) n (iwj x |Z] x 7))]
PWX»PWXZ»[(R x m x m) n (([Wl x 5 x îZ]) n ([IT] x [Z] x 7))]
PWX#[{R x [T] X [Z]) n (([IT] x 5 x [Z]) n ([IT] x [Z] x 7))], (*)

where pwx# is the projection ITxZxTxZtoITxZ.
By a similar argument we derive the formula

T o (S o R)

PWZ#[{(R x [T] X [Z]) n ([IT] x S x [Z])) n ([IT] x [Z] x 7)]. (**)
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Arguing as in the proof of Proposition 2.5, we see that for each w e W, there are

only finitely many points (w,x,y,z) eWxXxYxZ so that (w,x) e spt (R),
(x, y) e spt(S'), and (y, z) e spt(T). Thus,

dim [(spt(7?) x Y x Z) fl (W x spt(S) xZ)fl (W x X x spt(7"))] I,

which is the correct intersection dimension

(fi n -\- k) + (£ + m + k) + (£ + m + n) — 2(£ -t- m + n -f- k

Thus the three chains R x [F] x [Z], [VF] x S x [Z], and [VF] x [Z] x T intersect
suitably, and the associative law [13, Th. 5.8(7)] implies that (*) (**), and the

proposition follows.

Definition 2.7. Let Man[" be the category with oriented real analytic manifolds-with-
corner as objects and d^n(Z, Y) as the morphisms between Z and Y.

It follows from Propositions 2.5 and 2.6 that one has a faithful embedding

j,in : Man« ^ Man^, (2.1)

which is the identity on objects and sends an analytic map / : Z -» Y to the current
defined by its graph [I/] e â^{X,Y).

2.2. The category of equivariant analytic correspondences. We now work in the

equivariant category G-Man^ whose objects are oriented real analytic manifolds-
with-corner with a finite group G acting by analytic automorphisms (not necessarily
orientation-preserving), and whose morphisms are the equivariant analytic maps.
There is an induced action of G on J^n(X. Y) which, as in the non-equivariant case,
leads to the definition of the category of equivariant finite analytic correspondences
G-Man^ having analytic G-manifolds-with-corner as objects and dZ{X.Y)G as

morphisms between Z and Y [7, Definition 4.2].

Remark 2.8. It is easy to check that the assignment dffn(X, Y) —> Map(Z, <Ho(^))
described in Proposition 2.4(ii) is equivariant. In particular, if T d"n(X. Y)°
then fj is an equivariant map, that is fr e Map(Z, do(Y))G.

2.3. Homology of finite analytic chains. The topological simplex

n

kn {(fi) tn)e M"+1 I ^2 ti 1 and tt > 0, i 0 n J (2.2)
1=0

is an oriented analytic manifold-with-corner that we endow with the trivial G-action,
for any finite group G. This gives a canonical cosimplicial object A* {A" | n > 0}
in the categories Man^, Man^", G-Manffl and G-ManJ^.
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Any X e Manf^n yields a simplicial object dn(A', X) whose resulting chain

complex (with differentials given by the alternating sum of the simplicial face

maps) is denoted J," (A*, A"). It follows from Proposition 2.4 that one obtains

a map of complexes s : d®n(A*,X) -» Sing^oCAQ), where Sing^(d?o(AC))

HomTop(A*. Jo(20). This map will be used to compare the resulting homology
theories. Furthermore, the equivariance of the slicing map implies that in the

equivariant context s is a map of complexes of G-modules. In particular, for each

subgroup// C G, it maps d^n(A*, X)H into Sing^tfoCA')^).

Theorem 2.9. Let X be a compact oriented analytic manifold. The map

* :Jfl»n(A*,*)-*Slng,(Jo(*))

is a quasi-isomorphism, i.e. it gives an isomorphism in homology. More generally,

if G is a finite group acting on X by analytic automorphisms and acting trivially
on A*, then for each subgroup K C G the map s : dfn{A*.X)K —r Sing<t(/0(A')^)
is a quasi-isomorphism.

Proof. The proof follows from the same arguments found in [7, Th. 3.1].

Remark 2.10. For each subgroup K c G, standard arguments yield an isomorphism
between the homology groups //.(SingH,(<!o(A')A')) and the homotopy groups
TT,{do{X)K). The equivariant version of the Dold-Thom theorem in [18]
and Theorem 2.9 yield a natural isomorphism between //.(/^(A*. X)G) and

the G-equivariant Bredon homology Hfi (X;Z) with coefficients in the Mackey
functor Z.

3. Equivariant analytic presheaves with transfer and ordinary cohomology

For a fixed finite group G we introduce the notion of G-analytic presheaves with

transfers on G-Man^. When G is the trivial group this specializes to the analytic
presheaves with transfers. Our constructions run in parallel with the development
of motivic cohomology in [21]. In particular, we define complexes of sheaves on

G-Man^ that are the topological counterpart to Voevodsky's motivic complexes.

3.1. Equivariant analytic presheaves with transfers.

Definition 3.1 ([7]). An equivariant analytic presheafwith transfers is a contravariant
functor F : (G-Manf^n)op —> Ab. We denote by G-PST" the category of equivariant
analytic presheaves with transfers and natural transformations.
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Example 3.2. Any object A e G-Man^,, represents an equivariant analytic presheaf
with transfers Z®A e G-PST® given by

Z®A : (G-Man^n)op — Ab

Kn(U-X)6.

Given a pointed object (A, x) in G-Man^, consising of A e G-Man<y and x e XG,
define Z®(A, x) 6 G-PST® as the cokernel of the map Z Z®x -* Z®A. Since
the map x —>• A splits, there is a natural splitting Z®A Z © Z®(A, x).

Example 3.3. Consider A 6 G-Manw. The G-topological group J0(A) described in
Proposition 2.4 naturally represents an abelian presheaf Z® A on G-Top defined by
G i-> G-Top(G. ^o(A)). If x e XG we set Jo(A, x) — d0X/Sq(x) and Z®p(A, x) :

G h> G-Top(G, Jo(A, x)). In [7, Lern. 4.6] it is shown that these presheaves on
G-Top extend to presheaves with transfers Z°,opA and Z°'op(A, x) on G-PST®.

Given an arbitrary equivariant presheaf with transfers !F e G-PST®, let

A,y e G-PST® (3.1)

denote the functor that sends G e G-Man^n to A,y(G) := !F(U x A"). Using the

functoriality of !F one can easily verify that the collection Ay:={Ay | /) > 0}
becomes a simplicial equivariant analytic presheaf with transfers, and we denote

by Ay the associated chain complex whose differentials dn are the alternating sum
of the face maps. Denote by A*!F the complex of G-PST®'s (negatively graded)
associated to Ay. In other words, A"!F A_y with the differential

dn : Ay An+y, defined by dn (a) (-1)"d-n. (3.2)

Definition 3.4. Endow the category G-Man^ with the Grothendieck topology
generated by the pre-topology where an equivariant covering family of G G-Man^
is a collection {/]• : G,- — G},-6/ of open embeddings in G-Man^ satisfying
U Ui6/ fi(Ui). Denote by Cov(G) the set of coverings of G and recall that
the following holds:

(Tl) For {Uj —r U} in Cov(G), and a morphism V -> G in G-Manw, all fiber
products Ui X[/ V exist and {G, xj/ V — V} is in Cov(U).

(T2) Given {[/,- G} in Cov(G), and a family {Vy — {/,} e Cov(G;), for all

i g I, the family {F)y -* G} obtained by composition also belongs to Cov(G).

(T3) If tp : U' -> G is an isomorphism in G-Man^, then {cp : U' -> U} is in
Cov(G).
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Let (G-Man^) denote the equivariant analytic site, consisting of the category
G-Manw endowed with this topology.

(a) Given X e G-Man^, denote by Xeq the small equivariant site of X where the

objects are the G-invariant open subsets of X and the coverings are as above.

(b) Given a real linear representation V of G of dimension v, let its representation
sphere Sv be the one-point compactification V U {oo}. Using Examples 3.2 and 3.3,
define two complexes in G-PST<U:

Z(U)'°P := (A*ZHSkoo)) [~v] and Z(U)g := (A*Z%(SV, oo)) [—v].

By definition,

Z:= {A*Z?(Sv,oo)}J~v(U) Z%(Sv,oo)(U x

and the differential

d£:Z(V)%J(U)-*Z(V)%J+1(U)

is dv(a) (—l)-u(—1 )v~jdv~j (—1y dv-j by definition of shifted complexes
and (3.2), where

dv-j : Zf(Sv, oo)(U x AV~J) -> ZfffSv,oo){U x A"-7'-1)

is the simplicial differential. These complexes should respectively be seen as

topological and differential-geometric G-equivariant analogues of Voevodsky's nth
motivic complex in the category of smooth schemes over C.

(c) For X in G-Man^,, denote by Z(V)qP\x and Z{V)q\x the complexes
of abelian sheaves on Veq obtained as the sheafification of Z(U)qP and Z(U)g,
respectively, restricted to the small equivariant site of X.

Notation 3.5. Given a site G, denote by G and G the categories of presheaves and

sheaves of Sets on G, respectively. Similarly, denote by G^ and G« the categories
of presheaves and sheaves of R-modules on G, for a given ring R.

Definition 3.6. An equivariant analytic presheaf with transfer !F is homotopy
invariant if for each U G-Man^ the projection n : U x I —> U, where I [0. 1]

is the unit interval induces an isomorphism n* : !F(U) —> !F(U x I).
Proposition 3.7. If !F is an equivariant analytic presheaf with transfers then the

complex A* F has homotopy-invariant cohomology presheaves. In other words,

given n > 0 let J(~"{ A* !F) be the G-PSTM

M~n(A*F) U I >
kerJ :(F(Gx A")^y(Gx A"'1)
Imrf : F(U x A"+1) - F(U x A")

'

Then 3t~n (A* !F) is homotopy invariant, for all n > 0.
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Proof. This follows exactly as in [21, Lect. 2]: define 0,- : An+1 —> A" x A1 by

sending the vertex vj to Vj x {0}, for j < i, and to Vj~i x {1} otherwise. Then

sn — F (lu x 6i) is a chain homotopy from /* to i£, where ia : X X x A1

is the inclusion x i-> (x,a). By [21, Lemma 2.16] it follows that JCn(A*!F) is

The notions of homotopy-invariant presheaves with transfer and complexes of
presheaves with transfer having homotopy-invariant cohomology sheaves play an

important role in the development of motivic cohomology. As we shall see in the

following self-contained discussion, this is an equally relevant notion in our context.
As in [21, Lect. 2], one can introduce arbitrary colimits and limits (objectwise) in

G - PST For example, défi ne the smash product of pointed real analytic G -manifol ds

Coker Z%(Xi x ••• x {Xj} x ••• x Xn) - Z°(Xx x ••• x Z„)[. (3.3)

In particular, given p > 1, define Zfr(/\PX) := Zf(X A ••• A X).
Remark 3.8. In some cases the topological space X\ A • • • A Xn admits a real analytic
G-manifold structure, such as the case of representation spheres in Definition 3.4. To

avoid confusion we do not use X\ A • • • A X„ to denote a real analytic G-manifold.

3.2. Ordinary equivariant cohomology and Z(V)g. The paper [19] introduces
a generalization of Bredon's G-equivariant cohomology groups, called ordinary
RO(G)-graded equivariant cohomology. As explained in [19] the appropriate
coefficients for this theory are Mackey functors over G. For our purposes the

Mackey functor that plays the role of the integers in singular cohomology is the

Mackey functor constant with value Z, denoted Z (see for example [7]). For a based

G-space X the reduced ordinary RO(G)-graded cohomology with Z coefficients

assigns to each orthogonal G-representation V an abelian group HG(X\Z) together
with suspension isomorphisms in the direction of arbitrary representations:

where Sw W U {oo} is the representation sphere of W. As usual, there is an

unreduced theory defined by Hq(X\Z) := Hq(X+; Z), with X+ :=IU {+}.
The functors X Hvg(X\Z) are contravariant in X and satisfy expected

properties such as invariance under equivariant homotopy equivalences, existence

of long exact sequences for pairs and sending wedges to products. They also

satisfy natural compatibility relations involving the suspension isomorphisms, the

morphisms of representations and the direct sum operation (see [20]). Using these

properties it is possible to extend the cohomology theory on virtual representations

homotopy invariant.

(Xi,xi),...,(X„,x„)by

Zf(Xl A-A X„)

ow : H%(X; Z) -» HVG+W (Sw A A;Z),
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by setting HVG~W{X\Z) := H%(SW A A;Z), yielding an RO(G)-graded theory

with a multiplication pairing that sends HaG(X; Z) <8> HG(X\ Z) into (X: Z),
where a + ß denotes addition in the representation ring.

The main result in this section is a first indication that Z(K)g is indeed the

analogue of the uth motivic complex in the category of real analytic G-manifolds.

Theorem 3.9. Let X be an oriented real analytic G-manifold. Then, for a finite
dimensional G-representation V one has natural isomorphisms

H"(Xeq, Z(7)g|x) HQ+"~V(AT Z),

between the hypercohomology of X with coefficients in Z(V)G\x and the

G-equivariant cohomology of X with Z coefficients, in the direction of V.

Proof. In Theorem 3.11 below we show that Z(V)qP computes Bredon cohomology
in the direction of V, i.e. that the hypercohomology of the complex Z(V)qP|x is

naturaly isomorphic to the Bredon cohomology groups of X in the direction of
the representation V, with the appropriate index shift. The theorem follows as a

consequence of Theorem 3.11 and the following lemma.

Lemma 3.10. Let V be a finite dimensional G-representation. The slicing maps
s : G-Man^G, S*') —> G-Top ((7, Jq(Sv)) described in Proposition 2.4 induce a

quasi-isomorphism Sx ' Z(V)G^X —> Z(V)gjpx, for all X e G-Man«.

Proof. Let xq e X. Consider a neighbourhood basis {Un}nsN of the orbit G • xo
such that Un s G xgX0 D„, where each Dn is a G^-equivariantly contractible
analytic open set, as described in Appendix A.l. The homotopy invariance

property in Proposition 3.7 applied to the cohomology presheaves of Z(V)G^X and

Z(V)f\X in these neighbourhoods shows that their stalks (Jf *(Z(V)q|x^)g-x0 anc^

(JC*(Z(F)qP|A:))g xo
are given, respectively, by the homology of the complexes

Z^(SKoo)(A* x G/GXo) and Zffi'(Sv,oo)(A*xG/GX0),

shifted by v; see Example 3.3. It is easy to check the commutativity of the diagram

»r ^A*xG/G^n T,
<!,"(*>* x G/GXo, Sv)g t G-Top(A* x G/GX0J0(SV))

Jf»(A*,Sv)G*o ^ > GxffTop(A*. S0(SV)),

where the vertical maps are given by intersection with A* x eGX0 x Sv C A* x
G/Gxo x Sv on the left and by the usual adjunction on the right. The result now
follows from Theorem 2.9 and Remark 2.10. [I
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The key ingredient to prove Theorem 3.9 is the following.

Theorem 3.11. Let V be an orthogonal representation of G with dim V v and
let X be an oriented analytic manifold. Then there is a natural isomorphism

nn(Xeq;Z(V){°Plx) s H^+n~v(X; Z).

First, we need to introduce basic terminology.

Definition 3.12. Let X be an analytic manifold and U {Ua}cei Cov(X), and

let IP be an arbitrary abelian presheaf on G-Man^. Denote by LP\x (resp., a J3\x) the
associated presheaf (resp., sheaf) on 3feq.

(a) The Cech nerve of U is a simplicial G-space over X denoted N(K). —> X.
It is obtained from the successive fibered product of / : U -> X, where U :=
Liers/ Uo- 1° other words,

N(U)k := Uxr..xyU U U&,
" ^ ' äsI"+l
(A: + l)-times

where U& denotes UCo n • • • D Ua„. The realization of N(K). is a G-space |N(K).|,
which is G-homotoy equivalent to X if / is countable [23],

(b) The nerve of U is the simplicial set NÇU). defined by

Nk {(a0 an) /"+1 I uao n • • • n Uan ± 0}.

Hence we can write N(K)/fc UäsA^tW)^ uà-

(c) Let Tck : N(K)/t —> X be the projection and denote Gj> := nk^n^(fP\x)-
This gives the usual cosimplicial presheaf on Xeq with associated Cech

complex of presheaves

(d) Given a complex of abelian presheaves IP* on G-Man^ the naturality of the
Cech construction gives a double complex GjJ, and we have

T{xxpXM(s>i))=n ^w-
âpeN(U)p

The Cech hypercohomology H' (U: J3*) of the cover V. with coefficients in the

complex of presheaves LP* is defined as the cohomology of the complex of abelian

groups Tot(T(XX* U(LP*))).

(e) The cover U is called an equivariant good cover if all intersections UOQ D
• • • n U<jk are equivariantly analytically diffeomorphic to a G-manifold of the form
G xjj D where H is a subgroup of G and D is the intersection of an open disc in an

orthogonal representation of H with an //-invariant "corner" of the type x M"-7".
The existence of such covers for an analytic G-manifold is given in [7, Cor. A.7] and

the same arguments apply to manifolds-with-corner.
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Notation 3.13. Given a double complex (C.d.S), with d : Cp'q -> Cp'q+X and
S : Cp,q -» Cp+X'q, there are two natural spectral sequences converging to the

total cohomology H*(C). We refer to the spectral sequence whose £i-term is Hd
and Zs2-term is Hs Hd as the first sequence. By the second sequence we mean the

spectral sequence with E\ Hs and E2 Hd Hs.

The following "steps" to prove Theorem 3.11 have an interest of their own. The
first one is the topological counterpart of [21, Thm. 22.1 ]. Its motivic version is more
subtle and plays a fundamental role in the development of motivic cohomology.

Proposition 3.14. Let IP be a homotopy invariant abelian presheaf on G-Manw.
Then the associated sheafa.P is homotopy invariant.

Proof. See Appendix A.3.

A consequence of this result is the next step.

Theorem 3.15. Let IP* he a complex of abelian presheaves on G-Man^ with

homotopy-invariant cohomology presheaves. Then the presheaves

X i-> Hr(Xeq;a^)

are homotopy-invariant.

Proof. See Appendix A.3.

We now come to the final step.

Proposition 3.16. Let V. be an equivariant good cover of X and let IP* be a

complex with homotopy invariant cohomology presheaves on G-Man^. Then the

Cech hypercohomology IH * U : IP*) of the cover with coefficients on the complex of
presheaves IP*, computes the hypercohomology H* (X; alP*x) of Xeq with coefficients
in the complex of sheaves a P*x.

Proof. See Appendix A. 3.

Using the steps above we can prove the desired result.

Proof of Theorem 3.11. The proof follows the steps in [28] where a closely related

complex is used to represent ordinary equivariant cohomology.
Consider the invariant h* defined on pairs of G-spaces by

ff(X.A) Hç+r~v(X, A: Z)

It satisfies the usual axioms for a generalized equivariant cohomology theory: long
exact sequence for pairs, G-homotopy invariance and excision. We will construct a

suitable filtration on X and follow the arguments in [23] to obtain a spectral sequence
converging to i)*(X). To obtain the desired filtration we replace X by the realization



444 P. F. dos Santos, R. M. Hardt, J. D. Lewis and P. Lima-Filho CMH

of the Cech nerve N(K)., for an equivariant good U of X (see Definition 3.12), and

consider its skeletal filtration

Sko |N(10.| C Skj |N(10.| C ••• C Sk„ |N(K).| C ••• C |N(K).|,

where

Sk„ |N(1i).| coeq
y a! x N(U)k =4 U Ak x N(10*\

[/]-»[*] k<n
k,l <n

In this case, [23, Prop. 5.1] yields a spectral sequence converging tof)*(|N(K).|)
h*(2() with E\ term

E ^«(Sk, |N(Tf),|,Skp_! |N(K).|)

\)p+q(kp x N(U)p, Ap x N(l£) J U dàP x N(t£)/>)

V("(U)pMU)dp) - h«(W/) H^+p-v(UâeN(U)nâ Uy, Z)

n hz+p~v{g/jô-,z),
öeN(U)"pd

where the superscripts d and n d represent the degenerate and non-degenerate parts
of the corresponding simplicial object and we use the hypothesis that U is good to
write Uë s G x y. D, with D being -equivariantly contractible.

The £2 term is computed as in [23] by considering the cochain complex associated

to the simplicial space N(K). and fi:

Kp := f^NCLOp) Ua;Z) J! HVg+p'v{G/Jö-Z).
à&N(U)p

Its differential is defined as £,•(— l)'b^W)> where dt denotes the ith face map
of N(T().- There is an obvious map Ep'q -> Kp, which by [23, Prop. 5.1] is

compatible with the differentials and induces an isomorphism Ep'q s Hp{Kq).
Now, by Proposition 3.16 the Cech hypercohomology Z(F)^y) computes

M*(X;Z(V)qP^x). The first spectral sequence gives

'Ep{q(u,nv)i\x)-.= n ^(r(^;z(^)Sîjf))
âeN(U)p

n m»x)(uSp)
ceN(U)p

n H^+p~v(G/Jâ-,Z) s Kp,
äeN(U)P
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where we have used the homotopy invariance of Jtq (Z(K)qP|A.), Proposition 2.9 and

Spanier-Whitehead duality:

36"(Z(V)%x){uà) Je«(Z(V)f]x)(G/Jâ) S Hlq+V(sv A G/Jâ+)

H%_q+V(G/Jap) s Hvg+«-v{G/Jz).

It is important to note that, under this sequence of natural isomorphisms, the map

Mq{lj(V)x^x){Uä) -> Jf9(Z(K)Q|>A.)(t/f) induced by an inclusion C/f <-* (/^isjust
the map induced on cohomology by the corresponding map of orbits G/ J-z -> G/ J^.
We conclude that the map E^'q -* Kq yields a map of spectral sequences
EP'1! 'ßP'i ^at induces an isomorphism of the ^2-terms.

Corollary 3.17, Let V. W be real G-representations of dimensions v and w. Then

the complexes Z(V ® W)°f and A'Zf(Sv A 5^)[— (y + ut)] are quasi-isomorphic.

Proof. Given the pointed G-spaces and Sw one can define the abelian sheaf
Zfr,op(Sv A 5*^) on G-Top exactly as in (3.3):

Zfr{Sv x SW)(U)^ Im {(Zfr(Sv x oo) © Zfr({oo} x SW))(U) -» If (Sv x 5^)(G)}
'

(3.4)
Note that, even though the quotient x Sw /Sv v Sw Sv®w exists in G-Top,
this is not the same as abelian sheaf represented by Sv®w. But the equivariant
Dold-Thom theorem proved in [18] implies that the projection $v®w
induces a quasi-isomorphism A'Zff(Sv A S1^) —» A*Zf,"v(Sv®w).

To conclude the proof one uses the fact that the map A'Z£(SV A S w) ->
A'Zfr(Sv A Sw), induced by slicing is a quasi-isomorphism by Lemma 3.10.

Remark 3.18. Given a subgroup H < G, one has aforgetful functor ip : G-Man<y —>

H-Manw that determines a morphism of sites ç>op : H-Manw -> G-Man^ inducing
a morphism of topoi <p — (tp*, (p*) : H-Man~ —> G-Man~. It is easy to see that the

left adjoint tp* : G-Man~ — //-Man~ sends Z(L)g to Z(Res^(L))g. In particular,
if X e G-Manw, one obtains the natural change ofgroup functor

<p* : H%+n~v(X;Z) -* H%+n~v(X; Z),

where V denotes Res^(L). In the case where H {e} is the trivial subgroup, this

gives the forgetful map into singular cohomology

tp* : Hl+n~%X-Z) -* H" (X;Z).
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3.3. The case of Gal(C/R). Now we specialize to the Galois group © :=
Gal(C/M) and explore its conjugation action on complex points of real varieties.

Let £, 1 s M denote, respectively, the alternating and trivial one-dimensional

representations of ©. Any orthogonal representation of © is isomorphic to
M"-? ;= \n~Q © for some n > q > 0, and we denote by S"'q ©-Man^n
its one-point compactification. From now on, we use the motivic notation

H^q(X-Z) := Hl"'" " (X-Z). (3.5)

Note that S1 C C endowed with the complex conjugation action is isomorphic
toS1'1 (with oo mapped toi) and the inclusion S1,1 C Cx isanequivarianthomotopy
equivalence. This can be used to find a convenient expression of the smash product
Sp'p := S1'1 A • • • A S1'1 in the appropriate derived category of sheaves.

Definition 3.19. Define Z(p)^ := A*Zt<j'(/\pCx)[—p].

Lemma 3.20. The complex Z(p)M is quasi-isomorphic to

Z{RP'P)% A*Z%{Sp'p)[-p].

Proof. As in the proof of Corollary 3.17 we note that slicing induces a map

k*Z°(/\pCx) -» A*Z^(f\pCx)
which by Lemma 3.10 is a quasi-isomorphism. Since (Sp'p,oo) is a strong
deformation retract of /\P(CX, 1), the result follows.

3.4. A basic example. We use the complex Z (p)w to directly compute the cohom-

ology groups H^P(*',Z), where * {pt}. For brevity, given a pointed object
(X, x0) in ©-Manf^n we denote

z>m zr(A'x)w -
E,=i x

• <3-«

It is clear that the assignment (X, x0) ZP(X) is functorial on (X, x0).
As described in Remark 2.8, one associates to A1. X x • • • x 3()6 a map

fr : A1 -> âo{X x • • • x X)6, which induces a continuous map

fr : A1 -> Zp(X) (3.7)

for the quotient topology on ZP(X). Note that if [T] denotes the class of T in

A1 Z°(/\PX){*)
J,in((A1. X x • • • x X)e

ZP=lJf?n(k\Xx...x{x0}x--.xX)<
then fj depends only on [T]. Furthermore, the simplicial boundary map

dx : klZ%(f\pX)(*) —> Z°(/\PX)(*) Zp(X) (3.8)
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is defined by d\[T] — fj{1) — friß), when one identifies A1 with the unit
interval [0, 1]. Denote the image of d\ by BP(X) C ZP(X). In the particular
case where (2f, xa) (Cx, 1) one has a short exact sequence

0-> BP(CX) -* Z"(CX)-V HP;P(*\Z) -»0.

since Z(p)p+1 0.

Proposition 3.21. There is a canonical isomorphism

(3.9)

-> Zx 0z • • • ®z Z>P ://£"(*; Z)

Proof. Denote an element in the p-fold cartesian product Cxp := Cx x • • • x Cx by

z (zi,..., Zp) and let 8Z e JoCC^) denote the 0-current represented by z.

We start recalling a standard exact sequence of topological groups

0 -* e * J0(Cxp) -> Jo(Cxp)e ^ do(^xP) ®Z/2^0 (3.10)

where 6 * Jo(Cxp) denotes the closed subgroup generated by Galois sums of the

form 8z+8y e do(Cxp). This sequence appears as the top row of the diagram below,

which summarizes the arguments that follow.

6 * 70(CX-P)C- -*S0{Cxp)e

0i

ker p-

fr

Bp(Cx)

>Zp(Cx)

-*d0(Rxp)®Z/2

02

-»Z*(Rx)®Z/2
ß*

Zp(Zx)®Z/2

HP;P(*;Z) f- +ZX ®z---®zZx
(3.11)

In this diagram:

(1) The vertical arrows <p\ and fa are the natural quotient homomorphisms (3.6).

(2) The homomorphism /r* is induced by p. : Rx -> Zx, p, : x i-> A.
(3) The vertical arrow u is induced by the universal homomorphism Z{Zxp}

Jo(Zxp) -> Zx ®z- -®zZx, and all vertical arrows are continuous surjections.
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(4) It is clear that n descends to the quotients inducing n, and we define

p := u o ytt* o Jr. (3.12)

(5) The diagonal sequences are short exact sequences, by definition.

It is easy to see that an element ß e So(Cxp)e can be uniquely written as

ß A + R+ + R~, where A Ea"a(<V + 8-x), R+ E, '»A1, and R~ —

J2, rj8yJ,wherezx e Cxp-Rxp,y, e (R<0)p, for all ;,andx' Rx*-(Reo)*
for all /.

A diagram chase shows that p(ß) — rj){~I> • • • > ~U» where {—1,..., —1}
is the generator of Zx <g>z • • • Zx. It follows that

ß A + R+ + R~ kerp if and only if deg R~ := ^ ry is even. (3.13)

j

If z is in C xp —Mx p, assume without loss of generality that the first coordinate z\ is
in Cx—Kx, and consider the map gZl : A1 -> Cx defined by gZl (t) t z\ + (1 —/)•
Let [rz] e Jßn( A1, Cxp) denote the current associated to the graph of

gi : t e A1 I—» (gzj (t),Z2,, zp) e Cxp,

as in Example 2.3(i). It follows that T£v := |rz] + cr*[[rz] e Jf£l(A1,Cxp)e,
where cr* is the action on currents induced by complex conjugation, and that

di(T?) 8z + 8z-8z>-8-z,, (3.14)

where z' (1,Z2,..., zp).
Now, for a e Mx define ha : A1 —> Rx by ha(t) ta + {1 — Ojfj* Given

a (ai dp) e Mx/' define ha : A1 —» Mxp by t i-> (hai (t), hap(t)), and

let |WaJ e Jff® A1, Mx/>) denote its graph. It is clear that

dilWaj 8a -8ß(a), where /z(a) ^j~J, • • • » (3'15)

Given ß — A + R+ + R~ as above, define Wß Va + WR+ + WR~, where

Fa ZxnxlT'll WR+ and WR~ It follows
from (3.14) and (3.15) that one has

d\ (Wß) d i Wa + d\(WR+) + d\(WR-)

(A — A') + (R+ - R') + (r~-J2 rj)SlP
j

ß-(A' + R')-(J2rj)StP'
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where A!, R1 are sums of elements of the form <5(ei!...!p) where k — 1, for some
k 1 and lp (—1,..., —1) e Rxp. In other words, the class of ß
in ZP(CX) can be written as

ß (ErjK + <,iW (3-16)

j
Now, let y : A1 -» C x denote an analytic parametrization of the upper half of the

unit circle centered at the origin in C x, oriented from 1 to — 1. Define yp : A1 -> Cxp
by Yp{t) (y(f), -1 —1) and let |rp] e Cxp) denote its graph. It
follows that ©p := [Tp]] + o"*|rp] lies in S^n(à}. Cxp)6 and that

dl(@p) 2Stp-28{1,-1,...,.1). (3.17)

Hence, the class of 8ip in ZP(CX) satisfies

d\(ßp) — 28ip, (3.18)

since <5(i,-i,. ,.,-i) 0e ZP(MX).
By (3.13), if ß e Ker(pp) then r} 2k, for some integer A:, and using (3.16)

and (3.18) one concludes that ß rj)&lp + d\(Wß) d\ (k©p + Wß) This
shows that

kerp C BP(CX). (3.19)

Now, by definition, if ß e BP(CX) one can find T e 7,^ (A1, Cxp)e satisfying
ß /r(l) — /r(0). The resulting fj : A1 -> Zp(Cx) is continuous and hence

p o fT is a constant map, since A1 is connected. See (3.7) and (3.11). It follows
that p(ß) p(/r(l) - /r(0)) p o fT{\) - p o /r(0) {1,..., 1}, and hence

ß e ker(p). This shows that BP(CX) C ker(p), which together with (3.19) proves
the proposition.

Remark 3.22. Let e 6 H^i*-, Z) denote the generator, i.e. p(e) {—1}. Using the

description of the cup product in (5.3), one sees that ep := s U • • • U e H^P(*;Z)
is the generator, i.e. p(sp) {—1,..., —1}. This gives a proof of the well-known
fact that the graded ring ®p>oH^p (*; Z) is isomorphic to Z[e] Z[x]/(2x).

4. A de Rham realization of Z(p)w

Let H*ng(X: Zip)) Hpng(X; Z) <g> Zip) denote the singular cohomology groups
with coefficients in Z(p) (2jz ^f-~\)pZ C C. We have a commutative diagram

HBr" (X ; Z) y H"ng(X;Z(p))6 c >^ng(Z;Z(p)) (4.1)

j' j

H^iX; C)6 s H"r(X)g C > H-JX)
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where the first row gives the "change of groups functor" described in Remark 3.18

for the subgroup {e} C ©, and vertical arrows are change of coefficients functors for
singular cohomology, along with deRham's theorem. The group H" (X; Z(p))6
consists of the invariants of the simultaneous action of © on X and Z(/?), and

H"r(X)& are the invariants induced by the action 0 h- tr*0 on differential forms.
Our goal is to describe a direct realization of the map H^P(X; Z) —> H"R(X)6

on the level of complexes of sheaves on manifold X. This description is relevant for
a subsequent study of regulator maps for real varieties.

Given X e ©-Man^ with dimX m, it follows from Definition 3.19 and (3.3)
that

Z(p)i(X) :

J^n(X x kp~j, (<CX)P)S

Im { 0y=1 JZ(X X AH,Cxx...x{l)x-xCf -> J"(X x kp~j, (CX)"S)}
'

Let

JH : X X Ap~j x (Cx)p — X.

7t3 : X x àJ-p x (Cx)p —* (Cx)p,

and Tix2 X x ^p~j x (Cx)p —> X x kp~J

denote the projections. By definition, an element a e Z(p)Ja)(X) is represented by
a subanalytic current T e Jl£c+p_j(X x kp~J x (Cx)p)e such that, among other

properties, rri2|spt(7-) is proper. In particular, rri|spt(n is also a proper map.

We now consider the form cop 4t1 A • • • A 4r^ e Qp ({Cx}p) which has the
z\ z p

following properties:

(a) a*a)p (Dp and o*œp c5p where a is the action of © on the ambient
manifold.

(b) If Tp C Cxp is the compact torus Tp := 51 x ••• x 51' then cdp\tp —

(— 1)^ Wp\iP.

(c) If

S e Im {©y=1 dfl„(XxAp~j, {Cxx- • -x{l}x- • -xCx}) -> J^(Xxkp~j, (Cx)p)}

then S l. a>p =0 and S L Tc^cOp 0.

It follows that if a [T] as above, then

a l tx*05p :=T l tt*ô»p '£>m-j(X x kp~j x (Cx)p)&

is a well-defined deRham current of dimension m — j, which is invariant under the

Galois group action, and so is

r(a) := {-\)i(m+p+x)n 1#(a l it&p) '£>j(X)e. (4.2)
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Proposition 4.1. The assignment a e Z(p)i)(X) i—> z(a) e 'Î)J (X)6 defines a

map of complexes r : Z(p)*^x —> '&\x r^e ^eve^ °f hyPe>~cohom°I°gy, this

map realizes the composition j' o <p : H^'rp(X ; Z) —» H"R(X )e displayed in (4.1).

Proof. Given T e (X x Af~J, (Cx)p)e, by definition one can find an open
subset kp~> c U C A7,-7 (R) and a (closed) current T e <ff"(X x U, (Cx)p)e
such that T T n |X x A7'-7]]. Hence, using the boundary formula for the

intersection [13, Th. 5.8(9)], we obtain

aT d(T n |X x A7'-7!)

(~i)2p(df) n fx x a77-7] + t n afx x a7"7'! f n a(|x] x [a7'-7])

(-l)mf n (IX] X 3JA7'-7]) (~l)m J2 T n (IX] X ^[A*-7'-1])
5=0

(-1 )mdP-j(T) (-l)m(-l )jdi(T) (-1 )m+Jdf(T),

where dp-j is the simplicial differential and df is the differential in the complex
Z{p)a>- See Definition 3.4(b).

Therefore,

dr([T]) (—l)7 + 13r([r]) - (-iy+1(-iy(m+p+»dnl#(T l ir&p)
(-l)j+1(-iyXm+p+1)ni#(d{T l jr&p})
(-\y+\-\y^+p+l\-i)pn1#({dT} ^ Tt;œp)

(~l)j+1 (-l)j(m+p+1)(~l)p7iu({dl(T)} l 7r;wp)

(-\)U+mm+p+1)nl#({dl(T)} l Jt*wp)

r (di[T]).

5. The cycle map from motivic cohomology

5.1. Motivic cohomology. We start with a brief introduction to Voevodsky's motivic
complexes Z (p)m in the category of smooth varieties over a field F, closely
following [21], The similarities between these constructions and the approach taken

with analytic currents in the previous sections will become evident.

Definition 5.1. Let X ]_[, V, and Y be smooth algebraic varieties over a field F,
with Xi irreducible. For each i define Cor(X,-, Y) as the free abelian group on the

irreducible W c X,- x y that are finite and surjective onto X,. Define Cor(X, Y)
®i Cor(X,. Y). The finiteness and surjectivity condition guarantee that if IF C X x Y
and V C Y x Z are irreducible finite correspondences, then W x Z and X x V intersect

properly. One defines V o W as pu*{(W x Z) n(X x F)), where (W xZ)fl (X x V)
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is the intersection of algebraic cycles [12], and P13 : X x Y x Z -> X x Z is the

projection. As shown in [21, Lecture 1], this induces an associative composition
pairing

o : Cor(X Y) x Cor(T. Z)— Cor(Z, Z).

(a) The additive category Cor/- of finite correspondences has smooth varieties
over F as objects and Cor (A. Y) as the morphisms from X to Y, with the empty
variety 0 as the zero object and disjoint union as coproduct. Compare with
Propositions 2.5 and 2.6, and Definition 2.7.

(b) A presheafwith transfers is a (contravariant) additive functor F : Cor']? -> Ab.
We denote by PST(F) the functor category with presheaves with transfers as objects
and natural transformations as morphisms. This is an abelian category with enough
injectives and projectives; see [21, Lecture 2].

Example 5.2. Let X be a smooth variety over F.

(a) The presheaf with transfers represented by X is denoted by Zlr(X). In other
words, ZU(X) : U f» Zv(X)(U) := Cor(U,X).

(b) We use Gm to denote the pointed multiplicative algebraic group (Gm, 1)

defined by Gm(R) Rx, where Rx is the group of units of the F-algebra R. In the

context of ©-analytic spaces, the realization of Gm is Gm(C) Cx with the analytic
topology and endowed with the action of © given by complex conjugation.

(c) Given pointed varieties {X\, xi),..., (Xn,xn) one defines Ztr(Zi A• • AXn)
in the same fashion as in the analytic case (3.3). In other words,

^tr(X 1 A • • • A Xn)
n

— Coker I© Ztr(Xi X X {Xj} X ••• X Xn) -> ZtrX X ••• X Z„)j.
7=1

In particular, given p > 1, define Zlr(f\pX) := Ztr(Z A • • • A Z).
The standard algebraic n-simplex over F is the affine variety

A" — Spec F[xq xn\/(xo H F xn — 1).

In particular, given any extension K of F the A'-valued points A"(K) corresponds
to the hyperplane in Kn+X given by the equation x0 H + xn 1. The collection
of these algebraic simplices forms the standard cosimplicial variety A*.

Given a presheaf with transfers !F define a simplicial presheaf with transfers

A.F by An!F : U F(U x A"). Denote the corresponding (chain) complex of
presheaves with transfers by AX and let A*F denote the associated (negatively
graded) complex with A" F A_„ F.
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Definition 5.3. The motivic complex or weight p is the complex of presheaves with
transfers defined as Z(p)J^ := A*Ztr(/\pGm)[—p]. In particular, given a smooth

algebraic variety U over F and —oo < j < p, one has

ZtI(/\pGm)(U x A*"')
Cor(AP~j x U, Gp)

Im ©f=1 Cor(A^~-/' x U, Gm x • •• x {1} x ••• x Gm) -> Cor(A^~/ x U, G£))

Compare with Definitions 3.4 and 3.19.

Remark 5.4. It is shown in [21, Cor. 3.3] that, given any smooth variety X over F
the restriction Z(p)J^^x °f ^(p)m t0 t^ie (smaL) Zariski site XZar of X is indeed a

complex of sheaves in the Zariski topology of X.
Our approach to ordinary equivariant cohomology expressed in Theorem 3.9 was

designed to provide a topological perspective on the following definition.

Definition 5.5 ([21]). Given a smooth variety over the field F, the motivic
cohomology groups (X, Z pj) of X are defined as the hypercohomology groups
H£(X,Z(p)) :=Hn(XZai;Z(p)^x).

5.2. Real varieties and cycle maps. In this section we present the desired cycle
map, utilizing the terminology introduced in Definition 3.4.

Lemma 5.6. The assignment X (X(G), a) of the analytic space X(C) together
with the complex conjugation involution a : X(C) —> X(C) induces a morphism of
sites

n : (6-Man„)eff -> (Sm^. (5.1)

Given X e Sm®, we also denote by

TT : X(£)eq (5.2)

the induced morphism between the corresponding small sites.

Proof. Let u : Sm^ —> 6-Manw denote the functor that sends X to (A(C).a), and

/ : A -* Y to fc : X(C) -> T(C).
Let A Uis/ Ui be a Zariski open cover of X, which we denote by {(/;-> X}.

It is clear that {[/(C); —> X(C)} is an open cover of X(C) in the analytic topology
by ©-invariant open subsets, since each [/; is a real open subvariety of X. In other
words, the functor u sends covering families in Sitiir to covering families in ©-Man^.

Given {[/; —> U} in Cov(SmR) and a morphism / : V —> U in Sitir, then

Ui X[/ V f~x (Ui) is a Zariski open subset of V. It follows from [2, Exposé XII,
§1.2] that u(Ui y.jj V) ([/; x^ C)(C) f~l{Ui){C) f£l(Ui(C))
U(C) xu(C) V(C) u(Ut) xu(U) u(V).

This shows that u induces the desired morphism of sites. See [25, Def. 1.2.2]
and [24, Tag 00X0],
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We now present our final result, where the cycle map from motivic cohomology
is realized in the level of complexes.

Theorem 5.7. Given a smooth real variety X, one has map of complexes ofZariski
sheaves cx : 1{p)m\x —> Rn*Z(p)<o\X(C) induced by re : Ar(C)eq - XZm (5.2)
and natural on X. This map induces natural bigraded ring homomorphisms

cx : //£(*, Z(.)) — H£;'(X;Z),

from motivic cohomology to ordinary RO{&)-graded equivariant cohomology.

Proof Let U Smg be a smooth real variety and let T c U x AP~J x (Gm)/> be

a finite correspondence representing an element in Z(p)j^(U). It suffices to assume
that T is irreducible.

Let T(C) be the complex analytic subvariety of 17(C) x Ap~j(C) x Cxp
associated to T. As explained in Example 2.3(ii)), T(C) represents an element

[T(C)] J^n(U(C) x AP~J (C), Cxp) invariant under the action of the Galois

group 6.
The inclusion t : U(C) x Ap~i *-* t/(C) x Ap~j (C) induces a pull-back map

l* : J,fn(t/(C) x An~p(C),Cxp) —r J?n(G(C) x A"-p.Cxp),

and we denote TA t*(T(C)). Hence lies in ©-Man^n(f/(C) x Ap~n, Cxp)
and represents an element in Z(p)JBr(U(C)).

Furthermore, using the naturality and compatibility of inclusions of faces

An-p-1<_ à n-p

A„-p-i(C)c > An~p(C)

one shows that the assignment F gives a map of complexes

cu : Z(p)Z(U) -> Z(p)*Br(U(C)) jt*(Z(p)Br)(U)

natural on U. Taking an injective resolution 0 -» Z(p)-* I* gives the desired

morphism of complexes.
To end the proof we first recall that the functor U i->- f/(C) is compatible with

(fibered) products, as explained in the proof of Lemma 5.6. Now, one can simply
repeat the simplicial arguments used in [21, Construction 3.11] to obtain a product
Z(p)o) <8)Zj(q)(o —> Z(p + q)io that gives the multiplicative structure in equivariant
cohomology. The same argument is used to give the multiplication in motivic
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cohomology, and this yields a commutative diagram

%(p)m ® > Z(P + 9)M

455

(5.3)

Rn*Z(p)co ®L Rn*Z(q)a, » Rn*Z(p + q)w.

The result follows.

5.3. Example: Number fields and Milnor K-theory. Given a number field F, let Tr
and Te denote the sets of real and complex embeddings of F. respectively. Since the

complex embeddings come in conjugate pairs, one can think of le as a finite 6-set
©-isomorphic to T^t" x 6, where T^t contains one chosen embedding from each pair
of conjugate embeddings in Te.

Consider the real variety X := Spec(F <8>q M). The space X(C) is isomorphic
to Tr JJ Tc as ©-spaces. Denoting H^P(F;Z) H^p (X(C)iZ) one has:

H£;P(F; Z) tf£*(rR;Z) x H£p(Tc;Z) ee 7/b";p(*; Z)r« x #£'(©; Z)rc

#£'(*; Z)' x H^iG-Z)'
H^p(*;Zy x H"ng(*:Z)', (5.4)

where Tr {<p\,..., (ps} and T^t {r/i,..., qt}, and the last isomorphism follows

from the general isomorphism Hq(X x G/K; Z) s //^eSk ^ (X ; Z) for RO(G)-
graded ordinary cohomology, along with the fact that ordinary equivariant
cohomology is singular cohomology with the group is trivial. In particular,

(Zx)r« ^ {ZXY. (5.5)

See Proposition 3.21.

Consider the composition Fx x Tr —>• Mx A- Zx, where ev is the evaluation

map ev(x, cp) — cp(x) and p(x) A. Taking adjoints one gets a homomorphism

c: Fx Hjt Spec F, Z(l)) — (Zx)Fk (5.6)

which is precisely the cycle map given in Theorem 5.7 Since ®P>oHp;p(F;Z)isa
graded commutative ring this map induces a homomorphism of graded rings

q:T(Fx)-+Q)Hp;p(F-, Z). (5.7)

p>o

where T(FX) is the tensor algebra of Fx.
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Using the cup product one gets

Fx ® Fx H^l(F-Z) ® H^l(F-Z) H^2(F:Z)

(Zx)r® <g> (Zx)rR > (Zx ®z Zx)rR,

where the right vertical equality comes from Proposition 3.21. Now, note that for
1 7^ x Mx either x or 1 — x is positive and this implies that for a e Fx one has

Uog{a®(l- a)} 0. It follows that g descends to a homomorphism

Q : K^(F) ©p>o//^( Spec F. Z(p)) — ®P>0H&P(F; Z), (5.8)

from the Milnor ÄT-theory ring of F to the "diagonal" subring of the ordinary bigraded
equivariant cohomology of F.

Remark 5.8. Bass and Tate have shown that

K?(M)/2^(M) s Z[e] s ®P>0H&P(R-,Z),

and their isomorphism is realized by the cycle map described above.

A. Points, sheaves and hypercohomology on G-Manw

A.l. Points on G-Manw. Denote by G-Man£ and G-Man~, respectively, the category

of presheaves and sheaves of sets on the site G-Manw, as in Definition 3.4. Fix
a complete G-universe U, which can be an orthogonal representation isomorphic to
a countably infinite direct sum of the regular representation of G.

For each subgroup H < G, each //-subrepresentation V C Res^(U) and

0 < k < v — dim V, consider the collection

®H(V.k) := {G xH Dl/r(V.k) \r e N}

of objects in G-Man^,, where Di/r(V,k) C V is the intersection of an open disk of
radius 1/r centered around the origin with an //-invariant "corner" isomorphic to

x The collection <£//(U, k) induces a functor

PH{V,k)* : G-Man^ — Sets; S3 i->- colim P(G x# Di/r(V,k)).
reN

The functor ph{V,F)* preserves finite projective limits and arbitrary inductive limits
of sheaves. It follows that pH(F,k)* admits a right-adjoint pH (V,k)* : Sets —»•

G-Man~ (see [1, IV, Cor. 1.7]) and the pair of adjoint functors defines a morphism
of topoi ph(V, k) : Sets — G-Man~, i.e. a point of the topos G-Man~.
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The following fact is easy to verify.

Lemma A.l. The set <ï> := {ph(V, k) \ H < G, f CU, 0 < k < n £ N} forms a

conservative set ofpoints in the topos G-Man~.

In this case, the site is said to have enough points, in other words, the collection

{Ph(Y, k)*} detects isomorphisms. The existence of a conservative family of points
yields a canonical Godement resolution of abelian sheaves or sheaves of modules

over a ring R. A succinct account of the construction can be found in [17, IV-§2] and

the results we need are summarized in the following statement, where we also use

G-Man~ to denote the category of abelian sheaves on G-Manw.

Corollary A.2. There is a canonical functor

G := G*z : G-Man~ t-> C+(G-Man~),

where C+(G-Man~) denotes the category of bounded below complex of abelian
sheaves on the site G-Manw. This comes with a natural augmentation functor
F —* G (IF) that gives a resolution ofF byflabby sheaves. (The canonical Godement

resolution for a site with enough points.)

Remark A.3. Given a complex of abelian sheaves F* in G-Man^, we obtain a

double complex by applying the Godement resolution to each sheaf in the complex
and use the same notation G(5r*) to denote the total complex associated to this double

complex. The resulting map F* —» G(F*) is a quasi-isomorphism of complexes
of sheaves and, since G(F*) is a complex of flabby sheaves, one can calculate the

hypercohomology of any X e G-Manw with values in F* as

H"(Aeq; F*) H"(r(X,G(f))). (A.l)

A.2. Cech hypercohomology. Given A e G-Man^, the set of coverings of X forms

a directed set Cov(A) under the partial order given by refinements of coverings.
The rth Cech hypercohomology of X with coefficients in a complex of abelian

presheaves F* on G-Man^ is defined as the colimit

Hr(Aeq;F*) := colim Hr(U\F*). (A.2)
UeCov(X)

where Hr(T(: F*) is defined as the cohomology of the complex of abelian groups
Tot(T(A, 'èp*^ it))' see Definition 3.12(d).

Proposition A.4. Let F* and X be as above. The natural map

f : Hr(Aeq; F*) W(Xeq-,aF{*x)

is an isomorphism.

Proof. The proof is essentially the same as in the non-equivariant case; see [5].
Since manifolds are paracompact, one can formulate a suitable notion of equivariant
paracompactness (for coverings in Cov(G)), and the usual arguments apply.
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A.3. On complexes of presheaves with homotopy invariant cohomology. The
main purpose of this final section is to provide detailed proofs of the key steps in the

proof of Theorem 3.11, namely, Propositions 3.14 and 3.16, and Theorem 3.15.
We first introduce a family of coverings of the interval / [0,1] C M, as follows.

For each n e N and i 1define J" := — e(n), ^ + e(n)) n I, where

e(n) 10*n2 (or any sufficiently small e(«)). Define := {J" \ i 1 ,/t}
and verify that f"+l refines fn for all n e N. Using Lebesgue's number lemma,
one sees that the directed family {#" | n e N} forms a cofinal family of coverings
of/.

Given any covering K {(/„ | a e A} e Cov(A), denote

#"(1/) := {Ua x J" I a e A, and / 1 n}, (A.3)

and observe that the collection of coverings of the form fn (K) forms a cofinal family
in Cov(A x /). When U := {A}, simply denote #"(A) #"(K).
Lemma A.5. Given a homotopy invariant abelian presheaf P on G-Manm and

X e G-Manw, then for n > 0 the Cech cohomology of the cover f"(X) is given by

HqUn(X):P) j°' q>°'
v ' I P(X x I) s P{X), <7 0.

Proof. This follows from a routine calculation.

As a consequence, we obtains the following tube lemma.

Corollary A.6. Let aP be the abelian sheaf on G-Mano; associated to a separated
homotopy invariant abelian presheaf P. Given an element s e aP(X x /) and
X() e X, one can find an open G -invariant neighborhood U ofxo and ö e P(U x I)
such that i (ä) p(s), where i and p are the natural homomorphisms

P(U x If—-—y aP(U x I)^—aP(X x I).

Proof. For each tel one can find a G-invariant neighborhood Ut x N, of (xo. t e

Ax/, together with st e P(Ut x N,) such that, under the induced maps

P(U, x Nt)<-^aP(Ut x N,)^—aP(X x I)

one has / (sr pt(s). One can find n > 0 sufficiently large so that the finite cover fn
refines the cover {Nt}lei of the interval. For each i 1find /, e I such

that J" C Ntj and define U := H"=i Ut.. Finally, denote by ct,- e P(U x Jf) the

restriction of s,(. to U x J".
The collection a (a,) belongs to P). Note that the Cech

differential C°(tf,n(U): P) -i- Cx($,"(U)\ P) sends a to So — (y,y) where

ï'j — ~ e x (/i n Ji ))•
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Now,

l (Sä) l(aj\u„(jrtnjn)) l(&i\Ux(jnnjn))

~ P^luxufnJt) P(®)|UxfjPnj") Ux(jpnJ'J)
0.

Since J3 is a separated presheaf, i is injective and one concludes that Sä 0.

Therefore, ä represents a classa in H°($n(U): IP) — (P(UxI) s f (U), according
to Lemma A.5, with the property that ö\uxj« oj-, for all i 1.....n. As a

consequence, one has

for all i. Since #"((/) {U x 7"} is a cover of U x / and a IP is a sheaf, one

Lemma A.7. Let S be a homotopy invariant abelian sheaf on G-Manw. Given

X e G-Manm, let n : X x / -> X denote the projection. Then for all q > 0 one has

Proof. Given x e X denote H := Gx and let N(x) denote the set of equivariant

open neighborhoods U of x isomorphic to G xff ß, where B is //-equivariantly
analytically contractible to a point. In particular, the orbit of x is an equivariant
strong deformation retract of U.

The stalk of Rqn* {£\xxi) at x is given by

Rgn*(S\xxi)x := colim Hq (n~lU; — colim Hq(U xI;S\uxi)
UeN(x)

v 1 K " U6N(x) v

colim Hq(U X I;S\uxi),
U eN(x)

v '

where the last isomorphism follows from Proposition A.4.
Given U e N(x) and a 6 Hq(U x /; S\uxi), one can find a locally finite

covering "V of U, n N, and â e Hq($,"(V): S) that represents a. In other words,
the natural map p : Hq($n(V); S) —> Hq(U x I:S) sends â to a.

Let W e N(x) be a neighborhood of x that is contained in the intersection of all
(finitely many) elements of V containing x, and consider the covering W {W}
of W. One gets a commutative diagram

'(c)| Uxjp l(°i) P(S) ®|£7 xj" •

concludes that i (ä) p(s).

Rqn* (-^|xx/) 0.

Hq(cf.n(V); S) —-—» Hq(U x I-.S) Hq(U x I\S)

Hq(i"(W)\B) Hq(W x / :£) ss Hq(W xI;S).
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If q > 0, the group on the lower left corner is zero, by Lemma A.5. Hence, for
an arbitrary x e X the stalk of R9n* (8\xxi) at x is zero and this concludes the

proof.

Corollary A.8. If S is a homotopy invariant abelian sheaf on G-Man^ then for all
n >0 the presheaf X i—> H"(X; %\x) is homotopy-invariant.

Proof The £"2-term of the Leray spectral sequence associated to the map n : Xx /-» X
is given by E Hp(A; R?tt*(%x/)) => HP+"(X x 7:%x/). The

previous lemma shows that E%'q 0 if q > 0. Hence Hp (X x I',S\xxi)
Hp(X\n*$\xxi)- Finally, the homotopy invariance of Ogives n*S\xxi — S\x- D

Lemma A.9. Let P* be an abelian presheaf on G-Manw and let Hp* denote its qth
cohomology presheaf. Then the natural map of complexes f* —> a IP* induces an
isomorphism a Hp* s aHqap».

Proof. This can be directly verified on stalks, using the fact that in the category of
abelian groups homology commutes with filtered colimits.

We now have all the ingredients to prove

Proposition 3.14. Let P be a homotopy invariant abelian presheaf on G-Man^.
Then the associated sheaf a P is homotopy invariant.

Proof. Let P0 denote the subpresheaf of P defined by

Po(X):= colim ker [p{X) - FT Wa)}
UeCovm 1 11 >

AeA

and let Ps := P /Po denote the quotient presheaf. This is the separated presheaf
associated to P. The following facts are standard:

(i) The quotient map P P% induces an isomorphism aP ^ aPs between their
respective associated sheaves

(ii) The natural map of presheaves P$ -> aPs is injective.

We next need to show that the presheaf Ps is homotopy invariant. Given Xe G-Man^
consider the commutative diagram with exact rows

0 > P0(X) 5 > P{X) > P,(X) ¥ 0

0 > P0(X x I) —b—> P(X x I) > Ps(X x I) j. 0.

Since n o i0 lx, it follows that the maps i£ are surjective. The equality aifi i£b
then shows that the leftmost /q is injective, as well. It follows from the five-lemma
that the rightmost arrow is an isomorphism and hence <PS is homotopy invariant.
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Using the isomorphism a J3 s aS3^ it suffices to assume that S3 is a separated

homotopy invariant presheaf from now on.

Given a G -invariant open subset U of X one gets a commutative diagram

P{U x If—-—> aP(U x I)^f—aJ3(X x /)
z'o *o 'o

4P(C/)C - >aP(U)< aS3 (X).

Now, suppose that s e kerjz'o : aP(X x I) -> a!P(X)}. Given a point xo 6 2f it
follows from Corollary A.6 that one can find U as above, along with a e P{U x /)
satisfying i(â) p(s). Chasing the diagram one obtains

J ° 'o (ë) >o ° '(°) 'o (P(s)) r ° 'o (§) °-

Since J3 is separated, j is injective and hence /q(öO 0. From the homotopy
invariance of Ü3 one knows that the leftmost vertical arrow is an isomorphism, thus

showing that ö 0. Hence, S|[/x/ p(s) i{ö) 0.

It follows that one can find a cover U — {Ux)xx Cov(Z) such that for each

x e X one has s\uxxj 0. One concludes that s 0 since a J3 is a sheaf.

This shows that the rightmost vertical arrow in the diagram is injective, hence

an isomorphism since the identity tt o i0 — \x shows that z'q is surjective.

As a direct consequence we get

Theorem 3.15. Let S3* be a complex of abelian presheaves on G-Man^ with

homotopy-invariant cohomology presheaves. Then the presheaves

X ^mr(Xeq; a J3^)

are homotopy-invariant.

Proof. Let Mq := aHfp* denote the cohomology sheaf associated to the complex
of sheaves a J3*. Using Lemma A.9 one concludes that Mq s and hence it
follows from Proposition 3.14 that Jtq is a homotopy invariant abelian sheaf since,

by hypothesis, Hp, is homotopy invariant.

Now, we can use Corollary A.8 to see that for each X e G-Man^ the

corresponding map of hypercohomology spectral sequences

tt* : E(X) := Hp(X\M«x) — Ep'q(X x I) := HP(X x I\XfXxI) (A.4)

is an isomorphism. Therefore, the projection Tt : X x / —»• X induces an isomorphism
between the abutments of these spectral sequences, thus proving the theorem.
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Corollary A.10. If i : A ^ U is a strong deformation retract in the category
G-Marift, and IP* is a complex of abelian presheaves on G-Manw with homotopy
invariant cohomology presheaves then one has an isomorphism

i* : H'{U^aPfr) — H' (Aeq;aP*A).

Remark A.ll. The key example here are the "neighborhoods" described in A.l,
where we have an inclusion G/H G x# D, sending gH to (gH, 0), where 0 is

the center of disc containing D.
We conclude with the proof of

Proposition 3.16. Let U be an equivariant good cover of X and let IP* be a

complex with homotopy invariant cohomology presheaves on G-Manm. Then the
Cech hypercohomology M*('K: .P*) of the cover with coefficients on the complex of
presheaves IP*, computes the hypercohomology H* (X; a!P*x) ofXeq with coefficients
in the complex ofsheaves a.P*x.

Proof Let p : aIP*x -> G(a!P*)\x be the Godement quasi-isomorphism described
in Remark A.3. The functoriality of this construction guarantees that if U ç X is an

open G-invariant subset then

T(U. G(aP*)]x) T(U, G(aP*)\u). (A.5)

Standard arguments with flabby sheaves and Cech functors show that if 3* is a

flabby abelian sheaf on Aeq and V. e Cov(Z), one has an acyclic complex

0 —>• T(A; IF) r(A;G£;t<).

It follows that the second spectral sequence of the double complex T(X, u)
IX '

has the form

"Ep'q{U,G{a!P?x)) C' P>°'
1 V V ]x" |r(A. Gq (aIP*x)), p 0,

and, as a consequence,

Ûr(U\G(aP*x)) s W(Xeq-aIP*x). (A.6)

Now, by naturality, the Godement resolution p : aIP*x -> G(alP*x) gives maps
of first spectral sequences

'Ep'q (U, Pfc) —>'Epfq(U.aP*x) —+'Ep'q(U,G(a!Pfx)),

as explained in Notation 3.13. This composition is a product of terms of the form

H«(T(Uzp-!P*)) -> Hq(Y(Uàp\G(aIP*x))) - Hq (U^alPfrJ, (A.7)

where the isomorphism follows from (A.5) and (A.l).
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Using the equivariant isomorphisms U&p s G ~*-Hdp D", one sees that the

natural projection U^p -> tto(U^p) G/H$ is an equivariant (analytic) homotopy
equivalence that induces the vertical maps in the following commutative diagram,
whose horizontal maps are defined in (A.7):

H«(r(Uôp',P*)) 9(Uâp,aP*)

Hq(T(G/Hâp-,P*)) > W(fi/Hôp\a3>*).

Since P* has homotopy invariant cohomology presheaves, the left vertical arrow is

an isomorphism, and Proposition 3.15 shows that the right vertical arrow is also an

isomorphism. Finally, the bottom horizontal arrow is an isomorphism since G/H^p
is zero-dimensional and sheaf cohomology coincides with Cech cohomology, as

shown in Proposition A.4. It follows that the top horizontal arrow is an isomorphism,
and by (3.13) one sees that the map 'E^'9(U, P*x) —> ' E^'q (V..G(aP*x)) gives

an isomoprhism of 'E\-terms, showing that the spectral sequences converge to the

same groups. By definition, the former spectral sequence converges to H*(K; S3*)
and the latter converges to H*(Yeq; atP*x), by (A.6). This concludes the proof.
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